Homogeneity adjustments ofin situ atmospheric climat

International Journal of Climatology

18, 1493-1517

DOI: 10.1002/(sici)1097-0088(19981115)18:13<1493::aid-joc329>3.0.co;2-t

Citation Report

#	Article	IF	Citations
1	An operational near-real-time global temperature index. Geophysical Research Letters, 1999, 26, 333-335.	1.5	30
2	Global rural temperature trends. Geophysical Research Letters, 1999, 26, 329-332.	1.5	99
3	GISS analysis of surface temperature change. Journal of Geophysical Research, 1999, 104, 30997-31022.	3.3	574
4	Surface air temperature and its changes over the past 150 years. Reviews of Geophysics, 1999, 37, 173-199.	9.0	1,244
5	A Method to Adjust Long-Term Temperature Extreme Series for Nonclimatic Inhomogeneities. Journal of Climate, 2000, 13, 3680-3695.	1.2	18
6	Temporal trends in United States dew point temperatures. International Journal of Climatology, 2000, 20, 985-1002.	1.5	78
7	Spatial analysis of rainfall trends in the region of Valencia (east Spain). International Journal of Climatology, 2000, 20, 1451-1469.	1.5	220
8	Climate Observations - The Instrumental Record. Space Science Reviews, 2000, 94, 309-320.	3.7	8
9	Multiple change-point detection with a genetic algorithm. Soft Computing, 2000, 4, 68-75.	2.1	15
10	Trends in Nordic and Arctic Temperature Extremes and Ranges. Journal of Climate, 2000, 13, 977-990.	1.2	88
11	Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. Journal of Geophysical Research, 2000, 105, 22849-22868.	3.3	83
12	Climate signals from station arrays with missing data, and an application to winds. Journal of Geophysical Research, 2000, 105, 29489-29500.	3.3	10
13	Sensitivity of Tropospheric and Stratospheric Temperature Trends to Radiosonde Data Quality. Journal of Climate, 2000, 13, 1776-1796.	1.2	125
14	Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 2000, 27, 3885-3888.	1.5	252
15	A closer look at United States and global surface temperature change. Journal of Geophysical Research, 2001, 106, 23947-23963.	3.3	456
16	Detection Probability of Trends in Rare Events: Theory and Application to Heavy Precipitation in the Alpine Region. Journal of Climate, 2001, 14, 1568-1584.	1.2	314
17	Quality Control and Homogeneity of Precipitation Data in the Southwest of Europe. Journal of Climate, 2001, 14, 964-978.	1.2	128
19	Compatibility evaluation of national precipitation gage measurements. Journal of Geophysical Research, 2001, 106, 1481-1491.	3.3	89

ATION REDO

#	Article	IF	CITATIONS
20	Winter precipitation over the Iberian peninsula and its relationship to circulation indices. Hydrology and Earth System Sciences, 2001, 5, 233-244.	1.9	99
21	A Method for Monthly Detection of Inhomogeneities and Errors in Daily Maximum and Minimum Temperatures. Journal of Atmospheric and Oceanic Technology, 2001, 18, 1136-1149.	0.5	8
22	Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961-1998. International Journal of Climatology, 2001, 21, 269-284.	1.5	583
23	Homogeneity adjustments of temperature and precipitation series?Finnish and Nordic data. International Journal of Climatology, 2001, 21, 495-506.	1.5	59

Analysis of maximum and minimum daily temperatures recorded at Fabra Observatory (Barcelona, NE) Tj ETQq0.0 rg BT /Overlock 10 T 1.5

25	Spatial distribution of seasonal rainfall trends in a western Mediterranean area. International Journal of Climatology, 2001, 21, 843-860.	1.5	64
26	Precipitation measurements and trends in the twentieth century. International Journal of Climatology, 2001, 21, 1889-1922.	1.5	456
27	Regional temperature variability in the European Alps: 1760-1998 from homogenized instrumental time series. International Journal of Climatology, 2001, 21, 1779-1801.	1.5	344
28	Twentieth-century variations in temperature and precipitation in the Nordic Arctic. Polar Record, 2002, 38, 203-210.	0.4	29
29	Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 2002, 19, 193-212.	0.4	1,686
30	Evaluation of the Effect of the Luers–Eskridge Radiation Adjustments on Radiosonde Temperature Homogeneity. Journal of Climate, 2002, 15, 1335-1347.	1.2	10
31	Spatial representativity of air-temperature information from instrumental and ice-core-based isotope records in the European Alps. Annals of Glaciology, 2002, 35, 157-161.	2.8	8
32	Recent changes in climate extremes in the Caribbean region. Journal of Geophysical Research, 2002, 107, ACL 16-1-ACL 16-9.	3.3	230
33	Homogenization of Daily Temperatures over Canada. Journal of Climate, 2002, 15, 1322-1334.	1.2	263
34	Long term climate deviations: an alternative approach and application on the Palmer drought severity index in Hungary. Physics and Chemistry of the Earth, 2002, 27, 1063-1071.	1.2	15
35	Les besoins en observations pour la climatologie. La Météorologie, 2002, 8, 36.	0.5	6
36	Temporal fluctuations in heat waves at Prague-Klementinum, the Czech Republic, from 1901-97, and their relationships to atmospheric circulation. International Journal of Climatology, 2002, 22, 33-50.	1.5	102
37	Objective time-scale-dependent homogenization of early instrumental temperature series. Theoretical and Applied Climatology, 2002, 72, 103-126.	1.3	7

ARTICLE IF CITATIONS # Observed climate variability and change. Weather, 2002, 57, 269-278. 0.6 214 38 Homogeneity of 20th century European daily temperature and precipitation series. International 1.5 693 Journal of Clímatology, 2003, 23, 679-692. Long-term snow climate trends of the Swiss Alps (1931-99). International Journal of Climatology, 2003, 40 303 1.5 23, 733-750. Comparison of techniques for detection of discontinuities in temperature series. International Journal of Climatology, 2003, 23, 1087-1101. A composite monthly temperature record from Tornedalen in northern Sweden, 1802-2002. 42 1.5 91 International Journal of Climatology, 2003, 23, 1465-1494. The interpretation of non-homogeneous hydrometeorological time series: a case study. Meteorological Applications, 2003, 10, 61-67. Temperature trends in Japan: 1900â€"1996. Theoretical and Applied Climatology, 2003, 75, 15-27. 44 1.3 150 Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update 1.2 1,018 to 2001. Journal of Climate, 2003, 16, 206-223. Temporal Homogenization of Monthly Radiosonde Temperature Data. Part I: Methodology. Journal of 1.2 46 141 Climate, 2003, 16, 224-240. Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No 1.2 Difference Found. Journal of Climate, 2003, 16, 2941-2959. Urban heat island effect on annual mean temperature during the last 50 years in China. Theoretical 48 1.3 198 and Applied Climatology, 2004, 79, 165-174. Climate variability and change in Bulgaria during the 20th century. Theoretical and Applied 49 1.3 Climatology, 2004, 79, 133-149. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. 50 1.9 150 Advances in Atmospheric Sciences, 2004, 21, 260-268. The development of monthly temperature series for Scotland and Northern Ireland. International Journal of Climatology, 2004, 24, 569-590. 1.5 52 On the role of statistics in climate research. International Journal of Climatology, 2004, 24, 665-680. 1.5 63 Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a southern Italy 138 context. International Journal of Climatology, 2004, 24, 907-922. Quality control of daily meteorological data in China, 1951–2000: a new dataset. International Journal 54 1.5335 of Climatology, 2004, 24, 853-870. On the relationships between circulation types and changes in rainfall variability in Greece. 1.5 94 International Journal of Climatology, 2004, 24, 1695-1712.

#	Article	IF	CITATIONS
56	Sea-level pressure variability in the Po Plain (1765-2000) from homogenized daily secular records. International Journal of Climatology, 2004, 24, 437-455.	1.5	18
57	Changes in daily precipitation frequency and distribution in Italy over the last 120 years. Journal of Geophysical Research, 2004, 109, .	3.3	139
58	Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary?. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	247
59	A Method to Determine Station Density Requirements for Climate Observing Networks. Journal of Climate, 2004, 17, 2961-2971.	1.2	40
60	Data Rescue in the Southeast Asia and South Pacific Region: Challenges and Opportunities. Bulletin of the American Meteorological Society, 2004, 85, 1483-1490.	1.7	38
62	A Comparison of SNOTEL and GHCN/CRU Surface Temperatures with Free-Air Temperatures at High Elevations in the Western United States: Data Compatibility and Trends. Journal of Climate, 2005, 18, 1967-1985.	1.2	20
63	On the USCRN Temperature System. Journal of Atmospheric and Oceanic Technology, 2005, 22, 1095-1100.	0.5	12
64	Identifying Rogue Air Temperature Stations Using Cluster Analysis of Percentile Trends. Journal of Climate, 2005, 18, 1275-1287.	1.2	11
65	A Global Merged Land–Air–Sea Surface Temperature Reconstruction Based on Historical Observations (1880–1997). Journal of Climate, 2005, 18, 2021-2036.	1.2	289
66	Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. International Journal of Climatology, 2005, 25, 65-80.	1.5	344
67	A new instrumental precipitation dataset for the greater alpine region for the period 1800-2002. International Journal of Climatology, 2005, 25, 139-166.	1.5	175
68	An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 2005, 25, 693-712.	1.5	3,550
69	Surface air temperature records biased by snow-covered surface. International Journal of Climatology, 2005, 25, 1223-1236.	1.5	19
70	Canadian pressure observations and circulation variability: links to air temperature. International Journal of Climatology, 2005, 25, 1473-1492.	1.5	15
71	Sensitivity of frost occurrence to temperature variability in the European Alps. International Journal of Climatology, 2005, 25, 1749-1766.	1.5	14
72	Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France. Climate Dynamics, 2005, 24, 57-69.	1.7	88
73	Measurement of air temperature in the presence of a large radiant flux: an assessment of assively ventilated thermometer screens. Boundary-Layer Meteorology, 2005, 114, 205-231.	1.2	63
74	Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and Earth System Sciences, 2005, 9, 523-533.	1.9	259

#	Article	IF	CITATIONS
75	Detection of Undocumented Changepoints Using Multiple Test Statistics and Composite Reference Series. Journal of Climate, 2005, 18, 4271-4286.	1.2	124
76	Urban Heat Island Assessment: Metadata Are Important. Journal of Climate, 2005, 18, 2637-2646.	1.2	78
77	A global comparison of surface and free-air temperatures at high elevations. Journal of Geophysical Research, 2005, 110, .	3.3	152
78	El Niño and La Niña influence on droughts at different timescales in the Iberian Peninsula. Water Resources Research, 2005, 41, .	1.7	61
79	An examination of the differences between surface and free-air temperature trend at high-elevation sites: Relationships with cloud cover, snow cover, and wind. Journal of Geophysical Research, 2005, 110, .	3.3	31
80	Meteorology as Infrastructural Globalism. Osiris, 2006, 21, 229-250.	0.3	85
81	Evaluation of model-derived and remotely sensed precipitation products for continental South America. Journal of Geophysical Research, 2006, 111, .	3.3	37
82	Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 2006, 111, .	3.3	297
83	Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 2006, 111, .	3.3	2,884
84	Reexamination of instrument change effects in the U.S. Historical Climatology Network. Geophysical Research Letters, 2006, 33, .	1.5	28
85	Evolution des extrêmes hydrométriques en France à partir de données observées. Houille Blanche, 2006, 92, 48-54.	0.3	15
86	Methodology and Results of Calculating Central California Surface Temperature Trends: Evidence of Human-Induced Climate Change?. Journal of Climate, 2006, 19, 548-563.	1.2	121
87	A Technique to Detect Microclimatic Inhomogeneities in Historical Records of Screen-Level Air Temperature. Journal of Climate, 2006, 19, 959-978.	1.2	64
88	The Interannual Variability and Trend of Precipitable Water over Southern Greece. Journal of Hydrometeorology, 2006, 7, 271-284.	0.7	22
89	Snowmelt-Related Flood Risk in Appalachia: First Estimates from a Historical Snow Climatology. Journal of Applied Meteorology and Climatology, 2006, 45, 178-193.	0.6	37
90	Intra- to multi-decadal terrestrial precipitation regimes at the end of the 20th century. Climatic Change, 2006, 78, 317-340.	1.7	14
91	Recent changes in dry spell and extreme rainfall events in Ethiopia. Theoretical and Applied Climatology, 2006, 83, 181-191.	1.3	149
92	Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theoretical and Applied Climatology, 2006, 83, 139-151.	1.3	234

