Orbitofrontal cortex and basolateral amygdala encode elearning

Nature Neuroscience 1, 155-159 DOI: 10.1038/407

Citation Report

#	Article	IF	CITATIONS
1	Great expectations. Trends in Cognitive Sciences, 1998, 2, 274.	4.0	0
2	Fear, Vigilance, and Ambiguity: Initial Neuroimaging Studies of the Human Amygdala Current Directions in Psychological Science, 1998, 7, 177-188.	2.8	773
3	Neural Encoding in Orbitofrontal Cortex and Basolateral Amygdala during Olfactory Discrimination Learning. Journal of Neuroscience, 1999, 19, 1876-1884.	1.7	539
4	Orbitofrontal Cortex and Representation of Incentive Value in Associative Learning. Journal of Neuroscience, 1999, 19, 6610-6614.	1.7	579
5	Different Contributions of the Human Amygdala and Ventromedial Prefrontal Cortex to Decision-Making. Journal of Neuroscience, 1999, 19, 5473-5481.	1.7	1,664
6	Differential Contribution of Right and Left Amygdala to Affective Information Processing. Behavioural Neurology, 1999, 11, 233-244.	1.1	161
7	Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain, 1999, 122, 1469-1493.	3.7	365
8	Preferences for Visual Stimuli Following Amygdala Damage. Journal of Cognitive Neuroscience, 1999, 11, 610-616.	1.1	42
10	A subcortical pathway to the right amygdala mediating "unseen" fear. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1680-1685.	3.3	1,206
11	Relative reward preference in primate orbitofrontal cortex. Nature, 1999, 398, 704-708.	13.7	1,198
12	On the neurology of morals. Nature Neuroscience, 1999, 2, 927-929.	7.1	90
13	UNC-13 and neurotransmitter release. Nature Neuroscience, 1999, 2, 929-930.	7.1	19
14	Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nature Neuroscience, 1999, 2, 1003-1009.	7.1	366
15	Mesolimbic Neuronal Activity across Behavioral States. Annals of the New York Academy of Sciences, 1999, 877, 91-112.	1.8	41
16	Functions of the Amygdala and Related Forebrain Areas in Attention and Cognition. Annals of the New York Academy of Sciences, 1999, 877, 397-411.	1.8	62
17	The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature, 1999, 402, 294-296.	13.7	347
18	Amygdala circuitry in attentional and representational processes. Trends in Cognitive Sciences, 1999, 3, 65-73.	4.0	571
19	Social cognition and the human brain. Trends in Cognitive Sciences, 1999, 3, 469-479.	4.0	745

ATION REDO

ARTICLE IF CITATIONS # Crossmodal Associative Memory Representations in Rodent Orbitofrontal Cortex. Neuron, 1999, 22, 20 3.8 92 349-359. A neurobiological basis for decision making in language pragmatics. Pragmatics and Cognition, 1999, 7, 0.2 283-311. BEHAVIOR ANALYSIS AND REVALUATION. Journal of the Experimental Analysis of Behavior, 2000, 74, 22 0.8 29 331-346. Differential amygdala responses to winning and losing: a functional magnetic resonance imaging 121 study in humans. European Journal of Neuroscience, 2000, 12, 1764-1770. Orbitofrontal involvement in the processing of unpleasant auditory information. European Journal 24 1.2 100 of Neuroscience, 2000, 12, 3709-3712. Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. European 1.2 Journal of Neuroscience, 2000, 12, 405-413. Multiple reward signals in the brain. Nature Reviews Neuroscience, 2000, 1, 199-207. 26 4.9 1,176 Electrical stimulation of the insular cortex induces flavor-preferences in rats. Brain Research, 2000, 1.1 19 872, 134-140. 28 A Neural Systems Analysis of Adaptive Navigation. Molecular Neurobiology, 2000, 21, 057-082. 1.9 64 Redefining hypnosis: theory, methods and integration. Contemporary Hypnosis, 2000, 17, 51-70. Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National 30 3.3 879 Academy of Sciences of the United States of America, 2000, 97, 11793-11799. Control of Response Selection by Reinforcer Value Requires Interaction of Amygdala and Orbital 548 Prefrontal Cortex. Journal of Neuroscience, 2000, 20, 4311-4319. Reward-Related Neuronal Activity During Go-Nogo Task Performance in Primate Orbitofrontal Cortex. 32 0.9 245 Journal of Neurophysiology, 2000, 83, 1864-1876. Changes in Functional Connectivity in Orbitofrontal Cortex and Basolateral Amygdala during 1.7 208 Learning and Reversal Training. Journal of Neuroscience, 2000, 20, 5179-5189. Functional Mapping of Human Brain in Olfactory Processing: A PET Study. Journal of Neurophysiology, 34 0.9 132 2000, 84, 1656-1666. NMDA, But Not Dopamine D₂, Receptors in the Rat Nucleus Accumbens Are Involved in Guidance of Instrumental Behavior by Stimuli Predicting Reward Magnitude. Journal of Neuroscience, 2000, 20, 6282-6288. Neural Correlates of Olfactory Recognition Memory in the Rat Orbitofrontal Cortex. Journal of 36 1.7 128 Neuroscience, 2000, 20, 8199-8208. Modifications of Reward Expectation-Related Neuronal Activity During Learning in Primate 144 Orbitofrontal Cortex. Journal of Neurophysiology, 2000, 83, 1877-1885.

ARTICLE IF CITATIONS # Reward Processing in Primate Orbitofrontal Cortex and Basal Ganglia. Cerebral Cortex, 2000, 10, 802 38 1.6 272-283. Activity patterns in mesolimbic regions in rats during operant tasks for reward. Progress in Brain Research, 2000, 126, 303-322. Delay Activity of Orbital and Lateral Prefrontal Neurons of the Monkey Varying with Different 40 308 1.6 Rewards. Cerebral Cortex, 2000, 10, 263-271. Brain dystrophin, neurogenetics and mental retardation. Brain Research Reviews, 2000, 32, 277-307. 9.1 Addiction, a Disease of Compulsion and Drive: Involvement of the Orbitofrontal Cortex. Cerebral 42 1,062 1.6 Cortex, 2000, 10, 318-325. Seen Gaze-Direction Modulates Fusiform Activity and Its Coupling with Other Brain Areas during Face Processing. NeuroImage, 2001, 13, 1102-1112. 2.1 Olfactory learning induces differential long-lasting changes in rat central olfactory pathways. 44 1.1 61 Neuroscience, 2001, 102, 11-21. Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the 1.1 90 rhesus monkey. Neuroscience, 2001, 103, 593-614. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 2.8 46 136 2001, 64, 1-33. Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential 1.2 rewards in a spatial memory task. Behavioural Brain Research, 2001, 123, 165-183. Functional Imaging of Neural Responses to Expectancy and Experience of Monetary Gains and Losses. 1,279 48 3.8 Neuron, 2001, 30, 619-639. Reward Circuitry Activation by Noxious Thermal Stimuli. Neuron, 2001, 32, 927-946. 3.8 478 Amygdala Regulation of Nucleus Accumbens Dopamine Output is Governed by the Prefrontal Cortex. 50 1.7 225 Journal of Neuroscience, 2001, 21, 676-681. Influence of Expectation of Different Rewards on Behavior-Related Neuronal Activity in the Striatum. Journal of Neurophysiology, 2001, 85, 2477-2489. The Role of the Primate Amygdala in Conditioned Reinforcement. Journal of Neuroscience, 2001, 21, 52 1.7 91 7770-7780. Regional central nervous system densities of delta-opioid receptors in alcohol-preferring P, 54 alcohol-nonpreferring NP, and unselected Wistar rats. Alcohol, 2001, 25, 31-38. Somatic markers and response reversal: is there orbitofrontal cortex dysfunction in boys with 55 3.5240 psychopathic tendencies? Journal of Abnormal Child Psychology, 2001, 29, 499-511. The amygdala: vigilance and emotion. Molecular Psychiatry, 2001, 6, 13-34. 4.1 2,557

#	Article	IF	CITATIONS
57	Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature, 2001, 412, 546-549.	13.7	227
58	Low Level of Brain Dopamine D2Receptors in Methamphetamine Abusers: Association With Metabolism in the Orbitofrontal Cortex. American Journal of Psychiatry, 2001, 158, 2015-2021.	4.0	840
59	EMOTIONAL LEARNING: A COMPUTATIONAL MODEL OF THE AMYGDALA. Cybernetics and Systems, 2001, 32, 611-636.	1.6	139
60	EMOTIONAL LEARNING: A COMPUTATIONAL MODEL OF THE AMYGDALA. Cybernetics and Systems, 2001, 32, 611-636.	1.6	91
61	Integrating Orbitofrontal Cortex into Prefrontal Theory: Common Processing Themes across Species and Subdivisions. Learning and Memory, 2001, 8, 134-147.	0.5	105
62	Prefrontal regions supporting spontaneous and directed application of verbal learning strategies: Evidence from PET. Brain, 2001, 124, 219-231.	3.7	173
63	The Effects of Dopamine D1 Receptor Blockade in the Prelimbic-Infralimbic Areas on Behavioral Flexibility. Learning and Memory, 2002, 9, 18-28.	0.5	155
64	Neural processing of emotional faces requires attention. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11458-11463.	3.3	1,010
65	Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8986-8991.	3.3	50
66	fMRI Study of Cognitive Interference Processing in Females with Fragile X Syndrome. Journal of Cognitive Neuroscience, 2002, 14, 160-171.	1.1	67
67	Criminality and Moral Dysfunctions: Neurological, Biochemical, and Genetic Dimensions. International Journal of Offender Therapy and Comparative Criminology, 2002, 46, 170-182.	0.8	19
68	Learning and Memory Mechanisms Involved in Compulsive Drug Use and Relapse. , 2003, 79, 75-102.		20
69	Representations of odors in the rat orbitofrontal cortex change during and after learning Behavioral Neuroscience, 2002, 116, 421-433.	0.6	38
70	Memory reactivation and consolidation during sleep: from cellular mechanisms to human performance. Progress in Brain Research, 2002, 138, 143-166.	0.9	49
71	A RELATIONSHIP BETWEEN SMELL IDENTIFICATION AND EMPATHY. International Journal of Neuroscience, 2002, 112, 605-612.	0.8	34
73	Attractive properties of sexual pheromones in mice. Physiology and Behavior, 2002, 77, 167-176.	1.0	108
74	Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion. Journal of Cognitive Neuroscience, 2002, 14, 1215-1229.	1.1	2,151
75	Neural Responses during Anticipation of a Primary Taste Reward. Neuron, 2002, 33, 815-826.	3.8	990

#	Article	IF	CITATIONS
76	The Role of the Amygdala in Signaling Prospective Outcome of Choice. Neuron, 2002, 33, 983-994.	3.8	86
77	Teaching old rats new tricks: age-related impairments in olfactory reversal learning. Neurobiology of Aging, 2002, 23, 555-564.	1.5	117
78	Application of a multilevel model of behavioural control to understanding emotion. Behavioural Processes, 2002, 60, 99-114.	0.5	10
79	Characterization of the neuronal changes in the medial prefrontal cortex during jaw movement and eyeblink Pavlovian conditioning in the rabbit. Behavioural Brain Research, 2002, 132, 117-133.	1.2	13
80	Effects of salient environmental stimuli on extracellular adenosine levels in the rat nucleus accumbens measured by in vivo microdialysis. Behavioural Brain Research, 2002, 134, 485-492.	1.2	8
81	Maturation of Brain Function Associated With Response Inhibition. Journal of the American Academy of Child and Adolescent Psychiatry, 2002, 41, 1231-1238.	0.3	479
82	Influence of Reward Expectation on Visuospatial Processing in Macaque Lateral Prefrontal Cortex. Journal of Neurophysiology, 2002, 87, 1488-1498.	0.9	210
83	Coding and Monitoring of Motivational Context in the Primate Prefrontal Cortex. Journal of Neuroscience, 2002, 22, 2391-2400.	1.7	144
84	Risky decisions and response reversal: is there evidence of orbitofrontal cortex dysfunction in psychopathic individuals?. Neuropsychologia, 2002, 40, 2013-2022.	0.7	326
85	Decision-making in a Risk-taking Task A PET Study. Neuropsychopharmacology, 2002, 26, 682-691.	2.8	390
86	The differential outcomes procedure can interfere or enhance operant rule learning. Integrative Psychological and Behavioral Science, 2002, 38, 17-35.	0.3	11
87	Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology, 2002, 160, 290-298.	1.5	353
88	Cellular imaging withzif268expression in the rat nucleus accumbens and frontal cortex further dissociates the neural pathways activated following the retrieval of contextual and cued fear memory. European Journal of Neuroscience, 2002, 16, 1789-1796.	1.2	78
89	Control of exploitation–exploration meta-parameter in reinforcement learning. Neural Networks, 2002, 15, 665-687.	3.3	220
90	The amygdala and reward. Nature Reviews Neuroscience, 2002, 3, 563-573.	4.9	1,058
91	Dopamine: generalization and bonuses. Neural Networks, 2002, 15, 549-559.	3.3	388
92	Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex. Integrative Psychological and Behavioral Science, 2003, 38, 272-294.	0.3	19
93	Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia, 2003, 41, 147-155.	0.7	804

