CITATION REPORT List of articles citing

A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes

DOI: 10.1111/j.1469-7793.1998.067bo.x Journal of Physiology, 1998, 509 (Pt 1), 67-80.

Source: https://exaly.com/paper-pdf/28897711/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
212	Activation and co-ordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. <i>Journal of Physiology</i> , 1998 , 509 (Pt 1), 81-91	3.9	141
211	Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. 1998 , 1436, 19-33		139
210	Hormone-evoked elementary Ca2+ signals are not stereotypic, but reflect activation of different size channel clusters and variable recruitment of channels within a cluster. 1998 , 273, 27130-6		79
209	Kinetics of elementary Ca2+ puffs evoked in Xenopus oocytes by different Ins(1,4,5)P3 receptor agonists. 1998 , 334 (Pt 3), 505-9		23
208	Imaging Ca(2+) entering the cytoplasm through a single opening of a plasma membrane cation channel. <i>Journal of General Physiology</i> , 1999 , 114, 575-88	3.4	36
207	Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging. <i>Journal of General Physiology</i> , 1999 , 113, 199-213	3.4	41
206	Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. 1999 , 274, 32535-8		115
205	From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. 1999 , 96, 13750-5		150
204	Calcium release flux underlying Ca2+ sparks of frog skeletal muscle. <i>Journal of General Physiology</i> , 1999 , 114, 31-48	3.4	74
203	Spatially segregated control of Ca2+ release in developing skeletal muscle of mice. <i>Journal of Physiology</i> , 1999 , 521 Pt 2, 483-95	3.9	52
202	Construction of a confocal microscope for real-time x-y and x-z imaging. 1999 , 26, 271-9		75
201	Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca(2+). 1999 , 9, 1115-8		127
200	Characterization of elementary Ca2+ release signals in NGF-differentiated PC12 cells and hippocampal neurons. 1999 , 22, 125-37		133
199	Construction of line-scan confocal microscope for physiological recording. 1999 , 307, 152-69		9
198	Numerical simulation of Ca2+ "sparks" in skeletal muscle. 1999 , 77, 2333-57		61
197	Ca(2+) signals mediated by Ins(1,4,5)P(3)-gated channels in rat ureteric myocytes. 2000, 349, 323-32		23
196	Seeing is believing: recent trends in the measurement of Ca2+ in subcellular domains and intracellular organelles. 2000 , 78, 403-7		11

(2001-2000)

195	The versatility and universality of calcium signalling. 2000 , 1, 11-21	4268
194	Microscopic properties of elementary Ca2+ release sites in non-excitable cells. 2000 , 10, 8-15	101
193	Mitochondria in myelinating cells: calcium signaling in oligodendrocyte precursor cells. 2000 , 28, 297-306	24
192	Phasic characteristic of elementary Ca(2+) release sites underlies quantal responses to IP(3). 2000 , 19, 3608-17	58
191	Ca(2+)-dependent activation of Cl(-) currents in Xenopus oocytes is modulated by voltage. 2000 , 278, C667-75	35
190	Mapping of IP(3)-mediated Ca(2+) signals in single human neuroblastoma SH-SY5Y cells: cell volume shaping the Ca(2+) signal. 2000 , 83, 1052-7	13
189	Discrete stochastic modeling of calcium channel dynamics. 2000 , 84, 5664-7	65
188	Involvement of multiple intracellular release channels in calcium sparks of skeletal muscle. 2000 , 97, 4380-5	103
187	Calsenilin reverses presenilin-mediated enhancement of calcium signaling. 2000, 97, 8590-3	88
186	A bimodal pattern of InsP(3)-evoked elementary Ca(2+) signals in pancreatic acinar cells. 2000 , 78, 2298-306	13
185	Hierarchical organization of calcium signals in hepatocytes: from experiments to models. 2000 , 1498, 134-52	70
184	Stochastic spreading of intracellular Ca(2+) release. 2000 , 62, 2636-43	102
183	Subcellular mechanisms of presenilin-mediated enhancement of calcium signaling. 2001, 8, 469-78	48
182	Contractile ring formation in Xenopus egg and fission yeast. 2001 , 26, 545-54	18
181	Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. 2001 , 21, 3860-70	79
180	Role of elementary Ca(2+) puffs in generating repetitive Ca(2+) oscillations. 2001 , 20, 65-76	161
179	Xenopus tropicalis oocytes as an advantageous model system for the study of intracellular Ca(2+) signalling. 2001 , 132, 1396-410	17
178	Control of IP(3)-mediated Ca2+ puffs in Xenopus laevis oocytes by the Ca2+-binding protein parvalbumin. <i>Journal of Physiology</i> , 2001 , 535, 3-16	27