ARTICLE IF CITATIONS # Historical instrumental climate data for Australiaâ€"quality and utility for palaeoclimatic studies. 93 1.1 12 Journal of Quaternary Science, 2006, 21, 681-688. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. International Journal of Climatology, 2006, 26, 345-381. 94 1.5 474 An evaluation of a general circulation model (GCM) and the NCEP–NCAR reanalysis data for winter 95 1.5 30 precipitation in Greece. International Journal of Climatology, 2006, 26, 935-955. Monitoring the 2003-2004 meteorological drought over Pannonian part of Croatia. International 96 Journal of Climatology, 2006, 26, 2213-2225. The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain. International Journal of Člimatology, 2006, 97 1.5 115 26, 1427-1453. Reconstructed annual precipitation series for Scotland (1861–Â1991): Spatial and temporal variations, and links to the atmospheric circulation. Scottish Geographical Journal, 2006, 122, 1-18. 0.4 EXAMINATION OF POTENTIAL BIASES IN AIR TEMPERATURE CAUSED BY POOR STATION LOCATIONS. Bulletin 99 1.7 23 of the American Meteorological Society, 2006, 87, 1073-1080. Attributes of Several Methods for Detecting Discontinuities in Mean Temperature Series. Journal of 1.2 Climate, 2006, 19, 838-853. Linkages between atmospheric circulation, climate and streamflow in the northern North Atlantic: 101 1.4 113 research prospects. Progress in Physical Geography, 2006, 30, 143-174. A Method of Homogenizing the Extremes and Mean of Daily Temperature Measurements. Journal of 1.2 Climate, 2006, 19, 4179-4197. Trends in high flows in the central Spanish Pyrenees: response to climatic factors or to land-use 103 1.2 97 change?. Hydrological Sciences Journal, 2006, 51, 1039-1050. Simultaneous Detection of Climate Change and Observing Biases in a Network with Incomplete 1.2 34 Sampling. Journal of Climate, 2007, 20, 4047-4062. Water Resources and Precipitation Trends in Aragon. International Journal of Water Resources 105 1.2 11 Development, 2007, 23, 107-123. Evaluation of a Long-Term (1882–2005) Equivalent Temperature Time Series. Journal of Climate, 2007, 1.2 16 20, 4476-4485. Large-Scale Climatic Controls on New England River Flow. Journal of Hydrometeorology, 2007, 8, 107 37 0.7 367-379. Documentation of Uncertainties and Biases Associated with Surface Temperature Measurement Sites for Climate Change Assessment. Bulletin of the American Meteorological Society, 2007, 88, 913-928. Penalized Maximal t Test for Detecting Undocumented Mean Change in Climate Data Series. Journal of 109 0.6 278 Applied Meteorology and Climatology, 2007, 46, 916-931. Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a 1.4 165 moving target. Quaternary Science Reviews, 2007, 26, 3298-3310.

#	Article	IF	CITATIONS
111	SynthÃ se des techniques d'homogénéisation des séries climatiques et analyse d'applicabilité aux sér de précipitations. Hydrological Sciences Journal, 2007, 52, 18-37.	ies 1.2	26
112	Changes in severe indices as simulated by two French coupled global climate models. Global and Planetary Change, 2007, 57, 96-117.	1.6	25
113	Evaluation of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions. Journal of Climate, 2007, 20, 4356-4376.	1.2	571
114	A Review and Comparison of Changepoint Detection Techniques for Climate Data. Journal of Applied Meteorology and Climatology, 2007, 46, 900-915.	0.6	427
115	Bayesian multivariate linear regression with application to change point models in hydrometeorological variables. Water Resources Research, 2007, 43, .	1.7	45
116	Unresolved issues with the assessment of multidecadal global land surface temperature trends. Journal of Geophysical Research, 2007, 112, .	3.3	154
117	Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set. Journal of Geophysical Research, 2007, 112, .	3.3	105
118	Analysis of Turkish precipitation data: homogeneity and the Southern Oscillation forcings on frequency distributions. Hydrological Processes, 2007, 21, 3203-3210.	1.1	39
119	Statistical quality control for localâ€scale extreme temperatures. Case study: Lisbon, Portugal. Meteorological Applications, 2007, 14, 275-290.	0.9	4
120	HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. International Journal of Climatology, 2007, 27, 17-46.	1.5	828
121	Downscaling daily maximum and minimum temperatures in the midwestern USA: a hybrid empirical approach. International Journal of Climatology, 2007, 27, 439-454.	1.5	38
122	On the critical values of the standard normal homogeneity test (SNHT). International Journal of Climatology, 2007, 27, 681-687.	1.5	134
123	Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression-based techniques. International Journal of Climatology, 2007, 27, 1103-1118.	1.5	51
124	A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. International Journal of Climatology, 2007, 27, 1467-1477.	1.5	193
125	Homogenization of long-term monthly Spanish temperature data. International Journal of Climatology, 2007, 27, 1809-1823.	1.5	29
126	Detecting summer rainfall enhancement within metropolitan Atlanta, Georgia USA. International Journal of Climatology, 2007, 28, 129-133.	1.5	18
127	Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Climate Dynamics, 2007, 29, 251-275.	1.7	273
128	Reconstruction of long-term precipitation records for Edinburgh: an examination of the mechanisms responsible for temporal variability in precipitation. Theoretical and Applied Climatology, 2008, 92, 141-154	1.3	8

#	Article	IF	CITATIONS
129	Impacts of climatic change and low frequency variability in reference series on daily maximum and minimum temperature in southern South America. Regional Environmental Change, 2008, 8, 45-57.	1.4	9
130	Historical trends and future predictions of climate variability in the Brahmaputra basin. International Journal of Climatology, 2008, 28, 243-254.	1.5	191
131	What are daily maximum and minimum temperatures in observed climatology?. International Journal of Climatology, 2008, 28, 283-294.	1.5	9
132	Spatio-temporal climatic change of rainfall in East Java Indonesia. International Journal of Climatology, 2008, 28, 435-448.	1.5	71
133	Variability and trends in indices of quality ontrolled daily temperature extremes in Uruguay. International Journal of Climatology, 2008, 28, 1083-1095.	1.5	41
134	Radiosonde temperature trends and their uncertainties over eastern China. International Journal of Climatology, 2008, 28, 1269-1281.	1.5	12
135	Recent trends in Tuscany (Italy) summer temperature and indices of extremes. International Journal of Climatology, 2008, 28, 1751-1760.	1.5	65
136	Quality control and homogeneity of Turkish precipitation data. Hydrological Processes, 2008, 22, 3210-3218.	1.1	48
137	Impacts of Climate Change and Variability on European Agriculture. Annals of the New York Academy of Sciences, 2008, 1146, 338-353.	1.8	28
138	Intercomparison of homogenization techniques for precipitation data. Water Resources Research, 2008, 44, .	1.7	52
139	Detecting inhomogeneities in Caribbean and adjacent Caribbean temperature data using seaâ€surface temperatures. Journal of Geophysical Research, 2008, 113, .	3.3	20
140	geoENV VI – Geostatistics for Environmental Applications. , 2008, , .		4
141	Past and Current Climate Change. , 2008, , 35-131.		21
142	Urbanization Effects on Observed Surface Air Temperature Trends in North China. Journal of Climate, 2008, 21, 1333-1348.	1.2	402
143	Reconstruction of seasonal and annual rainfall variability in the Iberian peninsula (16th–20th) Tj ETQq0 0 0 rgB	T /Overloc 1.6	:k 10 Tf 50 18 70
144	Environmental change and water management in the Pyrenees: Facts and future perspectives for Mediterranean mountains. Global and Planetary Change, 2008, 61, 300-312.	1.6	149
145	Changes of reanalysis-derived Northern Hemisphere summer warm extreme indices during 1948–2006 and links with climate variability. Global and Planetary Change, 2008, 63, 67-78.	1.6	36
146	A European daily highâ€resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 2008, 113, .	3.3	1,889

#	Article	IF	CITATIONS
147	Accounting for Autocorrelation in Detecting Mean Shifts in Climate Data Series Using the Penalized Maximal t or F Test. Journal of Applied Meteorology and Climatology, 2008, 47, 2423-2444.	0.6	336
148	Penalized Maximal F Test for Detecting Undocumented Mean Shift without Trend Change. Journal of Atmospheric and Oceanic Technology, 2008, 25, 368-384.	0.5	266
149	The Hydroclimatology of Kuwait: Explaining the Variability of Rainfall at Seasonal and Interannual Time Scales. Journal of Hydrometeorology, 2008, 9, 1095-1105.	0.7	45
150	Homogenized Daily Mean/Maximum/Minimum Temperature Series for China from 1960-2008. Atmospheric and Oceanic Science Letters, 2009, 2, 237-243.	0.5	119
151	Spatiotemporal Mapping of Temperature and Precipitation for the Development of a Multidecadal Climatic Dataset for Wisconsin. Journal of Applied Meteorology and Climatology, 2009, 48, 742-757.	0.6	53
152	Temperature Discontinuity Caused by Relocation of Meteorological Stations in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20, 607.	0.3	3
153	Finescale Evaluation of Drought in a Tropical Setting: Case Study in Sri Lanka. Journal of Applied Meteorology and Climatology, 2009, 48, 77-88.	0.6	17
154	A Statistical Methodology to Discover Precipitation Microclimates in Southeast Louisiana: Implications for Coastal Watersheds*. Journal of Hydrometeorology, 2009, 10, 1184-1202.	0.7	3
155	Classification of Regional Climate Variability in the State of California. Journal of Applied Meteorology and Climatology, 2009, 48, 1527-1541.	0.6	84
156	Homogenization of Temperature Series via Pairwise Comparisons. Journal of Climate, 2009, 22, 1700-1717.	1.2	274
157	The influences of data precision on the calculation of temperature percentile indices. International Journal of Climatology, 2009, 29, 321-327.	1.5	30
158	Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the secondâ€half of the twentieth century (1951–2000). International Journal of Climatology, 2009, 29, 1415-1429.	1.5	144
159	Homogenization of Bulgarian temperature series. International Journal of Climatology, 2009, 29, 1835-1849.	1.5	10
160	Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal. International Journal of Climatology, 2009, 29, 1956-1975.	1.5	123
161	A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. International Journal of Climatology, 2010, 30, 1146-1163.	1.5	119
162	Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology, 2010, 30, 1538-1546.	1.5	199
163	History and analysis of the temperature series of Verona (1769–2006). Meteorology and Atmospheric Physics, 2009, 103, 267-277.	0.9	17
164	On the continuity and climatic variability of the meteorological stations in Torino, Asti, Vercelli and Oropa. Meteorology and Atmospheric Physics, 2009, 103, 279-287.	0.9	21

#	Article	IF	CITATIONS
165	Homogenization of Climate Data: Review and New Perspectives Using Geostatistics. Mathematical Geosciences, 2009, 41, 291-305.	1.4	175
166	Spatial structure of the evolution of surface temperatureÂ(1951–2004). Climatic Change, 2009, 93, 269-284.	1.7	15
167	Statistical characteristics of detectable inhomogeneities in observed meteorological time series. Studia Geophysica Et Geodaetica, 2009, 53, 239-260.	0.3	10
168	Detection and adjustment of undocumented discontinuities in Chinese temperature series using a composite approach. Advances in Atmospheric Sciences, 2009, 26, 143-153.	1.9	43
169	Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 2009, 113, 40-49.	4.6	580
170	Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology and Evolution, 2009, 24, 49-57.	4.2	623
171	The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agricultural and Forest Meteorology, 2009, 149, 453-461.	1.9	72
172	Testing Eâ€OBS European highâ€resolution gridded data set of daily precipitation and surface temperature. Journal of Geophysical Research, 2009, 114, .	3.3	258
173	Relating Values of Selected Benthic Macroinvertebrate Metrics from D-net to Surber Sampler in Two Southeast Wyoming Streams. Journal of the Kentucky Academy of Science, 2009, 70, 109-121.	0.7	1
174	GIS-based Tests for Quality Control of Meteorological Data and Spatial Interpolation of Climate Data. Mountain Research and Development, 2009, 29, 339-349.	0.4	32
175	Homogenization of daily maximum temperature series in the Mediterranean. Journal of Geophysical Research, 2009, 114, .	3.3	58
176	Intercomparison of homogenization techniques for precipitation data continued: Comparison of two recent Bayesian change point models. Water Resources Research, 2009, 45, .	1.7	28
177	Bayesian multiple change points and segmentation: Application to homogenization of climatic series. Water Resources Research, 2009, 45, .	1.7	16
178	Uncertainty in the Global Average Surface Air Temperature Index: A Representative Lower Limit. Energy and Environment, 2010, 21, 969-989.	2.7	9
179	Trends in Monthly Temperature and Precipitation Extremes in the Zhujiang River Basin, South China (1961–2007). Advances in Climate Change Research, 2010, 1, 63-70.	2.1	16
180	Homogenisation of climate time series from ICP Forests Level II monitoring sites in Germany based on interpolated climate data. Annals of Forest Science, 2010, 67, 804-804.	0.8	13
181	Application of Multiple Analysis of Series for Homogenization to Beijing daily temperature series (1960–2006). Advances in Atmospheric Sciences, 2010, 27, 777-787.	1.9	52
182	The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Climatic Change, 2010, 101, 41-67.	1.7	174

