Frog genetics: Xenopus tropicalis jumps into the future

Trends in Genetics 14, 253-255 DOI: 10.1016/s0168-9525(98)01506-6

Citation Report

#	Article	IF	CITATIONS
1	Easy passage: Germline transgenesis in frogs. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14189-14190.	7.1	3
2	A gene trap approach in Xenopus. Current Biology, 1999, 9, 1195-S1.	3.9	80
3	Gut specific expression using mammalian promoters in transgenic Xenopus laevis. Mechanisms of Development, 1999, 88, 221-227.	1.7	48
5	B-cell development in the amphibianXenopus. Immunological Reviews, 2000, 175, 201-213.	6.0	97
6	Amphibian choroid plexus lipocalin, Cpl1. BBA - Proteins and Proteomics, 2000, 1482, 119-126.	2.1	13
7	Laser Capture Microscopy as an Aid to Ultrastructural Analysis. Microscopy and Microanalysis, 2000, 6, 842-843.	0.4	0
8	The Morphology of Heart Development in Xenopus laevis. Developmental Biology, 2000, 218, 74-88.	2.0	116
9	Work in progress: the Renaissance in amphibian embryology. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 126, 179-187.	1.6	2
10	Fugu: a compact vertebrate reference genome. FEBS Letters, 2000, 476, 3-7.	2.8	120
11	Distinct promoter elements mediate endodermal and mesodermal expression of the HNF1α promoter in transgenic Xenopus. Mechanisms of Development, 2000, 90, 65-75.	1.7	26
12	Zebrafish Comparative Genomics and the Origins of Vertebrate Chromosomes. Genome Research, 2000, 10, 1890-1902.	5.5	616
13	Induction of the Lens. Results and Problems in Cell Differentiation, 2000, 31, 51-68.	0.7	29
14	Connexin43 expression during Xenopus development. Mechanisms of Development, 2001, 108, 217-220.	1.7	13
15	Structure and expression of Xenopus tropicalis BMP-2 and BMP-4 genes. Mechanisms of Development, 2001, 109, 79-82.	1.7	22
16	The NIEHS Xenopus maternal EST project: interim analysis of the first 13,879 ESTs from unfertilized eggs. Gene, 2001, 267, 71-87.	2.2	20
17	Freeze-substitution: Origins and applications. International Review of Cytology, 2001, 206, 45-96.	6.2	39
18	An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biology, 2001, 2, reviews1029.1.	9.6	55
20	Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis. Development Genes and Evolution, 2001, 211, 377-387.	0.9	51

ARTICLE IF CITATIONS # Comparison of morpholino based translational inhibition during the development of Xenopus laevis 21 1.6 78 and Xenopus tropicalis. Genesis, 2001, 30, 110-113. Is Kermit the frog in trouble?. American Journal of Medical Genetics Part A, 2001, 104, 99-100. 2.4 Xenopus tropicalis oocytes as an advantageous model system for the study of intracellular Ca2+ 23 5.4 18 signalling. British Journal of Pharmacology, 2001, 132, 1396-1410. Antimicrobial peptides isolated from skin secretions of the diploid frog, Xenopus tropicalis (Pipidae). 24 BBA - Proteins and Proteomics, 2001, 1550, 81-89. Regulated Expression of the X. tropicalis Connexin43 Promoter. Cell Communication and Adhesion, 25 1.0 4 2001, 8, 293-298. Patterning and lineage specification in the amphibian embryo. Current Topics in Developmental Biology, 2001, 51, 1-67. 2.2 Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. 27 1.7 53 Mechanisms of Development, 2002, 117, 235-241. Autonomous regulation of muscle fibre fate during metamorphosis inXenopus tropicalis. 28 1.8 14 Developmental Dynamics, 2002, 224, 381-390. Xenopus, the next generation:X. Tropicalis genetics and genomics. Developmental Dynamics, 2002, 225, 29 1.8 146 422-433. Techniques and probes for the study of Xenopus tropicalis development. Developmental Dynamics, 1.8 240 2002, 225, 499-510. Cloning and expression of the Cdx family from the frogXenopus tropicalis. Developmental Dynamics, 31 1.8 28 2002, 223, 134-140. Antisense inhibition of Xbrachyury impairs mesoderm formation in Xenopus embryos. Development 1.5 Growth and Differentiation, 2002, 44, 147-159. Two closely related forms of UDP-GlcNAc: Â6-D-mannoside Â1,2-N-acetylglucosaminyltransferase II occur 33 2.7 7 in the clawed frog Xenopus laevis. Clycoconjugate Journal, 2002, 19, 187-195. Cross-fertilization and structural comparison of egg extracellular matrix glycoproteins from Xenopus laevis and Xenopus tropicalis. Comparative Biochemistry and Physiology Part A, Molecular & Amp; Integrative Physiology, 2003, 136, 343-352. 1.8 Cloning and characterisation of Myf5 and MyoD orthologues in Xenopus tropicalis. Biology of the 35 2.0 10 Cell, 2003, 95, 555-561. Genetic linkage maps of the West African clawed frogXenopus tropicalis. Developmental Dynamics, 1.8 2003, 226, 99-102. Molecular components of the endoderm specification pathway inXenopus tropicalis. Developmental 37 1.8 26 Dynamics, 2003, 226, 118-127. Telomerase activity is widespread in adult somatic tissues of <i>Xenopus</i>. The Journal of 38 1.4 Experimental Zoology, 2003, 295B, 82-86.