#	Article	IF	CITATIONS
94	Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. European Journal of Neuroscience, 2003, 17, 1680-1694.	1.2	194
95	Induction of the learning and plasticity-associated geneZif268following exposure to a discrete cocaine-associated stimulus. European Journal of Neuroscience, 2003, 17, 1964-1972.	1.2	102
96	Neural correlates of memorized associations and cued movements in archistriatum of the domestic chick. European Journal of Neuroscience, 2003, 17, 1935-1946.	1.2	23
97	Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. European Journal of Neuroscience, 2003, 18, 2069-2081.	1.2	554
98	A systems approach to orbitofrontal cortex function: recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behavioural Brain Research, 2003, 146, 19-29.	1.2	110
99	Learning-related changes in response patterns of prefrontal neurons during instrumental conditioning. Behavioural Brain Research, 2003, 146, 77-88.	1.2	76
100	Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behavioural Brain Research, 2003, 146, 97-103.	1.2	551
101	Role of the orbital prefrontal cortex in choice between delayed and uncertain reinforcers: a quantitative analysis. Behavioural Processes, 2003, 64, 239-250.	0.5	54
102	Basolateral amygdala lesions impair both cue- and cocaine-induced reinstatement in animals trained on a discriminative stimulus task. Neuroscience, 2003, 121, 747-757.	1.1	64
103	The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews, 2003, 41, 88-123.	9.1	968
104	Orbital prefrontal cortex and guidance of instrumental behaviour in rats under reversal conditions. Behavioural Brain Research, 2003, 143, 49-56.	1.2	58
105	Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biological Psychiatry, 2003, 54, 504-514.	0.7	1,920
106	Dopamine D2 receptor-knockout changed accumbens neural response to prediction of reward associated with place in mice. International Congress Series, 2003, 1250, 493-508.	0.2	1
107	Transmodal coding for reward prediction in the audiovisual thalamus. International Congress Series, 2003, 1250, 383-396.	0.2	1
108	Temporal Difference Models and Reward-Related Learning in the Human Brain. Neuron, 2003, 38, 329-337.	3.8	1,311
109	Neural Encoding in Ventral Striatum during Olfactory Discrimination Learning. Neuron, 2003, 38, 625-636.	3.8	196
110	Learning Is Bitter and Sweet in Ventral Striatum. Neuron, 2003, 38, 518-519.	3.8	0
111	Encoding Predicted Outcome and Acquired Value in Orbitofrontal Cortex during Cue Sampling Depends upon Input from Basolateral Amygdala. Neuron, 2003, 39, 855-867.	3.8	425

ARTICLE IF CITATIONS # Can't Learn without You. Neuron, 2003, 39, 731-733. 3.8 31 112 The evolutionary origin of the mammalian isocortex: Towards an integrated developmental and 0.4 142 functional approach. Behavioral and Brain Sciences, 2003, 26, 535-552. Lesions of Orbitofrontal Cortex and Basolateral Amygdala Complex Disrupt Acquisition of 114 0.5 270 Odor-Guided Discriminations and Reversals. Learning and Memory, 2003, 10, 129-140. Extended Amygdala and Emotional Salience: A PET Activation Study of Positive and Negative Affect. Neuropsychopharmacology, 2003, 28, 726-733. Paleoecology and the overlap of homeotic genes for isocortex evolution. Behavioral and Brain 116 0.4 1 Sciences, 2003, 26, 555-556. Reptilian cortex and mammalian neocortex early developmental homologies. Behavioral and Brain 0.4 Sciences, 2003, 26, 560-561. Low Level of Brain Dopamine D₂Receptors in Methamphetamine Abusers: Association With 118 0.4 6 Metabolism in the Orbitofrontal Cortex. Focus (American Psychiatric Publishing), 2003, 1, 150-157. Different Roles for Orbitofrontal Cortex and Basolateral Amygdala in a Reinforcer Devaluation Task. 119 1.7 417 Journal of Neuroscience, 2003, 23, 11078-11084. Relevance of medial and dorsal cortex function to the dorsalization hypothesis. Behavioral and Brain 120 0.4 4 Sciences, 2003, 26, 566-567. Conserved functional organization of the amniote telencephalic pallium. Behavioral and Brain 0.4 Sciences, 2003, 26, 568-569. From axis to triangle: The role of orbital cortex. Behavioral and Brain Sciences, 2003, 26, 552-553. 122 0.4 25 Cranial factors in neocortical evolution. Behavioral and Brain Sciences, 2003, 26, 566-566. 0.4 The use and abuse of developmental data. Behavioral and Brain Sciences, 2003, 26, 565-566. 124 0.4 8 Avian and mammalian hippocampus: No degrees of freedom in evolution of function. Behavioral and 0.4 Brain Sciences, 2003, 26, 554-555. The data do not support the hypothesis. Behavioral and Brain Sciences, 2003, 26, 567-568. 126 0 0.4 The third alternative: Duplication of collopallium in isocortical evolution. Behavioral and Brain Sciences, 2003, 26, 553-554. Mesozoic mammals and early mammalian brain diversity. Behavioral and Brain Sciences, 2003, 26, 128 0.4 3 556-557. 129 Toward the answer, but still far to go. Behavioral and Brain Sciences, 2003, 26, 569-570.

#	Article	IF	CITATIONS
130	Reshuffling or inventing prosomeres: Expensive radiation or expensive neural tissue?. Behavioral and Brain Sciences, 2003, 26, 564-565.	0.4	0
131	An interdisciplinary approach to brain evolution: A long due debate. Behavioral and Brain Sciences, 2003, 26, 572-576.	0.4	1
132	More dorsal cortex, yes, but what flavor?. Behavioral and Brain Sciences, 2003, 26, 571-572.	0.4	0
133	Occam's razor and the collothalamic projection. Behavioral and Brain Sciences, 2003, 26, 558-559.	0.4	2
134	Cortical evolution: No expansion without organization. Behavioral and Brain Sciences, 2003, 26, 570-571.	0.4	0
135	A neurocognitive model of the psychopathic individual. , 2003, , 400-418.		9
136	The dorsal thalamic connection in the origin of the isocortex. Behavioral and Brain Sciences, 2003, 26, 557-558.	0.4	1
137	Histogenetic divisions, developmental mechanisms, and cortical evolution. Behavioral and Brain Sciences, 2003, 26, 563-564.	0.4	1
138	Responses of Tonically Active Neurons in the Monkey Striatum Discriminate between Motivationally Opposing Stimuli. Journal of Neuroscience, 2003, 23, 8489-8497.	1.7	101
139	Lesions of the Orbitofrontal but not Medial Prefrontal Cortex Disrupt Conditioned Reinforcement in Primates. Journal of Neuroscience, 2003, 23, 11189-11201.	1.7	116
140	Dissociable Contributions of the Human Amygdala and Orbitofrontal Cortex to Incentive Motivation and Goal Selection. Journal of Neuroscience, 2003, 23, 9632-9638.	1.7	307
141	Differential Response Patterns in the Striatum and Orbitofrontal Cortex to Financial Reward in Humans: A Parametric Functional Magnetic Resonance Imaging Study. Journal of Neuroscience, 2003, 23, 303-307.	1.7	472
142	Lesions of Nucleus Accumbens Disrupt Learning about Aversive Outcomes. Journal of Neuroscience, 2003, 23, 9833-9841.	1.7	128
143	The evolution of neural dynamics permitting isocortical-limbic-motor communication. Behavioral and Brain Sciences, 2003, 26, 559-560.	0.4	2
144	The origin of the amniote sensory and motor cortices. Behavioral and Brain Sciences, 2003, 26, 561-563.	0.4	4
145	Adaptive Fear, Allostasis, and the Pathology of Anxiety and Depression. , 2004, , 164-227.		9
146	Cue-Evoked Firing of Nucleus Accumbens Neurons Encodes Motivational Significance During a Discriminative Stimulus Task. Journal of Neurophysiology, 2004, 91, 1840-1865.	0.9	165
147	A Role for Prefrontal Cortex in Memory Storage for Trace Fear Conditioning. Journal of Neuroscience, 2004, 24, 1288-1295.	1.7	191

		KLFOKT	
#	ARTICLE Importance of Learning in the Response of Ewes to Male Odor. Chemical Senses, 2004, 29, 555-563.	IF 1.1	Citations 38
140	Importance of Learning in the Response of Lives to Male Odor. Chemical Senses, 2004, 23, 333-303.	1.1	30
149	Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency. Journal of Neuroscience, 2004, 24, 7540-7548.	1.7	534
150	Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. European Journal of Neuroscience, 2004, 20, 249-263.	1.2	82
151	Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. European Journal of Neuroscience, 2004, 20, 791-802.	1.2	273
152	Neural contributions to the motivational control of appetite in humans. European Journal of Neuroscience, 2004, 20, 1411-1418.	1.2	156
153	Context dependence of the event-related brain potential associated with reward and punishment. Psychophysiology, 2004, 41, 245-253.	1.2	326
154	Heart rate and skin conductance analysis of antecendents and consequences of decision making. Psychophysiology, 2004, 41, 531-540.	1.2	173
155	Long- and short-range reward expectancy in the primate orbitofrontal cortex. European Journal of Neuroscience, 2004, 19, 1046-1054.	1.2	50
156	A select group of perpetrators of domestic violence: evidence of decreased metabolism in the right hypothalamus and reduced relationships between cortical/subcortical brain structures in position emission tomography. Psychiatry Research - Neuroimaging, 2004, 130, 11-25.	0.9	62
157	Amygdala–frontal interactions and reward expectancy. Current Opinion in Neurobiology, 2004, 14, 148-155.	2.0	353
158	Extracellular level of basolateral amygdalar dopamine responding to reversal of appetitive-conditioned discrimination in young and old rats. Brain Research, 2004, 1018, 241-246.	1.1	11
159	Differential effects of infralimbic vs. ventromedial orbital PFC lidocaine infusions in CD-1 mice on defensive responding in the mouse defense test battery and rat exposure test. Brain Research, 2004, 1020, 73-85.	1.1	24
160	A BIOLOGICALLY INSPIRED HIERARCHICAL REINFORCEMENT LEARNING SYSTEM. Cybernetics and Systems, 2004, 36, 1-44.	1.6	5
161	The Basolateral Amygdala Interacts with the Medial Prefrontal Cortex in Regulating Glucocorticoid Effects on Working Memory Impairment. Journal of Neuroscience, 2004, 24, 1385-1392.	1.7	293
162	Olfactory Learning. Neuron, 2004, 44, 31-48.	3.8	173
163	Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience, 2004, 127, 207-221.	1.1	98
164	The effects of hippocampal lesions on learning, memory, and reward expectancies. Neurobiology of Learning and Memory, 2004, 82, 109-119.	1.0	46
165	Dopamine in the orbitofrontal cortex regulates operant responding under a progressive ratio of reinforcement in rats. Neuroscience Letters, 2004, 370, 114-117.	1.0	48

#	Article	IF	CITATIONS
166	Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. NeuroImage, 2004, 21, 583-592.	2.1	349
167	Instrumental responding for rewards is associated with enhanced neuronal response in subcortical reward systems. NeuroImage, 2004, 21, 984-990.	2.1	113
168	Olfactory system activation from sniffing: effects in piriform and orbitofrontal cortex. NeuroImage, 2004, 22, 456-465.	2.1	81
169	Neuroimaging correlates of anxiety after pediatric traumatic brain injury. Biological Psychiatry, 2004, 55, 208-216.	0.7	65
170	Reversible lesion of the rat's orbitofrontal cortex interferes with hippocampus-dependent spatial memory. Behavioural Brain Research, 2004, 149, 61-68.	1.2	45
171	Transient inactivation of the rat nucleus accumbens does not impair guidance of instrumental behaviour by stimuli predicting reward magnitude. Behavioural Pharmacology, 2004, 15, 55-63.	0.8	17
172	Neurobiologia do transtorno de personalidade anti-social. Revista De Psiquiatria Clinica, 2005, 32, 27-36.	0.6	3
173	Neuroanatomic Correlates of Psychopathologic Components of Major Depressive Disorder. Archives of General Psychiatry, 2005, 62, 397.	13.8	156
174	Neural systems of positive affect: Relevance to understanding child and adolescent depression?. Development and Psychopathology, 2005, 17, 827-50.	1.4	257
175	c-Fos After Incentive Shifts: Expectancy, Incredulity, and Recovery Behavioral Neuroscience, 2005, 119, 366-387.	0.6	37
176	Differential Prefrontal Cortex Activation During Inhibitory Control in Adolescents With and Without Childhood Attention-Deficit/Hyperactivity Disorder Neuropsychology, 2005, 19, 390-402.	1.0	55
177	â€~Compulsive' lever pressing in rats is enhanced following lesions to the orbital cortex, but not to the basolateral nucleus of the amygdala or to the dorsal medial prefrontal cortex. European Journal of Neuroscience, 2005, 21, 2252-2262.	1.2	57
178	NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release. European Journal of Neuroscience, 2005, 22, 1731-1740.	1.2	46
179	Spontaneous and directed application of verbal learning strategies in bipolar disorder and obsessive-compulsive disorder. Bipolar Disorders, 2005, 7, 166-175.	1.1	41
180	Regret and its avoidance: a neuroimaging study of choice behavior. Nature Neuroscience, 2005, 8, 1255-1262.	7.1	567
181	Model-based reinforcement learning: a computational model and an fMRI study. Neurocomputing, 2005, 63, 253-269.	3.5	14
182	Learning intentional behavior in the K-model of the amygdala and entorhinal cortex with the cortico-hyppocampal formation. Neurocomputing, 2005, 65-66, 23-30.	3.5	8
183	Projections from orbitofrontal cortex to anterior piriform cortex in the rat suggest a role in olfactory information processing. Journal of Comparative Neurology, 2005, 488, 224-231.	0.9	105