#	Article	IF	CITATIONS
183	Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Climatic Change, 2010, 101, 69-107.	1.7	189
184	European climate of the past 500Âyears: new challenges for historical climatology. Climatic Change, 2010, 101, 7-40.	1.7	196
185	The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology, 2010, 386, 13-26.	2.3	227
186	Homogeneity of average annual air temperature time series for Croatia. International Journal of Climatology, 2010, 30, 1215-1225.	1.5	32
187	Effects of site change and urbanisation in the Beijing temperature series 1977–2006. International Journal of Climatology, 2010, 30, 1226-1234.	1.5	99
188	Statistical assessment of changes in climate extremes over Greece (1955–2002). International Journal of Climatology, 2010, 30, 1723-1737.	1.5	101
189	A Bayesian normal homogeneity test for the detection of artificial discontinuities in climatic series. International Journal of Climatology, 2010, 30, 2342-2357.	1.5	13
190	Exposure, instrumentation, and observing practice effects on land temperature measurements. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 490-506.	3.6	98
191	Homogeneity of Gridded Precipitation Datasets for the Colorado River Basin. Journal of Applied Meteorology and Climatology, 2010, 49, 2404-2415.	0.6	22
192	Benchmarking the War Against Global Warming. Annals of the American Association of Geographers, 2010, 100, 1013-1024.	3.0	0
193	AUG-Segmenter: a user-friendly tool for segmentation of long time series. Journal of Hydroinformatics, 2010, 12, 318-328.	1.1	19
194	Trends in Mean Annual Minimum and Maximum Near Surface Temperature in Nairobi City, Kenya. Advances in Meteorology, 2010, 2010, 1-6.	0.6	20
195	An Evaluation of Dvorak Technique–Based Tropical Cyclone Intensity Estimates. Weather and Forecasting, 2010, 25, 1362-1379.	0.5	100
197	Spatio-temporal changes in surface air temperature in the region of the northern Antarctic Peninsula and south Shetland islands during 1950–2003. Polar Science, 2010, 4, 18-33.	0.5	35
198	Homogenization and Trend Analysis of Canadian Near-Surface Wind Speeds. Journal of Climate, 2010, 23, 1209-1225.	1.2	194
199	Quality Assurance of Surface Wind Observations from Automated Weather Stations. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1101-1122.	0.5	54
200	On the reliability of the U.S. surface temperature record. Journal of Geophysical Research, 2010, 115, .	3.3	95
201	Gridded daily European solar cloud modification factors derived from ERAâ€40 information and pyranometer observations. Journal of Geophysical Research, 2010, 115, .	3.3	3

#	Article	IF	CITATIONS
202	Consistency of global satelliteâ€derived aerosol and cloud data sets with recent brightening observations. Geophysical Research Letters, 2010, 37, .	1.5	49
203	GLOBAL SURFACE TEMPERATURE CHANGE. Reviews of Geophysics, 2010, 48, .	9.0	2,265
204	The Polish Climate in the European Context: An Historical Overview. , 2010, , .		23
205	Climate Time Series Analysis. Atmospheric and Oceanographic Sciences Library, 2010, , .	0.1	135
206	Quality Assurance Procedures for Mesoscale Meteorological Data. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1565-1582.	0.5	90
207	Analysis of the impacts of station exposure on the U.S. Historical Climatology Network temperatures and temperature trends. Journal of Geophysical Research, 2011, 116, .	3.3	96
208	Recent observed climate change over the Arabian Peninsula. Journal of Geophysical Research, 2011, 116,	3.3	93
209	A hybrid-domain approach for modeling climate data time series. Journal of Geophysical Research, 2011, 116, .	3.3	3
210	Testing for long-term trends in climatic variables in Iran. Atmospheric Research, 2011, 100, 132-140.	1.8	280
211	Temperature and precipitation trends and dryness/wetness pattern in the Zhujiang River Basin, South China, 1961–2007. Quaternary International, 2011, 244, 138-148.	0.7	61
212	Time trend in reference evapotranspiration: analysis of a long series of agrometeorological measurements in Southern Italy. Irrigation and Drainage Systems, 2011, 25, 395-411.	0.5	23
213	The construction of a Central Netherlands temperature. Climate of the Past, 2011, 7, 527-542.	1.3	22
214	Recent Global Warming Induced Climate Changes. , 2011, , .		1
215	Urban and Regional Temperature Trends in Las Vegas and Southern Nevada. Journal of the Arizona-Nevada Academy of Science, 2011, 43, 27-39.	0.1	10
216	The Seven Station Series. Energy and Environment, 2011, 22, 429-439.	2.7	1
217	Observed changes in surface atmospheric energy over land. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	37
218	Climate Scenario Development and Applications for Local/Regional Climate Change Impact Assessments: An Overview for the Non-Climate Scientist. Geography Compass, 2011, 5, 301-328.	1.5	37
219	On the frequency of heavy rainfall for the Midwest of the United States. Journal of Hydrology, 2011, 400, 103-120.	2.3	197

#	Article	IF	CITATIONS
220	River regimes and recent hydrological changes in the Duero basin (Spain). Journal of Hydrology, 2011, 404, 241-258.	2.3	61
221	The twentieth century contiguous US temperature changes indicated by daily data and higher statistical moments. Climatic Change, 2011, 109, 287-317.	1.7	18
222	Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorology and Atmospheric Physics, 2011, 111, 121-131.	0.9	100
223	Spatial and temporal patterns of the mean annual precipitation at decadal time scale in southern Italy (Calabria region). Theoretical and Applied Climatology, 2011, 105, 431-444.	1.3	43
224	Efficiency evaluation for detecting inhomogeneities by objective homogenisation methods. Theoretical and Applied Climatology, 2011, 105, 455-467.	1.3	43
225	Evaluation of spatial and temporal characteristics of rainfall in Malawi: a case of data scarce region. Theoretical and Applied Climatology, 2011, 106, 79-93.	1.3	142
226	Impacts of reference time series on the homogenization of radiosonde temperature. Advances in Atmospheric Sciences, 2011, 28, 1011-1022.	1.9	9
227	Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate. Malaria Journal, 2011, 10, 12.	0.8	100
228	Response to the comments on â€~time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004'. International Journal of Climatology, 2011, 31, 153-157.	1.5	6
229	A composite statistical method for the detection of multiple undocumented abrupt changes in the mean value within a time series. International Journal of Climatology, 2011, 31, 742-755.	1.5	14
230	A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf !
231	Changes in temperature and precipitation extremes over the Indoâ€Pacific region from 1971 to 2005. International Journal of Climatology, 2011, 31, 791-801.	1.5	162
232	The minimization of the <i>screen bias</i> from ancient Western Mediterranean air temperature records: an exploratory statistical analysis. International Journal of Climatology, 2011, 31, 1879-1895.	1.5	40
233	Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. International Journal of Climatology, 2011, 31, 2078-2090.	1.5	105
234	Global precipitation measurement. Meteorological Applications, 2011, 18, 334-353.	0.9	355
235	Trends in Precipitation Extremes in the Zhujiang River Basin, South China. Journal of Climate, 2011, 24, 750-761.	1.2	140
236	Multi-methodical realisation of Austrian climate maps for 1971–2000. Advances in Science and Research, 2011, 6, 19-26.	1.0	18
237	Identification of trends in Malaysian monthly runoff under the scaling hypothesis. Hydrological Sciences Journal, 2011, 56, 917-929.	1.2	12

#	Article	IF	CITATIONS
238	A New Homogenized Climate Division Precipitation Dataset for Analysis of Climate Variability and Climate Change. Journal of Applied Meteorology and Climatology, 2011, 50, 1187-1199.	0.6	28
239	Long-Term Trends in Air Temperature Distribution and Extremes, Growing Degreeâ€Đays, and Spring and Fall Frosts for Climate Impact Assessments on Agricultural Practices in Nebraska. Journal of Applied Meteorology and Climatology, 2012, 51, 2060-2073.	0.6	26
240	High-Resolution Monthly Rainfall Database for Ethiopia: Homogenization, Reconstruction, and Gridding. Journal of Climate, 2012, 25, 8422-8443.	1.2	76
241	A Bayes Factor Model for Detecting Artificial Discontinuities via Pairwise Comparisons. Journal of Climate, 2012, 25, 8462-8474.	1.2	5
242	Advanced information criterion for environmental data quality assurance. Advances in Science and Research, 2012, 8, 99-104.	1.0	4
243	Benchmarking homogenization algorithms for monthly data. Climate of the Past, 2012, 8, 89-115.	1.3	286
244	Investigating Interannual Variability of Precipitation at the Global Scale: Is There a Connection with Seasonality?. Journal of Climate, 2012, 25, 5512-5523.	1.2	78
245	A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (<scp>ad</scp> 1768–2008). Holocene, 2012, 22, 887-898.	0.9	50
246	Progress in Research on Homogenization of Climate Data. Advances in Climate Change Research, 2012, 3, 59-67.	2.1	41
248	Impact of climate change on wine production: a global overview and regional assessment in the Douro Valley of Portugal. International Journal of Global Warming, 2012, 4, 383.	0.2	99
249	Break detection of annual Swiss temperature series. Journal of Geophysical Research, 2012, 117, .	3.3	28
251	Observed temperature evolution in the City of Sfax (Middle Eastern Tunisia) for the period 1950–2007. Climatic Change, 2012, 114, 689-706.	1.7	15
252	Changes in diurnal temperature range in Bangladesh during the time period 1961–2008. Atmospheric Research, 2012, 118, 260-270.	1.8	119
253	Change-point analysis as a tool to detect abrupt climate variations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1228-1249.	1.6	117
254	Changes of regional climate variability in central Europe during the past 250 years. European Physical Journal Plus, 2012, 127, 1.	1.2	12
255	Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theoretical and Applied Climatology, 2012, 110, 17-34.	1.3	72
256	Identification and characterization of abrupt changes in the land uptake of carbon. Global Biogeochemical Cycles, 2012, 26, .	1.9	25
257	Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. Journal of Geophysical Research, 2012, 117, .	3.3	60

#	Article	IF	CITATIONS
258	A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. Journal of Geophysical Research, 2012, 117, .	3.3	265
259	A physicsâ€based correction model for homogenizing subâ€daily temperature series. Journal of Geophysical Research, 2012, 117, .	3.3	20
261	Trend analysis of temperature parameters in Iran. Theoretical and Applied Climatology, 2012, 109, 529-547.	1.3	90
263	Analyzing bias in prominent climatic data sets. Progress in Physical Geography, 2012, 36, 333-347.	1.4	2
264	Homogeneidade de séries climatológicas em Minas Gerais. Revista Brasileira De Engenharia Agricola E Ambiental, 2012, 16, 1338-1345.	0.4	5
265	A proposal for a methodological approach to the characterisation of Widespread Landslide Events: an application to Southern Italy. Natural Hazards and Earth System Sciences, 2012, 12, 165-173.	1.5	26
266	Changepoint detection in daily precipitation data. Environmetrics, 2012, 23, 407-419.	0.6	27
267	Precipitation variability and change in the Calabria region (Italy) from a high resolution daily dataset. International Journal of Climatology, 2012, 32, 57-73.	1.5	122
268	Development and analysis of a 50â€year highâ€resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 2012, 32, 74-85.	1.5	268
269	Highâ€resolution analysis of daily precipitation trends in the central Alps over the last century. International Journal of Climatology, 2012, 32, 1406-1422.	1.5	42
270	Analyses of annual and seasonal maximum daily rainfall accumulations for Ukraine, Moldova, and Romania. International Journal of Climatology, 2012, 32, 2213-2226.	1.5	24
271	Estimation of trends in extreme meltâ€season duration at Svalbard. International Journal of Climatology, 2012, 32, 2227-2239.	1.5	7
272	Mediterranean warming is especially due to summer season. Theoretical and Applied Climatology, 2012, 107, 279-295.	1.3	40
273	Homogeneity assessment of a station climate series (1933–2005) in the Metropolitan Area of São Paulo: instruments change and urbanization effects. Theoretical and Applied Climatology, 2012, 107, 361-374.	1.3	22
274	Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrological Processes, 2013, 27, 1807-1818.	1.1	124
275	Droughts and their social perception in the mass media (southern Spain). International Journal of Climatology, 2013, 33, 709-724.	1.5	25
276	A procedure for the detection of undocumented multiple abrupt changes in the mean value of daily temperature time series of a regional network. International Journal of Climatology, 2013, 33, 1107-1120.	1.5	8
277	A daily homogenized temperature data set for Australia. International Journal of Climatology, 2013, 33, 1510-1529.	1.5	159