177	Calcium sparks in intact skeletal muscle fibers of the frog. <i>Journal of General Physiology</i> , 2001 , 118, 653-784	69
176	ATP-dependent adenophostin activation of inositol 1,4,5-trisphosphate receptor channel gating: kinetic implications for the durations of calcium puffs in cells. <i>Journal of General Physiology</i> , 2001 , 3.4 117, 299-314	38
175	A new view of Ca(2)+ sparks in frog skeletal muscle. <i>Journal of General Physiology</i> , 2001 , 118, 649-51 3.4	
174	Optimal intracellular calcium signaling. 2002 , 88, 068102	149
173	Analytic description of stochastic calcium-signaling periodicity. 2002 , 66, 050901	23
172	Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog. Journal of General Physiology, 2002 , 120, 349-68	38
171	Visualization of Ca2+ entry through single stretch-activated cation channels. 2002 , 99, 6404-9	83
170	Localized calcium signals along the cleavage furrow of the Xenopus egg are not involved in cytokinesis. 2002 , 13, 1263-73	19
169	Chapter 3 Cellular calcium dynamics. 2002 , 27-45	
168	Stochastic properties of Ca(2+) release of inositol 1,4,5-trisphosphate receptor clusters. 2002 , 83, 87-97	159
167	Structural and functional relationships between Ca2+ puffs and mitochondria in Xenopus oocytes. 2002 , 282, C1374-86	42
166	The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. 2002 , 1600, 19-31	48
165	Calcium dyshomeostasis and intracellular signalling in Alzheimerß disease. 2002, 3, 862-72	778
164	Optical single-channel recording: imaging Ca2+ flux through individual N-type voltage-gated channels expressed in Xenopus oocytes. 2003 , 34, 499-509	33
163	Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals. <i>Journal of Physiology</i> , 2003 , 553, 775-88	114
162	Buffers and oscillations in intracellular Ca2+ dynamics. 2003 , 84, 28-41	71
161	On the role of stochastic channel behavior in intracellular Ca2+ dynamics. 2003, 84, 42-56	154
160	Presence and functional significance of presynaptic ryanodine receptors. 2003 , 69, 391-418	124

(2004-2003)