#	Article	IF	CITATIONS
39	The Cellular and Molecular Bases of Vertebrate Lens Regeneration. International Review of Cytology, 2003, 228, 195-265.	6.2	36
40	Working with Xenopus Spinal Neurons in Live Cell Culture. Methods in Cell Biology, 2003, 71, 129-156.	1.1	35
41	Depletion of the cell-cycle inhibitor p27Xic1 impairs neuronal differentiation and increases the number of ElrC+ progenitor cells in Xenopus tropicalis. Mechanisms of Development, 2003, 120, 607-616.	1.7	66
42	Identification of the blood group Lewisadeterminant in the oviducal mucins ofXenopus tropicalis. FEBS Letters, 2003, 554, 330-336.	2.8	12
43	Evaluation ofXenopus tropicalisas an Alternative Test Organism for Frog Embryo Teratogenesis Assay—Xenopus(FETAX). Drug and Chemical Toxicology, 2003, 26, 177-189.	2.3	22
44	What Can a Frog Tell Us about Human Kidney Development. Nephron Experimental Nephrology, 2003, 94, e35-e43.	2.2	13
45	The Pronephric Glomus and Vasculature. , 2003, , 61-73.		4
47	Role of Matrix and Cell Adhesion Molecules in Lens Differentiation. , 2004, , 245-260.		5
48	Lens Crystallins. , 2004, , 119-150.		10
50	The Lens: Historical and Comparative Perspectives. , 2004, , 3-26.		4
51	Lens Induction and Determination. , 2004, , 27-47.		7
52	Lens Cell Membranes. , 2004, , 151-172.		2
53	Lens Cell Proliferation: The Cell Cycle. , 2004, , 191-213.		5
54	Lens Fiber Differentiation. , 2004, , 214-244.		7
55	Growth Factors in Lens Development. , 2004, , 261-289.		10
56	Lens Regeneration. , 2004, , 290-312.		3
57	The Structure of the Vertebrate Lens. , 2004, , 71-118.		14
58	Lens Cell Cytoskeleton. , 2004, , 173-188.		4

			-
#	ARTICLE	IF	CITATIONS
59	Transcription Factors in Early Lens Development. , 2004, , 48-68.		4
60	Pilot morpholino screen inXenopus tropicalisidentifies a novel gene involved in head development. Developmental Dynamics, 2004, 229, 289-299.	1.8	53
61	Strategy for Profiling and Structure Elucidation of Mucin-Type Oligosaccharides by Mass Spectrometry. Analytical Chemistry, 2004, 76, 5990-6001.	6.5	51
62	Defining a large set of full-length clones from a Xenopus tropicalis EST project. Developmental Biology, 2004, 271, 498-516.	2.0	111
63	Prospects for the<1> Xenopus 1 Embryo Model in Therapeutics Technologies. Chimia, 2004, 58, 694-702.	0.6	11
64	Construction of BAC library for the amphibian Xenopus tropicalis. Genes and Genetic Systems, 2004, 79, 49-51.	0.7	8
65	Xenopus connexins: how frogs bridge the gap. Differentiation, 2005, 73, 330-340.	1.9	18
66	Genetic Manipulation of Circadian Rhythms in Xenopus. Methods in Enzymology, 2005, 393, 205-219.	1.0	1
67	Xenomics. Genome Research, 2005, 15, 1683-1691.	5.5	38
68	Strategies for characterising cis-regulatory elements in Xenopus. Briefings in Functional Genomics & Proteomics, 2005, 4, 58-68.	3.8	9
69	FETAX, a versatile tool in toxicology, can be conveniently integrated with molecular biology techniques. Applied Herpetology, 2005, 2, 287-295.	0.5	5
70	Depletion of Three BMP Antagonists from Spemann's Organizer Leads to a Catastrophic Loss of Dorsal Structures. Developmental Cell, 2005, 8, 401-411.	7.0	209
71	A Xenopus tropicalis oligonucleotide microarray works across species using RNA from Xenopus laevis. Mechanisms of Development, 2005, 122, 355-363.	1.7	36
72	Identification of mutants in inbred Xenopus tropicalis. Mechanisms of Development, 2005, 122, 263-272.	1.7	53
73	Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. Mechanisms of Development, 2005, 122, 307-331.	1.7	30
74	Highly efficient transgenesis in Xenopus tropicalis using I-Scel meganuclease. Mechanisms of Development, 2006, 123, 103-113.	1.7	101
75	Development of metamorphosis assay using Silurana tropicalis for the detection of thyroid system-disrupting chemicals. Ecotoxicology and Environmental Safety, 2006, 64, 281-287.	6.0	22
76	Genetic and genomic prospects for Xenopus tropicalis research. Seminars in Cell and Developmental Biology, 2006, 17, 146-153.	5.0	31