#	Article	IF	CITATIONS
278	Changes in seasonal maximum daily precipitation in China over the period 1961–2006. International Journal of Climatology, 2013, 33, 1646-1657.	1.5	47
279	An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain. International Journal of Climatology, 2013, 33, 87-108.	1.5	36
280	Climate change scenarios for temperature and precipitation in AragÃ ³ n (Spain). Science of the Total Environment, 2013, 463-464, 1015-1030.	3.9	34
281	Runoff responses to climate change in arid region of northwestern China during 1960–2010. Chinese Geographical Science, 2013, 23, 286-300.	1.2	54
282	Potential impacts of climate and environmental change on the stored water of Lake Victoria Basin and economic implications. Water Resources Research, 2013, 49, 8160-8173.	1.7	72
283	Severity, duration and frequency of drought in SE England from 1697 to 2011. Climatic Change, 2013, 121, 673-687.	1.7	40
284	Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9708-9720.	1.2	197
285	A Nonparametric Approach to the Removal of Documented Inhomogeneities in Climate Time Series. Journal of Applied Meteorology and Climatology, 2013, 52, 1139-1146.	0.6	4
286	Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961–2004. Climatic Change, 2013, 116, 309-325.	1.7	96
287	Precipitation variability in Northern Portugal: Data homogeneity assessment and trends in extreme precipitation indices. Atmospheric Research, 2013, 131, 34-45.	1.8	68
288	Changes in temperature and precipitation extremes observed in Modena, Italy. Atmospheric Research, 2013, 122, 16-31.	1.8	52
289	Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sensing of Environment, 2013, 135, 224-233.	4.6	53
290	Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change, 2013, 100, 172-182.	1.6	1,085
291	A new high resolution absolute temperature grid for the Greater Alpine Region back to 1780. International Journal of Climatology, 2013, 33, 2129-2141.	1.5	47
292	A Central European precipitation climatology – Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorologische Zeitschrift, 2013, 22, 235-256.	0.5	170
293	Testing the homogeneity of short-term surface solar radiation series in Europe. , 2013, , .		18
294	Changing Frequency of Heavy Rainfall over the Central United States. Journal of Climate, 2013, 26, 351-357.	1.2	139
295	A comparative assessment of UKâ \in DMC and Landsatâ \in 7 ETM+satellite data. Sensor Review, 2013, 33, 166-173.	1.0	1

#	Article	IF	CITATIONS
296	The temperature in Bremen since 1803 - embedding data fragments into homogeneous time series. Meteorologische Zeitschrift, 2013, 22, 75-88.	0.5	1
297	Reconciling precipitation trends in Alaska: 1. Stationâ€based analyses. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7523-7541.	1.2	35
298	Homogenization of mean monthly temperature time series ofÂGreece. International Journal of Climatology, 2013, 33, 2649-2666.	1.5	34
299	Snow variability in the Swiss Alps 1864–2009. International Journal of Climatology, 2013, 33, 3162-3173.	1.5	53
300	Trends in surface air temperature and temperature extremes in the Great Basin during the 20 th century from groundâ€based observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3579-3589.	1.2	29
301	The surface temperatures of Earth: steps towards integrated understanding of variability and change. Geoscientific Instrumentation, Methods and Data Systems, 2013, 2, 305-321.	0.6	25
302	Efficiencies of Inhomogeneity-Detection Algorithms: Comparison of Different Detection Methods and Efficiency Measures. Journal of Climatology, 2013, 2013, 1-15.	0.7	19
303	Factors challenging our ability to detect long-term trends in ocean chlorophyll. Biogeosciences, 2013, 10, 2711-2724.	1.3	79
304	Spatial and Temporal Variability of Rainfall over the South-West Coast of Bangladesh. Climate, 2014, 2, 28-46.	1.2	71
305	Homogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations. Remote Sensing, 2014, 6, 352-378.	1.8	14
306	Snowfall in the Northwest Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow Day Trends. Scientific World Journal, The, 2014, 2014, 1-14.	0.8	21
307	Change-Point Analysis of Polar Zone Radiosonde Temperature Data. Journal of Applied Meteorology and Climatology, 2014, 53, 694-714.	0.6	4
308	Variability properties of daily and monthly observed nearâ€surface temperatures in Uganda: 1960–2008. International Journal of Climatology, 2014, 34, 303-314.	1.5	21
309	Homogenization of monthly precipitation time series in Croatia. International Journal of Climatology, 2014, 34, 3671-3682.	1.5	17
310	An Overview of the China Meteorological Administration Tropical Cyclone Database. Journal of Atmospheric and Oceanic Technology, 2014, 31, 287-301.	0.5	759
311	Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada. Holocene, 2014, 24, 1428-1438.	0.9	67
312	Estimation of Uncertainty in Temperature Observations Made at Meteorological Stations Using a Probabilistic Spatiotemporal Approach. Journal of Applied Meteorology and Climatology, 2014, 53, 1538-1546.	0.6	10
313	Trends and variability of temperature extremes in the tropical Western Pacific. International Journal of Climatology, 2014, 34, 2585-2603.	1.5	27

#	Article	IF	CITATIONS
314	An updated assessment of trends and variability in total and extreme rainfall in the western Pacific. International Journal of Climatology, 2014, 34, 2775-2791.	1.5	41
315	Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions. Journal of Applied Meteorology and Climatology, 2014, 53, 1232-1251.	0.6	309
316	A Tree-Ring Based Late Summer Temperature Reconstruction (AD 1675–1980) for the Northeastern Mediterranean. Radiocarbon, 2014, 56, S69-S78.	0.8	17
317	Recent trends in seasonal and annual precipitation indices in Tuscany (Italy). Theoretical and Applied Climatology, 2014, 118, 147-157.	1.3	19
318	Analysis and Modelling of Water Supply and Demand Under Climate Change, Land Use Transformation and Socio-Economic Development. Springer Theses, 2014, , .	0.0	3
319	Observed Changes in Minimum and Maximum Temperatures in Nile Delta, Egypt in the 20th Century. , 2014, 25, .		Ο
320	Effects of adjustment for nonâ€climatic discontinuities on determination of temperature trends and variability over Iran. International Journal of Climatology, 2014, 34, 2079-2096.	1.5	18
321	Adjusting inhomogeneous daily temperature variability using wavelet analysis. International Journal of Climatology, 2014, 34, 1196-1207.	1.5	18
322	Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 2014, 115, 563-581.	1.3	130
323	Analysis of mid-twentieth century rainfall trends and variability over southwestern Uganda. Theoretical and Applied Climatology, 2014, 115, 53-71.	1.3	26
324	Changing Human Landscapes Under a Changing Climate: Considerations for Climate Assessments. Environmental Management, 2014, 53, 42-54.	1.2	14
325	Temporal evolution of surface humidity in Spain: recent trends and possible physical mechanisms. Climate Dynamics, 2014, 42, 2655-2674.	1.7	71
326	Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). International Journal of Biometeorology, 2014, 58, 1759-1768.	1.3	34
327	Homogeneity analysis of precipitation series in Iran. Theoretical and Applied Climatology, 2014, 118, 297-305.	1.3	26
328	Water Resources Research in Northwest China. , 2014, , .		35
329	Evaluation of temporal and spatial trends in relative humidity and dew point temperature in Bangladesh. Arabian Journal of Geosciences, 2014, 7, 5037-5050.	0.6	16
330	The aerosol direct radiative forcing over the Beijing metropolitan area from 2004 to 2011. Journal of Aerosol Science, 2014, 69, 62-70.	1.8	18
331	Changes in climate extremes in the Arabian Peninsula: analysis of daily data. International Journal of Climatology, 2014, 34, 1329-1345.	1.5	75

#	ARTICLE	IF	CITATIONS
332	Recent climatic trends and linkages to river discharge in Central Vietnam. Hydrological Processes, 2014, 28, 1587-1601.	1.1	24
333	The geography of rainfall in Mauritius: Modelling the relationship between annual and monthly rainfall and landscape characteristics on a small volcanic island. Applied Geography, 2014, 54, 222-234.	1.7	37
334	Downscaling MODIS LST in the East African mountains using elevation gradient and land-cover information. International Journal of Remote Sensing, 2014, 35, 3094-3108.	1.3	19
335	Trend analysis of maximum, minimum, and average temperatures in Bangladesh: 1961–2008. Theoretical and Applied Climatology, 2014, 116, 721-730.	1.3	21
336	Climate Time Series Analysis. Atmospheric and Oceanographic Sciences Library, 2014, , .	0.1	133
337	Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather and Climate Extremes, 2014, 4, 75-85.	1.6	94
338	Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 2014, 137, 183-194.	1.8	218
339	Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agricultural and Forest Meteorology, 2014, 191, 1-11.	1.9	83
340	Hydrologic effects of climate change in a sub-basin of the Western Bug River, Western Ukraine. Environmental Earth Sciences, 2014, 72, 4727-4744.	1.3	17
341	Testing instrumental and downscaled reanalysis time series for temperature trends in NE of Spain in the last century. Regional Environmental Change, 2014, 14, 1811-1823.	1.4	12
342	A historical climate dataset for southeastern Australia, 1788–1859. Geoscience Data Journal, 2014, 1, 158-178.	1.8	39
343	Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. International Journal of Climatology, 2014, 34, 1262-1277.	1.5	186
344	Multiâ€dataset comparison of gridded observed temperature and precipitation extremes over China. International Journal of Climatology, 2015, 35, 2809-2827.	1.5	85
345	Development and implementation of a climate data management system for western Pacific small island developing states. Meteorological Applications, 2015, 22, 273-287.	0.9	12
346	Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6500-6514.	1.2	107
347	Absolute homogeneity test of Kelantan catchment precipitation series. AIP Conference Proceedings, 2015, , .	0.3	1
348	Assessing trends in lower tropospheric heat content in the central United States using equivalent temperature. International Journal of Climatology, 2015, 35, 2828-2836.	1.5	16
349	Statistical detection of spurious variations in daily raingauge data caused by changes in observation practices, as applied to records from various parts of the world. International Journal of Climatology, 2015, 35, 2922-2933.	1.5	0

#	Article	IF	CITATIONS
350	Reassessment and update of longâ€ŧerm trends in downward surface shortwave radiation over Europe (1939–2012). Journal of Geophysical Research D: Atmospheres, 2015, 120, 9555-9569.	1.2	116
351	Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Threeâ€River Source Region, China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6391-6408.	1.2	27
352	On the Availability of Highâ€Resolution Data for Nearâ€Surface Climate Analysis in the Continental U.S Geography Compass, 2015, 9, 617-636.	1.5	1
353	Detection of spurious precipitation signals from automatic weather stations in irrigated areas. International Journal of Climatology, 2015, 35, 1556-1568.	1.5	16
354	<scp>MOTEDAS</scp> : a new monthly temperature database for mainland Spain and the trend in temperature (1951–2010). International Journal of Climatology, 2015, 35, 4444-4463.	1.5	57
355	Investigation of the possible influence of Urbanization on Rainfall Variability over Nairobi City, Kenya. Momona Ethiopian Journal of Science, 2015, 7, 222.	0.1	2
356	Trends and climatic sensitivities of vegetation phenology in semiarid and arid ecosystems in the US Great Basin during 1982–2011. Biogeosciences, 2015, 12, 6985-6997.	1.3	38
357	HOMOGENEITY ANALYSIS OF RAINFALL IN KELANTAN, MALAYSIA. Jurnal Teknologi (Sciences and) Tj ETQq1 1 0.7	84314 rgB	T [Overlock
358	An Assessment of Human versus Climatic Impacts on Jing River Basin, Loess Plateau, China. Advances in Meteorology, 2015, 2015, 1-13.	0.6	16
359	Série histórica secular de brilho solar e suas relações com os modos de variabilidade ENOS e ODP em Santa Maria-RS. Engenharia Agricola, 2015, 35, 494-505.	0.2	0
360	Analysis of current validation practices in Europe for space-based climate data records of essential climate variables. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 150-161.	1.4	35
361	Recent changes in Georgia× ³ s temperature means and extremes: Annual and seasonal trends between 1961 and 2010. Weather and Climate Extremes, 2015, 8, 34-45.	1.6	15
362	The oceanic shipboard precipitation measurement network for surface validation — OceanRAIN. Atmospheric Research, 2015, 163, 74-90.	1.8	36
363	China experiencing the recent warming hiatus. Geophysical Research Letters, 2015, 42, 889-898.	1.5	111
364	Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. Journal of Hydrology, 2015, 523, 283-296.	2.3	116
365	Homogenization of time series from Portugal and its former colonies for the period from the late 19th to the early 21st century. International Journal of Climatology, 2015, 35, 2400-2418.	1.5	8
366	Characteristics of meteorological disasters and their impacts on the agricultural ecosystems in the northwest of China: a case study in Xinjiang. Geoenvironmental Disasters, 2015, 2, .	1.8	14
367	Links between teleconnection patterns and mean temperature in Spain. Theoretical and Applied Climatology, 2015, 122, 1-18.	1.3	57