# 184	ARTICLE Organization of Frontohippocampal Neuronal Networks in Cats in Different Types of Directed Behavior. Neuroscience and Behavioral Physiology, 2005, 35, 667-676.	IF 0.2	CITATIONS 0
185	Prefrontal cortical cell firing during maintenance, extinction, and reinstatement of goal-directed behavior for natural reward. Synapse, 2005, 56, 74-83.	0.6	43
186	Intentional Navigation and Phase Transition Analysis in Amygdala of KIV Model. , 2005, , .		0
187	Serotonin, dopamine, and cooperation. Behavioral and Brain Sciences, 2005, 28, .	0.4	1
188	Modeling human behavioral traits and clarifying the construct of affiliation and its disorders. Behavioral and Brain Sciences, 2005, 28, .	0.4	4
189	Is all affiliation the same? Facilitation or complementarity?. Behavioral and Brain Sciences, 2005, 28, .	0.4	1
190	Trust: A temporary human attachment facilitated by oxytocin. Behavioral and Brain Sciences, 2005, 28, .	0.4	28
191	The role of trait affiliation in human community. Behavioral and Brain Sciences, 2005, 28, .	0.4	1
192	Opioid bliss as the felt hedonic core of mammalian prosociality – and of consummatory pleasure more generally?. Behavioral and Brain Sciences, 2005, 28, .	0.4	2
193	Affiliative reward and the ontogenetic bonding system. Behavioral and Brain Sciences, 2005, 28, .	0.4	0
194	Mesolimbic-mesocortical loops may encode saliency, not just reward. Behavioral and Brain Sciences, 2005, 28, .	0.4	1
195	Affiliative drive: Could this be disturbed in childhood autism?. Behavioral and Brain Sciences, 2005, 28,	0.4	0
196	Neuropeptides influence expression of and capacity to form social bonds. Behavioral and Brain Sciences, 2005, 28, .	0.4	2
197	A nonhuman primate perspective on affiliation. Behavioral and Brain Sciences, 2005, 28, .	0.4	0
198	Specificity of affiliation supported by neurotransmitter challenge tests and molecular genetics. Behavioral and Brain Sciences, 2005, 28, .	0.4	0
199	Is the construct for human affiliation too narrow?. Behavioral and Brain Sciences, 2005, 28, .	0.4	4
200	Integrating genetic, behavioral, and psychometric research in conceptualizing human behavioral traits. Behavioral and Brain Sciences, 2005, 28, .	0.4	0
201	Endogenous and exogenous opiates modulate the development of parent–infant attachment. Behavioral and Brain Sciences, 2005, 28, .	0.4	9

#	Article	IF	CITATIONS
202	It's a long way up from comparative studies of animals to personality traits in humans. Behavioral and Brain Sciences, 2005, 28, .	0.4	7
203	Serotonin and affiliative behavior. Behavioral and Brain Sciences, 2005, 28, .	0.4	6
204	Impaired hedonic capacity in major depressive disorder: Impact on affiliative behaviors. Behavioral and Brain Sciences, 2005, 28, .	0.4	0
205	Social bonds, motivational conflict, and altruism: Implications for neurobiology. Behavioral and Brain Sciences, 2005, 28, .	0.4	2
206	Deficits in affiliative reward: An endophenotype for psychiatric disorders?. Behavioral and Brain Sciences, 2005, 28, .	0.4	3
207	Neuronal Activity in Primate Orbitofrontal Cortex Reflects the Value of Time. Journal of Neurophysiology, 2005, 94, 2457-2471.	0.9	144
208	An Integrate-and-fire Model of Prefrontal Cortex Neuronal Activity during Performance of Goal-directed Decision Making. Cerebral Cortex, 2005, 15, 1964-1981.	1.6	37
209	Deficient Fear Conditioning in Psychopathy. Archives of General Psychiatry, 2005, 62, 799.	13.8	625
210	A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 2005, 28, 313-50; discussion 350-95.	0.4	744
211	Affiliative bonding as a dynamical process: A view from ethology. Behavioral and Brain Sciences, 2005, 28, .	0.4	4
212	Learning to Like: A Role for Human Orbitofrontal Cortex in Conditioned Reward. Journal of Neuroscience, 2005, 25, 2733-2740.	1.7	87
213	Personality predicts activity in reward and emotional regions associated with humor. Proceedings of the United States of America, 2005, 102, 16502-16506.	3.3	127
214	Lesions of Orbitofrontal Cortex Impair Rats' Differential Outcome Expectancy Learning But Not Conditioned Stimulus-Potentiated Feeding. Journal of Neuroscience, 2005, 25, 4626-4632.	1.7	74
215	Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2117-2122.	3.3	74
216	Neuronal Signals in the Monkey Basolateral Amygdala during Reward Schedules. Journal of Neuroscience, 2005, 25, 11071-11083.	1.7	88
217	GABAA-Mediated Inhibition of Basolateral Amygdala Blocks Reward Devaluation in Macaques. Journal of Neuroscience, 2005, 25, 4577-4586.	1.7	116
218	Analysis of phase transitions in KIV with amygdala during simulated navigation control. , 0, , .		3
219	Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress, 2005, 8, 209-219.	0.8	203

#	Article	IF	CITATIONS
220	Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. NeuroImage, 2005, 26, 1097-1108.	2.1	220
221	Neural responses to acute cocaine administration in the human brain detected by fMRI. NeuroImage, 2005, 28, 904-914.	2.1	159
222	The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior, 2005, 52, 336-372.	0.4	1,507
223	Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex. Neuron, 2005, 46, 321-331.	3.8	201
224	Orbitofrontal Cortex, Associative Learning, and Expectancies. Neuron, 2005, 47, 633-636.	3.8	410
225	Differential Neural Responses Evoked by Orthonasal versus Retronasal Odorant Perception in Humans. Neuron, 2005, 47, 593-605.	3.8	385
226	Role of the orbital cortex and of the serotonergic system in a rat model of obsessive compulsive disorder. Neuroscience, 2005, 130, 25-36.	1.1	55
227	Nucleus accumbens dopamine release is necessary and sufficient to promote the behavioral response to reward-predictive cues. Neuroscience, 2005, 135, 1025-1033.	1.1	105
228	Brain Activation Gradients in Ventrolateral Prefrontal Cortex Related to Persistence of ADHD in Adolescent Boys. Journal of the American Academy of Child and Adolescent Psychiatry, 2005, 44, 47-54.	0.3	96
229	Loving opioids in the brain. Behavioral and Brain Sciences, 2005, 28, .	0.4	1
230	A Model of Prefrontal Cortical Mechanisms for Goal-directed Behavior. Journal of Cognitive Neuroscience, 2005, 17, 1115-1129.	1.1	72
231	Role of the Orbitofrontal Cortex in Reinforcement Processing and Inhibitory Control: Evidence from functional magnetic resonance imaging Studies in Healthy Human Subjects. International Review of Neurobiology, 2005, 65, 89-116.	0.9	87
232	The Role of the Ventromedial Prefrontal Cortex in Abstract State-Based Inference during Decision Making in Humans. Journal of Neuroscience, 2006, 26, 8360-8367.	1.7	451
233	Emotion, motivation, and the brain: Reflex foundations in animal and human research. Progress in Brain Research, 2006, 156, 3-29.	0.9	307
234	A neural model of the enhancement of perception caused by emotional cues. , 2006, , .		0
235	Integration of emotion and cognition in patients with psychopathy. Progress in Brain Research, 2006, 156, 457-466.	0.9	27
236	The role of the amygdala and rostral anterior cingulate in encoding expected outcomes during learning. Neurolmage, 2006, 29, 1161-1172.	2.1	47
237	Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. NeuroImage, 2006, 32, 1782-1792.	2.1	106

# 238	ARTICLE Hedonic Hot Spots in the Brain. Neuroscientist, 2006, 12, 500-511.	IF 2.6	Citations
239	A model linking biology, behavior and psychiatric diagnoses in perpetrators of domestic violence. Medical Hypotheses, 2006, 67, 345-353.	0.8	24
240	From Malthus to motive: How the HPA axis engineers the phenotype, yoking needs to wants. Progress in Neurobiology, 2006, 79, 247-340.	2.8	110
241	Encoding of Time-Discounted Rewards in Orbitofrontal Cortex Is Independent of Value Representation. Neuron, 2006, 51, 509-520.	3.8	280
242	Representation of Spatial Goals in Rat Orbitofrontal Cortex. Neuron, 2006, 51, 495-507.	3.8	242
243	Influences of Rewarding and Aversive Outcomes on Activity in Macaque Lateral Prefrontal Cortex. Neuron, 2006, 51, 861-870.	3.8	97
244	Comparative localization of leucine-rich repeat-containing G-protein-coupled receptor-7 (RXFP1) mRNA and [33P]-relaxin binding sites in rat brain: Restricted somatic co-expression a clue to relaxin action?. Neuroscience, 2006, 141, 329-344.	1.1	46
245	Orbitofrontal cortex, decision-making and drug addiction. Trends in Neurosciences, 2006, 29, 116-124.	4.2	438
246	Encoding Changes in Orbitofrontal Cortex in Reversal-Impaired Aged Rats. Journal of Neurophysiology, 2006, 95, 1509-1517.	0.9	98
247	Orbitofrontal Ensemble Activity Monitors Licking and Distinguishes Among Natural Rewards. Journal of Neurophysiology, 2006, 95, 119-133.	0.9	97
248	Olfaction and Memory. , 2006, , 65-82.		7
249	Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. European Journal of Neuroscience, 2006, 24, 2643-2653.	1.2	79
250	The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 2006, 439, 865-870.	13.7	788
251	Behavioral Theories and the Neurophysiology of Reward. Annual Review of Psychology, 2006, 57, 87-115.	9.9	1,381
252	The signal attenuation rat model of obsessive–compulsive disorder: a review. Psychopharmacology, 2006, 186, 487-503.	1.5	68
253	Differences in orbitofrontal activation during decision-making between methadone-maintained opiate users, heroin users and healthy volunteers. Psychopharmacology, 2006, 188, 364-373.	1.5	57
254	Frontal functions, connectivity and neural efficiency underpinning hypnosis and hypnotic susceptibility. Contemporary Hypnosis, 2006, 23, 15-32.	0.7	75
255	Regional cerebral brain metabolism correlates of neuroticism and extraversion. Depression and Anxiety, 2006, 23, 133-138.	2.0	86

#	Article	IF	CITATIONS
256	Smell: Central Nervous Processing. , 2006, 63, 44-69.		191
257	Reward-period Activity in Primate Dorsolateral Prefrontal and Orbitofrontal Neurons Is Affected by Reward Schedules. Journal of Cognitive Neuroscience, 2006, 18, 212-226.	1.1	35
258	Effects of nucleus basalis magnocellularis stimulation on a socially transmitted food preference and c-Fos expression. Learning and Memory, 2006, 13, 783-793.	0.5	30
259	Microvascular Disease in Type 1 Diabetes Alters Brain Activation: A Functional Magnetic Resonance Imaging Study. Diabetes, 2006, 55, 334-340.	0.3	63
260	Neural Coding of Distinct Statistical Properties of Reward Information in Humans. Cerebral Cortex, 2006, 16, 561-573.	1.6	171
261	Amygdala-Prefrontal Cortical Circuitry Regulates Effort-Based Decision Making. Cerebral Cortex, 2006, 17, 251-260.	1.6	253
262	Choosing the Lesser of Two Evils, the Better of Two Goods: Specifying the Roles of Ventromedial Prefrontal Cortex and Dorsal Anterior Cingulate in Object Choice. Journal of Neuroscience, 2006, 26, 11379-11386.	1.7	148
263	Associative Encoding in Anterior Piriform Cortex versus Orbitofrontal Cortex during Odor Discrimination and Reversal Learning. Cerebral Cortex, 2006, 17, 643-652.	1.6	111
264	Neural coding of reward magnitude in the orbitofrontal cortex of the rat during a five-odor olfactory discrimination task. Learning and Memory, 2007, 14, 446-456.	0.5	59
265	Adaptation of Prefrontal Cortical Firing Patterns and Their Fidelity to Changes in Action-Reward Contingencies. Journal of Neuroscience, 2007, 27, 3548-3559.	1.7	47
267	The Impact of Tryptophan Depletion and 5-HTTLPR Genotype on Passive Avoidance and Response Reversal Instrumental Learning Tasks. Neuropsychopharmacology, 2007, 32, 206-215.	2.8	78
268	Striatal opioid peptide gene expression differentially tracks short-term satiety but does not vary with negative energy balance in a manner opposite to hypothalamic NPY. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R217-R226.	0.9	23
269	Control of appetitive and aversive taste-reactivity responses by an auditory conditioned stimulus in a devaluation task: A FOS and behavioral analysis. Learning and Memory, 2007, 14, 581-589.	0.5	52
270	Self-Control as an Executive Function. Criminal Justice and Behavior, 2007, 34, 1345-1361.	1.1	136
271	Bidirectional Modulation of Goal-Directed Actions by Prefrontal Cortical Dopamine. Cerebral Cortex, 2007, 17, 2820-2827.	1.6	156
272	Orbitofrontal Cortex Mediates Outcome Encoding in Pavlovian But Not Instrumental Conditioning. Journal of Neuroscience, 2007, 27, 4819-4825.	1.7	341
273	Differential involvement of the basolateral amygdala, orbitofrontal cortex, and nucleus accumbens core in the acquisition and use of reward expectancies Behavioral Neuroscience, 2007, 121, 896-906.	0.6	51
274	Neural correlates of stimulus–reward association in the rat mediodorsal thalamus. NeuroReport, 2007, 18, 683-688.	0.6	28

#	Article	IF	CITATIONS
275	The amygdala, reward and emotion. Trends in Cognitive Sciences, 2007, 11, 489-497.	4.0	574
276	Basolateral Amygdala Lesions Abolish Orbitofrontal-Dependent Reversal Impairments. Neuron, 2007, 54, 51-58.	3.8	176
277	Contributions of the Amygdala to Reward Expectancy and Choice Signals in Human Prefrontal Cortex. Neuron, 2007, 55, 545-555.	3.8	183
278	Locus coeruleus activation by foot shock or electrical stimulation inhibits amygdala neurons. Neuroscience, 2007, 144, 472-481.	1.1	111
279	Developmental changes in odor-evoked activity in rat piriform cortex. Neuroscience, 2007, 145, 370-376.	1.1	19
280	Orbitofrontal cortex lesions disrupt risk assessment in a novel serial decision-making task for rats. Neuroscience, 2007, 145, 225-231.	1.1	66
281	The role of the agranular insular cortex in anticipation of reward contrast. Neurobiology of Learning and Memory, 2007, 88, 82-86.	1.0	49
282	Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 2007, 34, 905-923.	2.1	752
283	Response options and expectations of reward in decision-making: The differential roles of dorsal and rostral anterior cingulate cortex. NeuroImage, 2007, 35, 979-988.	2.1	80
284	Adaptive decision making and value in the anterior cingulate cortex. NeuroImage, 2007, 36, T142-T154.	2.1	139
285	Subregions of the ventral striatum show preferential coding of reward magnitude and probability. NeuroImage, 2007, 38, 557-563.	2.1	68
286	Orbitofrontal Cortex and Its Contribution to Decision-Making. Annual Review of Neuroscience, 2007, 30, 31-56.	5.0	723
287	Orbitofrontal Cortex Encodes Willingness to Pay in Everyday Economic Transactions. Journal of Neuroscience, 2007, 27, 9984-9988.	1.7	765
288	How Prior Reward Experience Biases Exploratory Movements: A Probabilistic Model. Journal of Neurophysiology, 2007, 97, 2083-2093.	0.9	35
289	Fronto-limbic brain structures in suicidal and non-suicidal female patients with major depressive disorder. Molecular Psychiatry, 2007, 12, 360-366.	4.1	282
290	Predators' Toxin Burdens Influence Their Strategic Decisions to Eat Toxic Prey. Current Biology, 2007, 17, 1479-1483.	1.8	93
291	Should I Stay or Should I Go?: Transformation of Time-Discounted Rewards in Orbitofrontal Cortex and Associated Brain Circuits. Annals of the New York Academy of Sciences, 2007, 1104, 21-34.	1.8	43
292	Reconciling the Roles of Orbitofrontal Cortex in Reversal Learning and the Encoding of Outcome Expectancies. Annals of the New York Academy of Sciences, 2007, 1121, 320-335.	1.8	126

