Coordination geometries of selected transition metal io

Journal of Inorganic Biochemistry 71, 115-127 DOI: 10.1016/s0162-0134(98)10042-9

Citation Report

#	Article	IF	CITATIONS
1	Chelated mercury as a ligand in immobilized metal ion affinity chromatography of proteins. Journal of Chromatography A, 2000, 904, 131-143.	1.8	12
2	Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1542-1547.	3.3	123
3	Bioremediation of Heavy Metal Pollution Exploiting Constituents, Metabolites and Metabolic Pathways of Livings. A Review. Collection of Czechoslovak Chemical Communications, 2000, 65, 1205-1247.	1.0	22
4	Ab Initio calculations of [CoY6â~nXn]2+ complexes. Journal of Chemical Physics, 2000, 112, 149-157.	1.2	22
5	Activation of Estrogen Receptor-α by the Heavy Metal Cadmium. Molecular Endocrinology, 2000, 14, 545-553.	3.7	359
6	Determination of the Structure ofEscherichia coliGlyoxalase I Suggests a Structural Basis for Differential Metal Activationâ€. Biochemistry, 2000, 39, 8719-8727.	1.2	154
7	The Structure of the Metal-Binding Motif GMTCAAC Is Similar in an 18-Residue Linear Peptide and the Mercury Binding Protein MerP. Journal of the American Chemical Society, 2000, 122, 2389-2390.	6.6	55
8	Theoretical Studies of Metal Ion Selectivity. 1. DFT Calculations of Interaction Energies of Amino Acid Side Chains with Selected Transition Metal Ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). Journal of the American Chemical Society, 2000, 122, 10428-10439.	6.6	179
9	Allosteric Inhibition of Rat Liver and Kidney Arginase by Copper and Mercury Ions. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 443-449.	0.5	13
10	In-frame fusion of a His-Cys motif into the Pseudomonas aeruginosa outer membrane Oprl lipoprotein results in increased metal binding capacity by Escherichia coli. Research in Microbiology, 2001, 152, 799-804.	1.0	7
11	CD spectroscopic study on the speciation and solution structure of copper(II) complexes of some tripeptides in combination with potentiometric and spectrophotometric results. Journal of Inorganic Biochemistry, 2001, 85, 89-98.	1.5	12
12	Solid state synthesis, characterization and thermogravimetric study of the adducts CoCl2·6L (L =) Tj ETQq1 1 0	.784314 rş 1.2	gBT ₁₃ /Overloc
13	Fluorescence-based biosensing of zinc using carbonic anhydrase. BioMetals, 2001, 14, 205-222.	1.8	81
14	Location and Orientation of minK within the IKsPotassium Channel Complex. Journal of Biological Chemistry, 2001, 276, 38249-38254.	1.6	68
15	Energetics of transition-metal ions in low-coordination environments. Physical Review B, 2002, 66, .	1.1	2
16	A Nickel-Cobalt-sensing ArsR-SmtB Family Repressor. Journal of Biological Chemistry, 2002, 277, 38441-38448.	1.6	134
17	Theoretical Studies of Metal Ion Selectivity.†2. DFT Calculations of Complexation Energies of Selected Transition Metal Ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in Metal-Binding Sites of Metalloproteins. Journal of Physical Chemistry A, 2002, 106, 3855-3866.	1.1	59
18	Factors Governing the Protonation State of Cysteines in Proteins:Â An Ab Initio/CDM Study. Journal of the American Chemical Society, 2002, 124, 6759-6766.	6.6	100

#	Article	IF	CITATIONS
19	Enthalpy analysis of horseradish peroxidase in the presence of Ni2+: a stabilization study. Thermochimica Acta, 2002, 385, 33-39.	1.2	10
20	Coagulation of Zinc-modified Hemoglobin. Russian Journal of General Chemistry, 2002, 72, 1645-1649.	0.3	5
21	Effect of Mn ²⁺ , Co ²⁺ , Ni ²⁺ , and Cu ²⁺ on Horseradish Peroxidase : Activation, Inhibition, and Denaturation Studies. Applied Biochemistry and Biotechnology, 2003, 104, 81-94.	1.4	32
22	Structural description of the active sites of mouse L-chain ferritin at 1.2ÂÃ resolution. Journal of Biological Inorganic Chemistry, 2003, 8, 105-111.	1.1	63
23	Potential binding modes of beryllium with the class II major histocompatibility complex HLA-DP: a combined theoretical and structural database study. Journal of Inorganic Biochemistry, 2003, 94, 5-13.	1.5	36
24	The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiology Reviews, 2003, 27, 131-143.	3.9	350
25	Outer-Shell and Inner-Shell Coordination of Phosphate Group to Hydrated Metal Ions (Mg2+, Cu2+,) Tj ETQq0 0 of Physical Chemistry B, 2003, 107, 1913-1923.	0 rgBT /Ov 1.2	verlock 10 Tf 5 79
26	Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins. Chemical Reviews, 2003, 103, 773-788.	23.0	421
27	Structure and Magnetic Properties of Layered High-Spin Co(II)(l-threonine)2(H2O)2. Inorganic Chemistry, 2003, 42, 4409-4416.	1.9	58
28	Theoretical Studies of Metal Ion Selectivity. 3. A Theoretical Design of the Most Specific Combinations of Functional Groups Representing Amino Acid Side Chains for the Selected Metal Ions (Co2+, Ni2+,) Tj ETQq1 1	. 0 .72 4314	rg BT /Overlo
29	Firstâ^'Second Shell Interactions in Metal Binding Sites in Proteins:Â A PDB Survey and DFT/CDM Calculations. Journal of the American Chemical Society, 2003, 125, 3168-3180.	6.6	189
30	A Cadmium-Lead-sensing ArsR-SmtB Repressor with Novel Sensory Sites. Journal of Biological Chemistry, 2003, 278, 44560-44566.	1.6	74
31	Metal Binding and Selectivity in Zinc Proteins. Journal of the Chinese Chemical Society, 2003, 50, 1093-1102.	0.8	33
32	Identification of Metal-binding Proteins in Human Hepatoma Lines by Immobilized Metal Affinity Chromatography and Mass Spectrometry. Molecular and Cellular Proteomics, 2003, 2, 1306-1318.	2.5	93
33	Evidence for Intersubunit Interactions between S4 and S5 Transmembrane Segments of the Shaker Potassium Channel. Journal of Biological Chemistry, 2003, 278, 29079-29085.	1.6	40
34	Improved thermal stability of Langmuir–Blodgett films through an intermolecular hydrogen bond and metal complex. Journal of Chemical Physics, 2004, 120, 379-383.	1.2	9
35	Dinickel Complexes Bridged by Unusual (N,O,OÂ)-Coordinated α-Amino Acids: Syntheses, Structural Characterization and Magnetic Properties. Transition Metal Chemistry, 2004, 29, 411-418.	0.7	18
36	Characterization and Comparison of Metal Accumulation in Two <i>Escherichia coli</i> Strains Expressing Either CopA or MntA, Heavy Metal-Transporting Bacterial P-Type Adenosine Triphosphatases. Applied Biochemistry and Biotechnology, 2004, 117, 33-48.	1.4	10