#	Article	IF	CITATIONS
368	A Reanalysis of Long-Term Surface Air Temperature Trends in New Zealand. Environmental Modeling and Assessment, 2015, 20, 399-410.	1.2	7
369	Characteristics of drought in the arid region of northwestern China. Climate Research, 2015, 62, 99-113.	0.4	31
371	Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theoretical and Applied Climatology, 2015, 122, 619-634.	1.3	51
372	Diurnal and seasonal changes in nearâ€surface humidity in a complex orography. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2358-2374.	1.2	20
373	Change point analysis of mean annual air temperature in Iran. Atmospheric Research, 2015, 160, 91-98.	1.8	18
374	Reconciling Precipitation with Runoff: Observed Hydrological Change in the Midlatitudes. Journal of Hydrometeorology, 2015, 16, 2403-2420.	0.7	7
375	Assessing the quality of eight different maximum temperature time series as inputs when using artificial neural networks to forecast monthly rainfall at Cape Otway, Australia. Atmospheric Research, 2015, 166, 141-149.	1.8	7
376	Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. International Journal of Climatology, 2015, 35, 2258-2279.	1.5	162
377	Spatioâ€ŧemporal variability of droughts in Bolivia: 1955–2012. International Journal of Climatology, 2015, 35, 3024-3040.	1.5	50
378	CCDST: A free Canadian climate data scraping tool. Computers and Geosciences, 2015, 75, 13-16.	2.0	17
379	The Yellow River basin becomes wetter or drier? The case as indicated by mean precipitation and extremes during 1961–2012. Theoretical and Applied Climatology, 2015, 119, 701-722.	1.3	29
380	Spatio-temporal long-term (1950–2009) temperature trend analysis in North Carolina, United States. Theoretical and Applied Climatology, 2015, 120, 159-171.	1.3	20
381	Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere, 2016, 10, 329-339.	1.5	35
382	Southeast Australian Maximum Temperature Trends, 1887–2013. , 2016, , 83-99.		0
383	Daily Precipitation Changes over Large River Basins in China, 1960–2013. Water (Switzerland), 2016, 8, 185.	1.2	14
384	Assessment of Seasonal and Annual Rainfall Trends and Variability in Sharjah City, UAE. Advances in Meteorology, 2016, 2016, 1-13.	0.6	24
385	Spatial Variability and Periodicity of Precipitation in the Middle Reaches of the Yellow River, China. Advances in Meteorology, 2016, 2016, 1-9.	0.6	7
386	Assessing Homogeneity and Climate Variability of Temperature and Precipitation Series in the Capitals of North-Eastern Brazil. Frontiers in Earth Science, 2016, 4,	0.8	37

#	Article	IF	CITATIONS
387	Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa. Hydrology, 2016, 3, 26.	1.3	56
388	Global change at the landscape level: relating regional and landscapeâ€scale drivers of historical climate trends in the Southern Appalachians. International Journal of Climatology, 2016, 36, 1197-1209.	1.5	11
389	Assessment of parallel precipitation measurements networks in Piedmont, Italy. International Journal of Climatology, 2016, 36, 3963-3974.	1.5	33
390	Temperature, extreme precipitation, and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years. International Journal of Climatology, 2016, 36, 3207-3225.	1.5	61
391	Quality control and homogenization of daily meteorological data in the trans-boundary region of the Jhelum River basin. Journal of Chinese Geography, 2016, 26, 1661-1674.	1.5	11
392	Modeling Effects of Precipitation on Vehicle Speed: Floating Car Data Approach. Transportation Research Record, 2016, 2551, 100-110.	1.0	13
393	Climatic warming in China according to a homogenized data set from 2419 stations. International Journal of Climatology, 2016, 36, 4384-4392.	1.5	151
394	Review and discussion of homogenisation methods for climate data. Physics and Chemistry of the Earth, 2016, 94, 167-179.	1.2	42
395	Climate change enhances the mobilisation of naturally occurring metals in high altitude environments. Science of the Total Environment, 2016, 560-561, 73-81.	3.9	18
396	Comparison of homogeneity tests for temperature using a simulation study. International Journal of Climatology, 2016, 36, 62-81.	1.5	37
397	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 0, , 1-18.	1.2	53
398	Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013. Journal of Meteorological Research, 2016, 30, 53-66.	0.9	45
399	Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols. Climate Dynamics, 2016, 46, 2657-2671.	1.7	67
400	Precipitation trend–Elevation relationship in arid regions of the China. Global and Planetary Change, 2016, 143, 1-9.	1.6	72
401	Comparison of Global Precipitation Estimates across a Range of Temporal and Spatial Scales. Journal of Climate, 2016, 29, 7773-7795.	1.2	122
402	A Comparison of Temperature Data from Automated and Manual Observing Networks in Georgia and Impacts of Siting Characteristics. Journal of Atmospheric and Oceanic Technology, 2016, 33, 1473-1494.	0.5	2
403	Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature, 2016, 537, 89-92.	13.7	203
404	Trends in extreme precipitation indices across China detected using quantile regression. Atmospheric Science Letters, 2016, 17, 400-406.	0.8	35

#	Article	IF	CITATIONS
405	Homogeneity of a global multisatellite soil moisture climate data record. Geophysical Research Letters, 2016, 43, 11,245.	1.5	18
406	Observational evidence of temperature trends at two levels in the surface layer. Atmospheric Chemistry and Physics, 2016, 16, 827-841.	1.9	7
407	Global observations of cloudâ€sensitive aerosol loadings in lowâ€level marine clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,936-12,946.	1.2	9
408	Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology, 2016, 36, 2644-2659.	1.5	324
409	Homogenization and analysis of an expanded longâ€ŧerm monthly rainfall network for the Island of Ireland (1850–2010). International Journal of Climatology, 2016, 36, 2837-2853.	1.5	41
410	The application of a drought reconstruction in water resource management. Hydrology Research, 2016, 47, 646-659.	1.1	14
411	Evaluation of the capability of the Lombard test in detecting abrupt changes in variance. Journal of Hydrology, 2016, 534, 451-465.	2.3	9
412	Filling the observational void: Scientific value and quantitative validation of hydrometeorological data from a community-based monitoring programme. Journal of Hydrology, 2016, 538, 713-725.	2.3	85
413	Time Series Construction of Summer Surface Temperatures for Alabama, 1883–2014, and Comparisons with Tropospheric Temperature and Climate Model Simulations. Journal of Applied Meteorology and Climatology, 2016, 55, 811-826.	0.6	4
414	Recent changes of temperature extremes over Italy: an index-based analysis. Theoretical and Applied Climatology, 2016, 123, 473-486.	1.3	33
415	Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe. Theoretical and Applied Climatology, 2016, 124, 325-338.	1.3	18
416	Climate Change and Traditional Ecological Knowledge. SpringerBriefs in Climate Studies, 2016, , 7-33.	0.2	2
417	Homogeneity and trends in long-term rainfall data, Kelantan River Basin, Malaysia. International Journal of River Basin Management, 2016, 14, 151-163.	1.5	43
419	Detection of inhomogeneities in precipitation time series in Portugal using direct sequential simulation. Atmospheric Research, 2016, 171, 147-158.	1.8	11
420	Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 2016, 11, 4-16.	1.6	292
421	Long-term trends and variability of total and extreme precipitation in Thailand. Atmospheric Research, 2016, 169, 301-317.	1.8	133
422	A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrological Sciences Journal, 2016, 61, 245-254.	1.2	113
423	Changes in daily and monthly rainfall in the Middle Yellow River, China. Theoretical and Applied Climatology, 2017, 129, 139-148.	1.3	23

#	Article	IF	CITATIONS
424	Human activity and climate variability impacts on sediment discharge and runoff in the Yellow River of China. Theoretical and Applied Climatology, 2017, 129, 645-654.	1.3	20
425	Critical values improvement for the standard normal homogeneity test by combining Monte Carlo and regression approaches. Journal of Applied Statistics, 2017, 44, 602-619.	0.6	0
426	Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: A Preliminary Assessment. Journal of Hydrometeorology, 2017, 18, 1033-1050.	0.7	102
427	Multivariate shift testing for hydrological variables, review, comparison and application. Journal of Hydrology, 2017, 548, 88-103.	2.3	11
428	Reconciling controversies about the â€~global warming hiatus'. Nature, 2017, 545, 41-47.	13.7	346
429	Linear trend and abrupt changes of climate indices in the arid region of northwestern China. Atmospheric Research, 2017, 196, 108-118.	1.8	27
430	Impact of Climate Change on Disruption to Urban Transport Networks from Pluvial Flooding. Journal of Infrastructure Systems, 2017, 23, .	1.0	94
431	The influence of station density on climate data homogenization. International Journal of Climatology, 2017, 37, 4670-4683.	1.5	54
432	Change in annual precipitation in the northwest of <scp>I</scp> ran. Meteorological Applications, 2017, 24, 211-218.	0.9	9
433	Role of climate in the spread of shiga toxin-producing Escherichia coli infection among children. International Journal of Biometeorology, 2017, 61, 1647-1655.	1.3	4
434	Performance of the Standard Normal Homogeneity Test for the homogenization of mean seasonal snow depth time series. International Journal of Climatology, 2017, 37, 1267-1277.	1.5	19
435	Temporal and spatial analysis of meteorological drought characteristics in the upper Blue Nile river region. Hydrology Research, 2017, 48, 265-276.	1.1	26
436	A homogenized longâ€ŧerm temperature record for the Western Cape Province in South Africa: 1916–2013. International Journal of Climatology, 2017, 37, 2337-2353.	1.5	12
437	Quality Control, Homogeneity Analysis, and Trends of Extreme Precipitation Indices in Northern Cyprus. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	6
438	Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Advances in Climate Change Research, 2017, 8, 157-165.	2.1	58
439	Longâ€ŧerm trends in precipitation and precipitation extremes and underlying mechanisms in the U.S. Great Basin during 1951–2013. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6152-6169.	1.2	24
440	Analysis of the Heat Index in the Mesoamerica and Caribbean Region. Journal of Applied Meteorology and Climatology, 2017, 56, 2905-2925.	0.6	13
441	CoRain: A free and open source software for rain series comparison. Earth Science Informatics, 2017, 10, 405-416.	1.6	12

#	Article	IF	CITATIONS
442	gsimcli: a geostatistical procedure for the homogenisation of climatic time series. International Journal of Climatology, 2017, 37, 3452-3467.	1.5	2
443	Surface temperature trends from homogenized time series in South Africa: 1931–2015. International Journal of Climatology, 2017, 37, 2364-2377.	1.5	33
444	Temperature and precipitation regional climate series over the central Pyrenees during 1910–2013. International Journal of Climatology, 2017, 37, 1922-1937.	1.5	19
445	The evolution of temperature extremes in the Gaspé Peninsula, Quebec, Canada (1974–2013). Theoretical and Applied Climatology, 2017, 130, 163-172.	1.3	16
446	Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman's rho tests and ARIMA model. Meteorology and Atmospheric Physics, 2017, 129, 409-424.	0.9	158
447	Comparisons of Time Series of Annual Mean Surface Air Temperature for China since the 1900s: Observations, Model Simulations, and Extended Reanalysis. Bulletin of the American Meteorological Society, 2017, 98, 699-711.	1.7	50
448	Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: recent trends and an update to 2013. Theoretical and Applied Climatology, 2017, 129, 1383-1406.	1.3	14
449	Homogenisation of temperature and precipitation time series with <scp>ACMANT3</scp> : method description and efficiency tests. International Journal of Climatology, 2017, 37, 1910-1921.	1.5	45
450	Gap filling and homogenization of climatological datasets in the headwater region of the Upper Blue Nile Basin, Ethiopia. International Journal of Climatology, 2017, 37, 2122-2140.	1.5	30
451	How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records. Atmospheric Chemistry and Physics, 2017, 17, 15069-15093.	1.9	14
452	Using multivariate time series methods to estimate location and climate change effects on temperature readings employed in electricity demand simulation. Australian and New Zealand Journal of Statistics, 2017, 59, 413-431.	0.4	2
453	Homogenization of Sea Surface Temperature at Xiao Changshan marine station in the east of the Bohai Sea using the PMT method. IOP Conference Series: Earth and Environmental Science, 2017, 52, 012055.	0.2	0
454	Homogenization methods for the Sea Surface Temperature Data over the South China Seas. IOP Conference Series: Earth and Environmental Science, 2017, 52, 012046.	0.2	0
456	genRE: A Method to Extend Gridded Precipitation Climatology Data Sets in Near Realâ€Time for Hydrological Forecasting Purposes. Water Resources Research, 2017, 53, 9284-9303.	1.7	18
457	Changes in Reference Evapotranspiration and Its Contributing Factors in Jiangsu, a Major Economic and Agricultural Province of Eastern China. Water (Switzerland), 2017, 9, 486.	1.2	32
458	Analysis of Costantino Landslide Dam Evolution (Southern Italy) by Means of Satellite Images, Aerial Photos, and Climate Data. Geosciences (Switzerland), 2017, 7, 30.	1.0	8
459	An assessment of the performance of global rainfall estimates without ground-based observations. Hydrology and Earth System Sciences, 2017, 21, 4347-4361.	1.9	99
460	Detecting climate rationality and homogeneities of sea surface temperature data in Longkou marine station using surface air temperature. IOP Conference Series: Earth and Environmental Science, 2017, 81, 012165.	0.2	0