#	Article	IF	CITATIONS
77	Comparison of induction during development between Xenopus tropicalis and Xenopus laevis. International Journal of Developmental Biology, 2006, 50, 385-392.	0.6	7
78	High-throughput transgenesis in Xenopus using I-Scel meganuclease. Nature Protocols, 2006, 1, 1703-1710.	12.0	124
79	Insights from Xenopus Genomes. , 2006, 2, 138-153.		24
80	A new method to remove hybridization bias for interspecies comparison of global gene expression profiles uncovers an association between mRNA sequence divergence and differential gene expression in Xenopus. Nucleic Acids Research, 2006, 34, 185-200.	14.5	37
81	Genetic Screens for Mutations Affecting Development of Xenopus tropicalis. PLoS Genetics, 2006, 2, e91.	3.5	67
82	Defining Synphenotype Groups in Xenopus tropicalis by Use of Antisense Morpholino Oligonucleotides. PLoS Genetics, 2006, 2, e193.	3.5	39
83	Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Research, 2007, 36, D761-D767.	14.5	116
84	Tetrodotoxin Poisoning. Advances in Food and Nutrition Research, 2007, 52, 141-236.	3.0	121
85	Manipulating the Xenopus genome with transposable elements. Genome Biology, 2007, 8, S11.	9.6	21
86	Exploring nervous system transcriptomes during embryogenesis and metamorphosis in Xenopus tropicalis using EST analysis. BMC Genomics, 2007, 8, 118.	2.8	14
87	A NOVEL AMPHIBIAN TIER 2 TESTING PROTOCOL: A 30-WEEK EXPOSURE OF XENOPUS TROPICALIS TO THE ANTIANDROGEN FLUTAMIDE. Environmental Toxicology and Chemistry, 2007, 26, 555.	4.3	9
88	Molecular and Cellular Basis of Regeneration and Tissue Repair. Cellular and Molecular Life Sciences, 2008, 65, 54-63.	5.4	124
89	Transgenesis procedures in <i>Xenopus</i> . Biology of the Cell, 2008, 100, 503-529.	2.0	48
90	Developmental Regulation and Function of Thyroid Hormone Receptors and 9-cis Retinoic Acid Receptors during Xenopus tropicalis Metamorphosis. Endocrinology, 2008, 149, 5610-5618.	2.8	87
91	Xenopus, an Ideal Vertebrate System for Studies of Eye Development and Regeneration. , 2008, , 57-92.		15
92	Transposon-mediated transgenesis in the frog: New tools for biomedical and developmental studies. Frontiers in Bioscience - Landmark, 2009, Volume, 225.	3.0	4
93	Mycobacterium gordonae infection in a colony of African clawed frogs (Xenopus tropicalis). Laboratory Animals, 2009, 43, 300-303.	1.0	15
94	Rapid gynogenetic mapping of <i>Xenopus tropicalis</i> mutations to chromosomes. Developmental Dynamics, 2009, 238, 1398-1346.	1.8	41