159	Simulation of calcium sparks in cut skeletal muscle fibers of the frog. <i>Journal of General Physiology</i> , 2003 , 121, 311-24	29
158	Selection of intracellular calcium patterns in a model with clustered Ca2+ release channels. 2003 , 67, 031905	41
157	Ca2+ sparks and embers of mammalian muscle. Properties of the sources. <i>Journal of General Physiology</i> , 2003 , 122, 95-114	62
156	Mathematical modeling of intracellular and intercellular calcium signaling. 2003, 689-706	2
155	Deterministic and stochastic models of intracellular Ca2lwaves. 2003 , 5, 96-96	35
154	Sub-threshold Ca2+waves. 2003 , 5, 132-132	13
153	Physical schemata underlying biological pattern formation-examples, issues and strategies. 2004 , 1, P14-22	41
152	Using total fluorescence increase (signal mass) to determine the Ca2+ current underlying localized Ca2+ events. <i>Journal of General Physiology</i> , 2004 , 124, 259-72	23
151	Cooperativity can reduce stochasticity in intracellular calcium dynamics. 2004, 1, 27-34	16
150	Ca2+ syntillas, miniature Ca2+ release events in terminals of hypothalamic neurons, are increased in frequency by depolarization in the absence of Ca2+ influx. 2004 , 24, 1226-35	67
149	Ca(2+) spark sites in smooth muscle cells are numerous and differ in number of ryanodine receptors, large-conductance K(+) channels, and coupling ratio between them. 2004 , 287, C1577-88	34
148	Immunolocalization of type 2 inositol 1,4,5-trisphosphate receptors in cardiac myocytes from newborn mice. 2004 , 287, C1048-57	31
147	Localised calcium release events in cells from the muscle of guinea-pig gastric fundus. <i>Journal of Physiology</i> , 2004 , 554, 687-705	6
146	Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins. <i>Journal of Physiology</i> , 2004 , 556, 447-61	71
145	Imaging calcium entering the cytosol through a single opening of plasma membrane ion channels: SCCaFTsfundamental calcium events. 2004 , 35, 523-33	13
144	Effects of inositol 1,4,5-trisphosphate receptor-mediated intracellular stochastic calcium oscillations on activation of glycogen phosphorylase. 2004 , 110, 179-90	7
143	Reading the patterns in living cells the physics of ca2+ signaling. 2004 , 53, 255-440	290
142	Increased sensitivity and clustering of elementary Ca2+ release events during oocyte maturation. 2004 , 275, 170-82	45

141	Ion channels on intracellular organelles. 2004 , 32, 433-458		О
140	Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle. 2004 , 86, 1436-53		28
139	Release currents of IP(3) receptor channel clusters and concentration profiles. 2004, 86, 2660-73		100
138	A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels. 2005 , 67, 393-432		44
137	Optical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution. 2005 , 10, 11002		24
136	Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. 2005 , 37, 283-99		77
135	Modeling stochastic Ca2+ release from a cluster of IP3-sensitive receptors. 2005 , 37, 321-32		19
134	Calcium sparks in skeletal muscle fibers. 2005 , 37, 513-30		23
133	The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain. 2005 , 38, 73-86		30
132	Models of the inositol trisphosphate receptor. 2005 , 89, 207-45		59
131	Concerted vs. sequential. Two activation patterns of vast arrays of intracellular Ca2+ channels in muscle. <i>Journal of General Physiology</i> , 2005 , 126, 301-9	3.4	18
130	Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca2+ release channel in endoplasmic reticulum membrane. 2005 , 280, 3824-31		43
129	Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. 2005 , 280, 10305-17		93
128	A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients. 2005 , 88, 2403-21		17
127	Mitochondrial Ca2+ dynamics reveals limited intramitochondrial Ca2+ diffusion. 2005, 88, 698-714		44
126	Syntillas release Ca2+ at a site different from the microdomain where exocytosis occurs in mouse chromaffin cells. 2006 , 90, 2027-37		29
125	Modeling the statistics of elementary calcium release events. 2006 , 90, 3485-95		34
124	Analysis of puff dynamics in oocytes: interdependence of puff amplitude and interpuff interval. 2006 , 90, 3897-907		36

