Regulation of protein kinase C $\hat{I}\P$ by PI 3-kinase and PD

Current Biology 8, 1069-1078 DOI: 10.1016/s0960-9822(98)70444-0

Citation Report

#	Article	IF	CITATIONS
1	CORRELATION OF PLASMA NON-CONJUGATED OESTRIOL AND PLASMA CORTISOL IN LATE HUMAN PREGNANCY. European Journal of Endocrinology, 1979, 92, 553-559.	1.9	6
2	Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Current Biology, 1998, 8, 1366-1375.	1.8	357
3	Structure and function of phosphoinositide 3-kinases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1998, 1436, 127-150.	1.2	582
4	Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9849-9854.	3.3	211
5	Signaling through protein kinase C. Frontiers in Bioscience - Landmark, 1998, 3, d1134-1147.	3.0	294
6	New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB Journal, 1999, 13, 1658-1676.	0.2	561
7	Increase in nuclear phosphatidylinositol 3â€kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKCâ€Î¶ translocation to the nucleus of NGFâ€ŧreated PC12 cells. FASEB Journal, 1999, 13, 2299-2310.	0.2	103
8	Mammalian TOR Controls One of Two Kinase Pathways Acting upon nPKCδ and nPKCε. Journal of Biological Chemistry, 1999, 274, 34758-34764.	1.6	171
9	Requirement for Ras and Phosphatidylinositol 3-Kinase Signaling Uncouples the Glucocorticoid-induced Junctional Organization and Transepithelial Electrical Resistance in Mammary Tumor Cells. Journal of Biological Chemistry, 1999, 274, 32818-32828.	1.6	56
10	Insulin Activates Protein Kinases C-ζ and C-λ by an Autophosphorylation-dependent Mechanism and Stimulates Their Translocation to GLUT4 Vesicles and Other Membrane Fractions in Rat Adipocytes. Journal of Biological Chemistry, 1999, 274, 25308-25316.	1.6	190
11	Protein Kinase C Phosphorylated at a Conserved Threonine Is Retained in the Cytoplasm. Journal of Biological Chemistry, 1999, 274, 28944-28949.	1.6	25
12	Dependence of Insulin-Stimulated Glucose Transporter 4 Translocation on 3-Phosphoinositide-Dependent Protein Kinase-1 and Its Target Threonine-410 in the Activation Loop of Protein Kinase C-ζ. Molecular Endocrinology, 1999, 13, 1766-1772.	3.7	82
13	Requirement for Akt (Protein Kinase B) in Insulin-induced Activation of Glycogen Synthase and Phosphorylation of 4E-BP1 (PHAS-1). Journal of Biological Chemistry, 1999, 274, 20611-20618.	1.6	86
14	Protein Kinase C–Dependent Mobilization of the α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions Drive the Chemotactic Migration of Carcinoma Cells. Journal of Cell Biology, 1999, 146, 1147-1160.	2.3	203
15	Carboxyl-terminal Phosphorylation Regulates the Function and Subcellular Localization of Protein Kinase C βII. Journal of Biological Chemistry, 1999, 274, 6461-6468.	1.6	120
16	Primary Structure, Tissue Distribution, and Expression of Mouse Phosphoinositide-dependent Protein Kinase-1, a Protein Kinase That Phosphorylates and Activates Protein Kinase Cζ. Journal of Biological Chemistry, 1999, 274, 8117-8122.	1.6	86
17	Cleavage of ζPKC but Not λ/ιPKC by Caspase-3 during UV-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 10765-10770.	1.6	81
18	Evidence That 3-Phosphoinositide-dependent Protein Kinase-1 Mediates Phosphorylation of p70 S6 Kinase in Vivoat Thr-412 as well as Thr-252. Journal of Biological Chemistry, 1999, 274, 37400-37406.	1.6	121

#	Article	IF	CITATIONS
19	Okadaic Acid Activates Atypical Protein Kinase C (ζ/λ) in Rat and 3T3/L1 Adipocytes. Journal of Biological Chemistry, 1999, 274, 14074-14078.	1.6	65
20	Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2077-2081.	3.3	242
21	Protein Kinase C-ζ and Phosphoinositide-dependent Protein Kinase-1 Are Required for Insulin-induced Activation of ERK in Rat Adipocytes. Journal of Biological Chemistry, 1999, 274, 30495-30500.	1.6	101
22	Transcriptional Activation of the Glucose Transporter GLUT1 in Ventricular Cardiac Myocytes by Hypertrophic Agonists. Journal of Biological Chemistry, 1999, 274, 9006-9012.	1.6	65
23	Association of Atypical Protein Kinase C Isotypes with the Docker Protein FRS2 in Fibroblast Growth Factor Signaling. Journal of Biological Chemistry, 1999, 274, 19025-19034.	1.6	31
24	Protein kinase C-delta is a target of B-cell antigen receptor signaling. Immunology Letters, 1999, 69, 259-267.	1.1	21
25	The Insulin Signaling Pathway. Journal of Membrane Biology, 1999, 169, 1-12.	1.0	159
26	Regulation of integrin function by T cell activation. Immunologic Research, 1999, 20, 127-145.	1.3	23
27	The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication. Progress in Biophysics and Molecular Biology, 1999, 71, 313-341.	1.4	91
28	Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Current Opinion in Cell Biology, 1999, 11, 219-225.	2.6	627
29	Intracellular signalling: PDK1 – a kinase at the hub of things. Current Biology, 1999, 9, R93-R96.	1.8	203
30	Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Current Biology, 1999, 9, 186-S4.	1.8	255
31	PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Current Biology, 1999, 9, 393-404.	1.8	434
32	Rapamycin-sensitive phosphorylation of PKC on a carboxy-terminal site by an atypical PKC complex. Current Biology, 1999, 9, 522-529.	1.8	101
33	The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Current Biology, 1999, 9, 728-737.	1.8	148
34	Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Current Biology, 1999, 9, 810-S1.	1.8	137
35	PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. FEBS Journal, 1999, 263, 605-611.	0.2	113
36	Multiple biological responses activated by nuclear protein kinase C. Journal of Cellular Biochemistry, 1999, 74, 499-521.	1.2	95

#	Article	IF	CITATIONS
37	The Role of Phosphoinositide 3-Kinase Lipid Products in Cell Function. Journal of Biological Chemistry, 1999, 274, 8347-8350.	1.6	897
38	Phospholipase C-γ and Phosphoinositide 3-Kinase Mediate Cytoplasmic Signaling in Nerve Growth Cone Guidance. Neuron, 1999, 23, 139-148.	3.8	264
39	Activation and tyrosine phosphorylation of protein kinase C $\hat{\Gamma}$ in response to B cell antigen receptor stimulation. Molecular Immunology, 1999, 36, 1005-1016.	1.0	19
40	Potential role of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in insulin-stimulated glucose transporter 4 translocation in adipocytes. FEBS Letters, 1999, 461, 277-279.	1.3	12
41	Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO Journal, 1999, 18, 3024-3033.	3.5	500
42	AKT/PKB and Other D3 Phosphoinositide-Regulated Kinases: Kinase Activation by Phosphoinositide-Dependent Phosphorylation. Annual Review of Biochemistry, 1999, 68, 965-1014.	5.0	927
43	Insulin Signaling Regulating the Trafficking and Plasma Membrane Fusion of GLUT4-Containing Intracellular Vesicles. Experimental Cell Research, 1999, 253, 55-62.	1.2	30
44	Ribosomal S6 Kinase Signaling and the Control of Translation. Experimental Cell Research, 1999, 253, 100-109.	1.2	630
45	Signaling by Distinct Classes of Phosphoinositide 3-Kinases. Experimental Cell Research, 1999, 253, 239-254.	1.2	793
46	Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochemical Journal, 1999, 339, 319-328.	1.7	543
47	Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes. Biochemical Journal, 1999, 342, 337-344.	1.7	131
48	Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochemical Journal, 1999, 339, 319.	1.7	173
49	Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes. Biochemical Journal, 1999, 342, 337.	1.7	46
50	Phosphatidylinositol 3-Kinase-dependent Membrane Association of the Bruton's Tyrosine Kinase Pleckstrin Homology Domain Visualized in Single Living Cells. Journal of Biological Chemistry, 1999, 274, 10983-10989.	1.6	259
51	p70 S6 Kinase Is Regulated by Protein Kinase Cζ and Participates in a Phosphoinositide 3-Kinase-Regulated Signalling Complex. Molecular and Cellular Biology, 1999, 19, 2921-2928.	1.1	178
52	Protein Kinase Cδ Mediates Neurogenic but Not Mitogenic Activation of Mitogen-Activated Protein Kinase in Neuronal Cells. Molecular and Cellular Biology, 1999, 19, 4209-4218.	1.1	157
53	A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes and Development, 1999, 13, 1438-1452.	2.7	375
54	The PI3K–PDK1 connection: more than just a road to PKB. Biochemical Journal, 2000, 346, 561-576.	1.7	1,386

	CITATIO	on Report	
#	Article	IF	CITATIONS
55	The PI3K‒PDK1 connection: more than just a road to PKB. Biochemical Journal, 2000, 346, 561.	1.7	982
56	Cross-talk between receptors with intrinsic tyrosine kinase activity and α1b-adrenoceptors. Biochemical Journal, 2000, 350, 413.	1.7	27
57	Changes in protein kinase C epsilon phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence: a role for phosphorylation at Ser-729?. Biochemical Journal, 2000, 352, 19.	1.7	6
58	β1-Integrin and PTEN control the phosphorylation of protein kinase C. Biochemical Journal, 2000, 352, 425.	1.7	13
59	Inhibition of growth-factor-induced phosphorylation and activation of protein kinase B/Akt by atypical protein kinase C in breast cancer cells. Biochemical Journal, 2000, 352, 475.	1.7	36
60	Cross-talk between receptors with intrinsic tyrosine kinase activity and α1b-adrenoceptors. Biochemical Journal, 2000, 350, 413-419.	1.7	35
61	Constitutive PI3-K activity is essential for proliferation, but not survival, of Theileria parva-transformed B cells. Cellular Microbiology, 2000, 2, 329-339.	1.1	65
62	Rho-dependence of Schizosaccharomyces pombe Pck2. Genes To Cells, 2000, 5, 17-27.	0.5	36
63	Synthesis of the translational apparatus is regulated at the translational level. FEBS Journal, 2000, 267, 6321-6330.	0.2	465
64	Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase. Immunological Reviews, 2000, 176, 47-68.	2.8	53
65	Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunological Reviews, 2000, 177, 217-235.	2.8	140
66	Effect of pertussis toxin on insulin-induced signal transduction in rat adipocytes and soleus muscles. Cellular Signalling, 2000, 12, 223-232.	1.7	15
67	The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Current Biology, 2000, 10, 439-448.	1.8	434
68	A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Current Biology, 2000, 10, 697-707.	1.8	265
69	Possible role of protein kinase C ζ in muscarinic receptor-induced proliferation of astrocytoma cells. Biochemical Pharmacology, 2000, 60, 1457-1466.	2.0	39
70	Multiple pathways control protein kinase C phosphorylation. EMBO Journal, 2000, 19, 496-503.	3.5	556
71	Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO Journal, 2000, 19, 979-988.	3.5	285
72	A critical role for PI 3-kinase in cytokine-induced Fcα-receptor activation. Blood, 2000, 95, 2037-2043.	0.6	33