#	Article	IF	CITATIONS
95	Transgenesis in <i>Xenopus</i> using the <i>Sleeping Beauty</i> transposon system. Developmental Dynamics, 2009, 238, 1727-1743.	1.8	22
96	Resources and transgenesis techniques for functional genomics in <i>Xenopus</i> . Development Growth and Differentiation, 2009, 51, 387-401.	1.5	30
97	Application of metamorphosis assay to a native Japanese amphibian species, Rana rugosa, for assessing effects of thyroid system affecting chemicals. Ecotoxicology and Environmental Safety, 2009, 72, 1400-1405.	6.0	20
99	C/EBPα initiates primitive myelopoiesis in pluripotent embryonic cells. Blood, 2009, 114, 40-48.	1.4	31
100	Animal Models in Eye Research. Human Genomics, 2009, 3, 381.	2.9	8
101	Molecular and cellular aspects of amphibian lens regeneration. Progress in Retinal and Eye Research, 2010, 29, 543-555.	15.5	89
102	Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development. General and Comparative Endocrinology, 2010, 166, 417-427.	1.8	61
103	Expression and T3 regulation of thyroid hormone- and sex steroid-related genes during Silurana (Xenopus) tropicalis early development. General and Comparative Endocrinology, 2010, 166, 428-435.	1.8	53
104	Eye Field Specification in Xenopus laevis. Current Topics in Developmental Biology, 2010, 93, 29-60.	2.2	36
105	Electron Microscopy of the Amphibian Model Systems Xenopus laevis and Ambystoma mexicanum. Methods in Cell Biology, 2010, 96, 395-423.	1.1	21
106	Xenopus research: metamorphosed by genetics and genomics. Trends in Genetics, 2011, 27, 507-515.	6.7	160
107	Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC Developmental Biology, 2011, 11, 70.	2.1	74
108	<i>Mycobacterium liflandii</i> Outbreak in a Research Colony of <i>Xenopus (Silurana) tropicalis</i> Frogs. Veterinary Pathology, 2011, 48, 856-867.	1.7	37
109	Developmental Profiles and Thyroid Hormone Regulation of Brain Transcripts in Frogs: A Species Comparison with Emphasis on <i>Physalaemus pustulosus</i> . Brain, Behavior and Evolution, 2012, 79, 98-112.	1.7	10
110	Highly efficient bi-allelic mutation rates using TALENs in <i>Xenopus tropicalis</i> . Biology Open, 2012, 1, 1273-1276.	1.2	69
111	Optimisation of an oviposition protocol employing human chorionic and pregnant mare serum gonadotropins in the Barred Frog Mixophyes fasciolatus (Myobatrachidae). Reproductive Biology and Endocrinology, 2012, 10, 60.	3.3	15
112	Generating Transgenic Frog Embryos by Restriction Enzyme Mediated Integration (REMI). Methods in Molecular Biology, 2012, 917, 185-203.	0.9	11
113	Xenopus tropicalis as a Model Organism for Genetics and Genomics: Past, Present, and Future. Methods in Molecular Biology, 2012, 917, 3-15.	0.9	38

		LPORT	
#	ARTICLE Xenopus Transgenics: Methods Using Transposons. Methods in Molecular Biology, 2012, 917, 231-243.	IF 0.9	CITATIONS 2
115	Xenopus Protocols. Methods in Molecular Biology, 2012, , .	0.9	6
116	Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell and Bioscience, 2012, 2, 42.	4.8	53
117	Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis. PLoS ONE, 2012, 7, e47407.	2.5	29
118	Histology of plastic embedded amphibian embryos and larvae. Genesis, 2012, 50, 235-250.	1.6	14
119	Differential regulation of two histidine ammonia-lyase genes during Xenopus development implicates distinct functions during thyroid hormone-induced formation of adult stem cells. Cell and Bioscience, 2013, 3, 43.	4.8	14
120	Modeling human neurodevelopmental disorders in the <i>Xenopus</i> tadpole: from mechanisms to therapeutic targets. DMM Disease Models and Mechanisms, 2013, 6, 1057-65.	2.4	79
121	Engineering Xenopus embryos for phenotypic drug discovery screening. Advanced Drug Delivery Reviews, 2014, 69-70, 225-246.	13.7	55
122	Improved Transport of the Model Amphibian,Xenopus tropicalis, and Its Viable Temperature for Transport. Current Herpetology, 2014, 33, 75-87.	0.5	3
123	Unliganded Thyroid Hormone Receptor α Controls Developmental Timing in Xenopus tropicalis. Endocrinology, 2015, 156, 721-734.	2.8	81
124	State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization. Circulation Research, 2015, 116, e99-132.	4.5	113
125	Germ layer formation during Xenopus embryogenesis: the balance between pluripotency and differentiation. Science China Life Sciences, 2015, 58, 336-342.	4.9	4
126	Targeted integration of genes in <i>Xenopus tropicalis</i> . Genesis, 2017, 55, e23006.	1.6	5
127	Direct Regulation of Histidine Ammonia-Lyase 2 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cells. Endocrinology, 2017, 158, 1022-1033.	2.8	12
128	Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology, 2017, 158, 1985-1998.	2.8	54
129	A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis. Cell Death and Disease, 2017, 8, e2787-e2787.	6.3	20
130	Whole-Mount In Situ Hybridization and a Genotyping Method on Single Xenopus Embryos. , 2017, , 41-56.		2
131	Xenopus as a Model Organism for Biomedical Research. , 2017, , 263-290.		2