#	Article	IF	CITATIONS
461	Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960–2011. Journal of Hydrology, 2018, 560, 461-470.	2.3	43
462	Quantifying threats to groundwater resources in the <scp>R</scp> epublic of <scp>M</scp> aldives Part I: Future rainfall patterns and seaâ€level rise. Hydrological Processes, 2018, 32, 1137-1153.	1.1	11
463	Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Global and Planetary Change, 2018, 161, 172-182.	1.6	66
464	Comment on "A Reanalysis of Long-Term Surface Air Temperature Trends in New Zealand― Environmental Modeling and Assessment, 2018, 23, 249-262.	1.2	3
465	A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dynamics, 2018, 50, 2513-2536.	1.7	56
466	Homogenization of Ukrainian air temperature data. International Journal of Climatology, 2018, 38, 497-505.	1.5	27
467	Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932–2010. Theoretical and Applied Climatology, 2018, 134, 1153-1163.	1.3	25
468	A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 2018, 56, 79-107.	9.0	1,129
469	Impacts of regional climate and teleconnection on hydrological change in the Bosten Lake Basin, arid region of northwestern China. Journal of Water and Climate Change, 2018, 9, 74-88.	1.2	4
470	Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China. Theoretical and Applied Climatology, 2018, 131, 101-110.	1.3	3
471	Homogeneity study of fixed-point continuous marine environmental and meteorological data: a review. IOP Conference Series: Earth and Environmental Science, 2018, 121, 032017.	0.2	0
472	Evaluation of Reanalyses over British Columbia. Part I: Daily and Extreme 2-m Temperature. Journal of Applied Meteorology and Climatology, 2018, 57, 2091-2112.	0.6	5
473	Swimming Pool Evaporative Water Loss and Water Use in the Balearic Islands (Spain). Water (Switzerland), 2018, 10, 1883.	1.2	14
474	Quantifying impacts of climate variability and human activities on the streamflow of an Alpine river. Environmental Earth Sciences, 2018, 77, 1.	1.3	22
475	Influence of temporal data aggregation on trend estimation for intense rainfall. Advances in Water Resources, 2018, 122, 304-316.	1.7	27
476	Spatial and Temporal Variability in the Precipitation Concentration in the Upper Reaches of the Hongshui River Basin, Southwestern China. Advances in Meteorology, 2018, 2018, 1-19.	0.6	34
477	Contiguous US summer maximum temperature and heat stress trends in CRU and NOAA Climate Division data plus comparisons to reanalyses. Scientific Reports, 2018, 8, 11146.	1.6	16
478	Comparisons of fire weather indices using Canadian raw and homogenized weather data. Agricultural and Forest Meteorology, 2018, 262, 110-119.	1.9	2

#	Article	IF	CITATIONS
479	Detecting and adjusting artificial biases of longâ€ŧerm temperature records in Israel. International Journal of Climatology, 2018, 38, 3273-3289.	1.5	26
480	On the reduction of trend errors by the ANOVA joint correction scheme used in homogenization of climate station records. International Journal of Climatology, 2018, 38, 5255-5271.	1.5	16
481	Performance of an ensemble of CORDEX-SA simulations in representing maximum and minimum temperature over the Himalayan region. Theoretical and Applied Climatology, 2019, 136, 1047-1072.	1.3	3
482	Daily precipitation extremes and their variations in the ItajaÃ-River Basin, Brazil. Meteorology and Atmospheric Physics, 2019, 131, 1145-1156.	0.9	10
483	Long-term comparison of the climate extremes variability in different climate types located in coastal and inland regions of Iran. Theoretical and Applied Climatology, 2019, 136, 875-897.	1.3	20
484	Evaluation of Reanalyses over British Columbia. Part II: Daily and Extreme Precipitation. Journal of Applied Meteorology and Climatology, 2019, 58, 291-315.	0.6	11
486	Changes in mountainous runoff in three inland river basins in the arid Hexi Corridor, China, and its influencing factors. Sustainable Cities and Society, 2019, 50, 101703.	5.1	28
487	Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene, 2019, 29, 1817-1830.	0.9	42
488	Quantitative contribution of climate change and human activities to runoff changes in the Bahe River watershed of the Qinling Mountains, China. Sustainable Cities and Society, 2019, 51, 101729.	5.1	36
489	Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI). Resources, 2019, 8, 6.	1.6	21
490	Microscale Warming due to Poor Ventilation at Surface Observation Stations. Journal of Atmospheric and Oceanic Technology, 2019, 36, 1237-1254.	0.5	3
491	Deriving a long-term pan evaporation reanalysis dataset for two Chinese pan types. Journal of Hydrology, 2019, 579, 124162.	2.3	12
492	Homogeneity testing of multivariate hydrological records, using multivariate copula L-moments. Advances in Water Resources, 2019, 134, 103449.	1.7	4
493	An Assessment of the Accuracy of MODIS Land Surface Temperature over Egypt Using Ground-Based Measurements. Remote Sensing, 2019, 11, 2369.	1.8	36
494	Assessment of IMERG Precipitation Estimates over Europe. Remote Sensing, 2019, 11, 2470.	1.8	58
495	Trend Analysis of Hydroclimatic Variables in the Kamo River Basin, Japan. Water (Switzerland), 2019, 11, 1782.	1.2	21
496	Influence of instrumentation on long temperature time series. Climatic Change, 2019, 156, 385-404.	1.7	11
497	Gap Filling of Monthly Temperature Data and Its Effect on Climatic Variability and Trends. Journal of Climate, 2019, 32, 7797-7821.	1.2	26

#	Article	IF	CITATIONS
498	Temporal and Spatial Characteristics of Precipitation and Temperature in Punjab, Pakistan. Water (Switzerland), 2019, 11, 1916.	1.2	44
499	Hydroclimate assessment of gridded precipitation products for the Tibetan Plateau. Science of the Total Environment, 2019, 660, 1555-1564.	3.9	54
500	Change detection and attribution of flow regime: A case study of Allegheny river catchment, PA (US). Science of the Total Environment, 2019, 662, 192-204.	3.9	4
501	Relevance and Scale Dependence of Hydrological Changes in Glacierized Catchments: Insights from Historical Data Series in the Eastern Italian Alps. Water (Switzerland), 2019, 11, 89.	1.2	10
502	Comments on "Comparing the current and early 20th century warm periods in China―by Soon W., R. Connolly, M. Connolly et al Earth-Science Reviews, 2019, 198, 102886.	4.0	4
503	Impacts of different weather conditions and landuse change on runoff variations in the Beiluo River Watershed, China. Sustainable Cities and Society, 2019, 50, 101674.	5.1	29
504	An approach to homogenize daily peak wind gusts: An application to the Australian series. International Journal of Climatology, 2019, 39, 2260-2277.	1.5	25
505	Lake Sibayi variations in response to climate variability in northern KwaZulu-Natal, South Africa. Theoretical and Applied Climatology, 2019, 137, 1233-1245.	1.3	5
506	Evaluation of homogenization methods for seasonal snow depth data in the Austrian Alps, 1930–2010. International Journal of Climatology, 2019, 39, 4514-4530.	1.5	15
507	Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia. Water (Switzerland), 2019, 11, 283.	1.2	38
508	Assessment of present and future climate change over Kashmir Himalayas, India. Theoretical and Applied Climatology, 2019, 137, 3183-3195.	1.3	34
509	Generation of Monthly Precipitation Climatologies for Costa Rica Using Irregular Rain-Gauge Observational Networks. Water (Switzerland), 2019, 11, 70.	1.2	15
510	Observed Changes in Extreme Temperature over the Global Land Based on a Newly Developed Station Daily Dataset. Journal of Climate, 2019, 32, 8489-8509.	1.2	22
511	Heterogeneity of Scaling of the Observed Global Temperature Data. Journal of Climate, 2019, 32, 349-367.	1.2	12
512	Analysis of climate extreme indices over the Komadugu-Yobe basin, Lake Chad region: Past and future occurrences. Weather and Climate Extremes, 2019, 23, 100194.	1.6	63
513	Uncertainty Assessment of the ERA-20C Reanalysis Based on the Monthly In Situ Precipitation Analysis of the Global Precipitation Climatology Centre. Journal of Hydrometeorology, 2019, 20, 231-250.	0.7	9
514	Homogenization of daily temperature series in the European Climate Assessment & Dataset. International Journal of Climatology, 2019, 39, 1243-1261.	1.5	41
515	Temperature and Precipitation trends in Kashmir valley, North Western Himalayas. Theoretical and Applied Climatology, 2019, 135, 293-304.	1.3	82

#	Article	IF	CITATIONS
516	The global climate monitor system: from climate data-handling to knowledge dissemination. International Journal of Digital Earth, 2019, 12, 394-414.	1.6	25
517	Analysis of reference evapotranspiration (ETO) trends under climate change in Bangladesh using observed and CMIP5 data sets. Meteorology and Atmospheric Physics, 2019, 131, 639-655.	0.9	30
518	An automatic performance model-based scheduling tool for coupled climate system models. Journal of Parallel and Distributed Computing, 2019, 132, 204-216.	2.7	4
519	Impact of missing data on the efficiency of homogenisation: experiments with ACMANTv3. Theoretical and Applied Climatology, 2019, 136, 287-299.	1.3	12
520	Vegetation greening in Spain detected from long term data (1981–2015). International Journal of Remote Sensing, 2020, 41, 1709-1740.	1.3	16
521	Spatio-Temporal Variability of Summer Monsoon Onset over Pakistan. Asia-Pacific Journal of Atmospheric Sciences, 2020, 56, 147-172.	1.3	33
522	Continental scale surface air temperature variations: Experience derived from the Chinese region. Earth-Science Reviews, 2020, 200, 102998.	4.0	24
523	Spatiotemporal Assessment of Temperature Data Products for the Detection of Warming Trends and Abrupt Transitions over the Largest Irrigated Area of Pakistan. Advances in Meteorology, 2020, 2020, 1-19.	0.6	5
524	A Homogeneous Dataset for Rainfall Trend Analysis in the Calabria Region (Southern Italy). Water (Switzerland), 2020, 12, 2541.	1.2	17
525	Response of streamflow to climate variability in the source region of Jhelum River Basin in Kashmir valley, India. Natural Hazards, 2020, 104, 611-637.	1.6	5
526	An updated longâ€ŧerm homogenized daily temperature data set for Australia. Geoscience Data Journal, 2020, 7, 149-169.	1.8	20
527	Analyzing the impact of automatization using parallel daily mean temperature series including breakpoint detection and homogenization. International Journal of Climatology, 2020, 40, 6544-6559.	1.5	2
528	Spatio-Temporal Assessment of Global Precipitation Products over the Largest Agriculture Region in Pakistan. Remote Sensing, 2020, 12, 3650.	1.8	6
529	Reliability Evaluation of the Data Acquisition Potential of a Low-Cost Climatic Network for Applications in Agriculture. Sensors, 2020, 20, 6597.	2.1	2
530	To what extent does the detection of climate change in Hungary depend on the choice of statistical methods?. GEM - International Journal on Geomathematics, 2020, 11, 1.	0.7	11
531	Climate-induced cyclical properties of regional wine production using a time-frequency approach in Douro and Minho Wine Regions. Ciencia E Tecnica Vitivinicola, 2020, 35, 16-29.	0.3	2
532	Effects of Urbanization on Regional Extreme-Temperature Changes in China, 1960–2016. Sustainability, 2020, 12, 6560.	1.6	18
533	Innovative Trend Analysis of Air Temperature and Precipitation in the Jinsha River Basin, China. Water (Switzerland), 2020, 12, 3293.	1.2	15