#	Article	IF	CITATIONS
37	Higher Metalâ^'Ligand Coordination in the Catalytic Site of Cobalt-SubstitutedThermoanaerobacter brockiiAlcohol Dehydrogenase Lowers the Barrier for Enzyme Catalysisâ€. Biochemistry, 2004, 43, 7151-7161.	1.2	24
38	Effect of cadmium on ferredoxin:NADP+ oxidoreductase activity. Journal of Inorganic Biochemistry, 2004, 98, 1338-1346.	1.5	15
39	Monodentate versus Bidentate Carboxylate Binding in Magnesium and Calcium Proteins:Â What Are the Basic Principles?. Journal of Physical Chemistry B, 2004, 108, 4546-4557.	1.2	114
40	Selectivity of Metal Binding and Metal-Induced Stability ofEscherichia coliNikRâ€. Biochemistry, 2004, 43, 10018-10028.	1.2	88
41	Probing Determinants of the Metal Ion Selectivity in Carbonic Anhydrase Using Mutagenesisâ€. Biochemistry, 2004, 43, 3979-3986.	1.2	69
42	Metal-Selective DNA-Binding Response ofEscherichia coliNikRâ€. Biochemistry, 2004, 43, 10029-10038.	1.2	77
43	A comparison of the coordination geometries of some 4-methylimidazole-5-carbaldehyde complexes with Zn(II), Cd(II) and Co(II) ions in the solid state and aqueous solution. Polyhedron, 2005, 24, 627-637.	1.0	20
44	Metal remediation and preconcentration using immobilized short-chain peptides composed of aspartic acid and cysteine. Microchemical Journal, 2005, 81, 69-80.	2.3	24
45	Molecular mapping of a site for Cd2+-induced modification of humanether-Ã-go-go-related gene (hERG) channel activation. Journal of Physiology, 2005, 567, 737-755.	1.3	26
46	Dynamic conformational changes of extracellular S5-P linkers in the hERG channel. Journal of Physiology, 2005, 569, 75-89.	1.3	51
47	Disturbances on Delta aminolevulinate dehydratase (ALA-D) enzyme activity by Pb2+, Cd2+, Cu2+, Mg2+, Zn2+, Na+, K+ and Li+: analysis based on coordination geometry and acid–base Lewis capacity. Journal of Inorganic Biochemistry, 2005, 99, 409-414.	1.5	17
48	Protease digestion analysis of Escherichia coli NikR: evidence for conformational stabilization with Ni(II). Journal of Biological Inorganic Chemistry, 2005, 10, 605-612.	1.1	24
49	Stability of Copper(II), Nickel(II) and Zinc(II) Binary and Ternary Complexes of Histidine, Histamine and Glycine in Aqueous Solution. Journal of Solution Chemistry, 2005, 34, 213-231.	0.6	46
50	The crystal structure of 5-keto-4-deoxyuronate isomerase from Escherichia coli. Proteins: Structure, Function and Bioinformatics, 2005, 61, 680-684.	1.5	9
51	Structure and Anticipatory Movements of the S6 Gate in K v Channels. Journal of General Physiology, 2005, 126, 413-417.	0.9	12
52	Application of immobilized metal affinity chromatography in proteomics. Expert Review of Proteomics, 2005, 2, 649-657.	1.3	76
53	Interfacial metal and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14575-14580.	3.3	29
54	Characterization of the Redox and Metal Binding Activity of BsSco, a Protein Implicated in the Assembly of Cytochrome c Oxidase. Biochemistry, 2005, 44, 16949-16956.	1.2	32

#	Article	IF	CITATIONS
55	Sequence of Ligand Binding and Structure Change in the Diphtheria Toxin Repressor upon Activation by Divalent Transition Metalsâ€. Biochemistry, 2005, 44, 5672-5682.	1.2	22
56	Computational tools for the analysis of heteroatom groups and their neighbours in protein tertiary structure. International Journal of Biological Macromolecules, 2005, 37, 35-41.	3.6	3
57	IRRAS Studies on Chain Orientation in the Monolayers of Amino Acid Amphiphiles at the Airâ^'Water Interface Depending on Metal Complex and Hydrogen Bond Formation with the Headgroups. Journal of Physical Chemistry B, 2005, 109, 7428-7434.	1.2	38
58	Structure of Phenoxazinone Synthase from Streptomyces antibioticus Reveals a New Type 2 Copper Center,. Biochemistry, 2006, 45, 4378-4387.	1.2	107
59	Competition between Protein Ligands and Cytoplasmic Inorganic Anions for the Metal Cation:Â A DFT/CDM Study. Journal of the American Chemical Society, 2006, 128, 10541-10548.	6.6	13
60	A DFT/CDM Study of Metalâ^'Carboxylate Interactions in Metalloproteins:Â Factors Governing the Maximum Number of Metal-Bound Carboxylates. Journal of the American Chemical Society, 2006, 128, 1553-1561.	6.6	55
61	Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis α-isopropylmalate synthase. Archives of Biochemistry and Biophysics, 2006, 451, 141-148.	1.4	23
62	Structural and Electronic Characterization of the Complexes Obtained by the Interaction between Bare and Hydrated First-Row Transition-Metal Ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and Glycine. Journal of Physical Chemistry B, 2006, 110, 24666-24673.	1.2	106
63	Factors Governing the Metal Coordination Number in Metal Complexes from Cambridge Structural Database Analyses. Journal of Physical Chemistry B, 2006, 110, 1889-1895.	1.2	117
64	Computational Studies of the Coordination Stereochemistry, Bonding, and Metal Selectivity of Mercuryâ€. Journal of Physical Chemistry A, 2006, 110, 452-462.	1.1	43
65	Electron capture dissociation of peptides metalated with alkaline-earth metal ions. Journal of the American Society for Mass Spectrometry, 2006, 17, 757-771.	1.2	54
66	A study of the coordination shell of aluminum(III) and magnesium(II) in model protein environments: Thermodynamics of the complex formation and metal exchange reactions. Journal of Inorganic Biochemistry, 2006, 100, 374-384.	1.5	40
67	Metal ion selectivity of hydroxamates: A density functional study. Computational and Theoretical Chemistry, 2006, 767, 175-184.	1.5	17
68	Proteomics of Metal Transport and Metal-Associated Diseases. Chemistry - A European Journal, 2006, 12, 2410-2422.	1.7	46
69	Molecular and Functional Differences between Heart mKv1.7 Channel Isoforms. Journal of General Physiology, 2006, 128, 133-145.	0.9	31
70	NikR-operator complex structure and the mechanism of repressor activation by metal ions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13676-13681.	3.3	117
71	Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Transactions, 2007, , 3107.	1.6	178
72	On the Copper(II) Ion Coordination by Prion Protein HGGGW Pentapeptide Model. Journal of Physical Chemistry B, 2007, 111, 635-640.	1.2	34