#	Article	IF	CITATIONS
73	Lipopolysaccharide induces Jun N-terminal kinase activation in macrophages by a novel Cdc42/Rac-independent pathway involving sequential activation of protein kinase C ζ and phosphatidylcholine-dependent phospholipase C. Blood, 2000, 96, 2592-2598.	0.6	35
74	Axonal Regulation of Schwann Cell Proliferation and Survival and the Initial Events of Myelination Requires PI 3-Kinase Activity. Journal of Neuroscience, 2000, 20, 4635-4645.	1.7	199
75	Protein kinase C isozymes and the regulation of diverse cell responses. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L429-L438.	1.3	617
76	Increased nuclear translocation of catalytically active PKC-ζ during mouse colonocyte hyperproliferation. American Journal of Physiology - Renal Physiology, 2000, 279, G223-G237.	1.6	22
77	Ca2+-Evoked Serotonin Secretion by Parafollicular Cells: Roles in Signal Transduction of Phosphatidylinositol 3′-kinase, and the γ and ζ Isoforms of Protein Kinase C. Journal of Neuroscience, 2000, 20, 1365-1373.	1.7	20
78	Changes in protein kinase C â^Š phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence: a role for phosphorylation at Ser-729?. Biochemical Journal, 2000, 352, 19-26.	1.7	24
79	A 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) Docking Site Is Required for the Phosphorylation of Protein Kinase Cζ (PKCζ) and PKC-related Kinase 2 by PDK1. Journal of Biological Chemistry, 2000, 275, 20806-20813.	1.6	167
80	Unique Structural and Functional Properties of the ATP-binding Domain of Atypical Protein Kinase C-Î1. Journal of Biological Chemistry, 2000, 275, 33289-33296.	1.6	44
81	Rho GTPase Control of Protein Kinase C-related Protein Kinase Activation by 3-Phosphoinositide-dependent Protein Kinase. Journal of Biological Chemistry, 2000, 275, 11064-11070.	1.6	104
82	Association of Immature Hypophosphorylated Protein Kinase Cε with an Anchoring Protein CG-NAP. Journal of Biological Chemistry, 2000, 275, 34592-34596.	1.6	83
83	Akt/Protein Kinase B Is Regulated by Autophosphorylation at the Hypothetical PDK-2 Site. Journal of Biological Chemistry, 2000, 275, 8271-8274.	1.6	436
84	Activation of Atypical Protein Kinase C ζ by Caspase Processing and Degradation by the Ubiquitin-Proteasome System. Journal of Biological Chemistry, 2000, 275, 40620-40627.	1.6	78
85	Dual Role of Pseudosubstrate in the Coordinated Regulation of Protein Kinase C by Phosphorylation and Diacylglycerol. Journal of Biological Chemistry, 2000, 275, 10697-10701.	1.6	88
86	Functional Dichotomy of Protein Kinase C (PKC) in Tumor Necrosis Factor-α (TNF-α) Signal Transduction in L929 Cells. Journal of Biological Chemistry, 2000, 275, 29290-29298.	1.6	52
87	Effects of Sphingosine and Other Sphingolipids on Protein Kinase C. Methods in Enzymology, 2000, 312, 361-373.	0.4	55
88	Protein Kinases as Mediators of Phosphoinositide 3-Kinase Signaling. Molecular Pharmacology, 2000, 57, 652-658.	1.0	288
89	Ischemic Preconditioning Activates Phosphatidylinositol-3-Kinase Upstream of Protein Kinase C. Circulation Research, 2000, 87, 309-315.	2.0	315
90	Thiazolidinedione Treatment Enhances Insulin Effects on Protein Kinase C-ζ/λ Activation and Glucose Transport in Adipocytes of Nondiabetic and Goto-Kakizaki Type II Diabetic Rats. Journal of Biological Chemistry, 2000, 275, 16690-16696.	1.6	65

#	ARTICLE	IF	CITATIONS
91	Different Protein Kinase C Isoforms Determine Growth Factor Specificity in Neuronal Cells. Molecular and Cellular Biology, 2000, 20, 5392-5403.	1.1	70
92	Rap1 Is a Potent Activation Signal for Leukocyte Function-Associated Antigen 1 Distinct from Protein Kinase C and Phosphatidylinositol-3-OH Kinase. Molecular and Cellular Biology, 2000, 20, 1956-1969.	1.1	313
93	Deficiency of PTEN in Jurkat T Cells Causes Constitutive Localization of Itk to the Plasma Membrane and Hyperresponsiveness to CD3 Stimulation. Molecular and Cellular Biology, 2000, 20, 6945-6957.	1.1	314
94	Activated R-Ras, Rac1, Pi 3-Kinase and Pkcε Can Each Restore Cell Spreading Inhibited by Isolated Integrin β1 Cytoplasmic Domains. Journal of Cell Biology, 2000, 151, 1549-1560.	2.3	130
95	Thapsigargin-Induced Degranulation of Mast Cells Is Dependent on Transient Activation of Phosphatidylinositol-3 Kinase. Journal of Immunology, 2000, 165, 124-133.	0.4	56
96	Coordinate Control of Muscle Cell Survival by Distinct Insulin-like Growth Factor Activated Signaling Pathways. Journal of Cell Biology, 2000, 151, 1131-1140.	2.3	70
97	Pathophysiology and Pharmacological Treatment of Insulin Resistance*. Endocrine Reviews, 2000, 21, 585-618.	8.9	263
98	Phosphorylation of protein kinase N by phosphoinositide-dependent protein kinase-1 mediates insulin signals to the actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5089-5094.	3.3	106
99	Nuclear Mitogen-activated Protein Kinase Activation by Protein Kinase Cζ during Reoxygenation after Ischemic Hypoxia. Journal of Biological Chemistry, 2000, 275, 19921-19927.	1.6	66
100	TNF-α Stimulation of MCP-1 Expression Is Mediated by the Akt/PKB Signal Transduction Pathway in Vascular Endothelial Cells. Biochemical and Biophysical Research Communications, 2000, 276, 791-796.	1.0	79
101	Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms. FEBS Letters, 2000, 484, 217-223.	1.3	186
102	Oxidant-Induced S-Glutathiolation Inactivates Protein Kinase C-α (PKC-α):  A Potential Mechanism of PKC Isozyme Regulation. Biochemistry, 2000, 39, 10319-10329.	1.2	132
103	The C1 and C2 Domains of Protein Kinase C Are Independent Membrane Targeting Modules, with Specificity for Phosphatidylserine Conferred by the C1 Domain. Biochemistry, 2000, 39, 11360-11369.	1.2	138
105	Protein Kinase Cα Expression Confers Retinoic Acid Sensitivity on MDA-MB-231 Human Breast Cancer Cells. Experimental Cell Research, 2001, 269, 97-108.	1.2	21
106	Protein Kinase C:Â Structural and Spatial Regulation by Phosphorylation, Cofactors, and Macromolecular Interactions. Chemical Reviews, 2001, 101, 2353-2364.	23.0	884
107	Association of protein kinase Cλ with adducin in 3T3-L1 adipocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1539, 163-172.	1.9	7
108	Nuclear phospholipase C and signaling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1530, 1-14.	1.2	86
109	Molecular machinery involved in the insulin-regulated fusion of GLUT4-containing vesicles with the plasma membrane. Molecular Membrane Biology, 2001, 18, 237-245.	2.0	58

#	Article	IF	CITATIONS
110	Insulin and PIP3 Activate PKC-ζ by Mechanisms That Are Both Dependent and Independent of Phosphorylation of Activation Loop (T410) and Autophosphorylation (T560) Sites. Biochemistry, 2001, 40, 249-255.	1.2	123
111	Defective Insulin-Induced GLUT4 Translocation in Skeletal Muscle of High Fat-Fed Rats Is Associated With Alterations in Both Akt/Protein Kinase B and Atypical Protein Kinase C (Â/Â) Activities. Diabetes, 2001, 50, 1901-1910.	0.3	194
112	Phosphoinositide-Regulated Kinases and Phosphoinositide Phosphatases. Chemical Reviews, 2001, 101, 2365-2380.	23.0	112
113	Insulin Stimulates Increased Catalytic Activity of Phosphoinositide-Dependent Kinase-1 by a Phosphorylation-Dependent Mechanism. Biochemistry, 2001, 40, 11851-11859.	1.2	33
114	Angiotensin AT ₁ Receptor Phosphorylation and Desensitization in a Hepatic Cell Line. Roles of Protein Kinase C and Phosphoinositide 3-Kinase. Molecular Pharmacology, 2001, 59, 576-585.	1.0	36
115	Protein kinase C isoform expression and activity in the mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2062-H2071.	1.5	25
116	Regulation of phospholipase D isoenzymes by transforming Ras and atypical protein kinase C-Î ¹ . Biochemical Journal, 2001, 359, 211.	1.7	15
117	Regulation of phospholipase D isoenzymes by transforming Ras and atypical protein kinase C-Î ¹ . Biochemical Journal, 2001, 359, 211-217.	1.7	21
118	Insulin-Sensitive Phospholipid Signaling Systems and Glucose Transport. Update II. Experimental Biology and Medicine, 2001, 226, 283-295.	1.1	72
119	ãf—ãfãf†ã,₿f³ã,ãfŠãf¼ã,¼Cçµů•ã,¿ãf³ãf'ã,⁻質ã,'介ã™ã,‹æ–°ã⊷ã"ç°èfžå†…ã,•ã,°ãfŠãf«ä¼é"機構. Nip	op ono Noge	ikægaku Kais
120	PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes To Cells, 2001, 6, 721-731.	0.5	266
121	The neuron-glia signal ?-neuregulin promotes Schwann cell motility via the MAPK pathway. Glia, 2001, 34, 39-51.	2.5	99
122	Nerve Growth Factor Signaling, Neuroprotection, and Neural Repair. Annual Review of Neuroscience, 2001, 24, 1217-1281.	5.0	1,146
123	Signal transduction in neutrophil chemotaxis. , 2001, 66, 351-368.		46
124	Molecular biology of protein kinase C signaling in cardiac myocytes. Molecular and Cellular Biochemistry, 2001, 225, 97-107.	1.4	46
125	Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO Journal, 2001, 20, 4370-4379.	3.5	675
126	Antigen-induced translocation of PKC-Î, to membrane rafts is required for T cell activation. Nature Immunology, 2001, 2, 556-563.	7.0	290
127	Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cellular Signalling, 2001, 13, 7-16.	1.7	309

ARTICLE IF CITATIONS Protein kinase Cl[´]. FEBS Journal, 2001, 259, 555-564. 0.2 213 128 Complex Formation and Cooperation of Protein Kinase CÎ, and Akt1/Protein Kinase Bα in the NF-ÎB 129 1.6 Transactivation Cascade in Jurkat T Cells. Journal of Biological Chemistry, 2001, 276, 31627-31634. The Phosphoinositide-dependent Kinase, PDK-1, Phosphorylates Conventional Protein Kinase C Isozymes by a Mechanism That Is Independent of Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 130 101 1.6 2001, 276, 45289-45297. Phosphatidylinositol 3-OH Kinase–Akt/Protein Kinase B Pathway Mediates Gas6 Induction of Scavenger Receptor A in Immortalized Human Vascular Smooth Muscle Cell Line. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1592-1597. Activation of Protein Kinase A and Atypical Protein Kinase C by A2A Adenosine Receptors Antagonizes 132 Apoptosis Due to Serum Deprivation in PC12 Cells. Journal of Biological Chemistry, 2001, 276, 1.6 86 13838-13846. Chapter 12 Cellular regulation of protein kinase C. Cell and Molecular Response To Stress, 2001, 2, 0.4 163-173. Modulation of DNA Synthesis by Muscarinic Cholinergic Receptors. Growth Factors, 2001, 18, 227-236. 134 0.5 26 Growth Hormone Induces Cellular Insulin Resistance by Uncoupling Phosphatidylinositol 3-Kinase and 0.3 96 Its Downstream Signals in 3T3-L1 Adipocytes. Diabetes, 2001, 50, 1891-1900. Free Fatty Acid-Induced Inhibition of Glucose and Insulin-Like Growth Factor I-Induced 136 Deoxyribonucleic Acid Synthesis in the Pancreatic \hat{l}^2 -Cell Line INS-1¹. Endocrinology, 2001, 248 1.4 142, 229-240. 3-Phosphoinositide-dependent Protein Kinase 1, an Akt1 Kinase, Is Involved in Dephosphorylation of 1.6 Thr-308 of Akt1 in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2001, 276, 5339-5345. Atypical λ/آاPKC Conveys 5-Lipoxygenase/Leukotriene B4-mediated Cross-talk between Phospholipase A2s Regulating NF-IºB Activation in Response to Tumor Necrosis Factor-I± and Interleukin-1I2. Journal of 138 41 1.6 Biological Chemistry, 2001, 276, 35344-35351. A Novel Adapter Protein Employs a Phosphotyrosine Binding Domain and Exceptionally Basic N-terminal Domains to Capture and Localize an Atypical Protein Kinase C. Journal of Biological 1.6 Chemistry, 2001, 276, 10463-10475. Inhibition of Protein Kinase B (PKB) and PKCζ Mediates Keratin K10-Induced Cell Cycle Arrest. Molecular 140 1.1 121 and Cellular Biology, 2001, 21, 7449-7459. Effects of Streptozocin Diabetes and Diabetes Treatment by Islet Transplantation on In Vivo Insulin 141 0.3 54 Signaling in Rat Heart. Diabetes, 2001, 50, 2709-2720. Ribosomal S6 Kinase 2 Inhibition by a Potent C-terminal Repressor Domain Is Relieved by 142 Mitogen-activated Protein-Extracellular Signal-regulated Kinase Kinase-regulated Phosphorylation. 1.6 58 Journal of Biological Chemistry, 2001, 276, 7892-7898. Identification of Tyrosine Residues in Vascular Endothelial Growth Factor Receptor-2/FLK-1 Involved in Activation of Phosphatidylinositol 3-Kinase and Cell Proliferation. Journal of Biological Chemistry, 143 151 2001, 276, 17686-17692. Regulation of Ribosomal S6 Kinase 2 by Effectors of the Phosphoinositide 3-Kinase Pathway. Journal of 144 1.6 55 Biological Chemistry, 2001, 276, 7884-7891. Inhibitory Mechanisms of Tea Polyphenols on the Ultraviolet B-activated Phosphatidylinositol 145 1.6 3-Kinase-dependent Pathway. Journal of Biological Chemistry, 2001, 276, 46624-46631.