#	Article	IF	CITATIONS
534	Delineating Precipitation Regions of the Contiguous United States from Cluster Analyzed Gridded Data. Annals of the American Association of Geographers, 2020, , 1-19.	1.5	4
535	Measured and Modeled Historical Precipitation Trends for Svalbard. Journal of Hydrometeorology, 2020, 21, 1279-1296.	0.7	13
536	Relationship between selected percentiles and return periods of extreme events. Acta Geophysica, 2020, 68, 1201-1211.	1.0	9
537	Analyzing precipitation and temperature trends of Kanha and Satpura Tiger Reserve, Central India. Theoretical and Applied Climatology, 2020, 140, 1435-1450.	1.3	9
538	Evaluation of Satellite Precipitation Estimates over Australia. Remote Sensing, 2020, 12, 678.	1.8	42
539	The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere, 2020, 11, 174.	1.0	19
540	Long-Term Homogeneity, Trend, and Change-Point Analysis of Rainfall in the Arid District of Ananthapuramu, Andhra Pradesh State, India. Water (Switzerland), 2020, 12, 211.	1.2	73
541	Building Long Homogeneous Temperature Series across Europe: A New Approach for the Blending of Neighboring Series. Journal of Applied Meteorology and Climatology, 2020, 59, 175-189.	0.6	7
542	Analyzing Trend and Variability of Rainfall in The Tafna Basin (Northwestern Algeria). Atmosphere, 2020, 11, 347.	1.0	26
543	Application of homogenization methods for Ireland's monthly precipitation records: Comparison of break detection results. International Journal of Climatology, 2020, 40, 6169-6188.	1.5	21
544	Analysis of Anomalies and Trends of Climate Change Indices in Zacatecas, Mexico. Climate, 2020, 8, 55.	1.2	8
545	Comparative evaluation of spatio-temporal attributes of precipitation and streamflow in Buffalo and Tyume Catchments, Eastern Cape, South Africa. Environment, Development and Sustainability, 2021, 23, 4236-4251.	2.7	15
546	Homogenization of daily time series climatological data in the Eastern Nile basin, Ethiopia. Theoretical and Applied Climatology, 2021, 143, 737-760.	1.3	6
547	Dynamics of meteorological time series on the base of ground measurements and retrospective data from MERRA $\hat{a} \in 2$ for Poland. International Journal of Climatology, 2021, 41, E1531.	1.5	2
548	Inhomogeneity detection in the precipitation series: case of arid province of Pakistan. Environment, Development and Sustainability, 2021, 23, 7176-7192.	2.7	13
549	Validation of CHIRPS satellite-based precipitation dataset over Pakistan. Atmospheric Research, 2021, 248, 105289.	1.8	32
550	Assessing potential of sparseâ€input reanalyses for centennialâ€scale land surface air temperature homogenisation. International Journal of Climatology, 2021, 41, E3000.	1.5	4
551	A New Approach to Homogenize Global Subdaily Radiosonde Temperature Data from 1958 to 2018. Journal of Climate, 2021, 34, 1163-1183.	1.2	18

#	Article	IF	CITATIONS
552	Metrological evaluation of the effect of the presence of a road on nearâ€surface air temperatures. International Journal of Climatology, 2021, 41, 3705-3724.	1.5	9
553	An Evaluation of the Performance of the Twentieth Century Reanalysis Version 3. Journal of Climate, 2021, 34, 1417-1438.	1.2	83
554	A historical climate dataset for southwestern Australia, 1830–1875. International Journal of Climatology, 2021, 41, 4898-4919.	1.5	8
555	Spatial Interpolation for Missing Rainfall Data in Northern Region of Peninsular Malaysia. Journal of Physics: Conference Series, 2021, 1863, 012049.	0.3	0
556	Innovative and polygonal trend analyses applications for rainfall data in Vietnam. Theoretical and Applied Climatology, 2021, 144, 809-822.	1.3	46
557	Regionalâ€scale variability and change in daily precipitation across the contiguous United States, 1949–2018. International Journal of Climatology, 2021, 41, 4112-4133.	1.5	6
558	Evaluation of GEOS Precipitation Flagging for SMAP Soil Moisture Retrieval Accuracy. Journal of Hydrometeorology, 2021, , .	0.7	2
559	Extreme precipitation events and their relationships with circulation types in Italy. International Journal of Climatology, 2021, 41, 4769-4793.	1.5	11
560	Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data Record. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 2845-2862.	2.7	41
561	Identification of radiative and advective populations in Canadian temperature time series using the Linear Pattern Discrimination algorithm. International Journal of Climatology, 2021, 41, 5100-5124.	1.5	5
562	Homogenization and trend detection of temperature in Iran for the period 1960–2018. Meteorology and Atmospheric Physics, 2021, 133, 1233-1250.	0.9	7
563	Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies. Hydrology and Earth System Sciences, 2021, 25, 3331-3350.	1.9	30
564	Terrestrial Near-Surface Wind Speed Variations in China: Research Progress and Prospects. Journal of Meteorological Research, 2021, 35, 537-556.	0.9	12
565	Trend analysis of selected hydro-meteorological variables for the Rietspruit sub-basin, South Africa. Journal of Water and Climate Change, 2021, 12, 3099-3123.	1.2	17
567	Climate and land-use changes drive biodiversity turnover in arthropod assemblages over 150 years. Nature Ecology and Evolution, 2021, 5, 1291-1300.	3.4	20
568	Indices for daily temperature and precipitation in Madagascar, based on qualityâ€controlled and homogenized data, 1950–2018. International Journal of Climatology, 2022, 42, 265-288.	1.5	13
569	Decadal changes of heatwave aspects and heat index over Egypt. Theoretical and Applied Climatology, 2021, 146, 71-90.	1.3	6
570	Sensitivity of Change-Point Detection and Trend Estimates to GNSS IWV Time Series Properties. Atmosphere, 2021, 12, 1102.	1.0	7

#	Article	IF	CITATIONS
571	Homogenization of the Daily Land Surface Temperature over the Mainland of China from 1960 through 2017. Advances in Atmospheric Sciences, 2021, 38, 1811-1822.	1.9	5
572	From rain to data: A review of the creation of monthly and daily stationâ€based gridded precipitation datasets. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1555.	2.8	7
573	Spatial and temporal changes in dry spells in a Mediterranean area: Tuscany (central Italy), 1955–2017. International Journal of Climatology, 2022, 42, 1670-1691.	1.5	3
574	Toward a self-calibrated and independent SM2RAIN rainfall product. Journal of Hydrology, 2021, 603, 126837.	2.3	9
575	Orographic Precipitation and Climate Change. Advances in Global Change Research, 2005, , 255-266.	1.6	3
576	The Impact of Technology Upon In Situ Atmospheric Observations and Climate Science. , 2004, , 461-490.		5
577	On Selected Issues and Challenges in Dendroclimatology. Landscape Series, 2007, , 113-132.	0.1	10
578	Identification of Inhomogeneities in Precipitation Time Series Using Stochastic Simulation. , 2008, , 275-282.		14
579	Some Facts on Extreme Weather Events Analysis in Slovakia. , 2009, , 39-53.		2
580	Early European Instrumental Records. , 2001, , 55-77.		28
580 581	Early European Instrumental Records. , 2001, , 55-77. Long Climatic series from Austria. , 2001, , 125-151.		28 7
580 581 582	Early European Instrumental Records. , 2001, , 55-77. Long Climatic series from Austria. , 2001, , 125-151. Monitoring Protocols: Options, Approaches, Implementation, Benefits. Springer Series on Environmental Management, 2017, , 527-567.	0.3	28 7 6
580 581 582 583	Early European Instrumental Records. , 2001, , 55-77.Long Climatic series from Austria. , 2001, , 125-151.Monitoring Protocols: Options, Approaches, Implementation, Benefits. Springer Series on Environmental Management, 2017, , 527-567.Trend Analysis for Climatic Time Series for Greece. Springer Atmospheric Sciences, 2013, , 583-589.	0.3	28 7 6 2
580 581 582 583 583	Early European Instrumental Records. , 2001, , 55-77.Long Climatic series from Austria. , 2001, , 125-151.Monitoring Protocols: Options, Approaches, Implementation, Benefits. Springer Series on Environmental Management, 2017, , 527-567.Trend Analysis for Climatic Time Series for Greece. Springer Atmospheric Sciences, 2013, , 583-589.Homogenisation of Climate Data, Difficult but Necessary. , 2001, , 3-12.	0.3	28 7 6 2 6
580 581 582 583 583	Early European Instrumental Records. , 2001, , 55-77.Long Climatic series from Austria. , 2001, , 125-151.Monitoring Protocols: Options, Approaches, Implementation, Benefits. Springer Series on Environmental Management, 2017, , 527-567.Trend Analysis for Climatic Time Series for Greece. Springer Atmospheric Sciences, 2013, , 583-589.Homogenisation of Climate Data, Difficult but Necessary. , 2001, , 3-12.Historical Climate in Central Europe During the Last 500 Years. , 2010, , 41-70.	0.3	28 7 6 2 6 8
 580 581 582 583 584 585 586 	Early European Instrumental Records. , 2001, , 55-77.Long Climatic series from Austria. , 2001, , 125-151.Monitoring Protocols: Options, Approaches, Implementation, Benefits. Springer Series on Environmental Management, 2017, , 527-567.Trend Analysis for Climatic Time Series for Greece. Springer Atmospheric Sciences, 2013, , 583-589.Homogenisation of Climate Data, Difficult but Necessary. , 2001, , 3-12.Historical Climate in Central Europe During the Last 500 Years. , 2010, , 41-70.Daily Milan Temperature and Pressure Series (1763a€"1998): Completing and Homogenising the Data. , 2002, , 119-149.	0.3	28 7 6 2 6 8 13
 580 581 582 583 584 585 586 587 	Early European Instrumental Records. , 2001, , 55-77.Long Climatic series from Austria. , 2001, , 125-151.Monitoring Protocols: Options, Approaches, Implementation, Benefits. Springer Series on Environmental Management, 2017, , 527-567.Trend Analysis for Climatic Time Series for Greece. Springer Atmospheric Sciences, 2013, , 583-589.Homogenisation of Climate Data, Difficult but Necessary. , 2001, , 3-12.Historical Climate in Central Europe During the Last 500 Years. , 2010, , 41-70.Daily Milan Temperature and Pressure Series (1763–1998): Completing and Homogenising the Data. , 2002, , 119-149.Comparison of geostatistical interpolation methods to map annual rainfall in the Chéliff watershed, Algeria. Theoretical and Applied Climatology, 2020, 141, 1009-1024.	0.3 0.4	28 7 6 2 6 8 13 24

#	Article	IF	CITATIONS
590	Finescale Evaluation of Drought in a Tropical Setting: Case Study in Sri Lanka. Journal of Applied Meteorology and Climatology, 2009, 999, 77.	0.6	1
591	The EUSTACE Project: Delivering Global, Daily Information on Surface Air Temperature. Bulletin of the American Meteorological Society, 2020, 101, E1924-E1947.	1.7	18
592	Validation of Quality Control Algorithms for Temperature Data of the Republic of Korea. Atmosphere, 2012, 22, 299-307.	0.3	3
593	Diseño de un itinerario turÃstico en Tivissa a partir de la estación meteorológica. Investigaciones Geográficas, 2013, , 119.	0.3	1
594	Long Term Temperature Trend and Change Point: A Statistical Approach. Open Journal of Atmospheric and Climate Change, 2014, 2014, 32-42.	0.0	5
595	Análisis de la variabilidad espacio-temporal de las precipitaciones en el sector español de la cuenca del Duero (1961-2005). Boletin De La Asociacion De Geografos Espanoles, 2013, , .	0.2	2
596	Temperature variations of southeastern Australia, 1860-2011. Australian Meteorological Magazine, 2013, 62, 227-245.	0.4	15
597	Applying the Rhoades and Salinger Method to New Zealand's "Seven-Station―Temperature Series. Weather and Climate, 2012, 32, 23.	0.6	4
598	The Ås Temperature Series in Southern Norway–Homogeneity Testing And Climate Analysis. Bulletin of Geography, Physical Geography Series, 2014, 7, 7-26.	0.3	1
600	Temperaturvariationen und Jahrringe Temperature variation and tree rings. Schweizerische Zeitschrift Fur Forstwesen, 2004, 155, 213-221.	0.5	3
601	Data rescue initiatives: bringing historical climate data into the 21st century. Climate Research, 2011, 47, 29-40.	0.4	82
602	Evaporation trends in Spain: a comparison of Class A pan and Piché atmometer measurements. Climate Research, 2014, 61, 277-288.	0.4	6
603	Heat wave characteristics in the eastern Mediterranean and Middle East using extreme value theory. Climate Research, 2015, 63, 99-113.	0.4	26
604	Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime. Climate Research, 2000, 14, 129-146.	0.4	193
605	Time series homogenisation of large observational datasets: impact of the number of partner series on efficiency. Climate Research, 2017, 74, 31-42.	0.4	10
606	Relationships between mean and standard deviation of air temperature: implications for global warming. Climate Research, 2002, 22, 205-213.	0.4	38
607	Mapping snowpack distribution over large areas using GIS and interpolation techniques. Climate Research, 2007, 33, 257-270.	0.4	30
608	Maximum temperatures over Slovenia and their relationship with atmospheric circulation patterns. Geografie-Sbornik CGS, 2017, 122, 1-20.	0.3	14