#	Article	IF	CITATIONS
73	Stability of Different Zinc(II)â^'Diamine Complexes in Aqueous Solution with Respect to Structure and Dynamics:Â A QM/MM MD Study. Journal of Physical Chemistry B, 2007, 111, 151-158.	1.2	21
74	Controlled Binding of al-Cysteinato Cobalt(III) Octahedron to a Cadmium(II) Center. Inorganic Chemistry, 2007, 46, 1343-1353.	1.9	17
75	Assessment of Approximate Density Functional Methods for the Study of the Interactions of Al(III) with Aromatic Amino Acids. Journal of Chemical Theory and Computation, 2007, 3, 1830-1836.	2.3	8
76	Synthesis, Crystal Structures and Properties of Two Novel Co(II) and Cd(II) Complexes ofN-Acetyl-L-glutamic Acid and Imidazole Ligands. Chinese Journal of Chemistry, 2007, 25, 498-502.	2.6	3
77	Protein Side Chains Facilitate Mg/Al Exchange in Model Protein Binding Sites. ChemPhysChem, 2007, 8, 2119-2124.	1.0	22
78	Reversed-phase high-performance liquid chromatographic separation of inorganic mercury and methylmercury driven by their different coordination chemistry towards thiols. Journal of Chromatography A, 2007, 1156, 331-339.	1.8	37
79	Three new 2-D metal-organic frameworks containing 1-D metal chains bridged by N-benzesulfonyl-glutamic acid: Syntheses, crystal structures and properties. Journal of Solid State Chemistry, 2007, 180, 1648-1657.	1.4	17
80	A theoretical study of the principles regulating the specificity for Al(III) against Mg(II) in protein cavities. Journal of Inorganic Biochemistry, 2007, 101, 1192-1200.	1.5	31
81	Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins: Structure, Function and Bioinformatics, 2007, 67, 593-605.	1.5	58
82	Modeling of metal interaction geometries for protein–ligand docking. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1237-1254.	1.5	60
83	Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis. Journal of Biological Inorganic Chemistry, 2008, 13, 1011-1023.	1.1	18
84	Molecular Design of Specific Metalâ€Binding Peptide Sequences from Protein Fragments: Theory and Experiment. Chemistry - A European Journal, 2008, 14, 7836-7846.	1.7	16
85	Data mining of metal ion environments present in protein structures. Journal of Inorganic Biochemistry, 2008, 102, 1765-1776.	1.5	273
86	Thermodynamic Stability Versus Kinetic Lability of ZnS ₄ Core. Chemistry - an Asian Journal, 2010, 5, 1445-1454.	1.7	8
87	Consideration and influence of complexed forms of mercury species on the reactivity patterns determined by speciated isotope dilution model approaches: A case for natural biological reference materials. Journal of Analytical Atomic Spectrometry, 2008, 23, 385-396.	1.6	17
88	Structural Basis of the Metal Specificity for Nickel Regulatory Protein NikR,. Biochemistry, 2008, 47, 1938-1946.	1.2	54
89	Atomic Constraints between the Voltage Sensor and the Pore Domain in a Voltage-gated K+ Channel of Known Structure. Journal of General Physiology, 2008, 131, 549-561.	0.9	27
90	An Oxidized Tryptophan Facilitates Copper Binding in Methylococcus capsulatus-secreted Protein MopE. Journal of Biological Chemistry, 2008, 283, 13897-13904.	1.6	45

#	Article	IF	CITATIONS
91	An Extracellular Cu2+ Binding Site in the Voltage Sensor of BK and Shaker Potassium Channels. Journal of General Physiology, 2008, 131, 483-502.	0.9	38
92	Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 535-542.	2.5	112
93	Mapping of a copper-binding site on the small CP12 chloroplastic protein of Chlamydomonas reinhardtii using top-down mass spectrometry and site-directed mutagenesis. Biochemical Journal, 2009, 419, 75-86.	1.7	30
94	Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Research, 2009, 37, 3442-3451.	6.5	59
95	Cadmium — A metallohormone?. Toxicology and Applied Pharmacology, 2009, 238, 266-271.	1.3	153
96	Protein Flexibility and Metal Coordination Changes in DHAPâ€Dependent Aldolases. Chemistry - A European Journal, 2009, 15, 1422-1428.	1.7	16
97	Probing S4 and S5 segment proximity in mammalian hyperpolarization-activated HCN channels by disulfide bridging and Cd2+ coordination. Pflugers Archiv European Journal of Physiology, 2009, 458, 259-272.	1.3	9
98	Molecular Determinants of Multiple Effects of Nickel on NMDA Receptor Channels. Neurotoxicity Research, 2009, 15, 38-48.	1.3	15
99	Structure of laminin-binding adhesin (Lmb) from <i>Streptococcus agalactiae</i> . Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1262-1269.	2.5	32
100	Metalloproteins and metal sensing. Nature, 2009, 460, 823-830.	13.7	1,031
101	Gas phase and solution state stability of complexes L…M, where M=Cu2+, Ni2+, or Zn2+ and L=Râ^C(O)NHOH (R=H, NH2, CH3, CF3, or Phenyl). Computational and Theoretical Chemistry, 2009, 911, 137-143.	1.5	10
102	Synthesis, chemical speciation and SOD mimic assays of tricarballylic acid–copper(II) and imidazole–tricarballylic acid–copper(II) complexes. Journal of Inorganic Biochemistry, 2009, 103, 219-226.	1.5	12
103	Physical Basis of Metal-Binding Specificity in Escherichia coli NikR. Journal of the American Chemical Society, 2009, 131, 10220-10228.	6.6	14
104	Linear Energy Relationships for the Octahedral Preference of Mg, Ca and Transition Metal Ions. Journal of Physical Chemistry A, 2009, 113, 3588-3593.	1.1	10
105	Mn2+-, Fe2+-, Co2+-, Ni2+-, Cu2+-, and Zn2+-Binding Chalcogenâ^'Chalcogen Bridges: A Compared MP2 and B3LYP Study. Journal of Physical Chemistry A, 2009, 113, 7878-7887.	1.1	20
106	Divalent Cations Slow Activation of EAG Family K+ Channels through Direct Binding to S4. Biophysical Journal, 2009, 97, 110-120.	0.2	22
107	Factors Governing Metalâ^'Ligand Distances and Coordination Geometries of Metal Complexes. Journal of Physical Chemistry B, 2009, 113, 2952-2960.	1.2	106
108	Mutations at the Signature Sequence of CFTR Create a Cd2+-gated Chloride Channel. Journal of General Physiology, 2009, 133, 69-77.	0.9	9