#	Article	IF	CITATIONS
293	Neuronal Activity Related to Anticipated Reward in Frontal Cortex. Annals of the New York Academy of Sciences, 2007, 1121, 431-446.	1.8	79
294	Taste in the Medial Orbitofrontal Cortex of the Macaque. Annals of the New York Academy of Sciences, 2007, 1121, 121-135.	1.8	16
295	Neural Correlates of Inflexible Behavior in the Orbitofrontal–Amygdalar Circuit after Cocaine Exposure. Annals of the New York Academy of Sciences, 2007, 1121, 598-609.	1.8	29
296	Orbitofrontal Cortex and Cognitiveâ€Motivational Impairments in Psychostimulant Addiction. Annals of the New York Academy of Sciences, 2007, 1121, 610-638.	1.8	51
297	A Comparison of Reward-Contingent Neuronal Activity in Monkey Orbitofrontal Cortex and Ventral Striatum: Guiding Actions toward Rewards. Annals of the New York Academy of Sciences, 2007, 1121, 376-394.	1.8	23
298	The Contribution of Orbitofrontal Cortex to Action Selection. Annals of the New York Academy of Sciences, 2007, 1121, 174-192.	1.8	89
299	Flexible Neural Representations of Value in the Primate Brain. Annals of the New York Academy of Sciences, 2007, 1121, 336-354.	1.8	53
300	The Orbitofrontal Cortex: Novelty, Deviation from Expectation, and Memory. Annals of the New York Academy of Sciences, 2007, 1121, 33-53.	1.8	83
301	Lights, Camembert, Action! The Role of Human Orbitofrontal Cortex in Encoding Stimuli, Rewards, and Choices. Annals of the New York Academy of Sciences, 2007, 1121, 254-272.	1.8	169
302	Neural Encoding in the Orbitofrontal Cortex Related to Goalâ€Directed Behavior. Annals of the New York Academy of Sciences, 2007, 1121, 193-215.	1.8	28
303	Interactions between the Orbitofrontal Cortex and the Hippocampal Memory System during the Storage of Long-Term Memory. Annals of the New York Academy of Sciences, 2007, 1121, 216-231.	1.8	42
304	Appetitive conditioning: Neural bases and implications for psychopathology. Neuroscience and Biobehavioral Reviews, 2007, 31, 426-440.	2.9	149
305	Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 375-389.	1.0	256
306	Cognitive versus stimulus-response theories of learning. Learning and Behavior, 2008, 36, 227-241.	0.5	59
307	Neural correlates, computation and behavioural impact of decision confidence. Nature, 2008, 455, 227-231.	13.7	720
308	Choice, uncertainty and value in prefrontal and cingulate cortex. Nature Neuroscience, 2008, 11, 389-397.	7.1	727
309	Medial orbitofrontal cortex codes relative rather than absolute value of financial rewards in humans. European Journal of Neuroscience, 2008, 27, 2213-2218.	1.2	112
310	A neural network model of hippocampal–striatal–prefrontal interactions in contextual conditioning. Brain Research, 2008, 1202, 87-98.	1.1	9

#	Article	IF	CITATIONS
311	The influence of personality on neural mechanisms of observational fear and reward learning. Neuropsychologia, 2008, 46, 2709-2724.	0.7	102
312	Modulation of the spatial attention network by incentives in healthy aging and mild cognitive impairment. Neuropsychologia, 2008, 46, 2943-2948.	0.7	24
313	Frontal Cortex Subregions Play Distinct Roles in Choices between Actions and Stimuli. Journal of Neuroscience, 2008, 28, 13775-13785.	1.7	299
314	Knowing When to Stop: The Brain Mechanisms of Chasing Losses. Biological Psychiatry, 2008, 63, 293-300.	0.7	146
315	The Functional Neuroanatomy of Maternal Love: Mother's Response to Infant's Attachment Behaviors. Biological Psychiatry, 2008, 63, 415-423.	0.7	295
316	Decreased Volume of the Brain Reward System in Alcoholism. Biological Psychiatry, 2008, 64, 192-202.	0.7	332
317	Separable Substrates for Anticipatory and Consummatory Food Chemosensation. Neuron, 2008, 57, 786-797.	3.8	161
318	Basolateral Amygdala Neurons Facilitate Reward-Seeking Behavior by Exciting Nucleus Accumbens Neurons. Neuron, 2008, 59, 648-661.	3.8	407
319	Cortical Thickness Abnormalities in Cocaine Addiction—A Reflection of Both Drug Use and a Pre-existing Disposition to Drug Abuse?. Neuron, 2008, 60, 174-188.	3.8	150
320	Induction of early growth response gene 2 expression in the forebrain of mice performing an attention-set-shifting task. Neuroscience, 2008, 152, 417-428.	1.1	55
321	Contributions of the amygdala and medial prefrontal cortex to incentive cue responding. Neuroscience, 2008, 155, 573-584.	1.1	91
322	Leucine-rich repeat-containing G-protein-coupled receptor 8 in the rat brain: Enrichment in thalamic neurons and their efferent projections. Neuroscience, 2008, 156, 319-333.	1.1	28
323	Is a bird in the hand worth two in the future? The neuroeconomics of intertemporal decision-making. Progress in Neurobiology, 2008, 84, 284-315.	2.8	186
324	The cognitive functions of the caudate nucleus. Progress in Neurobiology, 2008, 86, 141-155.	2.8	716
325	Behavioral States, Network States, and Sensory Response Variability. Journal of Neurophysiology, 2008, 100, 1160-1168.	0.9	187
326	Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. NeuroImage, 2008, 42, 1537-1543.	2.1	488
327	Dissociable roles of medial orbitofrontal cortex in human operant extinction learning. NeuroImage, 2008, 43, 748-755.	2.1	40
328	Acceleration. , 2008, , 4-4.		0

#	Article	IF	CITATIONS
330	Selective Activation of Medial Prefrontal-to-Accumbens Projection Neurons by Amygdala Stimulation and Pavlovian Conditioned Stimuli. Cerebral Cortex, 2008, 18, 1961-1972.	1.6	46
331	From Fear to Safety and Back: Reversal of Fear in the Human Brain. Journal of Neuroscience, 2008, 28, 11517-11525.	1.7	420
332	Abnormal Ventromedial Prefrontal Cortex Function in Children With Psychopathic Traits During Reversal Learning. Archives of General Psychiatry, 2008, 65, 586.	13.8	324
333	Plasticity and Memory in the Prefrontal Cortex. Reviews in the Neurosciences, 2008, 19, 29-46.	1.4	38
334	Lesions of the Medial Striatum in Monkeys Produce Perseverative Impairments during Reversal Learning Similar to Those Produced by Lesions of the Orbitofrontal Cortex. Journal of Neuroscience, 2008, 28, 10972-10982.	1.7	228
335	Population Coding of Reward Magnitude in the Orbitofrontal Cortex of the Rat. Journal of Neuroscience, 2008, 28, 8590-8603.	1.7	48
336	Calculating Consequences: Brain Systems That Encode the Causal Effects of Actions. Journal of Neuroscience, 2008, 28, 6750-6755.	1.7	223
337	Dorsomedial Prefrontal Cortex Contribution to Behavioral and Nucleus Accumbens Neuronal Responses to Incentive Cues. Journal of Neuroscience, 2008, 28, 5088-5098.	1.7	113
338	Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18041-18046.	3.3	71
339	Rat Orbitofrontal Cortex Separately Encodes Response and Outcome Information during Performance of Goal-Directed Behavior. Journal of Neuroscience, 2008, 28, 5127-5138.	1.7	54
340	Activity of Primate Orbitofrontal and Dorsolateral Prefrontal Neurons: Effect of Reward Schedule on Task-related Activity. Journal of Cognitive Neuroscience, 2008, 20, 563-579.	1.1	27
341	A comparison of discrimination and reversal learning for olfactory and visual stimuli in aged rats Behavioral Neuroscience, 2008, 122, 54-62.	0.6	53
342	Affect circumplex redux: the discussion on its utility as a measurement framework in exercise psychology continues. International Review of Sport and Exercise Psychology, 2008, 1, 139-159.	3.1	31
343	Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model. Frontiers in Neuroscience, 2008, 2, 86-99.	1.4	90
344	Neurophysiology. , 2008, , 221-283.		1
345	Neuropsychology of obsessive-compulsive disorder. , 2009, , 342-352.		1
346	Multiple Forms of Value Learning and the Function of Dopamine. , 2009, , 367-387.		38
347	A defined network of fast-spiking interneurons in orbitofrontal cortex: responses to behavioral contingencies and ketamine administration. Frontiers in Systems Neuroscience, 2009, 3, 13.	1.2	65

#	Article	IF	CITATIONS
348	Neural responses to sanction threats in two-party economic exchange. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16835-16840.	3.3	87
349	Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15031-15036.	3.3	162
350	Single-Cell and Population Coding of Expected Reward Probability in the Orbitofrontal Cortex of the Rat. Journal of Neuroscience, 2009, 29, 8965-8976.	1.7	68
351	Ventral Striatal Neurons Encode the Value of the Chosen Action in Rats Deciding between Differently Delayed or Sized Rewards. Journal of Neuroscience, 2009, 29, 13365-13376.	1.7	176
352	Distinct Subtypes of Basolateral Amygdala Taste Neurons Reflect Palatability and Reward. Journal of Neuroscience, 2009, 29, 2486-2495.	1.7	112
353	Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala. Journal of Neuroscience, 2009, 29, 14299-14308.	1.7	142
354	The Convergence of Information about Rewarding and Aversive Stimuli in Single Neurons. Journal of Neuroscience, 2009, 29, 11471-11483.	1.7	176
355	Towards Conceptualizing a Neural Systems-Based Anatomy of Attention-Deficit/Hyperactivity Disorder. Developmental Neuroscience, 2009, 31, 36-49.	1.0	157
356	Dynamic Encoding of Action Selection by the Medial Striatum. Journal of Neuroscience, 2009, 29, 3148-3159.	1.7	96
357	Timing-Dependent Regulation of Evoked Spiking in Nucleus Accumbens Neurons by Integration of Limbic and Prefrontal Cortical Inputs. Journal of Neurophysiology, 2009, 101, 1823-1835.	0.9	33
358	Sexually dimorphic gray matter volume reduction in patients with panic disorder. Psychiatry Research - Neuroimaging, 2009, 173, 128-134.	0.9	95
359	A voxelâ€based morphometry study of frontal gray matter correlates of impulsivity. Human Brain Mapping, 2009, 30, 1188-1195.	1.9	217
360	Orbitofrontal Cortex Contributions to Food Selection and Decision Making. Annals of Behavioral Medicine, 2009, 38, 18-24.	1.7	35
361	Coherent gamma oscillations couple the amygdala and striatum during learning. Nature Neuroscience, 2009, 12, 801-807.	7.1	169
362	The rhythms of learning. Nature Neuroscience, 2009, 12, 675-676.	7.1	1
363	A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature Reviews Neuroscience, 2009, 10, 885-892.	4.9	501
364	A specific role for posterior dorsolateral striatum in human habit learning. European Journal of Neuroscience, 2009, 29, 2225-2232.	1.2	637
365	Impulsive choice in hippocampal but not orbitofrontal cortexâ€lesioned rats on a nonspatial decisionâ€making maze task. European lournal of Neuroscience, 2009, 30, 472-484.	1.2	97