	C	CITATION REPORT	
#	Article	IF	CITATIONS
146	Signalling Pathways Regulating the Dephosphorylation of Ser729 in the Hydrophobic Domain of Protein Kinase Cε upon Cell Passage. Journal of Biological Chemistry, 2001, 276, 10437-10442.	1.6	26
147	The Roles of Phosphatidylinositol 3-Kinase and Protein Kinase Cζ for Thrombopoietin-induced Mitogen-activated Protein Kinase Activation in Primary Murine Megakaryocytes. Journal of Biological Chemistry, 2001, 276, 41014-41022.	1.6	30
148	Identification of Tyrosine Phosphorylation Sites on 3-Phosphoinositide-dependent Protein Kinase-1 a Their Role in Regulating Kinase Activity. Journal of Biological Chemistry, 2001, 276, 37459-37471.	and 1.6	108
149	PDK1 regulates growth through Akt and S6K in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15020-15025.	3.3	163
150	Disruption of 3-Phosphoinositide-dependent Kinase 1 (PDK1) Signaling by the Anti-tumorigenic and Anti-proliferative AgentN-α-tosyl-l-phenylalanyl Chloromethyl Ketone. Journal of Biological Chemistry 2001, 276, 12466-12475.	<i>y</i> , 1.6	48
151	Drosophila phosphoinositide-dependent kinase-1 regulates apoptosis and growth via the phosphoinositide 3-kinase-dependent signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6144-6149.	3.3	96
152	Regulation of Nuclear Factor κB Transactivation. Journal of Biological Chemistry, 2001, 276, 15840-15849.	1.6	92
153	Nuclear Import and Export Signals Enable Rapid Nucleocytoplasmic Shuttling of the Atypical Protein Kinase C λ. Journal of Biological Chemistry, 2001, 276, 13015-13024.	1.6	62
154	Role of Protein Kinase Cζ in Ras-mediated Transcriptional Activation of Vascular Permeability Factor/Vascular Endothelial Growth Factor Expression. Journal of Biological Chemistry, 2001, 276, 2395-2403.	1.6	66
155	Characterization of Regulatory Events Associated with Membrane Targeting of p90 Ribosomal S6 Kinase 1. Molecular and Cellular Biology, 2001, 21, 7470-7480.	1.1	93
156	Protein Kinase SGK Mediates Survival Signals by Phosphorylating the Forkhead Transcription Factor FKHRL1 (FOXO3a). Molecular and Cellular Biology, 2001, 21, 952-965.	1.1	775
157	The Carboxyl Terminus of Protein Kinase C Provides a Switch to Regulate Its Interaction with the Phosphoinositide-dependent Kinase, PDK-1. Journal of Biological Chemistry, 2001, 276, 19588-1959	96. 1. 6	93
158	Signal transduction of ischemic preconditioning. Cardiovascular Research, 2001, 52, 181-198.	1.8	280
159	BMK1 Mediates Growth Factor-induced Cell Proliferation through Direct Cellular Activation of Serum and Glucocorticoid-inducible Kinase. Journal of Biological Chemistry, 2001, 276, 8631-8634.	1.6	116
160	Protein Kinase Cζ Phosphorylates Nuclear Factor of Activated T Cells and Regulates Its Transactivati Activity. Journal of Biological Chemistry, 2002, 277, 27073-27080.	ing 1.6	45
161	Pkh1 and Pkh2 Differentially Phosphorylate and Activate Ypk1 and Ykr2 and Define Protein Kinase Modules Required for Maintenance of Cell Wall Integrity. Molecular Biology of the Cell, 2002, 13, 3005-3028.	0.9	167
162	Characterization of Phosphatidylinositol 3-Kinase-dependent Phosphorylation of the Hydrophobic Motif Site Thr389 in p70 S6 Kinase 1. Journal of Biological Chemistry, 2002, 277, 40281-40289.	1.6	70
163	Lack of Constitutive Activity of the Free Kinase Domain of Protein Kinase C ζ. Journal of Biological Chemistry, 2002, 277, 45866-45873.	1.6	19

#	Article	IF	CITATIONS
164	Membrane Localization of 3-Phosphoinositide-dependent Protein Kinase-1 Stimulates Activities of Akt and Atypical Protein Kinase C but Does Not Stimulate Clucose Transport and Clycogen Synthesis in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 2002, 277, 38863-38869.	1.6	31
165	Protein Kinase Cμ Regulation of the JNK Pathway Is Triggered via Phosphoinositide-dependent Kinase 1 and Protein Kinase Cε. Journal of Biological Chemistry, 2002, 277, 45451-45457.	1.6	53
166	Phosphoprotein Analysis Using Antibodies Broadly Reactive against Phosphorylated Motifs. Journal of Biological Chemistry, 2002, 277, 39379-39387.	1.6	235
167	SHIP Negatively Regulates IgE + Antigen-Induced IL-6 Production in Mast Cells by Inhibiting NF-κB Activity. Journal of Immunology, 2002, 168, 4737-4746.	0.4	128
168	IL-2 negatively regulates IL-7 receptor chain expression in activated T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13759-13764.	3.3	161
169	Stretch-induced Retinal Vascular Endothelial Growth Factor Expression Is Mediated by Phosphatidylinositol 3-Kinase and Protein Kinase C (PKC)-ζ but Not by Stretch-induced ERK1/2, Akt, Ras, or Classical/Novel PKC Pathways. Journal of Biological Chemistry, 2002, 277, 1047-1057.	1.6	69
170	Protein Kinase C (PKC)Îmediated PKCμ Activation Modulates ERK and JNK Signal Pathways. Journal of Biological Chemistry, 2002, 277, 6490-6496.	1.6	117
171	Substitution of the Autophosphorylation Site Thr516with a Negatively Charged Residue Confers Constitutive Activity to Mouse 3-Phosphoinositide-dependent Protein Kinase-1 in Cells. Journal of Biological Chemistry, 2002, 277, 16632-16638.	1.6	40
172	Nitric Oxide (NO) Induces Nitration of Protein Kinase Cε (PKCε), Facilitating PKCε Translocation via Enhanced PKCε-RACK2 Interactions. Journal of Biological Chemistry, 2002, 277, 15021-15027.	1.6	165
173	Cbl, IRS-1, and IRS-2 Mediate Effects of Rosiglitazone on PI3K, PKC-λ, and Glucose Transport in 3T3/L1 Adipocytes. Endocrinology, 2002, 143, 1705-1716.	1.4	50
174	Insulin Receptor Substrate-1 and Phosphoinositide-Dependent Kinase-1 Are Required for Insulin-Stimulated Production of Nitric Oxide in Endothelial Cells. Molecular Endocrinology, 2002, 16, 1931-1942.	3.7	203
175	A Function for Phosphoinositide 3-Kinase β Lipid Products in Coupling βγ to Ras Activation in Response to Lysophosphatidic Acid. Journal of Biological Chemistry, 2002, 277, 21167-21178.	1.6	71
176	Translocation of PKCÎ, in T cells is mediated by a nonconventional, PI3-K– and Vav-dependent pathway, but does not absolutely require phospholipase C. Journal of Cell Biology, 2002, 157, 253-263.	2.3	123
177	Myogenic Akt Signaling Regulates Blood Vessel Recruitment during Myofiber Growth. Molecular and Cellular Biology, 2002, 22, 4803-4814.	1.1	146
178	Phosphorylation of the Catalytic Subunit of Protein Kinase A. Journal of Biological Chemistry, 2002, 277, 47878-47884.	1.6	105
179	Ceramide-induced Inhibition of Akt Is Mediated through Protein Kinase Cζ. Journal of Biological Chemistry, 2002, 277, 3286-3292.	1.6	216
180	Akt/Protein Kinase B Promotes Organ Growth in Transgenic Mice. Molecular and Cellular Biology, 2002, 22, 2799-2809.	1.1	481
181	Regulation of novel protein kinase C ε by phosphorylation. Biochemical Journal, 2002, 363, 537.	1.7	111

#	Article	IF	CITATIONS
182	P2X7 receptors activate protein kinase D and p42/p44 mitogen-activated protein kinase (MAPK) downstream of protein kinase C. Biochemical Journal, 2002, 366, 745-755.	1.7	87
183	α1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-β. Biochemical Journal, 2002, 368, 581-587.	1.7	13
184	Regulation of novel protein kinase C Î μ by phosphorylation. Biochemical Journal, 2002, 363, 537-545.	1.7	139
185	BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1α, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood, 2002, 100, 3767-3775.	0.6	275
186	Analyzing Protein Kinase C Activation. Methods in Enzymology, 2002, 345, 499-506.	0.4	16
187	Role of PKCα in feedback regulation of Na+transport in an electrically tight epithelium. American Journal of Physiology - Cell Physiology, 2002, 283, C1122-C1132.	2.1	8
188	Role of PDK1 in insulin-signaling pathway for glucose metabolism in 3T3-L1 adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1385-E1394.	1.8	22
189	Characterization of PDK2 Activity Against Protein Kinase B γâ€. Biochemistry, 2002, 41, 10351-10359.	1.2	39
190	PLCÎ ³ Participates in Insulin Stimulation of Glucose Uptake through Activation of PKCζ in Brown Adipocytes. Experimental Cell Research, 2002, 278, 146-157.	1.2	29
191	AKAP MEDIATEDSIGNALTRANSDUCTION. Annual Review of Pharmacology and Toxicology, 2002, 42, 235-257.	4.2	315
192	Regulation of both PDK1 and the Phosphorylation of PKC-ζ and -δ by a C-Terminal PRK2 Fragment. Biochemistry, 2002, 41, 561-569.	1.2	21
193	The role of PI 3-kinase in EGF-stimulated jejunal glucose transport. Canadian Journal of Physiology and Pharmacology, 2002, 80, 77-84.	0.7	11
194	4α-Phorbol negates the inhibitory effects of phorbol-12-myristate-13-acetate on human cilia and alters the phosphorylation of PKC. FEBS Letters, 2002, 530, 31-36.	1.3	5
195	Thrombopoietin: a pan-hematopoietic cytokine. Cytokine and Growth Factor Reviews, 2002, 13, 61-73.	3.2	83
196	Protein kinase C and AKT/protein kinase B in CD4+ T-lymphocytes: new partners in TCR/CD28 signal integration. Molecular Immunology, 2002, 38, 1087-1099.	1.0	38
197	Inhibition of Muscarinic Receptor-Induced Proliferation of Astroglial Cells by Ethanol: Mechanisms and Implications for the Fetal Alcohol Syndrome. NeuroToxicology, 2002, 23, 685-691.	1.4	17
198	ET-1 stimulates ERK signaling pathway through sequential activation of PKC and Src in rat myometrial cells. American Journal of Physiology - Cell Physiology, 2002, 283, C251-C260.	2.1	67
199	PI 3-kinase and its up- and down-stream modulators as potential targets for the treatment of type II diabetes. Frontiers in Bioscience - Landmark, 2002, 7, d903.	3.0	35

#	Article	IF	CITATIONS
200	3 -phosphoinositide-dependent kinase-1 PDK-1 in PI 3-kinase signaling. Frontiers in Bioscience - Landmark, 2002, 7, d886-902.	3.0	4
201	PI 3-kinase and its up- and down-stream modulators as potential targets for the treatment of type II diabetes. Frontiers in Bioscience - Landmark, 2002, 7, d903-917.	3.0	23
202	Angiotensin II activation of focal adhesion kinase and pp60c-Src in relation to mitogen-activated protein kinases in hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1589, 285-297.	1.9	32
203	NGF rescues human B lymphocytes from anti-IgM induced apoptosis by activation of PKCζ. European Journal of Immunology, 2002, 32, 136-143.	1.6	39
204	Phosphoinositides and signal transduction. Cellular and Molecular Life Sciences, 2002, 59, 761-779.	2.4	213
205	Signals that Regulate GLUT4 Translocation. Journal of Membrane Biology, 2002, 190, 167-174.	1.0	37
206	Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology, 2002, 105, 125-136.	2.0	140
207	Effect of ethanol on protein kinase Cζ and p70S6 kinase activation by carbachol: a possible mechanism for ethanol-induced inhibition of glial cell proliferation. Journal of Neurochemistry, 2002, 82, 38-46.	2.1	40
208	Activation and phosphatidylinositol 3-kinase-dependent phosphorylation of protein kinase C-epsilon by the B cell antigen receptor. Immunology Letters, 2002, 82, 205-215.	1.1	10
209	PDK1 mediates growth factor-induced Ral-GEF activation by a kinase-independent mechanism. EMBO Journal, 2002, 21, 1327-1338.	3.5	63
210	Evolution, biochemistry and genetics of protein kinase C in fungi. Current Genetics, 2003, 43, 245-254.	0.8	49
211	Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia, 2003, 46, 1297-1312.	2.9	213
212	The role of SHIP in cytokine-induced signaling. , 2003, 149, 87-103.		85
213	FAK overexpression upregulates cyclin D3 and enhances cell proliferation via the PKC and PI3-kinase-Akt pathways. Cellular Signalling, 2003, 15, 575-583.	1.7	50
214	Retinoic acid signaling through PI 3-kinase induces differentiation of human endometrial adenocarcinoma cells. Experimental and Molecular Pathology, 2003, 75, 34-44.	0.9	9
215	The PKC gene module: molecular biosystematics to resolve its T cell functions. Immunological Reviews, 2003, 192, 64-79.	2.8	124
216	Protein kinase C-theta (PKCtheta): it's all about location, location, location. Immunological Reviews, 2003, 192, 53-63.	2.8	106
217	A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia, 2003, 17, 1794-1805.	3.3	147