#	Article	IF	CITATIONS
109	On the metal ion (Zn2+, Cu2+) coordination with beta-amyloid peptide: DFT computational study. Interdisciplinary Sciences, Computational Life Sciences, 2010, 2, 57-69.	2.2	31
110	Cu2+ binding chalcogen–chalcogen bridges: A problematic case for DFT. Computational and Theoretical Chemistry, 2010, 954, 7-15.	1.5	12
111	Zn2+ Activates Large Conductance Ca2+-activated K+ Channel via an Intracellular Domain. Journal of Biological Chemistry, 2010, 285, 6434-6442.	1.6	36
112	Modification of hERG1 channel gating by Cd2+. Journal of General Physiology, 2010, 136, 203-224.	0.9	24
113	Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme. Biochemical Journal, 2010, 429, 313-321.	1.7	18
114	Pore-opening mechanism in trimeric P2X receptor channels. Nature Communications, 2010, 1, 44.	5.8	89
115	Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli. Biochemistry, 2010, 49, 7830-7838.	1.2	24
116	Potassium Is Critical for the Ni(II)-Responsive DNA-Binding Activity of Escherichia coli NikR. Journal of the American Chemical Society, 2010, 132, 1506-1507.	6.6	14
117	Inhibition studies of soybean (<i>Glycine max</i>) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 646-652.	2.5	26
118	Labeling of Specific Cysteines in Proteins Using Reversible Metal Protection. Biophysical Journal, 2011, 100, 2513-2521.	0.2	35
119	Bacterial Surface Display of Metal-Binding Sites. , 2011, , 249-283.		2
120	Endonuclease Active Site Plasticity Allows DNA Cleavage with Diverse Alkaline Earth and Transition Metal Ions. ACS Chemical Biology, 2011, 6, 934-942.	1.6	8
121	Microbial Biosorption of Metals. , 2011, , .		65
122	A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(ii) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations. Dalton Transactions, 2011, 40, 5436.	1.6	24
123	Interaction of Metal Ions with Biomolecular Ligands: How Accurate Are Calculated Free Energies Associated with Metal Ion Complexation?. Journal of Physical Chemistry A, 2011, 115, 11394-11402.	1.1	40
124	Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion. Journal of Molecular Modeling, 2011, 17, 1551-1563.	0.8	15
125	Transition Metal Ions: Charge Carriers that Mediate the Electron Capture Dissociation Pathways of Peptides. Journal of the American Society for Mass Spectrometry, 2011, 22, 2232-2245.	1.2	25
126	Formation of Peptide Radical Cations (M+·) in Electron Capture Dissociation of Peptides Adducted with Group IIB Metal Ions. Journal of the American Society for Mass Spectrometry, 2011, 22, 233-244.	1.2	22

#	Article	IF	CITATIONS
127	Interaction of the Mn ²⁺ , Co ²⁺ , Ni ²⁺ , and Zn ²⁺ with prion protein HGGGW pentapeptide model. International Journal of Quantum Chemistry, 2011, 111, 1152-1162.	1.0	8
128	Structural and thermodynamic consequences of the replacement of zinc with environmental metals on estrogen receptor α–DNA interactions. Journal of Molecular Recognition, 2011, 24, 1007-1017.	1.1	27
129	The Zincâ€Dependent Fluorescence of a Synthetic GFPâ€Like Chromophore in Organic Solvents. European Journal of Inorganic Chemistry, 2011, 2011, 5322-5327.	1.0	4
130	Thermostable alkaline phytase from Bacillus sp. MD2: Effect of divalent metals on activity and stability. Journal of Inorganic Biochemistry, 2011, 105, 1000-1007.	1.5	28
131	External Cu2+ Inhibits Human Epithelial Na+ Channels by Binding at a Subunit Interface of Extracellular Domains. Journal of Biological Chemistry, 2011, 286, 27436-27446.	1.6	26
132	FindGeo: a tool for determining metal coordination geometry. Bioinformatics, 2012, 28, 1658-1660.	1.8	45
133	The crystal structure of human α1-microglobulin reveals a potential haem-binding site. Biochemical Journal, 2012, 445, 175-182.	1.7	32
134	Metal-Mediated Affinity and Orientation Specificity in a Computationally Designed Protein Homodimer. Journal of the American Chemical Society, 2012, 134, 375-385.	6.6	95
135	Metal-Ion Dependent Catalytic Properties of <i>Sulfolobus solfataricus</i> Class II α-Mannosidase. Biochemistry, 2012, 51, 8039-8046.	1.2	6
136	Electrochemical synthesis and crystal structure of zinc(II) complexes with N2N′2S2 amide–thioether hexadentate ligands. Polyhedron, 2012, 41, 115-119.	1.0	11
137	Multiple Sensor Array of Mn ²⁺ , Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , and Zn ²⁺ Complexes of a Triazole Linked Imino-Phenol Based Calix[4]arene Conjugate for the Selective Recognition of Asp, Glu, Cys, and His. Analytical Chemistry, 2012, 84, 8294-8300.	3.2	52
138	Voltage-dependent conformational changes in connexin channels. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1807-1822.	1.4	59
139	Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form. Biochemical and Biophysical Research Communications, 2012, 422, 745-750.	1.0	12
140	Fluorescent Labeling of Specific Cysteine Residues Using CyMPL. Current Protocols in Protein Science, 2012, 70, Unit14.14.	2.8	2
141	Metallothionein Zn ²⁺ - and Cu ²⁺ -clusters from first-principles calculations. Dalton Transactions, 2012, 41, 2247-2256.	1.6	8
143	The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Science, 2012, 21, 809-818.	3.1	30
144	Tracking a complete voltage-sensor cycle with metal-ion bridges. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8552-8557.	3.3	132
145	Protein–inorganic hybrid nanoflowers. Nature Nanotechnology, 2012, 7, 428-432.	15.6	947

#	Article	IF	CITATIONS
146	Stereoselective Formation of Chiral Metallopeptides. Chemistry - A European Journal, 2012, 18, 7030-7035.	1.7	30
147	Density functional study of substituted (–SH, –S, –OH, –Cl) hydrated ions of Hg2+. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	12
148	Nickel Metallomics: General Themes Guiding Nickel Homeostasis. Metal Ions in Life Sciences, 2013, 12, 375-416.	2.8	37
149	Combining Chemical Labeling, Bottom-Up and Top-Down Ion-Mobility Mass Spectrometry To Identify Metal-Binding Sites of Partially Metalated Metallothionein. Analytical Chemistry, 2013, 85, 3229-3237.	3.2	43
150	Crystal structures of 26kDa Clonorchis sinensis glutathione S-transferase reveal zinc binding and putative metal binding. Biochemical and Biophysical Research Communications, 2013, 438, 457-461.	1.0	6
151	Predicting the Stability Constants of Metal-Ion Complexes from First Principles. Inorganic Chemistry, 2013, 52, 10347-10355.	1.9	57
152	Hydroxamic Acids. , 2013, , .		30
153	Density functional study of Cu2+-phenylalanine complex under micro-solvation environment. Journal of Molecular Graphics and Modelling, 2013, 45, 180-191.	1.3	10
154	Zinc Coordination Spheres in Protein Structures. Inorganic Chemistry, 2013, 52, 10983-10991.	1.9	205
155	Designing functional metalloproteins: From structural to catalytic metal sites. Coordination Chemistry Reviews, 2013, 257, 2565-2588.	9.5	109
156	The Structure of the Mercury Transporter MerF in Phospholipid Bilayers: A Large Conformational Rearrangement Results from N-Terminal Truncation. Journal of the American Chemical Society, 2013, 135, 9299-9302.	6.6	27
157	Balance of Coordination and Hydrophobic Interaction in the Formation of Bilayers in Metal-Coordinated Surfactant Mixtures. Langmuir, 2013, 29, 3538-3545.	1.6	10
158	Cd ²⁺ as a Ca ²⁺ Surrogate in Protein–Membrane Interactions: Isostructural but Not Isofunctional. Journal of the American Chemical Society, 2013, 135, 12980-12983.	6.6	12
159	Controlled self-assembly of CdTe quantum dots into different microscale dendrite structures by using proteins as templates. Journal of Materials Chemistry A, 2013, 1, 15082.	5.2	6
160	Functional Identification of Close Proximity Amino Acid Side Chains within the Transmembrane-Spanning Helixes of the P2X2 Receptor. PLoS ONE, 2013, 8, e70629.	1.1	6
161	Metal Ion Selectivity of Kojate Complexes: A Theoretical Study. Journal of Theoretical Chemistry, 2013, 2013, 1-9.	1.5	5
162	Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. ELife, 2014, 3, e01963.	2.8	132
163	Elemental bioimaging of tissue level trace metal distributions in rice seeds (Oryza sativa L.) from a mining area in China. Environmental Pollution, 2014, 195, 148-156.	3.7	36