#	Article	IF	CITATIONS
366	Reinforcement learning, conditioning, and the brain: Successes and challenges. Cognitive, Affective and Behavioral Neuroscience, 2009, 9, 343-364.	1.0	154
367	Effects of food deprivation on goal-directed behavior, spontaneous locomotion, and c-Fos immunoreactivity in the amygdala. Behavioural Brain Research, 2009, 197, 9-15.	1.2	29
368	Reward expectation alters learning and memory: The impact of the amygdala on appetitive-driven behaviors. Behavioural Brain Research, 2009, 198, 1-12.	1.2	49
369	Neuronal encoding of meaning: Establishing category-selective response patterns in the avian â€~prefrontal cortex'. Behavioural Brain Research, 2009, 198, 214-223.	1.2	29
370	Lesion of the ventral and intermediate hippocampus abolishes anticipatory activity in the medial prefrontal cortex of the rat. Behavioural Brain Research, 2009, 199, 222-234.	1.2	69
371	The Orbitofrontal Cortex and Ventral Tegmental Area Are Necessary for Learning from Unexpected Outcomes. Neuron, 2009, 62, 269-280.	3.8	252
372	Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology, 2009, 56, 63-72.	2.0	135
373	Metabolic mapping of rat forebrain and midbrain during delay and trace eyeblink conditioning. Neurobiology of Learning and Memory, 2009, 92, 335-344.	1.0	20
374	Discrimination Learning, Reversal, and Set-Shifting in First-Episode Schizophrenia: Stability Over Six Years and Specific Associations with Medication Type and Disorganization Syndrome. Biological Psychiatry, 2009, 66, 586-593.	0.7	193
375	Taste-Guided Decisions Differentially Engage Neuronal Ensembles across Gustatory Cortices. Journal of Neuroscience, 2009, 29, 11271-11282.	1.7	12
377	Neurons in the Frontal Lobe Encode the Value of Multiple Decision Variables. Journal of Cognitive Neuroscience, 2009, 21, 1162-1178.	1.1	398
378	Reward and Learning. , 2009, , 309-311.		Ο
379	Value-Based Learning. , 2009, , 4158-4160.		0
380	Corticostriatal Interactions during Learning, Memory Processing, and Decision Making. Journal of Neuroscience, 2009, 29, 12831-12838.	1.7	183
381	Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making. Cerebral Cortex, 2009, 19, 483-495.	1.6	330
382	A prefrontal non-opioid mechanism in placebo analgesia. Pain, 2010, 150, 59-65.	2.0	157
383	Basolateral amygdala opioids contribute to increased high-fat intake following intra-accumbens opioid administration, but not following 24-h food deprivation. Pharmacology Biochemistry and Behavior, 2010, 97, 262-266.	1.3	19
384	Re-valuing the amygdala. Current Opinion in Neurobiology, 2010, 20, 221-230.	2.0	282

#	Article	IF	CITATIONS
385	Effect of menstrual cycle phase on corticolimbic brain activation by visual food cues. Brain Research, 2010, 1363, 81-92.	1.1	91
386	Pavlovian to instrumental transfer: A neurobehavioural perspective. Neuroscience and Biobehavioral Reviews, 2010, 34, 1277-1295.	2.9	261
387	Insight Into the Relationship Between Impulsivity and Substance Abuse From Studies Using Animal Models. Alcoholism: Clinical and Experimental Research, 2010, 34, 1306-1318.	1.4	166
388	Methylphenidate facilitates learning-induced amygdala plasticity. Nature Neuroscience, 2010, 13, 475-481.	7.1	69
389	Learningâ€dependent dynamics of betaâ€frequency oscillations in the basal forebrain of rats. European Journal of Neuroscience, 2010, 32, 1507-1515.	1.2	21
390	At the limbic–motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. European Journal of Neuroscience, 2010, 32, 1735-1743.	1.2	141
391	Expectancies in decision making, reinforcement learning, and ventral striatum. Frontiers in Neuroscience, 2010, 4, 6.	1.4	48
392	Dissociable Roles of the Medial Prefrontal Cortex and Nucleus Accumbens Core in Goal-Directed Actions for Differential Reward Magnitude. Cerebral Cortex, 2010, 20, 2884-2899.	1.6	35
393	Amygdalocortical Circuitry in Schizophrenia: From Circuits to Molecules. Neuropsychopharmacology, 2010, 35, 239-257.	2.8	155
394	Inactivation of the Central But Not the Basolateral Nucleus of the Amygdala Disrupts Learning in Response to Overexpectation of Reward: Figure 1 Journal of Neuroscience, 2010, 30, 2911-2917.	1.7	27
395	Ventromedial and Orbital Prefrontal Neurons Differentially Encode Internally and Externally Driven Motivational Values in Monkeys. Journal of Neuroscience, 2010, 30, 8591-8601.	1.7	177
396	Licking-Induced Synchrony in the Taste–Reward Circuit Improves Cue Discrimination during Learning. Journal of Neuroscience, 2010, 30, 287-303.	1.7	103
397	Brain imaging studies of appetite in the context of obesity and the menstrual cycle. Human Reproduction Update, 2010, 16, 276-292.	5.2	58
398	Birds learn to use distastefulness as a signal of toxicity. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1729-1734.	1.2	61
399	Human and Rodent Homologies in Action Control: Corticostriatal Determinants of Goal-Directed and Habitual Action. Neuropsychopharmacology, 2010, 35, 48-69.	2.8	1,437
400	Neural Correlates of Variations in Event Processing during Learning in Basolateral Amygdala. Journal of Neuroscience, 2010, 30, 2464-2471.	1.7	147
401	Learning-Associated Gamma-Band Phase-Locking of Action–Outcome Selective Neurons in Orbitofrontal Cortex. Journal of Neuroscience, 2010, 30, 10025-10038.	1.7	82
402	Astrocyte-Mediated Hepatocyte Growth Factor/Scatter Factor Supplementation Restores GABAergic Interneurons and Corrects Reversal Learning Deficits in Mice. Journal of Neuroscience, 2010, 30, 2918-2923.	1.7	24

# 403	ARTICLE The neural code of reward anticipation in human orbitofrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6010-6015.	IF 3.3	CITATIONS 240
404	Amygdala Neural Encoding of the Absence of Reward during Extinction. Journal of Neuroscience, 2010, 30, 116-125.	1.7	75
405	The Effect of Vapor of Propylene Glycol on Rats. Chemical Senses, 2010, 35, 221-228.	1.1	4
406	Theta-Band Phase Locking of Orbitofrontal Neurons during Reward Expectancy. Journal of Neuroscience, 2010, 30, 7078-7087.	1.7	85
407	Development of Effective PET and SPECT Imaging Agents for the Serotonin Transporter: Has a Twenty-Year Journey Reached its Destination?. Current Topics in Medicinal Chemistry, 2010, 10, 1499-1526.	1.0	39
408	The orbitofrontal cortex is not necessary for acquisition or remote recall of socially transmitted food preferences. Behavioural Brain Research, 2010, 208, 243-249.	1.2	10
409	The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning. Neuroscience, 2010, 166, 752-762.	1.1	24
410	Neuronal representation of conditioned taste in the basolateral amygdala of rats. Neurobiology of Learning and Memory, 2010, 93, 406-414.	1.0	18
411	Acquisition of glucose-conditioned flavor preference requires the activation of dopamine D1-like receptors within the medial prefrontal cortex in rats. Neurobiology of Learning and Memory, 2010, 94, 214-219.	1.0	43
412	Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends in Cognitive Sciences, 2010, 14, 268-276.	4.0	256
413	The nexus between decision making and emotion regulation: A review of convergent neurocognitive substrates. Behavioural Brain Research, 2011, 217, 215-231.	1.2	169
414	Processing Social and Nonsocial Rewards in the Human Brain. , 2011, , .		5
416	Normal Aging does Not Impair Orbitofrontal-Dependent Reinforcer Devaluation Effects. Frontiers in Aging Neuroscience, 2011, 3, 4.	1.7	9
417	Value and Prediction Error in Medial Frontal Cortex: Integrating the Single-Unit and Systems Levels of Analysis. Frontiers in Human Neuroscience, 2011, 5, 75.	1.0	112
418	Rodent versions of the Iowa gambling task: opportunities and challenges for the understanding of decision-making. Frontiers in Neuroscience, 2011, 5, 109.	1.4	105
419	Neural correlates of Pavlovianâ€toâ€instrumental transfer in the nucleus accumbens shell are selectively potentiated following cocaine selfâ€administration. European Journal of Neuroscience, 2011, 33, 2274-2287.	1.2	75
420	Differentiable contributions of human amygdalar subregions in the computations underlying reward and avoidance learning. European Journal of Neuroscience, 2011, 34, 134-145.	1.2	48
421	Neural response to action and reward prediction errors: Comparing the errorâ€related negativity to behavioral errors and the feedbackâ€related negativity to reward prediction violations. Psychophysiology, 2011, 48, 218-228.	1.2	49

#	Article	IF	CITATIONS
422	Population coding and neural rhythmicity in the orbitofrontal cortex. Annals of the New York Academy of Sciences, 2011, 1239, 149-161.	1.8	17
423	Does the orbitofrontal cortex signal value?. Annals of the New York Academy of Sciences, 2011, 1239, 87-99.	1.8	203
424	Representations of appetitive and aversive information in the primate orbitofrontal cortex. Annals of the New York Academy of Sciences, 2011, 1239, 59-70.	1.8	54
425	The value of identity: olfactory notes on orbitofrontal cortex function. Annals of the New York Academy of Sciences, 2011, 1239, 138-148.	1.8	41
426	The orbitofrontal cortex, predicted value, and choice. Annals of the New York Academy of Sciences, 2011, 1239, 43-50.	1.8	72
427	Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex. Annals of the New York Academy of Sciences, 2011, 1239, 33-42.	1.8	92
428	The orbitofrontal cortex and response selection. Annals of the New York Academy of Sciences, 2011, 1239, 25-32.	1.8	38
429	The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making. Brain Research, 2011, 1423, 53-66.	1.1	36
430	Toward a biosocial theory of offender rehabiltiation: Why does cognitive-behavioral therapy work?. Journal of Criminal Justice, 2011, 39, 90-102.	1.5	72
431	Dynamic Coding of Goal-Directed Paths by Orbital Prefrontal Cortex. Journal of Neuroscience, 2011, 31, 5989-6000.	1.7	75
432	Decoding the Formation of Reward Predictions across Learning. Journal of Neuroscience, 2011, 31, 14624-14630.	1.7	54
433	The neurobiology of intertemporal choice: insight from imaging and lesion studies. Reviews in the Neurosciences, 2011, 22, 565-74.	1.4	35
434	Internet addiction: Neuroimaging findings. Communicative and Integrative Biology, 2011, 4, 637-639.	0.6	55
435	Decision making and reward in frontal cortex: Complementary evidence from neurophysiological and neuropsychological studies Behavioral Neuroscience, 2011, 125, 297-317.	0.6	133
436	Transient Extracellular Glutamate Events in the Basolateral Amygdala Track Reward-Seeking Actions. Journal of Neuroscience, 2012, 32, 2734-2746.	1.7	63
437	Expectancy, Ambiguity, and Behavioral Flexibility: Separable and Complementary Roles of the Orbital Frontal Cortex and Amygdala in Processing Reward Expectancies. Journal of Cognitive Neuroscience, 2012, 24, 351-366.	1.1	25
438	Inactivation of Basolateral Amygdala Specifically Eliminates Palatability-Related Information in Cortical Sensory Responses. Journal of Neuroscience, 2012, 32, 9981-9991.	1.7	100
439	Lateral OFC Activity Predicts Decision Bias due to First Impressions during Ultimatum Games. Journal of Cognitive Neuroscience, 2012, 24, 428-439.	1.1	21

ARTICLE IF CITATIONS Implicit olfactory abilities in traumatic brain injured patients. Journal of Clinical and Experimental 440 0.8 4 Neuropsychology, 2012, 34, 977-988. Shaping barrels: activity moves NG2+ glia. Nature Neuroscience, 2012, 15, 1176-1178. 441 7.1 Normal Aging Alters Learning and Attention-Related Teaching Signals in Basolateral Amygdala. Journal 442 1.7 18 of Neuroscience, 2012, 32, 13137-13144. Aversive-Bias and Stage-Selectivity in Neurons of the Primate Amygdala during Acquisition, Extinction, and Overnight Retention. Journal of Neuroscience, 2012, 32, 8598-8610. 443 Cocaine-induced Impulsive Choices Are Accompanied by Impaired Delay-dependent Anticipatory Activity 444 1.1 17 in Basolateral Amygdala. Journal of Cognitive Neuroscience, 2012, 24, 196-211. Neuroscience and Human Motivation., 0, , 365-380. 446 Running just to stand still. Nature Neuroscience, 2012, 15, 1175-1176. 7.1 0 The persistence of maladaptive memory: Addiction, drug memories and anti-relapse treatments. 447 2.9 214 Neuroscience and Biobehavioral Reviews, 2012, 36, 1119-1139. Temporal Integration of Olfactory Perceptual Evidence in Human Orbitofrontal Cortex. Neuron, 2012, 448 3.8 78 75, 916-927. Inhibition of Fear by Learned Safety Signals: A Mini-Symposium Review. Journal of Neuroscience, 2012, 449 1.7 32, 14118-14124. Importance of reward and prefrontal circuitry in hunger and satiety: Prader–Willi syndrome vs 450 1.6 97 simple obesity. International Journal of Obesity, 2012, 36, 638-647. Reversal learning and attentional set-shifting in mice. Neuropharmacology, 2012, 62, 1168-1174. 89 Fear conditioning in psychopaths: Event-related potentials and peripheral measures. Biological 452 1.1 93 Psychology, 2012, 90, 50-59. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa. 1.4 Journal of Psychiatry and Neuroscience, 2012, 37, 322-332. NMDA Receptors Control Cue-Outcome Selectivity and Plasticity of Orbitofrontal Firing Patterns 454 3.8 29 during Associative Stimulus-Reward Learning. Neuron, 2012, 76, 813-825. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nature Neuroscience, 313 2012, 15, 13-19. Pavlovian valuation systems in learning and decision making. Current Opinion in Neurobiology, 2012, 456 2.0 95 22, 1054-1061. Preserved stimulus-reward and reversal learning after selective neonatal orbital frontal areas 11/13 or amygdala lesions in monkeys. Developmental Cognitive Neuroscience, 2012, 2, 363-380.