#	Article	IF	CITATIONS
218	Deletion of cytosolic phospholipase A2 promotes striated muscle growth. Nature Medicine, 2003, 9, 944-951.	15.2	79
219	Activation Loop Phosphorylation and Catalysis in Protein Kinases:Â Is There Functional Evidence for the Autoinhibitor Model?â€. Biochemistry, 2003, 42, 601-607.	1.2	222
220	Protein Kinase Czeta (PKCzeta): Activation Mechanisms and Cellular Functions. Journal of Biochemistry, 2003, 133, 1-7.	0.9	269
221	Interaction of palmitoylcarnitine with protein kinase C in neuroblastoma NB-2a cells. Neurochemistry International, 2003, 42, 45-55.	1.9	12
222	Ceramide: second messenger or modulator of membrane structure and dynamics?. Biochemical Journal, 2003, 369, 199-211.	1.7	399
223	The Structure and Function of PKN, a Protein Kinase Having a Catalytic Domain Homologous to That of PKC. Journal of Biochemistry, 2003, 133, 17-27.	0.9	148
224	Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochemical Journal, 2003, 370, 361-371.	1.7	716
225	Blockade of Inflammation and Airway Hyperresponsiveness in Immune-sensitized Mice by Dominant-Negative Phosphoinositide 3-Kinase–TAT. Journal of Experimental Medicine, 2003, 198, 1573-1582.	4.2	219
227	Thrombin Stimulation of Vascular Adhesion Molecule-1 in Endothelial Cells Is Mediated by Protein Kinase C (PKC)-δ-NF-κB and PKC-ζ-GATA Signaling Pathways. Journal of Biological Chemistry, 2003, 278, 6976-6984.	1.6	103
228	Platelet-derived Growth Factor-BB-mediated Activation of Akt Suppresses Smooth Muscle-specific Gene Expression through Inhibition of Mitogen-activated Protein Kinase and Redistribution of Serum Response Factor. Journal of Biological Chemistry, 2003, 278, 39830-39838.	1.6	53
229	Eosinophil Major Basic Protein Stimulates Neutrophil Superoxide Production by a Class IAPhosphoinositide 3-Kinase and Protein Kinase C-ζ-Dependent Pathway. Journal of Immunology, 2003, 171, 3734-3741.	0.4	35
230	Increased Sp1 phosphorylation as a mechanism of hepatocyte growth factor (HGF/SF)-induced vascular endothelial growth factor (VEGF/VPF) transcription. Journal of Cell Science, 2003, 116, 225-238.	1.2	101
231	Protein Kinase C lambda/iota (PKClambda/iota): A PKC Isotype Essential for the Development of Multicellular Organisms. Journal of Biochemistry, 2003, 133, 9-16.	0.9	114
232	Insulin-Stimulated Protein Kinase C Â/Â Activity Is Reduced in Skeletal Muscle of Humans With Obesity and Type 2 Diabetes: Reversal With Weight Reduction. Diabetes, 2003, 52, 1935-1942.	0.3	149
233	Cross-regulation of Novel Protein Kinase C (PKC) Isoform Function in Cardiomyocytes. Journal of Biological Chemistry, 2003, 278, 14555-14564.	1.6	103
234	Activation of Group IV Cytosolic Phospholipase A2 in Human Eosinophils by Phosphoinositide 3-Kinase Through a Mitogen-Activated Protein Kinase-Independent Pathway. Journal of Immunology, 2003, 171, 4399-4405.	0.4	25
235	Intestinal Sugar Absorption Is Regulated by Phosphorylation and Turnover of Protein Kinase C βII Mediated by Phosphatidylinositol 3-Kinase- and Mammalian Target of Rapamycin-dependent Pathways. Journal of Biological Chemistry, 2003, 278, 28644-28650.	1.6	56
236	Potentiation of Protein Kinase C ζ Activity by 15-Deoxy-î" 12,14 -Prostaglandin J 2 Induces an Imbalance between Mitogen-Activated Protein Kinases and NF-îºB That Promotes Apoptosis in Macrophages. Molecular and Cellular Biology, 2003, 23, 1196-1208.	1.1	45

ARTICLE IF CITATIONS PKC-ζ Mediates Norepinephrine-Induced Phospholipase D Activation and Cell Proliferation in VSMC. 237 1.3 30 Hypertension, 2003, 41, 794-800. Methods to Study Dephosphorylation of Protein Kinase C In Vivo., 2003, 233, 217-232. 239 PDK-1 and Protein Kinase C Phosphorylation., 2003, 233, 171-190. 7 Genetic Manipulation of Protein Kinase C In Vivo., 2003, 233, 475-490. 240 Effect of Hyperglycemia on Signal Transduction in Skeletal Muscle from Diabetic Goto-Kakizaki Rats. 241 1.4 34 Endocrinology, 2003, 144, 5259-5267. Phosphopeptide-Specific Antibodies to Protein Kinase C., 2003, 233, 233-244. Caspase processing activates atypical protein kinase C ζ by relieving autoinhibition and destabilizes the 243 1.7 37 protein. Biochemical Journal, 2003, 375, 663-671. Phosphatidylinositol 3-Kinase Regulates the Induction of Long-Term Potentiation through Extracellular Signal-Related Kinase-Independent Mechanisms. Journal of Neuroscience, 2003, 23, 244 1.7 203 3679-3688. Regulating GLUT4 vesicle dynamics by phosphoinositide kinases and phosphoinositide phosphatases. 245 3.0 25 Frontiers in Bioscience - Landmark, 2003, 8, s945-967. Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Frontiers in 246 Bioscience - Landmark, 2003, 8, d1072-1084. Protein kinase C-ε-null mice have decreased hypoxic pulmonary vasoconstriction. American Journal of 247 1.5 44 Physiology - Heart and Circulatory Physiology, 2003, 284, H1321-H1331. Contribution of PKC-dependent and -independent processes in temporal ERK regulation by ET-1, PDGF 248 2.1 28 and EGF in rat myometrial cells. American Journal of Physiology - Cell Physiology, 2004, 286, C798-C806. Tissue-Specific Differences in Activation of Atypical Protein Kinase C and Protein Kinase B in Muscle, 249 Liver, and Adipocytes of Insulin Receptor Substrate-1 Knockout Mice. Molecular Endocrinology, 2004, 3.7 36 18.2513-2521. Defective Activation of Protein Kinase C-z in Muscle by Insulin and Phosphatidylinositol-3,4,5,-(PO4)3in Obesity and Polycystic Ovary Syndrome. Metabolic Syndrome and Related Disorders, 2004, 2, 49-56. Mechanism of Diacylglycerol-induced Membrane Targeting and Activation of Protein Kinase Cl². Journal 252 122 1.6 of Biological Chemistry, 2004, 279, 29501-29512. The Adaptor Protein Grb14 Regulates the Localization of 3-Phosphoinositide-dependent Kinase-1. Journal of Biological Chemistry, 2004, 279, 37518-37527. Regulated Membrane Trafficking of the Insulin-Responsive Glucose Transporter 4 in Adipocytes. 254 390 8.9 Endocrine Reviews, 2004, 25, 177-204. Dual Receptors and Distinct Pathways Mediate Interleukin-1 Receptor-associated Kinase Degradation in 34 Response to Lipopolysaccharide. Journal of Biological Chemistry, 2004, 279, 25189-25195.

#	Article	IF	CITATIONS
256	Neuregulin Signaling on Glucose Transport in Muscle Cells. Journal of Biological Chemistry, 2004, 279, 12260-12268.	1.6	55
257	Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology (United Kingdom), 2004, 150, 3289-3304.	0.7	101
258	Protein Kinase Cδ Selectively Regulates Protein Kinase D-Dependent Activation of NF-κB in Oxidative Stress Signaling. Molecular and Cellular Biology, 2004, 24, 2614-2626.	1.1	215
259	Muscarinic M2 Receptor Stimulation of Cav1.2b Requires Phosphatidylinositol 3-Kinase, Protein Kinase C, and c-Src. Circulation Research, 2004, 94, 626-633.	2.0	43
260	Protein Phosphatase 2A Negatively Regulates Insulin's Metabolic Signaling Pathway by Inhibiting Akt (Protein Kinase B) Activity in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 2004, 24, 8778-8789.	1.1	199
261	Nerve Growth Factor Promotes the Survival of Sympathetic Neurons through the Cooperative Function of the Protein Kinase C and Phosphatidylinositol 3-Kinase Pathways. Journal of Biological Chemistry, 2004, 279, 27986-27993.	1.6	40
262	Regulation of Tollâ€like receptorâ€2 expression by the Galâ€lectin of Entamoeba histolytica. FASEB Journal, 2004, 18, 155-157.	0.2	57
263	Role of Insulin Receptor Substrates and Protein Kinase C-ζ in Vascular Permeability Factor/Vascular Endothelial Growth Factor Expression in Pancreatic Cancer Cells. Journal of Biological Chemistry, 2004, 279, 3941-3948.	1.6	52
264	Bacterial endotoxin modifies heat shock factor-1 activity in RAW 264.7 cells: implications for TNF-α regulation during exposure to febrile range temperatures. Journal of Endotoxin Research, 2004, 10, 175-184.	2.5	22
265	Atypical protein kinase C (PKCζ/λ) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. Journal of Cell Biology, 2004, 164, 279-290.	2.3	82
266	Conventional protein kinase C and atypical protein kinase Czeta differentially regulate macrophage production of tumour necrosis factor-alpha and interleukin-10. Immunology, 2004, 112, 44-53.	2.0	43
267	Role of phospholipase D signaling in ethanol-induced inhibition of carbachol-stimulated DNA synthesis of 1321N1 astrocytoma cells. Journal of Neurochemistry, 2004, 90, 646-653.	2.1	37
268	Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicology and Applied Pharmacology, 2004, 198, 424-433.	1.3	161
269	Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends in Biochemical Sciences, 2004, 29, 136-142.	3.7	91
270	Molecular regulation of angiogenesis and tumorigenesis by signal transduction pathways: evidence of predictable and reproducible patterns of synergy in diverse neoplasms. Seminars in Cancer Biology, 2004, 14, 81-91.	4.3	41
271	Dephosphorylation of cofilin is regulated through Ras and requires the combined activities of the Ras-effectors MEK and PI3K. Cellular Signalling, 2004, 16, 235-243.	1.7	46
272	The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. Advances in Enzyme Regulation, 2004, 44, 279-298.	2.9	47
273	Fluidity of Insulin Action. Molecular Biotechnology, 2004, 27, 127-138.	1.3	19

#	Article	IF	CITATIONS
274	Protein kinase Czeta regulates phospholipase D activity in rat-1 fibroblasts expressing the alpha1A adrenergic receptor. BMC Cell Biology, 2004, 5, 4.	3.0	5
275	Role of protein kinase C in arginine vasopressin-stimulated ERK and p70S6 kinase phosphorylation. Journal of Cellular Biochemistry, 2004, 91, 1109-1129.	1.2	17
276	Retinoic acid-induced neuritogenesis of human neuroblastoma SH-SY5Y cells is ERK independent and PKC dependent. Journal of Neuroscience Research, 2004, 75, 241-252.	1.3	94
277	Signal transduction mechanisms involved in the antiproliferative effects of ethanol in glial cells. Toxicology Letters, 2004, 149, 67-73.	0.4	23
278	Bcl-xS induces an NGF-inhibitable cytochrome c release. Experimental Cell Research, 2004, 297, 392-403.	1.2	10
279	Diacylglycerol's affair with protein kinase C turns 25. Trends in Pharmacological Sciences, 2004, 25, 175-177.	4.0	75
280	Differential expression of atypical PKCs in the adult mouse brain. Molecular Brain Research, 2004, 127, 79-88.	2.5	49
281	Immunohistochemical identification and fiber type specific localization of protein kinase C isoforms in equine skeletal muscle. American Journal of Veterinary Research, 2004, 65, 69-73.	0.3	8
282	Role of protein kinase Cζ in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood, 2004, 104, 1716-1724.	0.6	61
283	Molecular mechanisms regulating protein kinase Czeta turnover and cellular transformation. Biochemical Journal, 2004, 378, 83-92.	1.7	28
284	Insulin-Sensitive Protein Kinases (Atypical Protein Kinase C and Protein Kinase B/Akt): Actions and Defects in Obesity and Type II Diabetes. Experimental Biology and Medicine, 2005, 230, 593-605.	1.1	164
285	In high glucose protein kinase C-ζ activation is required for mesangial cell generation of reactive oxygen species. Kidney International, 2005, 68, 2526-2541.	2.6	47
286	Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. British Journal of Haematology, 2005, 128, 192-203.	1.2	305
287	BCR/ABL, mRNA translation and apoptosis. Cell Death and Differentiation, 2005, 12, 534-540.	5.0	16
288	Selective decrease of membrane-associated PKC-α and PKC-ε in response to elevated intracellular O-GlcNAc levels in transformed human glial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1743, 305-315.	1.9	28
289	Leukocytes on the move with phosphoinositide 3-kinase and its downstream effectors. BioEssays, 2005, 27, 153-163.	1.2	36
290	Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: Involvement of NFκB. Journal of Neuroscience Research, 2005, 81, 21-30.	1.3	4
291	Protein kinase C and phospholipase D: intimate interactions in intracellular signaling. Cellular and Molecular Life Sciences, 2005, 62, 1448-1461.	2.4	79