#	Article	IF	CITATIONS
164	Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides. APL Materials, 2014, 2, .	2.2	41
165	Metal Bridges Illuminate Transmembrane Domain Movements during Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Journal of Biological Chemistry, 2014, 289, 28149-28159.	1.6	12
166	Structures and Metal-Binding Properties of Helicobacter pylori Neutrophil-Activating Protein with a Di-Nuclear Ferroxidase Center. Biomolecules, 2014, 4, 600-615.	1.8	10
167	Competition among Metal Ions for Protein Binding Sites: Determinants of Metal Ion Selectivity in Proteins. Chemical Reviews, 2014, 114, 538-556.	23.0	329
168	External protons destabilize the activated voltage sensor in hERG channels. European Biophysics Journal, 2014, 43, 59-69.	1.2	12
169	Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain. Journal of General Physiology, 2014, 144, 513-527.	0.9	11
170	Subcomponent self-assembly of polymer chains based on dynamic and geometrical coordination diversity of the first row transition metal ions. Polymer Chemistry, 2014, 5, 1202-1209.	1.9	17
171	Voltage―and ATPâ€dependent structural rearrangements of the P2X2 receptor associated with the gating of the pore. Journal of Physiology, 2014, 592, 4657-4676.	1.3	3
172	Nill–Schiff base complex as an enzyme inhibitor of hen egg white lysozyme: a crystallographic and spectroscopic study. Metallomics, 2014, 6, 1737.	1.0	5
173	Automated identification of elemental ions in macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1104-1114.	2.5	40
174	Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 2014, 64, 171-181.	2.9	589
175	Metal-Induced Conformational Changes of Human Metallothionein-2A: A Combined Theoretical and Experimental Study of Metal-Free and Partially Metalated Intermediates. Journal of the American Chemical Society, 2014, 136, 9499-9508.	6.6	67
176	In silico analysis of metal coordination geometry in arsenic, beryllium, and lead bound structures. Journal of Coordination Chemistry, 2014, 67, 1888-1904.	0.8	4
177	Designing Hydrolytic Zinc Metalloenzymes. Biochemistry, 2014, 53, 957-978.	1.2	126
178	Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. PLoS Computational Biology, 2015, 11, e1004368.	1.5	26
179	Highly selective colorimetric and fluorescent detection for Hg ²⁺ in aqueous solutions using a dipeptide-based chemosensor. RSC Advances, 2015, 5, 56356-56361.	1.7	17
180	Nickel quercetinase, a "promiscuous―metalloenzyme: metal incorporation and metal ligand substitution studies. BMC Biochemistry, 2015, 16, 10.	4.4	35
181	How simple is too simple? Computational perspective on importance of second-shell environment for metal-ion selectivity. Physical Chemistry Chemical Physics, 2015, 17, 14393-14404.	1.3	6

#	Article	IF	CITATIONS
182	Structure, Bonding, and Stability of Mercury Complexes with Thiolate and Thioether Ligands from High-Resolution XANES Spectroscopy and First-Principles Calculations. Inorganic Chemistry, 2015, 54, 11776-11791.	1.9	57
183	The Molecular Structure of Aqueous Hg(II)-EDTA As Determined by X-ray Absorption Spectroscopy. Journal of Physical Chemistry A, 2015, 119, 2878-2884.	1.1	17
184	Metal bridges to probe membrane ion channel structure and function. Biomolecular Concepts, 2015, 6, 191-203.	1.0	14
185	Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes. ACS Chemical Biology, 2015, 10, 1684-1693.	1.6	42
186	Electronic structure of kaempferol–Cu2+ coordination compounds: a DFT, QTAIM and NBO study in the gas phase. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	5
187	Coordination properties of a metal chelator clioquinol to Zn ²⁺ studied by static DFT and ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2015, 17, 13582-13589.	1.3	13
188	Mutational Analysis of Divalent Metal Ion Binding in the Active Site of Class II α-Mannosidase from Sulfolobus solfataricus. Biochemistry, 2015, 54, 2032-2039.	1.2	2
189	Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. Journal of Catalysis, 2015, 326, 43-53.	3.1	162
190	Cadmium–cysteine coordination in the BK inner pore region and its structural and functional implications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5237-5242.	3.3	51
191	Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2015, 97, 165-174.	2.8	74
192	Modulation of the slow/common gating of CLC channels by intracellular cadmium. Journal of General Physiology, 2015, 146, 495-508.	0.9	9
193	Interaction between transition metals and phenylalanine: A combined experimental and computational study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 499-508.	2.0	23
194	Highly sensitive colorimetric detection of Hg ^{II} and Cu ^{II} in aqueous solutions: from amino acids toward solid platforms. Analyst, The, 2015, 140, 744-749.	1.7	27
195	Remediation of Heavy Metals by Biomolecules: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 1644-1704.	6.6	85
197	Quercetinâ€2,4â€Dioxygenase aktiviert Sauerstoff in einem "sideâ€on―gebundenen O ₂ â€Ni″ Angewandte Chemie, 2016, 128, 3339-3343.	Komplex. 1.6	6
198	What Is the Preferred Conformation of Phosphatidylserine–Copper(II) Complexes? A Combined Theoretical and Experimental Investigation. Journal of Physical Chemistry B, 2016, 120, 12883-12889.	1.2	13
199	The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Australian Journal of Chemistry, 2016, 69, 1383.	0.5	6
200	Structural Analysis of the Hg(II)-Regulatory Protein Tn501 MerR from Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 33391.	1.6	42