#	Article	IF	CITATIONS
458	Prefrontal Cortex. , 2012, , 727-735.		6
459	Regional Brain Responses in Nulliparous Women to Emotional Infant Stimuli. PLoS ONE, 2012, 7, e36270.	1.1	53
460	Laughing Rats Are Optimistic. PLoS ONE, 2012, 7, e51959.	1.1	111
461	The brain on art: intense aesthetic experience activates the default mode network. Frontiers in Human Neuroscience, 2012, 6, 66.	1.0	197
462	Error Awareness and Salience Processing in the Oddball Task: Shared Neural Mechanisms. Frontiers in Human Neuroscience, 2012, 6, 246.	1.0	67
463	The Road Not Taken: Neural Correlates of Decision Making in Orbitofrontal Cortex. Frontiers in Neuroscience, 2012, 6, 131.	1.4	59
464	Complexity and Competition in Appetitive and Aversive Neural Circuits. Frontiers in Neuroscience, 2012, 6, 170.	1.4	32
465	The Use of Near-Infrared Spectroscopy to Detect Differences in Brain Activation According to Different Experiences with Cosmetics. , 2012, , .		1
466	Semantic organizational strategy predicts verbal memory and remission rate of geriatric depression. International Journal of Geriatric Psychiatry, 2012, 27, 506-512.	1.3	37
467	Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience, 2012, 13, 251-266.	4.9	655
468	The impact of orbitofrontal dysfunction on cocaine addiction. Nature Neuroscience, 2012, 15, 358-366.	7.1	179
469	Inactivation of the basolateral amygdala during opiate reward learning disinhibits prelimbic cortical neurons and modulates associative memory extinction. Psychopharmacology, 2012, 222, 645-661.	1.5	27
470	Changes in synaptic efficacy of dentate granule cells during operant behavior in rats. Physiology and Behavior, 2012, 105, 938-947.	1.0	2
471	Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala–anterior paralimbic neural system. Bipolar Disorders, 2012, 14, 340-355.	1.1	103
472	Beyond simple reinforcement learning: the computational neurobiology of rewardâ€learning and valuation. European Journal of Neuroscience, 2012, 35, 987-990.	1.2	33
473	Differential involvement of the basolateral amygdala and orbitofrontal cortex in the formation of sensoryâ€specific associations in conditioned flavor preference and magazine approach paradigms. European Journal of Neuroscience, 2012, 35, 1799-1809.	1.2	15
474	A modified adjusting delay task to assess impulsive choice between isocaloric reinforcers in non-deprived male rats: effects of 5-HT2A/C and 5-HT1A receptor agonists. Psychopharmacology, 2012, 219, 377-386.	1.5	22
475	Conditioned place preference induced by electrical stimulation of the insular cortex: effects of naloxone. Experimental Brain Research, 2013, 226, 165-174.	0.7	20

#	Article	IF	CITATIONS
476	AMPA receptor endocytosis in the amygdala is involved in the disrupted reconsolidation of Methamphetamine-associated contextual memory. Neurobiology of Learning and Memory, 2013, 103, 72-81.	1.0	20
477	Chronic psychosocial stress makes rats more â€~pessimistic' in the ambiguous-cue interpretation paradigm. Behavioural Brain Research, 2013, 256, 305-310.	1.2	92
478	In Vivo Two-Photon Ca2+ Imaging Reveals Selective Reward Effects on Stimulus-Specific Assemblies in Mouse Visual Cortex. Journal of Neuroscience, 2013, 33, 11540-11555.	1.7	78
479	The neurobiology of psychopathic traits in youths. Nature Reviews Neuroscience, 2013, 14, 786-799.	4.9	468
480	Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nature Communications, 2013, 4, 2264.	5.8	501
481	Ethanol Reduces Neuronal Excitability of Lateral Orbitofrontal Cortex Neurons Via a Glycine Receptor Dependent Mechanism. Neuropsychopharmacology, 2013, 38, 1176-1188.	2.8	69
482	CHANGE DETECTION, MULTIPLE CONTROLLERS, AND DYNAMIC ENVIRONMENTS: INSIGHTS FROM THE BRAIN. Journal of the Experimental Analysis of Behavior, 2013, 99, 74-84.	0.8	11
483	Relationship between emotional experience and resilience: An fMRI study in fire-fighters. Neuropsychologia, 2013, 51, 845-849.	0.7	35
484	Effects of Amygdala Lesions on Reward-Value Coding in Orbital and Medial Prefrontal Cortex. Neuron, 2013, 80, 1519-1531.	3.8	135
485	Systematic review, structural analysis, and new theoretical perspectives on the role of serotonin and associated genes in the etiology of psychopathy and sociopathy. Neuroscience and Biobehavioral Reviews, 2013, 37, 1254-1296.	2.9	63
486	Incentive Memory: Evidence the Basolateral Amygdala Encodes and the Insular Cortex Retrieves Outcome Values to Guide Choice between Goal-Directed Actions. Journal of Neuroscience, 2013, 33, 8753-8763.	1.7	133
487	Invigoration of Reward Seeking by Cue and Proximity Encoding in the Nucleus Accumbens. Neuron, 2013, 78, 910-922.	3.8	115
488	Amygdala Lesions Reduce Cataplexy in Orexin Knock-Out Mice. Journal of Neuroscience, 2013, 33, 9734-9742.	1.7	98
489	Context insensitivity during positive and negative emotional expectancy in depression assessed with functional magnetic resonance imaging. Psychiatry Research - Neuroimaging, 2013, 212, 28-35.	0.9	21
490	Implicit olfactory processing attenuates motor disturbances in idiopathic Parkinson's disease. Cortex, 2013, 49, 1241-1251.	1.1	7
491	The origins of altruism in offspring care Psychological Bulletin, 2013, 139, 1305-1341.	5.5	282
492	Functional Circuits and Anatomical Distribution of Response Properties in the Primate Amygdala. Journal of Neuroscience, 2013, 33, 722-733.	1.7	87
493	Differential recruitment of distinct amygdalar nuclei across appetitive associative learning. Learning and Memory, 2013, 20, 295-299.	0.5	28

ARTICLE IF CITATIONS Reward Learning Requires Activity of Matrix Metalloproteinase-9 in the Central Amygdala. Journal of 494 1.7 63 Neuroscience, 2013, 33, 14591-14600. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training. Learning and Memory, 2013, 20, 617-627. 496 Expectancies and Beliefs., 2013, , . 8 Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future 0.9 error. Journal of Neurophysiology, 2013, 110, 1497-1510. The nucleus accumbens as a nexus between values and goals in goal-directed behavior: a review and a 498 1.0 124 new hypothesis. Frontiers in Behavioral Neuroscience, 2013, 7, 135. Oscillatory interaction between amygdala and hippocampus coordinates behavioral modulation based on reward expectation. Frontiers in Behavioral Neuroscience, 2013, 7, 177. 499 1.0 Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit. Frontiers in Human 500 1.0 43 Neuroscience, 2013, 7, 284. The amygdala and the relevance detection theory of autism: an evolutionary perspective. Frontiers in 1.0 64 Human Neuroscience, 2013, 7, 894. Directional Influence between the Human Amygdala and Orbitofrontal Cortex at the Time of 502 1.1 18 Decision-Making. PLoS ONE, 2014, 9, e109689. Two systems drive attention to rewards. Frontiers in Psychology, 2014, 5, 46. 1.1 Impact of appetitive and aversive outcomes on brain responses: linking the animal and human 504 1.2 41 literatures. Frontiers in Systems Neuroscience, 2014, 8, 24. Phase-Amplitude Coupling in Rat Orbitofrontal Cortex Discriminates between Correct and Incorrect Decisions during Associative Learning. Journal of Neuroscience, 2014, 34, 493-505. Costâ€"Benefit Decision Circuitry. Progress in Molecular Biology and Translational Science, 2014, 122, 506 0.9 16 233-261. Orbitofrontal activation restores insight lost after cocaine use. Nature Neuroscience, 2014, 17, 7.1 1092-1099. Disrupted neural processing of emotional faces in psychopathy. Social Cognitive and Affective 508 1.5 61 Neuroscience, 2014, 9, 505-512. Functions of gammaâ€band synchronization in cognition: from single circuits to functional diversity 509 across cortical and subcortical systems. European Journal of Neuroscience, 2014, 39, 1982-1999. Task-Dependent Spatial Selectivity in the Primate Amygdala. Journal of Neuroscience, 2014, 34, 511 1.7 14 16220-16233. Orbitofrontal neurons infer the value and identity of predicted outcomes. Nature Communications, 5.8 2014, 5, 3926.

#	Article	IF	CITATIONS
513	Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5584-92.	3.3	170
514	Learning-Induced Bidirectional Plasticity of Intrinsic Neuronal Excitability Reflects the Valence of the Outcome. Cerebral Cortex, 2014, 24, 1075-1087.	1.6	39
515	A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neuroscience and Biobehavioral Reviews, 2014, 45, 350-368.	2.9	88
516	Space,Time and Memory in the Hippocampal Formation. , 2014, , .		20
517	Sex differences in addictive disorders. Frontiers in Neuroendocrinology, 2014, 35, 272-284.	2.5	211
518	Role of the basolateral amygdala in retrieval of conditioned flavors in the awake rat. Behavioural Brain Research, 2014, 268, 40-47.	1.2	4
519	Disentangling neural representations of value and salience in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5000-5005.	3.3	156
520	Topographic organization of orbitofrontal projections to the parahippocampal region in rats. Journal of Comparative Neurology, 2014, 522, 772-793.	0.9	54
521	A functional difference in information processing between orbitofrontal cortex and ventral striatum during decision-making behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130472.	1.8	54
522	Dopamine Invigorates Reward Seeking by Promoting Cue-Evoked Excitation in the Nucleus Accumbens. Journal of Neuroscience, 2014, 34, 14349-14364.	1.7	98
523	Neural Mechanisms of Odor Rule Learning. Progress in Brain Research, 2014, 208, 253-274.	0.9	9
524	Orbitofrontal Cortical Neurons Encode Expectation-Driven Initiation of Reward-Seeking. Journal of Neuroscience, 2014, 34, 10234-10246.	1.7	99
525	Differential Contributions of Infralimbic Prefrontal Cortex and Nucleus Accumbens during Reward-Based Learning and Extinction. Journal of Neuroscience, 2014, 34, 596-607.	1.7	23
526	Multiple Systems for Value Learning. , 2014, , 393-410.		42
527	The problem with value. Neuroscience and Biobehavioral Reviews, 2014, 43, 259-268.	2.9	115
528	Large neurotoxic amygdala lesion impairs reinforcement omission effects. Behavioural Brain Research, 2014, 266, 1-6.	1.2	9
529	Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nature Neuroscience, 2014, 17, 995-1002.	7.1	142
530	Transition from â€~model-based' to â€~model-free' behavioral control in addiction: Involvement of the orbitofrontal cortex and dorsolateral striatum. Neuropharmacology, 2014, 76, 407-415.	2.0	74

#	Article	IF	CITATIONS
531	D4 dopamine receptor-specific antagonist improves reversal learning impairment in amphetamine-treated male rats Experimental and Clinical Psychopharmacology, 2014, 22, 557-564.	1.3	5
532	Alcohol gains access to appetitive learning through adolescent heavy drinking Behavioral Neuroscience, 2015, 129, 371-379.	0.6	11
533	Action-outcome relationships are represented differently by medial prefrontal and orbitofrontal cortex neurons during action execution. Journal of Neurophysiology, 2015, 114, 3374-3385.	0.9	44
535	Basolateral amygdala rapid glutamate release encodes an outcome-specific representation vital for reward-predictive cues to selectively invigorate reward-seeking actions. Scientific Reports, 2015, 5, 12511.	1.6	52
536	The Good and Bad Differentially Encoded within the Subthalamic Nucleus in Rats. ENeuro, 2015, 2, ENEURO.0014-15.2015.	0.9	27
537	The olfactory thalamus: unanswered questions about the role of the mediodorsal thalamic nucleus in olfaction. Frontiers in Neural Circuits, 2015, 9, 49.	1.4	80
538	Fronto-temporal white matter connectivity predicts reversal learning errors. Frontiers in Human Neuroscience, 2015, 9, 343.	1.0	25
539	Orbitofrontal cortex mediates the differential impact of signaled-reward probability on discrimination accuracy. Frontiers in Neuroscience, 2015, 9, 230.	1.4	17
541	Neurophysiology. , 2015, , 237-308.		1
542	Effect of environmental enrichment on dopamine and serotonin transporters and glutamate neurotransmission in medial prefrontal and orbitofrontal cortex. Brain Research, 2015, 1599, 115-125.	1.1	40
543	Prospective Coding of Dorsal Raphe Reward Signals by the Orbitofrontal Cortex. Journal of Neuroscience, 2015, 35, 2717-2730.	1.7	50
544	Neural Correlates of Object-Associated Choice Behavior in the Perirhinal Cortex of Rats. Journal of Neuroscience, 2015, 35, 1692-1705.	1.7	36
545	Central role for the insular cortex in mediating conditioned responses to anticipatory cues. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1190-1195.	3.3	92
546	Planning activity for internally generated reward goals in monkey amygdala neurons. Nature Neuroscience, 2015, 18, 461-469.	7.1	39
547	Interneurons Are Necessary for Coordinated Activity During Reversal Learning in Orbitofrontal Cortex. Biological Psychiatry, 2015, 77, 454-464.	0.7	63
548	From circuits to behaviour in the amygdala. Nature, 2015, 517, 284-292.	13.7	1,508
549	Role of serotonin transporter function in rat orbitofrontal cortex in impulsive choice. Behavioural Brain Research, 2015, 293, 134-142.	1.2	24
550	Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216.	1.8	12