#	Article	IF	CITATIONS
292	Quantitative immunodetection of key elements of polyphosphoinositide signal transduction in osteoblasts from arthritic patients shows a direct correlation with cell proliferation. Histochemistry and Cell Biology, 2005, 124, 131-137.	0.8	8
293	PI3K and PKC contribute to membrane depolarization mediated by alpha2-adrenoceptors in the canine isolated mesenteric vein. BMC Physiology, 2005, 5, 9.	3.6	13
294	PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E187-E196.	1.8	118
295	Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development (Cambridge), 2005, 132, 1675-1686.	1.2	176
296	A role for PKCζ in potentiation of the topoisomerase II activity and etoposide cytotoxicity by wortmannin. Molecular Cancer Therapeutics, 2005, 4, 1457-1464.	1.9	8
297	Phosphoinositide-Dependent Phosphorylation of PDK1 Regulates Nuclear Translocation. Molecular and Cellular Biology, 2005, 25, 2347-2363.	1.1	81
298	Novel Functions of the Phospholipase D2-Phox Homology Domain in Protein Kinase Cζ Activation. Molecular and Cellular Biology, 2005, 25, 3194-3208.	1.1	37
299	PKCη as a therapeutic target in glioblastoma multiforme. Expert Opinion on Therapeutic Targets, 2005, 9, 299-313.	1.5	18
300	Relaxin Stimulates Protein Kinase C ζ Translocation: Requirement for Cyclic Adenosine 3′,5′-Monophosphate Production. Molecular Endocrinology, 2005, 19, 1012-1023.	3.7	61
301	Enhanced Dephosphorylation of cAMP-dependent Protein Kinase by Oxidation and Thiol Modification. Journal of Biological Chemistry, 2005, 280, 2750-2758.	1.6	122
302	Building a human kinase gene repository: Bioinformatics, molecular cloning, and functional validation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8114-8119.	3.3	36
303	Atypical Protein Kinase CÎ ¹ Plays a Critical Role in Human Lung Cancer Cell Growth and Tumorigenicity. Journal of Biological Chemistry, 2005, 280, 31109-31115.	1.6	168
304	Inhibition of Insulin Receptor Gene Expression and Insulin Signaling by Fatty Acid: Interplay of PKC Isoforms Therein. Cellular Physiology and Biochemistry, 2005, 16, 217-228.	1.1	54
305	Novel Small Molecule Inhibitors of 3-Phosphoinositide-dependent Kinase-1. Journal of Biological Chemistry, 2005, 280, 19867-19874.	1.6	190
306	Tyrosine Phosphorylation of Phosphoinositide-Dependent Kinase 1 by the Insulin Receptor IsNecessary for Insulin Metabolic Signaling. Molecular and Cellular Biology, 2005, 25, 10803-10814.	1.1	16
307	μ and κ Opioid Receptors Activate ERK/MAPK via Different Protein Kinase C Isoforms and Secondary Messengers in Astrocytes. Journal of Biological Chemistry, 2005, 280, 27662-27669.	1.6	149
308	Endothelial Protein Kinase C Isoform Identity and Differential Activity of PKCζ in an Athero-Susceptible Region of Porcine Aorta. Circulation Research, 2005, 97, 443-449.	2.0	57
309	Regulation of Interleukin-5–Induced β2-Integrin Adhesion of Human Eosinophils by Phosphoinositide 3-Kinase. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 65-70.	1.4	47

		CITATION REPORT		
#	Article		IF	CITATIONS
310	Stimulus-induced phosphorylation of PKC Î, at the C-terminal hydrophobic-motif in hun lymphocytes. Biochemical and Biophysical Research Communications, 2005, 334, 619		1.0	26
311	Polarity Proteins in Axon Specification and Synaptogenesis. Developmental Cell, 2005,	8, 803-816.	3.1	123
312	The Role of Protein Kinase C in Gastrointestinal Function and Disease. Gastroenterolog 2131-2146.	;y, 2005, 128,	0.6	26
313	Protein kinase Cî' participates in insulin-induced activation of PKB via PDK1. Biochemic Research Communications, 2006, 349, 954-962.	al and Biophysical	1.0	18
314	TNF-α Induces Lnk Expression Through PI3K-Dependent Signaling Pathway in Human L Endothelial Cells. Journal of Surgical Research, 2006, 136, 53-57.	Jmbilical Vein	0.8	10
315	Involvement of multiple phosphatidylinositol 3-kinase-dependent pathways in the pers late-phase long term potentiation expression. Neuroscience, 2006, 137, 833-841.	istence of	1.1	52
316	Phosphorylation at the hydrophobic site of protein kinase C Apl II is increased during ir term facilitation. Neuroscience, 2006, 141, 277-285.	itermediate	1.1	13
317	Nuclear Protein Kinase C-Î: A Possible Check-Point of Cell Cycle Progression. Internatio Immunopathology and Pharmacology, 2006, 19, 287-291.	nal Journal of	1.0	9
318	Insulin Receptor Signals Regulating GLUT4 Translocation and Actin Dynamics. Endocrir 53, 267-293.	1e Journal, 2006,	0.7	126
320	The role of phosphoinositides in mast cell signalling. Signal Transduction, 2006, 6, 81-	91.	0.7	3
321	Palmitoylcarnitine modulates interaction between protein kinase C betall and its recep Journal, 2006, 273, 1300-1311.	tor RACK1. FEBS	2.2	6
322	Structural study of the catalytic domain of PKCzeta using infrared spectroscopy and tw infrared correlation spectroscopy. FEBS Journal, 2006, 273, 3273-3286.	wo-dimensional	2.2	10
323	Multilevel Regulation of IL-6R by IL-6-sIL-6R Fusion Protein According to the Primitivene Blood-Derived CD133+Cells. Stem Cells, 2006, 24, 1302-1314.	ess of Peripheral	1.4	26
324	CD4 ligation induces activation of protein kinase C zeta and phosphoinositide-depend kinase-1, two kinases required for down-regulation of LFA-1-mediated adhesion. Cellula 2006, 244, 33-42.	ent-protein ar Immunology,	1.4	6
325	Atypical protein kinase C in glucose metabolism. Cellular Signalling, 2006, 18, 2071-20)76.	1.7	22
326	Requirement of Androgen-Dependent Activation of Protein Kinase Cζ for Androgen-De Proliferation in LNCaP Cells and Its Roles in Transition to Androgen-Independent Cells. Endocrinology, 2006, 20, 3053-3069.		3.7	46
327	The Transcription Factor AP-2β Causes Cell Enlargement and Insulin Resistance in 3T3 Endocrinology, 2006, 147, 1685-1696.	L1 Adipocytes.	1.4	38
328	Pleiotropic Effects of Phosphatidylinositol 3â€Kinase in Monocyte Cell Regulation. Pro Molecular Biology and Translational Science, 2006, 81, 51-95.	gress in	1.9	2

#	Article	IF	CITATIONS
329	Perturbed skeletal muscle insulin signaling in the adult female intrauterine growth-restricted rat. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1321-E1330.	1.8	44
330	Mechanisms Regulating Tumor Angiogenesis by 12-Lipoxygenase in Prostate Cancer Cells. Journal of Biological Chemistry, 2006, 281, 18601-18609.	1.6	92
331	Phosphatidylinositol 3-Kinase/Protein Kinase Cζ-Induced Phosphorylation of Sp1 and p107 Repressor Release Have a Critical Role in Histone Deacetylase Inhibitor-Mediated Depression of Transcription of the Luteinizing Hormone Receptor Gene. Molecular and Cellular Biology, 2006, 26, 6748-6761.	1.1	52
332	Steady-state Kinetic Mechanism of PDK1*. Journal of Biological Chemistry, 2006, 281, 21670-21681.	1.6	22
333	OX1Orexin Receptors Activate Extracellular Signal-Regulated Kinase in Chinese Hamster Ovary Cells via Multiple Mechanisms: The Role of Ca2+Influx in OX1Receptor Signaling. Molecular Endocrinology, 2006, 20, 80-99.	3.7	78
335	Protein Kinase Cζ Is Up-regulated in Osteoarthritic Cartilage and Is Required for Activation of NF-κB by Tumor Necrosis Factor and Interleukin-1 in Articular Chondrocytes. Journal of Biological Chemistry, 2006, 281, 24124-24137.	1.6	59
336	Phosphatidylinositol 3-Kinase Î ³ Signaling through Protein Kinase Cζ Induces NADPH Oxidase-mediated Oxidant Generation and NF-κB Activation in Endothelial Cells. Journal of Biological Chemistry, 2006, 281, 16128-16138.	1.6	121
337	Aurothiomalate Inhibits Transformed Growth by Targeting the PB1 Domain of Protein Kinase CÎ ¹ . Journal of Biological Chemistry, 2006, 281, 28450-28459.	1.6	92
338	SGK KINASES AND THEIR ROLE IN EPITHELIAL TRANSPORT. Annual Review of Physiology, 2006, 68, 461-490.	5.6	134
339	Vascular Endothelial Growth Factor-Induced Signaling Pathways in Endothelial Cells That Mediate Overexpression of the Chemokine IFN-γ-Inducible Protein of 10 kDa In Vitro and In Vivo. Journal of Immunology, 2006, 176, 3098-3107.	0.4	74
340	TEDS Site Phosphorylation of the Yeast Myosins I Is Required for Ligand-induced but Not for Constitutive Endocytosis of the G Protein-coupled Receptor Ste2p. Journal of Biological Chemistry, 2006, 281, 11104-11114.	1.6	28
341	The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. American Journal of Physiology - Advances in Physiology Education, 2007, 31, 5-16.	0.8	172
342	Isoform specificity of protein kinase Cs in synaptic plasticity. Learning and Memory, 2007, 14, 236-246.	0.5	100
343	Regulation of Protein Kinase MÂ Synthesis by Multiple Kinases in Long-Term Potentiation. Journal of Neuroscience, 2007, 27, 3439-3444.	1.7	130
344	The Phosphoinositide 3-Kinase Pathway in Human Cancer: Genetic Alterations and Therapeutic Implications. Current Genomics, 2007, 8, 271-306.	0.7	206
345	Surfactant Protein A Activation of Atypical Protein Kinase C ζ in lκB-α-Dependent Anti-Inflammatory Immune Regulation. Journal of Immunology, 2007, 179, 4480-4491.	0.4	33
346	Reactive oxygen species, PKC-β ₁ , and PKC-ζ mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1280-E1288.	1.8	51
347	Chronic Angiotensin II Receptor Blockade Induces Cardioprotection During Ischemia by Increased PKC-ε Expression in the Mouse Heart. Journal of Cardiovascular Pharmacology, 2007, 49, 46-55.	0.8	14