#	Article	IF	CITATIONS
201	Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway. Journal of General Physiology, 2016, 147, 407-422.	0.9	13
202	Interaction studies of human prion protein (HuPrP109–111: methionine-lysine-histidine) tripeptide model with transition metal cations. Journal of Molecular Graphics and Modelling, 2016, 69, 111-126.	1.3	2
203	Crystal structures of Dronpa complexed with quenchable metal ions provide insight into metal biosensor development. FEBS Letters, 2016, 590, 2982-2990.	1.3	12
204	Evaluation of Methods for the Calculation of the p <i>K</i> _a of Cysteine Residues in Proteins. Journal of Chemical Theory and Computation, 2016, 12, 4662-4673.	2.3	88
205	Metal-Directed Design of Supramolecular Protein Assemblies. Methods in Enzymology, 2016, 580, 223-250.	0.4	33
206	Quercetin 2,4â€Dioxygenase Activates Dioxygen in a Sideâ€On O ₂ –Ni Complex. Angewandte Chemie - International Edition, 2016, 55, 3281-3284.	7.2	64
207	Investigation of tissue level distribution of functional groups and associated trace metals in rice seeds (Oryza sativa L.) using FTIR and LA-ICP-MS. Microchemical Journal, 2016, 127, 152-159.	2.3	24
208	Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission. Analytical Chemistry, 2016, 88, 3333-3340.	3.2	147
209	Effects of metal-ion replacement on pyrazinamidase activity: A quantum mechanical study. Journal of Molecular Graphics and Modelling, 2017, 73, 24-29.	1.3	5
210	STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate. Nature Communications, 2017, 8, 14512.	5.8	87
211	Cysteine Addition Promotes Sulfide Production and 4-Fold Hg(II)–S Coordination in Actively Metabolizing <i>Escherichia coli</i> . Environmental Science & Technology, 2017, 51, 4642-4651.	4.6	30
212	A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues. Journal of the American Society for Mass Spectrometry, 2017, 28, 1293-1303.	1.2	8
213	Development of Copper Phosphate Nanoflowers on Soy Protein toward a Superhydrophobic and Self-Cleaning Film. ACS Sustainable Chemistry and Engineering, 2017, 5, 869-875.	3.2	65
214	Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1–Membrane Interactions. Biochemistry, 2017, 56, 3283-3295.	1.2	20
215	Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6191-6196.	3.3	102
216	Crystal structure of enolase from <i>Drosophila melanogaster</i> . Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 228-234.	0.4	9
217	Preparation of Efficient, Stable, and Reusable Laccase–Cu ₃ (PO ₄) ₂ Hybrid Microspheres Based on Copper Foil for Decoloration of Congo Red. ACS Sustainable Chemistry and Engineering, 2017, 5, 4468-4477.	3.2	85
218	High-affinity metal binding by the Escherichia coli [NiFe]-hydrogenase accessory protein HypB is selectively modulated by SlyD. Metallomics, 2017, 9, 482-493.	1.0	13

#	Article	IF	Citations
219	Pore opening mechanism of CRAC channels. Cell Calcium, 2017, 63, 14-19.	1.1	33
220	Divalent metal binding by histidineâ€rich glycoprotein differentially regulates higher order oligomerisation and proteolytic processing. FEBS Letters, 2017, 591, 164-176.	1.3	8
221	Concomitant Formation of Compositionally Distinct Coordination Polymers Based on a Triacid Linker: Solventâ€Mediated Metamorphosis. European Journal of Inorganic Chemistry, 2017, 2017, 1163-1170.	1.0	2
222	Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands. Coordination Chemistry Reviews, 2017, 352, 83-107.	9.5	16
223	Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 2017, 352, 249-263.	9.5	194
224	New Ni(II) complexes involving symmetrical bidentate N,O-donor Schiff base ligands: synthesis at ambient temperature, crystal structures, electrochemical study, antioxidant and cytotoxic activities. Journal of Coordination Chemistry, 2017, 70, 3132-3146.	0.8	15
225	Metal-binding selectivity and coordination dynamics for cyanobacterial microcystins with Zn, Cu, Fe, Mg, and Ca. Environmental Chemistry Letters, 2017, 15, 695-701.	8.3	11
226	Melamine modified graphene hydrogels for the removal of uranium(<scp>vi</scp>) from aqueous solution. New Journal of Chemistry, 2017, 41, 10899-10907.	1.4	36
227	Transition metal binding selectivity in proteins and its correlation with the phylogenomic classification of the cation diffusion facilitator protein family. Scientific Reports, 2017, 7, 16381.	1.6	87
228	Rubredoxins derivatives: Simple sulphur-rich coordination metal sites and its relevance for biology and chemistry. Coordination Chemistry Reviews, 2017, 352, 379-397.	9.5	21
229	Determination of trace metal concentration in compost, DAP, and TSP fertilizers by neutron activation analysis (NAA) and insights from density functional theory calculations. Environmental Monitoring and Assessment, 2017, 189, 618.	1.3	10
230	Investigating the geometrical preferences of a flexible benzimidazolone-based linker in the synthesis of coordination polymers. Royal Society Open Science, 2017, 4, 171064.	1.1	2
231	Repurposing proteins for new bioinorganic functions. Essays in Biochemistry, 2017, 61, 245-258.	2.1	12
232	Fluorescent Sensors for Biological Metal Ions. , 2017, , 295-317.		4
233	Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies. Journal of Molecular Structure, 2018, 1161, 512-518.	1.8	7
234	Molecular Machines of the Cell. , 2018, , 183-235.		0
235	Competition between abiogenic Al3+ and native Mg2+, Fe2+ and Zn2+ ions in protein binding sites: implications for aluminum toxicity. Journal of Molecular Modeling, 2018, 24, 55.	0.8	20
236	Iris lactea var. chinensis (Fisch.) cysteine-rich gene llCDT1 enhances cadmium tolerance in yeast cells and Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2018, 157, 67-72.	2.9	11

#	Article	IF	CITATIONS
237	Multi-dimensional architecture materials of amino acids and metal ions. New Journal of Chemistry, 2018, 42, 17447-17452.	1.4	1
238	Chelation, formulation, encapsulation, retention, and in vivo biodistribution of hydrophobic nanoparticles labelled with 57Co-porphyrin: Oleylamine ensures stable chelation of cobalt in nanoparticles that accumulate in tumors. Journal of Controlled Release, 2018, 291, 11-25.	4.8	6
239	Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks. Journal of the American Chemical Society, 2018, 140, 15842-15849.	6.6	13
240	Oxidation State Distributions Provide Insight into Parameters Directing the Assembly of Metal–Organic Nanocapsules. Journal of the American Chemical Society, 2018, 140, 13022-13027.	6.6	10
241	Coordination Behavior of Ni ²⁺ , Cu ²⁺ , and Zn ²⁺ in Tetrahedral 1-Methylimidazole Complexes: A DFT/CSD Study. Bioinorganic Chemistry and Applications, 2018, 2018, 1-8.	1.8	16
242	Metal-chelating non-canonical amino acids in metalloprotein engineering and design. Current Opinion in Structural Biology, 2018, 51, 170-176.	2.6	14
243	Effects of mono-dentate and bi-dentate ligands on adsorption characteristics of Cu-ion-imprinted hybrids. Research on Chemical Intermediates, 2019, 45, 6043-6059.	1.3	1
244	A Fragment Quantum Mechanical Method for Metalloproteins. Journal of Chemical Theory and Computation, 2019, 15, 1430-1439.	2.3	17
245	Transition metal-substituted Keggin polyoxotungstates enabling covalent attachment to proteinase K upon co-crystallization. Chemical Communications, 2019, 55, 11519-11522.	2.2	12
246	Coordination properties of Cu(II) ions towards the peptides based on the His-Xaa-His motif from Fusobacterium nucleatum P1 protein. Journal of Inorganic Biochemistry, 2019, 201, 110819.	1.5	7
247	Selective coordination of three transition metal ions within a coiled-coil peptide scaffold. Chemical Science, 2019, 10, 7456-7465.	3.7	23
248	Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. International Journal of Biological Macromolecules, 2019, 135, 677-690.	3.6	53
249	An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature, 2019, 569, 438-442.	13.7	124
250	Control by Metals of Staphylopine Dehydrogenase Activity during Metallophore Biosynthesis. Journal of the American Chemical Society, 2019, 141, 5555-5562.	6.6	17
251	Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor. Metallomics, 2019, 11, 707-723.	1.0	5
252	Maleic acid modified cellulose for scavenging lead from water. International Journal of Biological Macromolecules, 2019, 129, 293-304.	3.6	28
253	Assembly of histidine-rich protein materials controlled through divalent cations. Acta Biomaterialia, 2019, 83, 257-264.	4.1	49
254	Cadmium opens GluK2 kainate receptors with cysteine substitutions at the M3 helix bundle crossing. Journal of General Physiology, 2019, 151, 435-451.	0.9	7