#	Article	IF	CITATIONS
609	Impactos recientes de los cambios ambientales en los recursos hÃdricos superficiales de la cuenca del Duero. Pirineos, 2012, 167, 107-142.	0.6	1
610	Statistical Analysis of Trend and Change Point in Surface Air Temperature Time Series for Midnapore Weather Observatory, West Bengal, India. Hydrology Current Research, 2014, 05, .	0.4	2
611	Homogeneity of Monthly Mean Air Temperature of the United Republic of Tanzania with HOMER. Atmospheric and Climate Sciences, 2014, 04, 70-77.	0.1	12
612	Analysis of Change Point in Surface Temperature Time Series Using Cumulative Sum Chart and Bootstrapping for Asansol Weather Observation Station, West Bengal, India. American Journal of Climate Change, 2014, 03, 83-94.	0.5	14
613	Trends of Extreme Temperature and Rainfall Indices for Arid and Semi-Arid Lands of South Eastern Kenya. Journal of Geoscience and Environment Protection, 2016, 04, 158-171.	0.2	7
614	Adapted Caussinus-Mestre Algorithm for Networks of Temperature series (ACMANT). International Journal of Geosciences, 2011, 02, 293-309.	0.2	50
615	Trend Analysis of the Mean Annual Temperature in Rwanda during the Last Fifty Two Years. Journal of Environmental Protection, 2012, 03, 538-551.	0.3	45
616	Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmospheric Chemistry and Physics, 2020, 20, 8867-8908.	1.9	58
617	Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Advances in Science and Research, 2009, 3, 23-26.	1.0	90
618	The historical pathway towards more accurate homogenisation. Advances in Science and Research, 2012, 8, 45-52.	1.0	12
619	Ensemble meteorological reconstruction using circulation analogues of 1781–1785. Climate of the Past, 2014, 10, 797-809.	1.3	21
622	A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877–2012. Earth System Science Data, 2018, 10, 1613-1635.	3.7	31
623	Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto. Earth System Science Data, 2012, 4, 187-213.	3.7	20
624	Observation-based gridded runoff estimates for Europe (E-RUN version 1.1). Earth System Science Data, 2016, 8, 279-295.	3.7	33
625	A framework for benchmarking of homogenisation algorithm performance on the global scale. Geoscientific Instrumentation, Methods and Data Systems, 2014, 3, 187-200.	0.6	32
628	THE IMPORTANCE OF THE QUALITY AND RELIABILITY OF THE HISTORICAL TIME SERIES FOR THE STUDY OF CLIMATE CHANGE. Revista Brasileira De Climatologia, 2014, 14, .	0.3	9
629	Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ, 2020, 8, e8732.	0.9	19
630	Climate Observations — The Instrumental Record. Space Sciences Series of ISSI, 2000, , 309-320.	0.0	0

#	ARTICLE	IF	Citations
631	Normalizing Rain Gauge Network Biases with Calibrated Radar Rainfall Estimates. Journal of Water Management Modeling, 2005, , .	0.0	2
632	A CASE STUDY ON UTILIZATION OF PRECIPITATION INDICES IN BULGARIA. , 2011, , .		0
633	Sustainable Climate Science. , 2012, , 201-209.		4
634	Trends in Monthly Temperature and Precipitation Extremes in the Zhujiang River Basin, South China (1961-2007). Advances in Climate Change Research, 2013, 1, 63-70.	2.1	0
637	La difÃcil determinación de la evolución el número de dÃas de tormenta en España. El caso de Barcelona. PolÃgonos Revista De GeografÃa, 2013, , 77.	0.1	0
638	Water Balance Model. Springer Theses, 2014, , 39-120.	0.0	1
640	Regression I. Atmospheric and Oceanographic Sciences Library, 2014, , 107-167.	0.1	0
641	Changes in extreme hydrological events. , 2014, , 359-404.		1
644	Creación de una base de datos homogeneizada de temperaturas para los Pirineos (1950-2010). Geographicalia, 2014, , 63.	0.1	2
645	Rainy/Non-Rainy Day Pattern Analysis for North Carolina. American Journal of Climate Change, 2015, 04, 1-8.	0.5	1
647	Changes and variability of spring-summer air temperature in Czechia during the past 300 years: comparison of instrumental, documentary and natural proxy data. Geografie-Sbornik CGS, 2017, 122, 190-212.	0.3	1
648	Development and Assessment of Localized Seasonal Rainfall Prediction Models: Mapping and Characterizing Rift Valley Fever Hotspot Areas in the Southern and Southeastern Ethiopia. Journal of Sustainable Development, 2018, 11, 102.	0.1	1
649	Assessing resource vulnerability quadrants under changing precipitation trends in Uttarakhand, Central Himalayan region. Journal of Mountain Science, 2021, 18, 2722-2741.	0.8	5
650	Characterizing Winter Season Severity in the Midwest United States, Part I: Climatology & Recent Trends. International Journal of Climatology, 0, , .	1.5	3
651	Centralâ€Auckland rainfall, 1853–2020: Sites histories and implications for developing a longâ€ŧerm rainfall record. New Zealand Geographer, 2021, 77, 16-31.	0.4	1
652	Climate Change and Its Economic Implications. , 2021, , 221-243.		0
653	The Spatial and Temporal Characteristics of Rainfall over the Lake Victoria Basin of Kenya in 1987-2016. Atmospheric and Climate Sciences, 2020, 10, 240-257.	0.1	2
654	Towards a historical precipitation database for West Africa: Overview, quality control and harmonization. International Journal of Climatology, 2022, 42, 4001-4023.	1.5	7

#	Article	IF	CITATIONS
655	Applications of innovative polygonal trend analyses to precipitation series of Eastern Black Sea Basin, Turkey. Theoretical and Applied Climatology, 2022, 147, 651-667.	1.3	28
656	Suitability of different precipitation data sources for hydrological analysis: a study from Western Chats, India. Environmental Monitoring and Assessment, 2022, 194, 75.	1.3	5
658	A New Application Method of Radar/Raingauge-Analyzed Precipitation Amounts for Long-term Statistical Analyses of Localized Heavy Rainfall Areas. Scientific Online Letters on the Atmosphere, 2022, 18, 13-18.	0.6	4
659	Homogenising meteorological variables: Impact on trends and associated climate indices. Journal of Hydrology, 2022, 607, 127585.	2.3	18
660	Spatio-Temporal Variability in Hydroclimate over the Upper Yangtze River Basin, China. Atmosphere, 2022, 13, 317.	1.0	11
661	Characteristics and trend analysis of absolute and relative temperature extremes indices and related indices of Kolkata. Theoretical and Applied Climatology, 0, , 1.	1.3	1
662	Extended North Atlantic Oscillation and Greenland Blocking Indices 1800–2020 from New Meteorological Reanalysis. Atmosphere, 2022, 13, 436.	1.0	4
663	Exploring the links between variations in snow cover area and climatic variables in a Himalayan catchment using earth observations and CMIP6 climate change scenarios. Journal of Hydrology, 2022, 608, 127648.	2.3	10
664	Stacking machine learning models versus a locally weighted linear model to generate high-resolution monthly precipitation over a topographically complex area. Atmospheric Research, 2022, 272, 106159.	1.8	24
665	Reassessment of the homogenization of daily maximum temperatures in the Netherlands since 1901. Theoretical and Applied Climatology, 2022, 147, 1185-1194.	1.3	2
666	Twentieth century precipitation trends in the upper Mzingwane sub-catchment of the northern Limpopo basin, Zimbabwe. Theoretical and Applied Climatology, 2022, 149, 309-325.	1.3	3
667	Assessing climate change impacts on hydrology: application to Zacapu and Pastor Ortiz aquifers (Mexico). Journal of Water and Climate Change, 2022, 13, 2129-2142.	1.2	2
668	A Two-Step Approach to Blending GSMaP Satellite Rainfall Estimates with Gauge Observations over Australia. Remote Sensing, 2022, 14, 1903.	1.8	11
672	Homogenization and Trends Analysis of Monthly Precipitation Series in the Fez-Meknes Region, Morocco. Climate, 2022, 10, 64.	1.2	14
673	Investigation of Trends and Nonstationarity in Hydrologic Variables in the Western Black Sea Basin, Turkey. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	1
674	Observed Changes in Extreme Temperature and Precipitation Indices on the Qinghai-Tibet Plateau, 1960–2016. Frontiers in Environmental Science, 2022, 10, .	1.5	5
676	Seasonal Aspects of Radiative and Advective Air Temperature Populations: A Canadian Perspective. Atmosphere, 2022, 13, 1017.	1.0	2
677	Comparison of Statistical Methods to Graphical Method in Precipitation Trend Analysis, A Case Study: Coruh Basin, Turkey. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2022, 46, 4605-4617.	1.0	2

#	Article	IF	CITATIONS
678	Homogenization of Norwegian monthly precipitation series for the periodÂ1961–2018. Advances in Science and Research, 0, 19, 73-80.	1.0	6
679	GNSSseg, a Statistical Method for the Segmentation of Daily GNSS IWV Time Series. Remote Sensing, 2022, 14, 3379.	1.8	0
680	Conversion Coefficient Analysis and Evaporation Dataset Reconstruction for Two Typical Evaporation Pan Types—A Study in the Yangtze River Basin, China. Atmosphere, 2022, 13, 1322.	1.0	4
681	Spatio-temporal rainfall trend assessment over a semi-arid region of Karnataka state, using non-parametric techniques. Arabian Journal of Geosciences, 2022, 15, .	0.6	4
682	Implications of future climate change on crop and irrigation water requirements in a semi-arid river basin using CMIP6 GCMs. Journal of Arid Land, 2022, 14, 1234-1257.	0.9	8
683	Using Long-Term Historical Meteorological Data for Climate Change Analysis in the Carpathian Region. Atmosphere, 2022, 13, 1751.	1.0	4
684	Croatian high-resolution monthly gridded dataset of homogenised surface air temperature. Theoretical and Applied Climatology, 0, , .	1.3	4
685	Impact of climate change on future availability of water for irrigation and hydropower generation in the Omo-Gibe Basin of Ethiopia. Journal of Hydrology: Regional Studies, 2022, 44, 101254.	1.0	5
686	Performance assessment of SM2RAIN-NWF using ASCAT soil moisture via supervised land cover-soil-climate classification. Remote Sensing of Environment, 2023, 285, 113393.	4.6	1
687	Generic Strategy for Consistency Validation of the Satellite-, In-Situ-, and Reanalysis—Based Climate Data Records (CDRs) Essential Climate Variables (ECVs). Springer Water, 2022, , 141-163.	0.2	1
688	Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia. Meteorology, 2022, 1, 477-494.	0.6	1
689	Monthly Precipitation over Northern Middle Atlas, Eastern Morocco: Homogenization and Trends. Applied Sciences (Switzerland), 2022, 12, 12496.	1.3	1
690	Consolidating historical instrumental observations in southern Australia for assessing pre-industrial weather and climate variability. Climate Dynamics, 2023, 61, 1063-1087.	1.7	1
691	The effects of atypical diurnal temperature cycles on regression-based downscaling of daily temperature extrema in the Central United States. Theoretical and Applied Climatology, 2023, 151, 1497-1521.	1.3	1
692	Mean and extreme precipitation over Aotearoa New Zealand: A comparison across multiple different estimation techniques. International Journal of Climatology, 0, , .	1.5	0
693	Homogenization of Observed Surface Wind Speed Based on Geostrophic Wind Theory over China from 1970 to 2017. Journal of Climate, 2023, 36, 3667-3679.	1.2	3
694	Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960. Advances in Atmospheric Sciences, 2023, 40, 1326-1336.	1.9	5
695	A Methodology for Air Temperature Extrema Characterization Pertinent to Improving the Accuracy of Climatological Analyses. Encyclopedia, 2023, 3, 371-379.	2.4	0

#	Article	IF	CITATIONS
696	Homogenization of monthly series of temperature and precipitation: Benchmarking results of the MULTITEST project. International Journal of Climatology, 2023, 43, 3994-4012.	1.5	2
708	Die Naturwissenschaften und die Klimapolitik. , 2023, , 287-311.		0
717	Optimal placement of rain gauge networks in complex terrains for monitoring extreme rainfall events: a review. Theoretical and Applied Climatology, 2024, 155, 2511-2521.	1.3	0
720	Examining the Climate Change Phenomenon Using Temperature and Precipitation Observations: The Case of Erzurum. , 2024, , 149-166.		0