		CITATION REPORT		
#	Article		IF	Citations
348	Protein Kinase C-ζ Activation Markedly Enhances β-Cell Proliferation. Diabetes, 2007,	56, 2732-2743.	0.3	73
349	Invasion of HeLa cells by group B streptococcus requires the phosphoinositide-3-kinase pathway and modulates phosphorylation of host-cell Akt and glycogen synthase kinas Microbiology (United Kingdom), 2007, 153, 4240-4252.	e signalling e-3.	0.7	32
350	The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. Jo Biology, 2007, 176, 863-875.	urnal of Cell	2.3	117
351	Essential role of protein kinase C ζ in transducing a motility signal induced by superox chemotactic peptide, fMLP. Journal of Cell Biology, 2007, 176, 1049-1060.	ide and a	2.3	23
352	Ceramide Recruits and Activates Protein Kinase C ζ (PKCζ) within Structured Membra Journal of Biological Chemistry, 2007, 282, 12450-12457.	ane Microdomains.	1.6	161
353	A Critical Role of Protein Kinase Cî´Activation Loop Phosphorylation in Formyl-Methionyl-Leucyl-Phenylalanine-Induced Phosphorylation of p47phox and Rapio Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Journal of Immunology, 2007,	Activation of 179, 7720-7728.	0.4	50
354	Differential Protein Kinase C Isoform Abundance in Ascending Aortic Aneurysms From Bicuspid Versus Tricuspid Aortic Valves. Circulation, 2007, 116, 1144-9.	Patients With	1.6	14
355	Mitogen-Activated Protein Kinase Upregulates the Dendritic Translation Machinery in I Potentiation by Controlling the Mammalian Target of Rapamycin Pathway. Journal of N 2007, 27, 5885-5894.	.ong-Term leuroscience,	1.7	171
357	Lung disease and PKCs. Pharmacological Research, 2007, 55, 545-559.		3.1	73
358	Protein kinase C^{1_1} : Human oncogene, prognostic marker and therapeutic target. Pharm Research, 2007, 55, 487-497.	nacological	3.1	113
359	Protein Kinase Cζ Abrogates the Proapoptotic Function of Bax through Phosphorylatic Biological Chemistry, 2007, 282, 21268-21277.	on. Journal of	1.6	63
360	Molecular Mechanisms of the Diabetogenic Effects of Arsenic: Inhibition of Insulin Sign Arsenite and Methylarsonous Acid. Environmental Health Perspectives, 2007, 115, 734	naling by 1-742.	2.8	138
361	The protein kinase C pathway mediates cardioprotection induced by cardiac-specific o fibroblast growth factor-2. American Journal of Physiology - Heart and Circulatory Phys 293, H354-H365.	verexpression of iology, 2007,	1.5	28
362	The inhibitory mechanism of methylmercury on differentiation of human neuroblaston Toxicology, 2007, 234, 1-9.	na cells.	2.0	17
363	Activation loop phosphorylation-independent kinase activity of human protein kinase Structure, Function and Bioinformatics, 2007, 67, 709-719.	C ζ. Proteins:	1.5	8
364	Loss of PTEN expression does not contribute to PDK-1 activity and PKC activation-loop phosphorylation in Jurkat leukaemic T cells. Cellular Signalling, 2007, 19, 2444-2457.		1.7	8
365	Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell and Biophysics, 2007, 48, 103-113.	Biochemistry	0.9	119
366	Eicosapentaenoic acid inhibits TNF-α-induced Lnk expression in human umbilical vein involvement of the PI3K/Akt pathway. Journal of Nutritional Biochemistry, 2007, 18, 17	endothelial cells: 7-22.	1.9	11

ARTICLE IF CITATIONS Protein kinase C isozymes and their selectivity towards ruboxistaurin. Proteins: Structure, Function 367 1.5 9 and Bioinformatics, 2008, 72, 447-460. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. 368 3.5 EMBO Journal, 2008, 27, 1919-1931. 369 PKMζ, LTP Maintenance, and Long-Term Memory Storage., 2008, , 449-467. 0 Protein kinase C–dependent and independent signaling pathways regulate synaptic GluR1 and GluR4 370 1.1 AMPAR subunits during in vitro classical conditioning. Neuroscience, 2008, 156, 872-884. ARHGAP21 associates with FAK and PKC \hat{I}_{q} and is redistributed after cardiac pressure overload. 371 1.0 20 Biochemical and Biophysical Research Communications, 2008, 374, 641-646. Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex. Learning 169 and Memory, 2008, 15, 762-776. Differential Effects of Shear Stress and Cyclic Strain on Sp1 Phosphorylation by Protein Kinase Cζ 373 Modulates Membrane Type 1–Matrix Metalloproteinase in Endothelial Cells. Endothelium: Journal of 1.7 13 Endothelial Cell Research, 2008, 15, 33-42. Regulation of 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) by Src Involves Tyrosine Phosphorylation of PDK1 and Src Homology 2 Domain Binding. Journal of Biological Chemistry, 2008, 374 1.6 67 283, 1480-1491 Unlocking Repression of the Human Luteinizing Hormone Receptor Gene by Trichostatin A-induced 375 1.6 17 Cell-specific Phosphatase Release. Journal of Biological Chemistry, 2008, 283, 24039-24046. Lower Phosphoinositide 3-Kinase (PI 3-kinase) Activity and Differential Expression Levels of Selective Catalytic and Regulatory PI 3-Kinase Subunit Isoforms in Prefrontal Cortex and Hippocampus of 2.8 Suicide Subjects. Neuropsychopharmacology, 2008, 33, 2324-2340. PKC isoenzymes differentially modulate the effect of thrombin on MAPK-dependent RPE proliferation. 377 22 1.1 Bioscience Reports, 2008, 28, 307-317. Hypoxia exposure induces the emergence of fibroblasts lacking replication repressor signals of PKCÂ in the pulmonary artery adventitia. Cardiovascular Research, 2008, 78, 440-448. Signal Strength Dictates Phosphoinositide 3-Kinase Contribution to Ras/Extracellular Signal-Regulated Kinase 1 and 2 Activation via Differential Gab1/Shp2 Recruitment: Consequences for 379 1.1 50 Resistance to Epidermal Growth Factor Receptor Inhibition. Molecular and Cellular Biology, 2008, 28, 587-600. The Life and Death of Protein Kinase C. Current Drug Targets, 2008, 9, 614-625. 380 1.0 The atypical kinase Cdk5 is activated by insulin, regulates the association between GLUT4 and E-Syt1, and modulates glucose transport in 3T3-L1 adipocytes. Proceedings of the National Academy of 381 3.3 57 Sciences of the United States of America, 2009, 106, 4249-4253. Insulin Receptor Substrate-2 Mediated Insulin-like Growth Factor-I Receptor Overexpression in Pancreatic Adenocarcinoma through Protein Kinase Clr. Cancer Research, 2009, 69, 1350-1357. The Chaperones Hsp90 and Cdc37 Mediate the Maturation and Stabilization of Protein Kinase C 383 through a Conserved PXXP Motif in the C-terminal Tail*. Journal of Biological Chemistry, 2009, 284, 1.6 97 4921-4935. Kinase-activity-independent functions of atypical protein kinase C in Drosophila. Journal of Cell 384 1.2 Science, 2009, 122, 3759-3771.

#	Article	IF	CITATIONS
385	The critical role of atypical protein kinase C in activating hepatic SREBP-1c and NFκB in obesity. Journal of Lipid Research, 2009, 50, 1133-1145.	2.0	50
386	Differential Signaling Activation by Insulin and Insulin-Like Growth Factors I and II upon Binding to Insulin Receptor Isoform A. Endocrinology, 2009, 150, 3594-3602.	1.4	64
387	Insulin stimulates the phosphorylation of the exocyst protein Sec8 in adipocytes. Bioscience Reports, 2009, 29, 229-235.	1.1	15
388	Mechanism of PDK1-catalyzed Thr-229 Phosphorylation of the S6K1 Protein Kinase. Journal of Biological Chemistry, 2009, 284, 22611-22624.	1.6	15
389	Sp1 Phosphorylation and Its Regulation of Gene Transcription. Molecular and Cellular Biology, 2009, 29, 2483-2488.	1.1	287
390	Protein kinase C intervention—the state of play. Current Opinion in Cell Biology, 2009, 21, 268-279.	2.6	88
391	Regulation of protein kinase Cδ downregulation by protein kinase Cε and mammalian target of rapamycin complex 2. Cellular Signalling, 2009, 21, 1680-1685.	1.7	10
392	Generation of spinal motor neurons from human fetal brainâ€derived neural stem cells: Role of basic fibroblast growth factor. Journal of Neuroscience Research, 2009, 87, 318-332.	1.3	50
393	The atypical protein kinase C in <i>Aplysia</i> can form a protein kinase M by cleavage. Journal of Neurochemistry, 2009, 109, 1129-1143.	2.1	67
394	HMCB1 Is Phosphorylated by Classical Protein Kinase C and Is Secreted by a Calcium-Dependent Mechanism. Journal of Immunology, 2009, 182, 5800-5809.	0.4	145
395	Opposing actions of insulin and arsenite converge on PKCδ to alter keratinocyte proliferative potential and differentiation. Molecular Carcinogenesis, 2010, 49, 398-409.	1.3	8
396	Structures of the PKC-ι kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533–551 in the C-terminal tail and their roles in ATP binding. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 577-583.	2.5	38
397	PKC and the control of localized signal dynamics. Nature Reviews Molecular Cell Biology, 2010, 11, 103-112.	16.1	407
398	Protein Kinase C. , 2010, , 1123-1129.		0
399	Plasma Membrane Subdomain Compartmentalization Contributes to Distinct Mechanisms of Ceramide Action on Insulin Signaling. Diabetes, 2010, 59, 600-610.	0.3	91
400	Activation by Tyrosine Phosphorylation as a Prerequisite for Protein Kinase Cζ to Mediate Epidermal Growth Factor Receptor Signaling to ERK. Molecular Cancer Research, 2010, 8, 783-797.	1.5	10
401	PKCζ regulates cell polarisation and proliferation restriction during mammary acinus formation. Journal of Cell Science, 2010, 123, 3316-3328.	1.2	31
402	Protein kinase C: poised to signal. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E395-E402.	1.8	457

#	Article	IF	Citations
403	Characterisation of rapid prototyping techniques for studies in cell behaviour. Rapid Prototyping Journal, 2010, 16, 116-123.	1.6	12
404	Protein Kinase Cζ Mediates Cigarette Smoke/Aldehyde- and Lipopolysaccharide-induced Lung Inflammation and Histone Modifications. Journal of Biological Chemistry, 2010, 285, 5405-5416.	1.6	57
405	Identification of a novel phosphorylation site on TBC1D4 regulated by AMP-activated protein kinase in skeletal muscle. American Journal of Physiology - Cell Physiology, 2010, 298, C377-C385.	2.1	86
406	Activation of the Ancestral Polarity Regulator Protein Kinase Cζ at the Immunological Synapse Drives Polarization of Th Cell Secretory Machinery toward APCs. Journal of Immunology, 2010, 185, 2887-2894.	0.4	53
407	mTOR Complex Component Rictor Interacts with PKCζ and Regulates Cancer Cell Metastasis. Cancer Research, 2010, 70, 9360-9370.	0.4	117
408	PDK1: The Major Transducer of PI 3-Kinase Actions. Current Topics in Microbiology and Immunology, 2010, 346, 9-29.	0.7	91
410	TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability. Diabetes, 2010, 59, 2872-2882.	0.3	343
411	APPL1 Mediates Adiponectin-Induced LKB1 Cytosolic Localization Through the PP2A-PKCζ Signaling Pathway. Molecular Endocrinology, 2011, 25, 1773-1785.	3.7	61
412	Spinal Protein Kinase M ζ Underlies the Maintenance Mechanism of Persistent Nociceptive Sensitization. Journal of Neuroscience, 2011, 31, 6646-6653.	1.7	114
413	VEGF-mediated PI3K class IA and PKC signaling in cardiomyogenesis and vasculogenesis of mouse embryonic stem cells. Journal of Cell Science, 2011, 124, 1819-1830.	1.2	64
414	Phosphoproteomic Analysis of Signaling Pathways in Head and Neck Squamous Cell Carcinoma Patient Samples. American Journal of Pathology, 2011, 178, 548-571.	1.9	50
415	Crystal Structure and Allosteric Activation of Protein Kinase C Î ² II. Cell, 2011, 144, 55-66.	13.5	177
416	Cl-IB-MECA enhances TNF-α release in peritoneal macrophages stimulated with LPS. Cytokine, 2011, 54, 161-166.	1.4	9
417	Effect of 17β-estradiol on adhesion of Mytilus galloprovincialis hemocytes to selected substrates. Role of alpha2 integrin subunit. Fish and Shellfish Immunology, 2011, 31, 73-80.	1.6	19
418	PKC-delta and PKC-epsilon: Foes of the same family or strangers?. Journal of Molecular and Cellular Cardiology, 2011, 51, 665-673.	0.9	90
419	The Role of Atypical Protein Kinase C in CSF-1-Dependent Erk Activation and Proliferation in Myeloid Progenitors and Macrophages. PLoS ONE, 2011, 6, e25580.	1.1	16
420	δâ€Opioid receptors stimulate GLUT1â€mediated glucose uptake through Src―and IGFâ€1 receptorâ€depender activation of PI3â€kinase signalling in CHO cells. British Journal of Pharmacology, 2011, 163, 624-637.	1t 2.7	26
421	Differential dephosphorylation of the Protein Kinase C-zeta (PKCζ) in an integrin αIIbβ3-dependent manner in platelets. Biochemical Pharmacology, 2011, 82, 505-513.	2.0	13