#	Article	IF	CITATIONS
255	Structural dynamics behind variants in pyrazinamidase and pyrazinamide resistance. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3003-3017.	2.0	7
256	A peptide-based fluorescent sensor for selective imaging of glutathione in living cells and zebrafish. Analytical and Bioanalytical Chemistry, 2020, 412, 481-488.	1.9	4
257	Single molecule observation of hard–soft-acid–base (HSAB) interaction in engineered <i>Mycobacterium smegmatis</i> porin A (MspA) nanopores. Chemical Science, 2020, 11, 879-887.	3.7	47
258	AMBER Force Field Parameters for Cobalt-Containing Biological Systems: A Systematic Derivation Study. Journal of Physical Chemistry B, 2020, 124, 777-787.	1.2	5
259	Ferrocene-functionalized nanocomposites as signal amplification probes for electrochemical immunoassay of Salmonella typhimurium. Mikrochimica Acta, 2020, 187, 600.	2.5	17
260	Zinc Oxide Nanocomposites—Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. Materials, 2020, 13, 4347.	1.3	25
262	The Effects of the Metal Ion Substitution into the Active Site of Metalloenzymes: A Theoretical Insight on Some Selected Cases. Catalysts, 2020, 10, 1038.	1.6	34
263	New insights into coordination chemistry of Monensin A towards divalent metal ions. Inorganica Chimica Acta, 2020, 505, 119481.	1.2	3
264	Multivalent magnetic nanoaggregates with unified antibacterial activity and selective uptake of heavy metals and organic pollutants. Journal of Molecular Liquids, 2020, 317, 114002.	2.3	5
265	Bridging experiments and theory: isolating the effects of metal–ligand interactions on viscoelasticity of reversible polymer networks. Soft Matter, 2020, 16, 8591-8601.	1.2	24
266	Evaluating the Performance of a Non-Bonded Cu2+ Model Including Jahnâ^'Teller Effect into the Binding of Tyrosinase Inhibitors. International Journal of Molecular Sciences, 2020, 21, 4783.	1.8	14
268	Elucidating the role of metal ions in carbonic anhydrase catalysis. Nature Communications, 2020, 11, 4557.	5.8	60
270	Accelerated Formation Kinetics of a Multicomponent Metal–Organic Framework Derived from Preferential Site Occupancy. Inorganic Chemistry, 2020, 59, 9350-9355.	1.9	7
271	Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY. Journal of Biological Chemistry, 2020, 295, 5245-5256.	1.6	12
272	Investigation of manganese metal coordination in proteins: a comprehensive PDB analysis and quantum mechanical study. Structural Chemistry, 2020, 31, 1057-1064.	1.0	6
273	Understanding How Ligand Functionalization Influences CO2 and N2 Adsorption in a Sodalite Metal–Organic Framework. Chemistry of Materials, 2020, 32, 1526-1536.	3.2	19
274	YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass. Journal of Bioscience and Bioengineering, 2021, 131, 39-46.	1.1	11
275	Allosteric regulation of the nickel-responsive NikR transcription factor from Helicobacter pylori. Journal of Biological Chemistry, 2021, 296, 100069.	1.6	7

#	Article	IF	CITATIONS
276	Coordination pattern and reactivity of two model peptides from porin protein P1. Journal of Inorganic Biochemistry, 2021, 215, 111332.	1.5	5
277	Interactions of zinc aqua complexes with ovalbumin at the forefront of the Zn2+/ZnO-OVO hybrid complex formation mechanism. Applied Surface Science, 2021, 542, 148641.	3.1	16
278	Interrogating permeation and gating of Orai channels using chemical modification of cysteine residues. Methods in Enzymology, 2021, 652, 213-239.	0.4	1
279	Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nature Reviews Materials, 2021, 6, 421-436.	23.3	148
280	The symmetric designer protein Pizza as a scaffold for metal coordination. Proteins: Structure, Function and Bioinformatics, 2021, 89, 945-951.	1.5	3
281	Cobalt Regulates Activation of Camk2α in Neurons by Influencing Fructose 1,6-Bisphosphatase 2 Quaternary Structure and Subcellular Localization. International Journal of Molecular Sciences, 2021, 22, 4800.	1.8	1
282	Identification of metal binding motifs in protein frameworks to develop novel remediation strategies for Hg2+ and Cr(VI). BioMetals, 2021, 34, 621-638.	1.8	4
283	Rational design of metal-binding sites in domain-swapped myoglobin dimers. Journal of Inorganic Biochemistry, 2021, 217, 111374.	1.5	4
284	Generating biomembrane-like local curvature in polymersomes via dynamic polymer insertion. Nature Communications, 2021, 12, 2235.	5.8	20
285	Mesoporous Biopolymer Architecture Enhanced the Adsorption and Selectivity of Aqueous Heavy-Metal Ions. ACS Omega, 2021, 6, 15316-15331.	1.6	19
286	Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem, 2021, 16, 2315-2329.	1.6	43
287	Design for a longer photoinduced charge separation and improved visible-light-driven H2 generation through structure reversal and oxygen vacancies via Ni substitution into ZnFe2O4 spinel. Ceramics International, 2021, 47, 20317-20334.	2.3	7
288	Electrochemically Stable and Catalytically Active Coatings Based on Self-Assembly of Protein-Inorganic Nanoflowers on Plasma-Electrolyzed Platform. ACS Applied Materials & Interfaces, 2021, 13, 39854-39867.	4.0	5
289	<scp><i>De novo</i></scp> design of metalâ€binding cleft in a <scp>Trpâ€Trp</scp> stapled thermostable βâ€hairpin peptide. Peptide Science, 2021, 113, e24240.	1.0	2
290	Formation of the Metal-Binding Core of the ZRT/IRT-like Protein (ZIP) Family Zinc Transporter. Biochemistry, 2021, 60, 2727-2738.	1.2	8
291	Spectroscopic and computational investigations of organometallic complexation of group 12 transition metals by methanobactins from Methylocystis sp. SB2. Journal of Inorganic Biochemistry, 2021, 223, 111496.	1.5	2
292	Redox chemistry of lens crystallins: A system of cysteines. Experimental Eye Research, 2021, 211, 108707.	1.2	11
293	Nano-immobilization of PETase enzyme for enhanced polyethylene terephthalate biodegradation. Biochemical Engineering Journal, 2021, 176, 108205.	1.8	33