#	Article	IF	CITATIONS
551	Differential Modifications of Synaptic Weights During Odor Rule Learning: Dynamics of Interaction Between the Piriform Cortex with Lower and Higher Brain Areas. Cerebral Cortex, 2015, 25, 180-191.	1.6	28
552	Neural Representations of Unconditioned Stimuli in Basolateral Amygdala Mediate Innate and Learned Responses. Cell, 2015, 162, 134-145.	13.5	192
554	Altered Basolateral Amygdala Encoding in an Animal Model of Schizophrenia. Journal of Neuroscience, 2015, 35, 6394-6400.	1.7	9
555	Neural mechanisms of negative reinforcement in children and adolescents with autism spectrum disorders. Journal of Neurodevelopmental Disorders, 2015, 7, 12.	1.5	27
556	Clarifying the heterogeneity in psychopathic samples: Towards a new continuum of primary and secondary psychopathy. Aggression and Violent Behavior, 2015, 24, 9-41.	1.2	63
557	Dopamine D2-Receptor Blockade Enhances Decoding of Prefrontal Signals in Humans. Journal of Neuroscience, 2015, 35, 4104-4111.	1.7	36
558	Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action. Current Topics in Behavioral Neurosciences, 2015, 27, 199-230.	0.8	43
559	Roles of the Lateral Habenula and Anterior Cingulate Cortex in Negative Outcome Monitoring and Behavioral Adjustment in Nonhuman Primates. Neuron, 2015, 88, 792-804.	3.8	85
560	Abstract Context Representations in Primate Amygdala and Prefrontal Cortex. Neuron, 2015, 87, 869-881.	3.8	152
561	Stress induced risk-aversion is reverted by D2/D3 agonist in the rat. European Neuropsychopharmacology, 2015, 25, 1744-1752.	0.3	21
562	Neural activity in monkey amygdala during performance of a multisensory operant task. Journal of Integrative Neuroscience, 2015, 14, 309-323.	0.8	1
563	The basolateral amygdala in reward learning and addiction. Neuroscience and Biobehavioral Reviews, 2015, 57, 271-283.	2.9	239
564	Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions. Neuroscience, 2015, 286, 187-202.	1.1	39
565	Rewarding effects of electrical stimulation of the insular cortex: Decayed effectiveness after repeated tests and subsequent increase in vertical behavioral activity and conditioned place aversion after naloxone administration. Neurobiology of Learning and Memory, 2015, 118, 64-73.	1.0	9
566	Aesthetics and the Embodied Mind: Beyond Art Theory and the Cartesian Mind-Body Dichotomy. Contributions To Phenomenology, 2015, , .	0.3	10
568	Distinct memory engrams in the infralimbic cortex of rats control opposing environmental actions on a learned behavior. ELife, 2016, 5, .	2.8	46
569	Minimalist Social-Affective Value for Use in Joint Action: A Neural-Computational Hypothesis. Frontiers in Computational Neuroscience, 2016, 10, 88.	1.2	11
570	The Sensory Neocortex and Associative Memory. Current Topics in Behavioral Neurosciences, 2016, 37, 177-211.	0.8	11

#	Article	IF	CITATIONS
571	Effects of early life stress on amygdala and striatal development. Developmental Cognitive Neuroscience, 2016, 19, 233-247.	1.9	124
572	The role of time in conflict-triggered control: Extending the theory of response-conflict monitoring. Neuroscience Letters, 2016, 618, 110-114.	1.0	2
573	Back to basics: Making predictions in the orbitofrontal–amygdala circuit. Neurobiology of Learning and Memory, 2016, 131, 201-206.	1.0	58
574	Enduring Loss of Serotonergic Control of Orbitofrontal Cortex Function Following Contingent and Noncontingent Cocaine Exposure. Cerebral Cortex, 2017, 27, 5463-5476.	1.6	6
575	Electroencephalographic coupling in the amygdala and prefrontal cortex in relation to the estrous cycle and duration of vaginocervical stimulation in the rat. Brain Research, 2016, 1652, 81-88.	1.1	0
576	Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. Journal of Neuroscience Research, 2016, 94, 445-462.	1.3	59
577	Medial Orbitofrontal Neurons Preferentially Signal Cues Predicting Changes in Reward during Unblocking. Journal of Neuroscience, 2016, 36, 8416-8424.	1.7	28
578	Involvement of protein phosphatases in the destabilization of methamphetamine-associated contextual memory. Learning and Memory, 2016, 23, 486-493.	0.5	20
580	Circuit Mechanisms of Sensorimotor Learning. Neuron, 2016, 92, 705-721.	3.8	167
581	A GABAergic Projection from the Centromedial Nuclei of the Amygdala to Ventromedial Prefrontal Cortex Modulates Reward Behavior. Journal of Neuroscience, 2016, 36, 10831-10842.	1.7	58
582	Basolateral amygdala nucleus responses to appetitive conditioned stimuli correlate with variations in conditioned behaviour. Nature Communications, 2016, 7, 12275.	5.8	16
583	Safety out of control: dopamine and defence. Behavioral and Brain Functions, 2016, 12, 15.	1.4	43
584	Where Is Educational Neuroscience?. Educational Neuroscience, 2016, 1, 237761611561803.	0.0	31
585	Reward-Guided Learning with and without Causal Attribution. Neuron, 2016, 90, 177-190.	3.8	69
586	Ventral pallidal coding of a learned taste aversion. Behavioural Brain Research, 2016, 300, 175-183.	1.2	67
587	Acquisition of specific response–outcome associations requires NMDA receptor activation in the basolateral amygdala but not in the insular cortex. Neurobiology of Learning and Memory, 2016, 128, 40-45.	1.0	12
588	Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol. Neuropsychopharmacology, 2016, 41, 1112-1127.	2.8	91
589	Inactivation of the orbitofrontal cortex reduces irrational choice on a rodent Betting Task. Neuroscience, 2017, 345, 38-48.	1.1	14

#	Article	IF	CITATIONS
590	Orbitofrontal participation in sign- and goal-tracking conditioned responses: Effects of nicotine. Neuropharmacology, 2017, 116, 208-223.	2.0	10
591	A framework for understanding and advancing intertemporal choice research using rodent models. Neurobiology of Learning and Memory, 2017, 139, 89-97.	1.0	19
592	Ethanol Dependence Abolishes Monoamine and GIRK (Kir3) Channel Inhibition of Orbitofrontal Cortex Excitability. Neuropsychopharmacology, 2017, 42, 1800-1812.	2.8	39
593	Empathy and aversion: the neural signature of mentalizing in Tourette syndrome. Psychological Medicine, 2017, 47, 507-517.	2.7	40
594	Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning. Journal of Neuroscience, 2017, 37, 2186-2202.	1.7	67
595	Affective valence of neurons in the vicinity of the rat amygdala: Single unit activity in response to a conditioned behavior and vocal sound playback. Behavioural Brain Research, 2017, 324, 109-114.	1.2	10
596	Identity-Specific Reward Representations in Orbitofrontal Cortex Are Modulated by Selective Devaluation. Journal of Neuroscience, 2017, 37, 2627-2638.	1.7	108
597	Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3526-E3535.	3.3	78
598	Lateral orbitofrontal cortex anticipates choices and integrates prior with current information. Nature Communications, 2017, 8, 14823.	5.8	111
599	Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neuroscience and Biobehavioral Reviews, 2017, 78, 104-116.	2.9	130
600	Emotion and the prefrontal cortex: An integrative review Psychological Bulletin, 2017, 143, 1033-1081.	5.5	434
601	Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. Neuron, 2017, 94, 731-743.	3.8	201
602	Age differences in gain- and loss-motivated attention. Brain and Cognition, 2017, 111, 171-181.	0.8	20
603	Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making. Journal of Neuroscience, 2017, 37, 11537-11548.	1.7	51
604	The Timing of Reward-Seeking Action Tracks Visually Cued Theta Oscillations in Primary Visual Cortex. Journal of Neuroscience, 2017, 37, 10408-10420.	1.7	22
605	Distinct Roles of Ventromedial versus Ventrolateral Striatal Medium Spiny Neurons in Reward-Oriented Behavior. Current Biology, 2017, 27, 3042-3048.e4.	1.8	28
606	Orbitofrontal Cortex: A Neural Circuit for Economic Decisions. Neuron, 2017, 96, 736-754.	3.8	211
607	Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward. Neuron, 2017, 95, 70-77.e3.	3.8	68

#	Article	IF	CITATIONS
608	Reduced Theta Coherence and P Wave Ratio Linked to Memory Deficits After Sleep Deprivation in Rat Model. Sleep and Vigilance, 2017, 1, 21-29.	0.4	2
609	Altered reward expectancy in individuals with recent methamphetamine dependence. Journal of Psychopharmacology, 2017, 31, 17-30.	2.0	15
610	Learning, Reward, and Decision Making. Annual Review of Psychology, 2017, 68, 73-100.	9.9	328
611	Reinforcement related behaviors and adolescent alcohol abuse: from localized brain structures to coordinated networks. Current Opinion in Behavioral Sciences, 2017, 13, 106-116.	2.0	1
612	The Contribution of the Amygdala to Reward-Related Learning and Extinction. , 0, , .		4
613	Basolateral amygdala circuitry in positive and negative valence. Current Opinion in Neurobiology, 2018, 49, 175-183.	2.0	89
614	Functional inactivation of the orbitofrontal cortex disrupts context-induced reinstatement of alcohol seeking in rats. Drug and Alcohol Dependence, 2018, 186, 102-112.	1.6	25
615	A neuronal theory of sequential economic choice. Brain and Neuroscience Advances, 2018, 2, 239821281876667.	1.8	41
616	Prepared stimuli enhance aversive learning without weakening the impact of verbal instructions. Learning and Memory, 2018, 25, 100-104.	0.5	21
617	Opposite Effects of Basolateral Amygdala Inactivation on Context-Induced Relapse to Cocaine Seeking after Extinction versus Punishment. Journal of Neuroscience, 2018, 38, 51-59.	1.7	47
618	A decade of decoding reward-related fMRI signals and where we go from here. NeuroImage, 2018, 180, 324-333.	2.1	57
619	Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making. Behavioural Brain Research, 2018, 355, 56-75.	1.2	40
620	Predicting functional neuroanatomical maps from fusing brain networks with genetic information. NeuroImage, 2018, 170, 113-120.	2.1	16
621	Disconnection of basolateral amygdala and insular cortex disrupts conditioned approach in Pavlovian lever autoshaping. Neurobiology of Learning and Memory, 2018, 147, 35-45.	1.0	15
622	What, If Anything, Is Rodent Prefrontal Cortex?. ENeuro, 2018, 5, ENEURO.0315-18.2018.	0.9	301
623	Rethinking dopamine as generalized prediction error. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181645.	1.2	111
624	Orbitofrontal cortex. Current Biology, 2018, 28, R1083-R1088.	1.8	142
625	Post-learning paradoxical sleep deprivation impairs reorganization of limbic and cortical networks associated with consolidation of remote contextual fear memory in mice. Sleep, 2018, 41, .	0.6	12

#	Article	IF	CITATIONS
626	Intermingled Ensembles in Visual Association Cortex Encode Stimulus Identity or Predicted Outcome. Neuron, 2018, 100, 900-915.e9.	3.8	53
627	Cortical Determinants of Goal-Directed Behavior. , 2018, , 179-197.		5
628	Emotional State and Motivation Interactions: Ultrasonic Vocalizations During Incentive Contrast and Free Choice Paradigms. Handbook of Behavioral Neuroscience, 2018, 25, 267-277.	0.7	0
629	Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing. Frontiers in Cellular Neuroscience, 2018, 12, 105.	1.8	29
630	Mapping the Spatiotemporal Evolution of Emotional Processing: An MEG Study Across Arousal and Valence Dimensions. Frontiers in Human Neuroscience, 2018, 12, 322.	1.0	11
631	Central olfactory structures. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 164, 79-96.	1.0	35
632	Complementary Task Structure Representations in Hippocampus and Orbitofrontal Cortex during an Odor Sequence Task. Current Biology, 2019, 29, 3402-3409.e3.	1.8	42
633	Fractionating adaptive learning: A meta-analysis of the reversal learning paradigm. Neuroscience and Biobehavioral Reviews, 2019, 102, 85-94.	2.9	20
634	Rat Orbitofrontal Ensemble Activity Contains Multiplexed but Dissociable Representations of Value and Task Structure in an Odor Sequence Task. Current Biology, 2019, 29, 897-907.e3.	1.8	62
635	Evidence for model-based encoding of Pavlovian contingencies in the human brain. Nature Communications, 2019, 10, 1099.	5.8	31
636	The orbitofrontal cortex modulates parenting stress in the maternal brain. Scientific Reports, 2019, 9, 1658.	1.6	17
637	Occasion setting Behavioral Neuroscience, 2019, 133, 145-175.	0.6	53
638	Prefrontal circuit organization for executive control. Neuroscience Research, 2019, 140, 23-36.	1.0	40
639	Immoral behaviour following brain damage: A review. Journal of Neuropsychology, 2019, 13, 564-588.	0.6	11
640	Deep brain stimulation of the orbitofrontal cortex prevents the development and reinstatement of morphine place preference. Addiction Biology, 2020, 25, e12780.	1.4	20
641	A Neural Mechanism of Cue-Outcome Expectancy Generated by the Interaction Between Orbitofrontal Cortex and Amygdala. Chemical Senses, 2020, 45, 15-26.	1.1	3
642	Amphetamine disrupts haemodynamic correlates of prediction errors in nucleus accumbens and orbitofrontal cortex. Neuropsychopharmacology, 2020, 45, 793-803.	2.8	11
643	Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology, 2020, 237, 639-654.	1.5	10

#	Article	IF	CITATIONS
644	Naloxone-precipitated withdrawal ameliorates impairment of cost-benefit decision making in morphine-treated rats: Involvement of BDNF, p-GSK3-β, and p-CREB in the amygdala. Neurobiology of Learning and Memory, 2020, 167, 107138.	1.0	10
645	Transient and Persistent Representations of Odor Value in Prefrontal Cortex. Neuron, 2020, 108, 209-224.e6.	3.8	50
646	The orbitofrontal cortex, food intake and obesity. Journal of Psychiatry and Neuroscience, 2020, 45, 304-312.	1.4	52
647	Perseverative stereotypic behavior of Epac2 KO mice in a reward-based decision making task. Neuroscience Research, 2020, 161, 8-17.	1.0	3
648	A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement. Cell Reports, 2020, 32, 107919.	2.9	33
649	The role of dopaminergic and serotonergic transmission in the processing of primary and monetary reward. Neuropsychopharmacology, 2020, 45, 1490-1497.	2.8	4
650	Orbitofrontal control of visual cortex gain promotes visual associative learning. Nature Communications, 2020, 11, 2784.	5.8	39
651	The Joyful Reduction of Uncertainty: Music Perception as a Window to Predictive Neuronal Processing. Journal of Neuroscience, 2020, 40, 2790-2792.	1.7	5
652	Neuronal Activity in the Primate Amygdala during Economic Choice. Journal of Neuroscience, 2020, 40, 1286-1301.	1.7	16
654	Activation of Basolateral Amygdala to Nucleus Accumbens Projection Neurons Attenuates Chronic Corticosterone-Induced Behavioral Deficits in Male Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 643272.	1.0	15
655	Altered Activity of Lateral Orbitofrontal Cortex Neurons in Mice following Chronic Intermittent Ethanol Exposure. ENeuro, 2021, 8, ENEURO.0503-20.2021.	0.9	13
656	The motivational role of affect in an ecological model. Theory and Psychology, 2021, 31, 552-572.	0.7	5
657	Prefrontal cortex and cognitive aging in macaque monkeys. American Journal of Primatology, 2021, 83, e23250.	0.8	21
658	μ Opioid Antagonist Naltrexone Partially Abolishes the Antidepressant Placebo Effect and Reduces Orbitofrontal Cortex Encoding of Reinforcement. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 1002-1012.	1.1	4
660	Flexible categorization in the mouse olfactory bulb. Current Biology, 2021, 31, 1616-1631.e4.	1.8	12
661	Call for a more balanced approach to understanding orbital frontal cortex function Behavioral Neuroscience, 2021, 135, 255-266.	0.6	2
662	Heterogeneous value coding in orbitofrontal populations Behavioral Neuroscience, 2021, 135, 245-254.	0.6	5
663	The ever-changing OFC landscape: What neural signals in OFC can tell us about inhibitory control Behavioral Neuroscience, 2021, 135, 129-137.	0.6	6