ARTICLE IF CITATIONS Regulation of Protein Kinase C function by phosphorylation on conserved and non-conserved sites. 422 1.7 103 Cellular Signalling, 2011, 23, 753-762. Protein Kinase C Isoforms in Neutrophil Adhesion and Activation. Archivum Immunologiae Et Therapiae 423 1.0 Experimentalis, 2011, 59, 79-87. 424 The mechanism of protein kinase C regulation. Frontiers in Biology, 2011, 6, 328. 0.7 19 Protein Kinase Cl¶ Mediates l¼-Opioid Receptor-induced Cross-desensitization of Chemokine Receptor 425 CCR5. Journal of Biological Chemistry, 2011, 286, 20354-20365. Opioid-induced chemokine expression requires NF-κB activity: the role of PKCζ. Journal of Leukocyte 426 1.5 26 Biology, 2010, 89, 301-309. Protein Kinases and Phosphatases in the Control of Cell Fate. Enzyme Research, 2011, 2011, 1-26. 1.8 229 Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form. 428 1.6 34 Journal of Biological Chemistry, 2011, 286, 28922-28930. Pulmonary Surfactant Protein A Enhances Endolysosomal Trafficking in Alveolar Macrophages 429 0.4 through Regulation of Rab7. Journal of Immunology, 2011, 186, 2397-2411. Transcriptional Regulation of ATP-binding Cassette Transporter A1 Expression by a Novel Signaling 430 1.6 36 Pathway. Journal of Biological Chemistry, 2011, 286, 8917-8923. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase Č (aPKC) signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E952-61. 3.3 142 Protein kinase C Â is a positive modulator of canonical Wnt signaling pathway in tumoral colon cell 432 1.3 30 lines. Carcinogenesis, 2011, 32, 1615-1624. Activation of Protein Kinase C- $\hat{I}q$ in Pancreatic \hat{I}^2 -Cells In Vivo Improves Glucose Tolerance and Induces 0.3 β-Cell Expansion via mTOR Activation. Diabetes, 2011, 60, 2546-2559. Novel atypical PKC inhibitors prevent vascular endothelial growth factor-induced bloodâ€"retinal 434 1.7 60 barrier dysfunction. Biochemical Journal, 2012, 446, 455-467. Up-regulation of ATP Binding Cassette Transporter A1 Expression by Very Low Density Lipoprotein Receptor and Apolipoprotein E Receptor 2. Journal of Biological Chemistry, 2012, 287, 3751-3759. 1.6 Peptidyl-prolyl Isomerase Pin1 Controls Down-regulation of Conventional Protein Kinase C Isozymes. 436 40 1.6 Journal of Biological Chemistry, 2012, 287, 13262-13278. Visual Dysfunction in Diabetes., 2012,,. J-4. Anti-Cancer Drugs, 2012, 23, 691-697. 438 0.7 6 439 Targeting PI3 Kinase/AKT/mTOR Signaling in Cancer. Critical Reviews in Oncogenesis, 2012, 17, 69-95. 204

#	Article	IF	CITATIONS
440	Phosphatidylinositol 3-kinases and their roles in phagosome maturation. Journal of Leukocyte Biology, 2012, 92, 553-566.	1.5	31
441	Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnology Advances, 2012, 30, 1662-1672.	6.0	71
442	Rictor regulates phosphorylation of the novel protein kinase C Apl II in Aplysia sensory neurons. Journal of Neurochemistry, 2012, 122, 1108-1117.	2.1	2
443	The Biology of Protein Kinase C. Advances in Experimental Medicine and Biology, 2012, 740, 639-661.	0.8	77
444	Serotonin-Induced Cleavage of the Atypical Protein Kinase C Apl III in <i>Aplysia</i> . Journal of Neuroscience, 2012, 32, 14630-14640.	1.7	42
445	2-(3-Oxo-1,3-diphenylpropyl)malonic Acids as Potent Allosteric Ligands of the PIF Pocket of Phosphoinositide-Dependent Kinase-1: Development and Prodrug Concept. Journal of Medicinal Chemistry, 2012, 55, 9817-9830.	2.9	38
446	Osmostress Induces Autophosphorylation of Hog1 via a C-Terminal Regulatory Region That Is Conserved in p38α. PLoS ONE, 2012, 7, e44749.	1.1	26
447	Acute Inhibition of PI3K-PDK1-Akt Pathway Potentiates Insulin Secretion through Upregulation of Newcomer Granule Fusions in Pancreatic β-Cells. PLoS ONE, 2012, 7, e47381.	1.1	30
448	Protein Kinase C Mediated Extraembryonic Endoderm Differentiation of Human Embryonic Stem Cells. Stem Cells, 2012, 30, 461-470.	1.4	62
449	Cellular Pharmacology of Protein Kinase Mζ (PKMζ) Contrasts with Its in Vitro Profile. Journal of Biological Chemistry, 2012, 287, 12879-12885.	1.6	52
450	Nerve growth factor enhances the excitability of rat sensory neurons through activation of the atypical protein kinase C isoform, PKMζ. Journal of Neurophysiology, 2012, 107, 315-335.	0.9	33
451	Functional interactions between the oxytocin receptor and the β2-adrenergic receptor: Implications for ERK1/2 activation in human myometrial cells. Cellular Signalling, 2012, 24, 333-341.	1.7	32
452	Contribution of individual PKC isoforms to breast cancer progression. IUBMB Life, 2012, 64, 18-26.	1.5	62
453	Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death. Cell Death and Disease, 2013, 4, e580-e580.	2.7	67
454	From Amoeba to Macrophages: Exploring the Molecular Mechanisms of Legionella pneumophila Infection in Both Hosts. Current Topics in Microbiology and Immunology, 2013, 376, 1-34.	0.7	88
455	Exploiting <scp>PI</scp> 3 <scp>K</scp> /m <scp>TOR</scp> signaling to accelerate epithelial wound healing. Oral Diseases, 2013, 19, 551-558.	1.5	78
456	Prkcz null mice show normal learning and memory. Nature, 2013, 493, 416-419.	13.7	229
457	Development of highly potent proteaseâ€activated receptor 2 agonists <i>via</i> synthetic lipid tethering. FASEB Journal, 2013, 27, 1498-1510.	0.2	26

#	Article	IF	CITATIONS
458	Ezrin-Radixin-Moesin-binding Phosphoprotein 50 (EBP50) and Nuclear Factor-κB (NF-κB). Journal of Biological Chemistry, 2013, 288, 36426-36436.	1.6	23
459	Protein kinase Cs in lung cancer: A promising target for therapies. Journal of Cancer Research and Therapeutics, 2013, 9, 74.	0.3	3
460	Requirement for active glycogen synthase kinase-3β in TGF-β ₁ upregulation of connective tissue growth factor (CCN2/CTGF) levels in human gingival fibroblasts. American Journal of Physiology - Cell Physiology, 2013, 305, C581-C590.	2.1	11
461	Atypical Protein Kinase C and Par3 Are Required for Proteoglycan-Induced Axon Growth Inhibition. Journal of Neuroscience, 2013, 33, 2541-2554.	1.7	22
462	Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending–dependent manner. Molecular Biology of the Cell, 2013, 24, 1176-1184.	0.9	47
463	Spatiotemporal Dynamics of Phosphorylation in Lipid Second Messenger Signaling. Molecular and Cellular Proteomics, 2013, 12, 3498-3508.	2.5	38
464	Protein kinase C pharmacology: refining the toolbox. Biochemical Journal, 2013, 452, 195-209.	1.7	172
466	Protein Kinase C and Acute Respiratory Distress Syndrome. Shock, 2013, 39, 467-479.	1.0	31
467	AKT-independent PI3-K signaling in cancer – emerging role for SGK3. Cancer Management and Research, 2013, 5, 281.	0.9	73
468	Protein Kinase C Regulates Human Pluripotent Stem Cell Self-Renewal. PLoS ONE, 2013, 8, e54122.	1.1	60
469	The TBC1D15 Oncoprotein Controls Stem Cell Self-Renewal through Destabilization of the Numb-p53 Complex. PLoS ONE, 2013, 8, e57312.	1.1	22
470	Protein kinase C ζ regulates survivin expression and inhibits apoptosis in colon cancer. International Journal of Oncology, 2014, 45, 1043-1050.	1.4	7
471	Phosphorylation of the Kinase Domain Regulates Autophosphorylation of Myosin IIIA and Its Translocation in Microvilli. Biochemistry, 2014, 53, 7835-7845.	1.2	6
472	The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. Journal of Cell Science, 2014, 127, 4381-95.	1.2	19
473	Phosphoproteomic Analysis Reveals Regulatory Mechanisms at the Kidney Filtration Barrier. Journal of the American Society of Nephrology: JASN, 2014, 25, 1509-1522.	3.0	40
474	Targeting aPKC disables oncogenic signaling by both the EGFR and the proinflammatory cytokine TNFα in glioblastoma. Science Signaling, 2014, 7, ra75.	1.6	47
475	PI3K signalling in GnRH actions on dispersed goldfish pituitary cells: Relationship with PKC-mediated LH and GH release and regulation of long-term effects on secretion and total cellular hormone availability. General and Comparative Endocrinology, 2014, 205, 268-278.	0.8	10
476	Vascular Endothelial Tight Junctions and Barrier Function Are Disrupted by 15(S)-Hydroxyeicosatetraenoic Acid Partly via Protein Kinase Cϵ-mediated Zona Occludens-1 Phosphorylation at Threonine 770/772. Journal of Biological Chemistry, 2014, 289, 3148-3163.	1.6	53

#	Article	IF	CITATIONS
477	Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 79-97.	2.6	69
478	Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules. Aquatic Toxicology, 2014, 146, 186-195.	1.9	47
479	<scp>mTORC</scp> 2 phosphorylates protein kinase Cζ to regulate its stability and activity. EMBO Reports, 2014, 15, 191-198.	2.0	90
480	HOIL-1L Functions as the PKCζ Ubiquitin Ligase to Promote Lung Tumor Growth. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 688-698.	2.5	34
481	The phosphoinositide-dependent protein kinase 1 inhibitor, UCN-01, induces fragmentation: Possible role of metalloproteinases. European Journal of Pharmacology, 2014, 740, 88-96.	1.7	4
482	Helicobacter pylori modulates host cell survival regulation through the serine-threonine kinase, 3-phosphoinositide dependent kinase 1 (PDK-1). BMC Microbiology, 2015, 15, 222.	1.3	9
483	The Novel PKC <i>Î,</i> from Benchtop to Clinic. Journal of Immunology Research, 2015, 2015, 1-16.	0.9	33
484	In Vitro Neutrophil Migration Requires Protein Kinase C-Delta (δ-PKC)-Mediated Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Phosphorylation. Inflammation, 2015, 38, 1126-1141.	1.7	28
485	Aberrant Activation of Atypical Protein Kinase C in Carbon Tetrachloride–Induced Oxidative Stress Provokes a Disturbance of Cell Polarity and Sealing of Bile Canalicular Lumen. American Journal of Pathology, 2015, 185, 958-968.	1.9	8
486	Threonine 34 phosphorylation by phosphoinositide-dependent protein kinase 1 facilitates dissociation of Akt from the plasma membrane. International Journal of Biochemistry and Cell Biology, 2015, 64, 195-201.	1.2	1
487	PKCÎ ¹ depletion initiates mitotic slippage-induced senescence in glioblastoma. Cell Cycle, 2015, 14, 2938-2948.	1.3	8
488	Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metabolism, 2015, 22, 266-278.	7.2	268
489	A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front–back polarity. Journal of Cell Biology, 2015, 209, 23-32.	2.3	46
490	Thrombin promotes the expression of Ccnd1 gene in RPE cells through the activation of converging signaling pathways. Experimental Eye Research, 2015, 139, 81-89.	1.2	7
491	Glutamine contributes to maintenance of mouse embryonic stem cell self-renewal through PKC-dependent downregulation of HDAC1 and DNMT1/3a. Cell Cycle, 2015, 14, 3292-3305.	1.3	20
492	Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Molecular Biology of the Cell, 2015, 26, 3578-3595.	0.9	46
493	NADPH Oxidase-2: Linking Glucose, Acidosis, and Excitotoxicity in Stroke. Antioxidants and Redox Signaling, 2015, 22, 161-174.	2.5	47
494	JNK and IKKβ phosphorylation is reduced by glucocorticoids in adipose tissue from insulin-resistant rats. Journal of Steroid Biochemistry and Molecular Biology, 2015, 145, 1-12.	1.2	24

#	Article	IF	CITATIONS
495	PKC-ζ Regulates Thrombin-Induced Proliferation of Human Müller Glial Cells. , 2016, 57, 3769.		6
496	Diacylglycerol kinase \hat{I}_{I} limits the polarized recruitment of diacylglycerol-enriched organelles to the immune synapse in T cells. Science Signaling, 2016, 9, ra127.	1.6	15
497	Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation. Biochemical Journal, 2016, 473, 509-523.	1.7	42
498	Regulation of aPKC activity by Nup358 dependent SUMO modification. Scientific Reports, 2016, 6, 34100.	1.6	5
499	Pleckstrin Homology (PH) Domain Leucine-rich Repeat Protein Phosphatase Controls Cell Polarity by Negatively Regulating the Activity of Atypical Protein Kinase C. Journal of Biological Chemistry, 2016, 291, 25167-25178.	1.6	11
500	PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Scientific Reports, 2016, 5, 18417.	1.6	62
501	Galactose-1 phosphate uridylyltransferase (GalT) gene: A novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts. Biochemical and Biophysical Research Communications, 2016, 470, 205-212.	1.0	28
502	PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes, 2016, 65, 1283-1296.	0.3	40
503	N â^' 3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 12-20.	1.2	36
504	PKCiota promotes ovarian tumor progression through deregulation of cyclin E. Oncogene, 2016, 35, 2428-2440.	2.6	17
505	FAK phosphorylation plays a central role in thrombin-induced RPE cell migration. Cellular Signalling, 2017, 36, 56-66.	1.7	11
506	Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells. Developmental Cell, 2017, 41, 481-495.e5.	3.1	53
507	Reduced risk of apoptosis: mechanisms of stress responses. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 265-283.	2.2	35
508	Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction. Frontiers in Molecular Neuroscience, 2017, 10, 270.	1.4	14
509	Protein Kinase C-ζ stimulates colorectal cancer cell carcinogenesis via PKC-ζ/Rac1/Pak1/β-Catenin signaling cascade. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 650-664.	1.9	33
510	Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology, 2018, 159, 1658-1677.	1.4	11
511	Rabs set the stage for polarity. Small GTPases, 2018, 9, 116-129.	0.7	13
512	Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Seminars in Cancer Biology, 2018, 48, 36-52.	4.3	181