#	Article	IF	CITATIONS
294	Histidine phosphorylation in metalloprotein binding sites. Journal of Inorganic Biochemistry, 2021, 225, 111606.	1.5	3
296	Theoretical Studies on Hydroxamic Acids. , 2013, , 19-53.		9
297	Chapter 9. Metal-based Antimicrobials. Biomaterials Science Series, 2019, , 252-276.	0.1	2
298	Bond-length distributions for ions bonded to oxygen: results for the transition metals and quantification of the factors underlying bond-length variation in inorganic solids. IUCrJ, 2020, 7, 581-629.	1.0	59
299	A Computational and Structural Database Study of the Metal-Carbene Bond in Groups IA, IIA, and IIIA Imidazol-2-Ylidene Complexes. Journal of Chemistry, 2019, 2019, 1-9.	0.9	1
300	Practical Aspects of Fluorescence Analysis of Free Zinc Ion in Biological Systems. , 2005, , 351-376.		2
301	New Insight into the Transcarbamylase Family: The Structure of Putrescine Transcarbamylase, a Key Catalyst for Fermentative Utilization of Agmatine. PLoS ONE, 2012, 7, e31528.	1.1	5
302	Streptomyces coelicolor SCO4226 Is a Nickel Binding Protein. PLoS ONE, 2014, 9, e109660.	1.1	9
303	Ab Initio Coordination Chemistry for Nickel Chelation Motifs. PLoS ONE, 2015, 10, e0126787.	1.1	19
304	Biophysical Studies of the Induced Dimerization of Human VEGF Receptor 1 Binding Domain by Divalent Metals Competing with VEGF-A. PLoS ONE, 2016, 11, e0167755.	1.1	10
305	Kinetic characterization of Vibrio cholerae ApbE: Substrate specificity and regulatory mechanisms. PLoS ONE, 2017, 12, e0186805.	1.1	14
306	Structural and Functional Diversity of Estrogen Receptor Ligands. Current Topics in Medicinal Chemistry, 2015, 15, 1372-1384.	1.0	59
307	Oxidation and Antioxidants in Fish and Meat from Farm to Fork. , 0, , .		15
308	Arginine and Lysine interactions with p residues in metalloproteins. Bioinformation, 2012, 8, 820-826.	0.2	3
309	A sulfur-aromatic gate latch is essential for opening of the Orai1 channel pore. ELife, 2020, 9, .	2.8	13
310	Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation. ELife, 2020, 9, .	2.8	36
311	The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. Toxics, 2021, 9, 269.	1.6	42
312	Fluorescence-based biosensing of zinc using carbonic anhydrase. , 2001, , 19-36.		ο

#	Article	IF	CITATIONS
315	External Cd2+ and protons activate the hyperpolarization-gated K+ channel KAT1 at the voltage sensor. Journal of General Physiology, 2021, 153, .	0.9	1
316	Protein Nanostructures with Purpose-Designed Properties in Biotechnology and Medicine. , 2020, , 71-89.		1
320	Nanoflowers: A New Approach of Enzyme Immobilization. Chemical Record, 2022, 22, e202100293.	2.9	19
321	A facile approach for hierarchical architectures of an enzyme–metal–organic framework biocatalyst with high activity and stability. Nanoscale, 2022, 14, 3929-3934.	2.8	7
322	Switchable Zinc(II)-Responsive Globular β-Sheet Peptide. ACS Synthetic Biology, 2022, 11, 254-264.	1.9	7
323	Bioinorganic Chemistry of Zinc in Relation to the Immune System. ChemBioChem, 2022, 23, .	1.3	7
326	Reorganization free energy of copper proteins in solution, in vacuum, and on metal surfaces. Journal of Chemical Physics, 2022, 156, 175101.	1.2	7
327	Nanomolar affinity of EF-hands in neuronal calcium sensor 1 for bivalent cations Pb2+, Mn2+, and Hg2+. Metallomics, 2022, 14, .	1.0	6
328	Spectroscopic Techniques in Research of Biocolloids. , 2022, , 805-832.		0
329	Selective detection of Cu ²⁺ ions using a mercaptobenzothiazole disulphide modified carbon paste electrode and bismuth as adjuvant: a theoretical and electrochemical study. New Journal of Chemistry, 2022, 46, 15052-15063.	1.4	1
330	Learning to Identify Physiological and Adventitious Metal-Binding Sites in the Three-Dimensional Structures of Proteins by Following the Hints of a Deep Neural Network. Journal of Chemical Information and Modeling, 2022, 62, 2951-2960.	2.5	6
332	Structure of Zinc and Nickel Histidine Complexes in Solution Revealed by Molecular Dynamics and Raman Optical Activity. Chemistry - A European Journal, 2022, 28, .	1.7	3
333	Pulse Dipolar Electron Paramagnetic Resonance Spectroscopy Reveals Buffer-Modulated Cooperativity of Metal-Templated Protein Dimerization. Journal of Physical Chemistry Letters, 2022, 13, 7847-7852.	2.1	7
335	Hydrogel Beads of Amidoximated Starch and Chitosan as Efficient Sorbents for Inorganic and Organic Compounds. Gels, 2022, 8, 549.	2.1	6
336	Metal Ions and Chemical Modification Reagents Inhibit the Enzymatic Activity of Lecithin-Dependent Hemolysin from Vibrio parahaemolyticus. Toxins, 2022, 14, 609.	1.5	1
337	Biochemical studies highlight determinants for metal selectivity in the <i>Escherichia coli</i> periplasmic solute binding protein NikA. Metallomics, 2022, 14, .	1.0	1
339	Interfacial and rheological properties of long-lived foams stabilized by rice proteins complexed to transition metal ions in the presence of alkyl polyglycoside. Journal of Colloid and Interface Science, 2023, 630, 645-657.	5.0	16
340	Competition between Ag+ and Ni2+ in nickel enzymes: Implications for the Ag+ antibacterial activity. Computational Biology and Chemistry, 2022, 101, 107785.	1.1	5

#	Article	IF	CITATIONS
341	Zinc controls operator affinity of human transcription factor YY1 by mediating dimerization via its N-terminal region. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2023, 1866, 194905.	0.9	1
342	The I1NF-YC6 transcription factor of Iris lactea var. chinensis (Fisch.) activates the llCDT1 gene and enhances tolerance to cadmium stress in Arabidopsis thaliana. Industrial Crops and Products, 2023, 197, 116558.	2.5	2
343	Zinc activation of OTOP proton channels identifies structural elements of the gating apparatus. ELife, 0, 12, .	2.8	3
344	Ligand-Capped Cobalt(II) Multiplies the Value of the Double-Histidine Motif for PCS NMR Studies. Journal of the American Chemical Society, 2023, 145, 4564-4569.	6.6	5
345	In-Depth Characterization of Acidic Variants Induced by Metal-Catalyzed Oxidation in a Recombinant Monoclonal Antibody. Analytical Chemistry, 2023, 95, 5867-5876.	3.2	2
346	Design of a minimal di-nickel hydrogenase peptide. Science Advances, 2023, 9, .	4.7	5
347	High-resolution structures with bound Mn2+ and Cd2+ map the metal import pathway in an Nramp transporter. ELife, 0, 12, .	2.8	9
355	Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophysical Reviews, 2023, 15, 1127-1158	1.5	1