#	Article	IF	CITATIONS
664	Modulation of cue-guided choices by transcranial direct current stimulation. Cortex, 2021, 137, 124-137.	1.1	14
666	Prediction errors and valence: From single units to multidimensional encoding in the amygdala. Behavioural Brain Research, 2021, 404, 113176.	1.2	8
667	Advances in understanding mesoâ€corticoâ€limbicâ€striatal systems mediating risky reward seeking. Journal of Neurochemistry, 2021, 157, 1547-1571.	2.1	22
668	Perturbation of amygdala-cortical projections reduces ensemble coherence of palatability coding in gustatory cortex. ELife, 2021, 10, .	2.8	9
670	Effects of Withdrawal from Cocaine Self-Administration on Rat Orbitofrontal Cortex Parvalbumin Neurons Expressing <i>Cre recombinase</i> : Sex-Dependent Changes in Neuronal Function and Unaltered Serotonin Signaling. ENeuro, 2021, 8, ENEURO.0017-21.2021.	0.9	9
671	A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. ELife, 2021, 10, .	2.8	29
673	The Medial Orbitofrontal Cortex–Basolateral Amygdala Circuit Regulates the Influence of Reward Cues on Adaptive Behavior and Choice. Journal of Neuroscience, 2021, 41, 7267-7277.	1.7	24
674	Over-representation of fundamental decision variables in the prefrontal cortex underlies decision bias. Neuroscience Research, 2021, 173, 1-13.	1.0	2
675	Valence encoding in the amygdala influences motivated behavior. Behavioural Brain Research, 2021, 411, 113370.	1.2	18
676	Orbitofrontal cortex and learning predictions of state transitions Behavioral Neuroscience, 2021, 135, 487-497.	0.6	5
677	Prospective representations in rat orbitofrontal ensembles Behavioral Neuroscience, 2021, 135, 518-527.	0.6	3
678	Olfactory Information Storage Engages Subcortical and Cortical Brain Regions That Support Valence Determination. Cerebral Cortex, 2022, 32, 689-708.	1.6	5
679	Amygdaloid theta-band power increases during conflict processing in humans. Journal of Clinical Neuroscience, 2021, 91, 183-192.	0.8	0
680	The hierarchical construction of value. Current Opinion in Behavioral Sciences, 2021, 41, 71-77.	2.0	15
684	Neural substrates of context―and personâ€dependent altruistic punishment. Human Brain Mapping, 2017, 38, 5535-5550.	1.9	16
685	Neuro-Cognitive Models of Acquired Sociopathy and Developmental Psychopathy. Neurobiological Foundation of Aberrant Behaviors, 2002, , 157-186.	0.2	3
687	Neural Basis of Maternal Love as a Vital Human Emotion. , 2016, , 189-198.		3
688	Understanding Human Decision Making – A Fundamental Step Towards Effective Intelligent Decision Support. Studies in Computational Intelligence, 2008, , 3-40.	0.7	20

#	Article	IF	CITATIONS
689	The Cognitive Body: From Dynamic Modulation to Anticipation. Lecture Notes in Computer Science, 2009, , 132-151.	1.0	3
690	Functional Interactions of Prefrontal Cortex and the Hippocampus in Learning and Memory. , 2014, , 517-560.		5
691	Prefrontal Representations Underlying Goal-Directed Behavior. , 2007, , 287-310.		2
692	Aesthetics as an Emotional Activity That Facilitates Sense-Making: Towards an Enactive Approach to Aesthetic Experience. Contributions To Phenomenology, 2015, , 245-259.	0.3	10
693	Towards a computational psychiatry of juvenile obsessive-compulsive disorder. Neuroscience and Biobehavioral Reviews, 2020, 118, 631-642.	2.9	12
694	Satiety-responsive neurons in the medial orbitofrontal cortex of the macaque Behavioral Neuroscience, 2008, 122, 174-182.	0.6	33
695	Exposure to bright light biases effort-based decisions Behavioral Neuroscience, 2018, 132, 183-193.	0.6	6
696	A systems-neuroscience model of phasic dopamine Psychological Review, 2020, 127, 972-1021.	2.7	14
697	Optogenetic investigation of neural circuits underlying brain disease in animal models. , 0, .		1
698	Stress induces insertion of calcium-permeable AMPA receptors in the OFC–BLA synapse and modulates emotional behaviours in mice. Translational Psychiatry, 2020, 10, 154.	2.4	31
699	Involvement of primate orbitofrontal neurons in reward, uncertainty, and learning. , 2006, , 173-198.		12
700	From associations to expectancies: orbitofrontal cortex as gateway between the limbic system and representational memory. , 2006, , 199-236.		14
701	Intracranial electrophysiology of the human orbitofrontal cortex. , 2006, , 355-376.		6
702	The role of the ventral prefrontal cortex in mood disorders. , 2006, , 545-578.		3
710	Neuroeconomics. Frontiers in Neuroscience, 2010, , 193-215.	0.0	1
711	Reward Predictions and Computations. Frontiers in Neuroscience, 2011, , 311-327.	0.0	1
712	What Can Different Brains Do with Reward?. Frontiers in Neuroscience, 2011, , 61-96.	0.0	10
713	Integration of Gravitational Torques in Cerebellar Pathways Allows for the Dynamic Inverse Computation of Vertical Pointing Movements of a Robot Arm. PLoS ONE, 2009, 4, e5176.	1.1	17

#	Article	IF	CITATIONS
714	Human Processing of Behaviorally Relevant and Irrelevant Absence of Expected Rewards: A High-Resolution ERP Study. PLoS ONE, 2011, 6, e16173.	1.1	14
715	Similar Neural Activity during Fear and Disgust in the Rat Basolateral Amygdala. PLoS ONE, 2011, 6, e27797.	1.1	13
716	Adolescent Changes in Dopamine D1 Receptor Expression in Orbitofrontal Cortex and Piriform Cortex Accompany an Associative Learning Deficit. PLoS ONE, 2013, 8, e56191.	1.1	21
717	A Genetic Polymorphism of the Endogenous Opioid Dynorphin Modulates Monetary Reward Anticipation in the Corticostriatal Loop. PLoS ONE, 2014, 9, e89954.	1.1	13
718	The Neuroscience of Maternal Love. Neuroscience Communications, 0, , .	0.0	3
719	Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations. Journal of Neuroscience, 2017, 37, 8374-8384.	1.7	154
720	Involvement of Human Amygdala and Orbitofrontal Cortex in Hunger-Enhanced Memory for Food Stimuli. Journal of Neuroscience, 2001, 21, 5304-5310.	1.7	190
721	Appetitive and Aversive Olfactory Learning in Humans Studied Using Event-Related Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2002, 22, 10829-10837.	1.7	386
722	Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Frontiers in Behavioral Neuroscience, 2012, 6, 50.	1.0	140
723	Minimal Circuit Model of Reward Prediction Error Computations and Effects of Nicotinic Modulations. Frontiers in Neural Circuits, 2018, 12, 116.	1.4	2
724	Ensemble coding in the nucleus accumbens. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 187-197.	1.2	43
725	Olfaction as a Traumatic Reminder in Posttraumatic Stress Disorder. Journal of Clinical Psychiatry, 2003, 64, 202-207.	1.1	92
726	Basolateral Amygdala Inactivation Reduces Sexual Motivation in Male Rats during Performance of a T-Maze Task with a Sexual Reward. Journal of Behavioral and Brain Science, 2014, 04, 223-233.	0.2	4
727	Orbitofrontal neurons acquire responses to â€~valueless' Pavlovian cues during unblocking. ELife, 2014, 3, e02653.	2.8	63
728	Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment. ELife, 2014, 3, .	2.8	54
729	Serotonergic neurons signal reward and punishment on multiple timescales. ELife, 2015, 4, .	2.8	282
730	Lateral orbitofrontal neurons acquire responses to upshifted, downshifted, or blocked cues during unblocking. ELife, 2015, 4, e11299.	2.8	39
731	Amygdala-ventral striatum circuit activation decreases long-term fear. ELife, 2016, 5, .	2.8	59

#	Article	IF	CITATIONS
732	Primate amygdala neurons evaluate the progress of self-defined economic choice sequences. ELife, 2016, 5, .	2.8	17
733	Optogenetic dissection of basolateral amygdala contributions to intertemporal choice in young and aged rats. ELife, 2019, 8, .	2.8	18
734	Lateral orbitofrontal cortex promotes trial-by-trial learning of risky, but not spatial, biases. ELife, 2019, 8, .	2.8	31
735	mTORC1 in the orbitofrontal cortex promotes habitual alcohol seeking. ELife, 2019, 8, .	2.8	28
736	Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. ELife, 2020, 9, .	2.8	55
738	Subpopulations of neurons in IOFC encode previous and current rewards at time of choice. ELife, 2021, 10, .	2.8	20
739	Dopaminergic Effects on Acquisition and Consolidation: A Microdialysis Study. Advances in Behavioral Biology, 2002, , 345-348.	0.2	0
741	Brain Systems Mediating Reward. , 2004, , 445-470.		0
742	A componential analysis of the functions of primate orbitofrontal cortex. , 2006, , 237-264.		3
743	Dopaminergic and Serotonergic Modulation of Two Distinct Forms of Flexible Cognitive Control: Attentional Setâ€Shifting and Reversal Learning. , 2007, , 283-312.		1
746	The Influence of Pain on Reward Processing: Current Literature and Prospects. , 2014, , 31-48.		3
747	In Vivo Bioelectronic Nose. , 2015, , 167-196.		0
748	Neuronal Correlates of <i>Efficient</i> but <i>Limited</i> Capacity of Cognition. The Brain & Neural Networks, 2015, 22, 3-15.	0.1	0
749	Evolutionary Perspective on Autism. SoaÂį\$ceongso'nyeon Jeongsin Yihag, 2015, 26, 67-74.	0.3	0
753	Zentrale Hirnfunktionen und ihre Bedeutung für die Werbung. , 2018, , 23-31.		0
754	What can we learn from neurofinance?. Finance, 2018, Vol. 39, 93-148.	0.3	0
763	Protect and harm: Effects of stress on the amygdala. Handbook of Behavioral Neuroscience, 2020, 26, 241-274.	0.7	0
768	A neuronal mechanism for motivational control of behavior. Science, 2022, 375, eabg7277.	6.0	16

#	Article	IF	CITATIONS
769	Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Reports, 2022, 38, 110198.	2.9	12
771	Noradrenergic circuits and signaling in substance use disorders. Neuropharmacology, 2022, 208, 108997.	2.0	18
776	Reward-period activity in primate dorsolateral prefrontal and orbitofrontal neurons is affected by reward schedules. Journal of Cognitive Neuroscience, 2006, 18, 212-26.	1.1	22
777	The orbitofrontal cortex represents advantageous choice in the Iowa gambling task. Human Brain Mapping, 2022, 43, 3840-3856.	1.9	13
780	Differential effects of acute eustress and distress on gene regulation patterns in the carp () Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 582 To
782	Neural signals implicated in the processing of appetitive and aversive events in social and non-social contexts. Frontiers in Systems Neuroscience, 0, 16, .	1.2	2

783	Mapping effective connectivity of human amygdala subdivisions with intracranial stimulation. Nature Communications, 2022, 13, .	5.8	11
784	Value representations in the rodent orbitofrontal cortex drive learning, not choice. ELife, 0, 11, .	2.8	16
786	How the Brain Signals Reward. , 2022, , 129-137.		0
787	Emotion dynamics as hierarchical Bayesian inference in time. Cerebral Cortex, 2023, 33, 3750-3772.	1.6	1
788	Basolateral amygdala and orbitofrontal cortex, but not dorsal hippocampus, are necessary for the control of reward-seeking by occasion setters. Psychopharmacology, 2023, 240, 623-635.	1.5	3
789	Amygdala-cortical collaboration in reward learning and decision making. ELife, 0, 11, .	2.8	11
790	Medial orbitofrontal cortical regulation of different aspects of Pavlovian and instrumental reward seeking. Psychopharmacology, 2023, 240, 441-459.	1.5	1
791	Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Frontiers in Neuroendocrinology, 2023, 68, 101043.	2.5	5
792	Calcium activity is a degraded estimate of spikes. Current Biology, 2022, 32, 5364-5373.e4.	1.8	3
793	Central Brain Functions and Their Significance for Advertising. , 2022, , 21-28.		0
794	Compulsive drug-taking is associated with habenula–frontal cortex connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
795	Abnormal functional connectivity of the frontostriatal circuits in type 2 diabetes mellitus. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2

#	Article	IF	CITATIONS
798	Altruistic responses to the most vulnerable involve sensorimotor processes. Frontiers in Psychiatry, 0, 14, .	1.3	1
806	Opioid Mechanisms and the Treatment of Depression. Current Topics in Behavioral Neurosciences, 2023, , .	0.8	0