ARTICLE IF CITATIONS # Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos. Methods in Molecular 132 0.9 37 Biology, 2018, 1865, 19-32. Influence of temperature on reproduction and length of metamorphosis in <i>Xenopus laevis</i> (Amphibia: Anura)., 2018, 85, 150-157. 134 Xenopus. Methods in Molecular Biology, 2018, , . 0.9 3 Modeling of Genome-Wide Polyadenylation Signals in Xenopus tropicalis. Frontiers in Genetics, 2019, 10, 647. Organ-Specific Requirements for Thyroid Hormone Receptor Ensure Temporal Coordination of 136 Tissue-Specific Transformations and Completion of <i>Xenopus </i>Metamorphosis. Thyroid, 2020, 30, 4.5 29 300-313. Model systems for regeneration: <i>Xenopus</i>. Development (Cambridge), 2020, 147, . 2.5 Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, 139 4.1 4 Soluble Competitive Inhibitor. International Journal of Molecular Sciences, 2021, 22, 6988. A Method for Generating Transgenic Frog Embryos. Methods in Molecular Biology, 2008, 461, 447-466. 140 44 141 Biology and Diseases of Amphibians., 2002, , 793-826. 3 Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory 142 1.0 Mechanisms of Intermediate Filaments. Methods in Enzymology, 2016, 568, 635-660. Review: The Xenopus Tadpoleâ€"A New Organism for Regeneration Research. , 2000, 1, 1-3. 144 3 Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus 0.5 development. FASEB Journal, 2017, 31, 4821-4831. Generation of Transgenic Xenopus laevis: I. High-Speed Preparation of Egg Extracts. Cold Spring 146 0.3 4 Harbor Protocols, 2007, 2007, pdb.prot4838-pdb.prot4838. Xenopus laevis genomic biomarkers for environmental toxicology studies., 2002, ... The development of <i>Xenopus tropicalis</i> transgenic lines and their use in studying lens 148 2.5108 developmental timing in living embryos. Development (Cambridge), 2000, 127, 1789-1797. A study of mesoderm patterning through the analysis of the regulation of <i>Xmyf-5 </i> 149 2.5 39 Development (Cambridge), 2002, 129, 2917-2927. 150 Xenopus DNA Microarrays. Current Genomics, 2003, 4, 665-672. 1.6 7 Construction of a Set of Full-Length Enriched cDNA Libraries as Genomics Tools for Xenopus 151 1.6 Tropicalis Research. Current Genomics, 2003, 4, 635-644.

#	Article	IF	CITATIONS
152	Identification of genes expressed in the Xenopus inner ear. Cellular and Molecular Biology, 2001, 47, 1229-39.	0.9	8
153	Exposure to the synthetic phenolic antioxidant 4,4′-thiobis(6-t-butyl-m-cresol) disrupts early development in the frog Silurana tropicalis. Chemosphere, 2021, 291, 132814.	8.2	1
155	Fetal Alcohol Spectrum Disorder as a Retinoic Acid Deficiency Syndrome. Neuromethods, 2022, , 49-76.	0.3	2
156	Nanoparticle-specific and chemical-specific effects of tire wear particle leachate on amphibian early life stages. Journal of Hazardous Materials Advances, 2023, 12, 100357.	3.0	0
157	<i>Xenopus</i> cell-free extracts and their applications in cell biology study. Biophysics Reports, 2023, 9, 195.	0.8	0
158	Development of a heatâ€stable alkaline phosphatase reporter system for <i>cis</i> â€regulatory analysis and its application to 3D digital imaging of <scp><i>Xenopus</i></scp> embryonic tissues. Development Growth and Differentiation, 2024, 66, 256-265.	1.5	0