#	Article	IF	CITATIONS
513	Oleanonic acid ameliorates pressure overload-induced cardiac hypertrophy in rats: The role of PKCζ-NF-κB pathway. Molecular and Cellular Endocrinology, 2018, 470, 259-268.	1.6	12
514	Sirtuin 1 represses PKCâ€Î¶ activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. British Journal of Pharmacology, 2019, 176, 416-435.	2.7	29
515	Opioid modulation of cognitive impairment in depression. Progress in Brain Research, 2018, 239, 1-48.	0.9	17
516	Loss of Ca2+/Calmodulin Dependent Protein Kinase Kinase 2 Leads to Aberrant Transferrin Phosphorylation and Trafficking: A Potential Biomarker for Alzheimer's Disease. Frontiers in Molecular Biosciences, 2018, 5, 99.	1.6	22
517	Protein kinase C-dependent cell damage by unsaturated carbonyl compoundsÂinÂvascular cells. Journal of Bioscience and Bioengineering, 2018, 126, 527-532.	1,1	6
518	Postsynaptic p47phox regulates long-term depression in the hippocampus. Cell Discovery, 2018, 4, 44.	3.1	7
519	Caveolin-1 regulation of Sp1 controls production of the antifibrotic protein follistatin in kidney mesangial cells. Cell Communication and Signaling, 2019, 17, 37.	2.7	11
520	Diacylglycerol kinase control of protein kinase C. Biochemical Journal, 2019, 476, 1205-1219.	1.7	34
521	Platelet Signal Transduction. , 2019, , 329-348.		5
522	FcαRI Dynamics Are Regulated by GSK-3 and PKCζ During Cytokine Mediated Inside-Out Signaling. Frontiers in Immunology, 2019, 9, 3191.	2.2	13
523	Atypical Protein Kinase Cs in Melanoma Progression. , 2019, , .		2
524	The Impact of Kinases in Amyotrophic Lateral Sclerosis at the Neuromuscular Synapse: Insights into BDNF/TrkB and PKC Signaling. Cells, 2019, 8, 1578.	1.8	34
525	TIPE2 in dendritic cells inhibits the induction of pTregs in the gut mucosa. Biochemical and Biophysical Research Communications, 2019, 509, 911-917.	1.0	9
526	Muâ€KRAS attenuates Hippo signaling pathway through PKCι to sustain the growth of pancreatic cancer. Journal of Cellular Physiology, 2020, 235, 408-420.	2.0	9
527	Novel Targets to Treat Depression: Opioid-Based Therapeutics. Harvard Review of Psychiatry, 2020, 28, 40-59.	0.9	26
528	Zeta Inhibitory Peptide attenuates learning and memory by inducing NO-mediated downregulation of AMPA receptors. Nature Communications, 2020, 11, 3688.	5.8	10
529	PDPK1 regulates autophagosome biogenesis by binding to PIK3C3. Autophagy, 2021, 17, 2166-2183.	4.3	23
530	The Influence of Physical Activity on the Bioactive Lipids Metabolism in Obesity-Induced Muscle Insulin Resistance. Biomolecules, 2020, 10, 1665.	1.8	14

#	Article	IF	CITATIONS
531	Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell, 2020, 181, 1596-1611.e27.	13.5	77
532	The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. International Journal of Molecular Sciences, 2020, 21, 4507.	1.8	289
533	IRF-1 mediates the suppressive effects of mTOR inhibition on arterial endothelium. Journal of Molecular and Cellular Cardiology, 2020, 140, 30-41.	0.9	12
534	Equivocal, explicit and emergent actions of PKC isoforms in cancer. Nature Reviews Cancer, 2021, 21, 51-63.	12.8	37
535	Identification of Key Phospholipids That Bind and Activate Atypical PKCs. Biomedicines, 2021, 9, 45.	1.4	8
536	Bone metastatic breast cancer cells display downregulation of PKC-ζ with enhanced glutamine metabolism. Gene, 2021, 775, 145419.	1.0	8
537	PI3K Promotes Basal Cell Carcinoma Growth Through Kinase-Induced p21 Degradation. Frontiers in Oncology, 2021, 11, 668247.	1.3	7
538	Putative role of natural products as Protein Kinase C modulator in different disease conditions. DARU, Journal of Pharmaceutical Sciences, 2021, 29, 397-414.	0.9	8
539	Cell Signaling: Serine/Threonine Protein Kinases and Traumatic Brain Injury. , 2001, , 163-180.		1
540	Regulation of Conventional and Novel Protein Kinase C Isozymes by Phosphorylation and Lipids. , 2010, , 9-23.		4
541	Elongation Factor-2 Phosphorylation and the Regulation of Protein Synthesis by Calcium. Progress in Molecular and Subcellular Biology, 2001, 27, 91-129.	0.9	44
542	Regulation of Mast Cell Degranulation by SHIP. , 2000, , 169-182.		1
543	VASCULAR ENDOTHELIAL GROWTH FACTOR INDUCES PROTEIN KINASE C (PKC)-DEPENDENT Akt/PKB ACTIVATION AND PHOSPHATIDYLINOSITOL 3â€2-KINASE-MEDIATED PKCÎ′ PHOSPHORYLATION: ROLE OF PKC IN ANGIOGENESIS. Cell Biology International, 2002, 26, 751-759.	1.4	100
544	β1-Integrin and PTEN control the phosphorylation of protein kinase C. Biochemical Journal, 2000, 352, 425-433.	1.7	31
546	The Eya1 Phosphatase Mediates Shh-Driven Symmetric Cell Division of Cerebellar Granule Cell Precursors. Developmental Neuroscience, 2020, 42, 170-186.	1.0	10
547	Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 2005, 115, 168-176.	3.9	127
548	Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 2005, 115, 168-176.	3.9	61
549	Lipopolysaccharide induces Jun N-terminal kinase activation in macrophages by a novel Cdc42/Rac-independent pathway involving sequential activation of protein kinase C ζ and phosphatidylcholine-dependent phospholipase C. Blood, 2000, 96, 2592-2598.	0.6	3

#	Article	IF	CITATIONS
550	Critical Role of PI3K/Akt/GSK3Î ² in Motoneuron Specification from Human Neural Stem Cells in Response to FGF2 and EGF. PLoS ONE, 2011, 6, e23414.	1.1	65
551	Protein Kinase C Zeta Regulates Human Pancreatic Cancer Cell Transformed Growth and Invasion through a STAT3-Dependent Mechanism. PLoS ONE, 2013, 8, e72061.	1.1	29
552	Phosphatidylinositol 3-Kinase Is Required for the Expression But Not for the Induction or the Maintenance of Long-Term Potentiation in the Hippocampal CA1 Region. Journal of Neuroscience, 2002, 22, 3359-3365.	1.7	233
553	Mitochondrial nucleoid remodeling and biogenesis are regulated by the p53-p21WAF1-PKCζ pathway in p16INK4a-silenced cells. Aging, 2020, 12, 6700-6732.	1.4	7
554	Annexin A5 suppresses cyclooxygenase-2 expression by downregulating the protein kinase C-ζ-nuclear factor-κB signaling pathway in prostate cancer cells. Oncotarget, 2017, 8, 74263-74275.	0.8	16
555	3'-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Frontiers in Bioscience - Landmark, 2002, 7, d886.	3.0	110
556	Conceptual Progress for the Improvements in the Selectivity and Efficacy of G Protein-Coupled Receptor Therapeutics: An Overview. Biomolecules and Therapeutics, 2017, 25, 1-3.	1.1	2
557	The Molecular Basis of Insulin Action and Insulin Resistance. Growth Hormone, 2001, , 133-190.	0.2	0
558	Role of PDK1 in Activating AGC Protein Kinase. , 2003, , 513-522.		0
559	Protein Kinase C: Relaying Signals from Lipid Hydrolysis to Protein Phosphorylation. , 2003, , 187-192.		0
560	Role of PDK1 in Activating AGC Protein Kinase. , 2003, , 193-202.		0
561	Protein Kinase C: Relaying Signals from Lipid Hydrolysis to Protein Phosphorylation. , 2003, , 551-556.		Ο
562	Quantitative immunodetection of key elements of polyphosphoinositide signal transduction in osteoblasts from arthritic patients shows a direct correlation with cell proliferation. Biotechnology Letters, 0, , 1-7.	1.1	0
563	Atypical PKCs as Targets for Cancer Therapy. , 2010, , 455-484.		0
564	Protein Kinase C in Cancer Signaling and Therapy: Introduction and Historical Perspective. , 2010, , 3-8.		0
565	Molecular Regulation of Endothelial Cell Tight Junctions and the Blood-Retinal Barrier. , 2012, , 123-141.		0
566	Pathophysiology of Protein Kinase C Isozymes in Chronic Lymphocytic Leukaemia. , 0, , .		0
568	Modulation of PI3K/PTEN Pathway Does Not Affect Catalytic Activity of PDK1 in Jurkat Cells. , 2017, 37, 5415-5423.		0

#	Article	IF	CITATIONS
569	Oleanolic Acid Improves the Symptom of Renal Ischemia Reperfusion Injury via the PI3K/AKT Pathway. Urologia Internationalis, 2021, 105, 215-220.	0.6	10
570	Subcellular Compartmentalization of Insulin Signaling Processes and GLUT4 Trafficking Events. , 2007, , 33-51.		2
571	Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochemical Journal, 1999, 339 (Pt 2), 319-28.	1.7	202
572	Multisite dephosphorylation and desensitization of conventional protein kinase C isotypes. Biochemical Journal, 1999, 342 (Pt 2), 337-44.	1.7	48
573	The PI3K-PDK1 connection: more than just a road to PKB. Biochemical Journal, 2000, 346 Pt 3, 561-76.	1.7	404
574	Changes in protein kinase C epsilon phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence: a role for phosphorylation at ser-729?. Biochemical Journal, 2000, 352 Pt 1, 19-26.	1.7	7
575	Beta1-integrin and PTEN control the phosphorylation of protein kinase C. Biochemical Journal, 2000, 352 Pt 2, 425-33.	1.7	8
576	Inhibition of growth-factor-induced phosphorylation and activation of protein kinase B/Akt by atypical protein kinase C in breast cancer cells. Biochemical Journal, 2000, 352 Pt 2, 475-82.	1.7	26
578	Ribosomal Protein S6: A Potential Therapeutic Target against Cancer?. International Journal of Molecular Sciences, 2022, 23, 48.	1.8	40
587	Protein kinase C isoforms and lipid second messengers: a critical nuclear partnership?. Histology and Histopathology, 2002, 17, 1311-6.	0.5	27
590	The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. Journal of Neuroscience, 2022, 42, 4774-4793.	1.7	6
591	Restoration of atypical protein kinase C ζ function in autosomal dominant polycystic kidney disease ameliorates disease progression. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
592	Protein Kinase C Isoforms Mediate the Formation of Neutrophil Extracellular Traps. SSRN Electronic Journal, 0, , .	0.4	0
593	PKC isoforms activate LRRK1 kinase by phosphorylating conserved residues (Ser1064, Ser1074 and) Tj ETQq1 1	0.784314 1.7	rg&T /Over
594	Protein kinase C isoforms mediate the formation of neutrophil extracellular traps. International Immunopharmacology, 2023, 114, 109448.	1.7	13
595	The B Cell Antigen Receptor Activates the Akt (Protein Kinase B)/Glycogen Synthase Kinase-3 Signaling Pathway Via Phosphatidylinositol 3-Kinase. Journal of Immunology, 1999, 163, 1894-1905.	0.4	102
596	Distinct Mechanisms Target Stress and Extracellular Signal-Activated Kinase 1 and Jun N-Terminal Kinase During Infection of Macrophages with <i>Salmonella</i> . Journal of Immunology, 1999, 163, 4924-4930.	0.4	18
597	Liver Regeneration and Immunity: A Tale to Tell. International Journal of Molecular Sciences, 2023, 24, 1176.	1.8	6

#	Article	IF	CITATIONS
598	14-3-3 and Smad2/3 are crucial mediators of atypical-PKCs: Implications for neuroblastoma progression. Frontiers in Oncology, 0, 13, .	1.3	0
599	A morphogenetic wave in the chick embryo lateral mesoderm generates mesenchymal-epithelial transition through a 3D-rosette intermediate. Developmental Cell, 2023, 58, 951-966.e5.	3.1	4