123	FiriggerRevents precede calcium puffs in Xenopus oocytes. 2006, 91, 4024-32	40
122	The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes. 2006 , 91, 4033-44	76
121	Graded recruitment and inactivation of single InsP3 receptor Ca2+-release channels: implications for quantal [corrected] Ca2+release. <i>Journal of Physiology</i> , 2006 , 573, 645-62	52
120	Elementary Ca2+ release events in mammalian skeletal muscle: effects of the anaesthetic drug thiopental. 2006 , 27, 315-26	2
119	Imaging single-channel calcium microdomains. 2006 , 40, 413-22	68
118	Ca2+ microdomains in smooth muscle. 2006 , 40, 461-93	74
117	Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals. 2006 , 26, 7565-74	41
116	Simple data-driven models of intracellular calcium dynamics with predictive power. 2006 , 74, 011917	17
115	Simulations of intracellular calcium release dynamics in response to a high-intensity, ultrashort electric pulse. 2007 , 75, 041920	31
114	Multidimensional detection and analysis of Ca2+ sparks in cardiac myocytes. 2007 , 92, 4433-43	19
113	Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. 2007 , 261, 193-245	86
112	A kinetic Monte Carlo simulation study of inositol 1,4,5-trisphosphate receptor (IP3R) calcium release channel. 2007 , 31, 99-109	3
111	Characterization of local calcium signals in tubular networks of endoplasmic reticulum. 2007, 42, 245-60	7
110	Modeling Ca2+ signaling differentiation during oocyte maturation. 2007 , 42, 556-64	43
109	Sparks and embers of skeletal muscle: the exciting events of contractile activation. 2007, 454, 869-78	17
108	Calcium-dependent inactivation and the dynamics of calcium puffs and sparks. 2008 , 253, 483-99	24
107	Modulation of calcium signals by fluorescent dyes in the presence of tubular endoplasmic reticulum: a modelling approach. 2008 , 92, 259-69	3
106	Discrete influx events refill depleted Ca2+ stores in a chick retinal neuron. <i>Journal of Physiology</i> , 2008 , 586, 605-26	8

105	Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging. 2008 , 43, 367-74	22
104	Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. 2008 , 95, 2193-202	58
103	Modeling Ca2+ feedback on a single inositol 1,4,5-trisphosphate receptor and its modulation by Ca2+ buffers. 2008 , 95, 3738-52	32
102	Intrinsically Referenced Fluorimetric Sensing and Detection Schemes: Methods, Advantages and Applications. 2008 , 373-414	18
101	Calcium sparks. 2008 , 88, 1491-545	447
100	Numerical study of IP 3 -induced Ca 2+ spiral pattern evolution. 2008 , 17, 4100-4106	2
99	Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. 2008 , 105, 9627-32	211
98	Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+-release channels. 2008 , 78, 041915	21
97	Numerical study of IP 3 -dependent Ca 2+ spiral waves in Xenopus oocytes. 2008 , 83, 68001	10
96	Noise effect on persistence of memory in a positive-feedback gene regulatory circuit. 2009 , 80, 011907	14
95	A model-based method for estimating Ca2+ release fluxes from linescan images in Xenopus oocytes. 2009 , 19, 037106	4
94	Investigating the effects of molecular crowding on Ca2+ diffusion using a particle-based simulation model. 2009 , 19, 037110	7
93	Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals. 2009 , 19, 037102	19
92	Global noise and oscillations in clustered excitable media. 2009 , 79, 041923	6
91	Localization and socialization: experimental insights into the functional architecture of IP3 receptors. 2009 , 19, 037103	13
90	Suppression of Ca2+ syntillas increases spontaneous exocytosis in mouse adrenal chromaffin cells. <i>Journal of General Physiology</i> , 2009 , 134, 267-80	8
89	Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. 2009 , 29, 7833-45	42
88	TEMPERATURE EFFECTS ON THE STOCHASTIC GATING OF THE IP3R CALCIUM RELEASE CHANNEL: A NUMERICAL SIMULATION STUDY. 2009 , 17, 817-852	3

(2010-2009)

87	Individual calcium syntillas do not trigger spontaneous exocytosis from nerve terminals of the neurohypophysis. 2009 , 29, 14120-6	8
86	Inositol-1,4,5-trisphosphate receptor-mediated Ca2+ waves in pyramidal neuron dendrites propagate through hot spots and cold spots. <i>Journal of Physiology</i> , 2009 , 587, 1439-59	25
85	Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+. 2009 , 458, 655-9	143
84	IP3 receptors: some lessons from DT40 cells. 2009 , 231, 23-44	40
83	Waiting time distributions for clusters of IP3 receptors. 2009 , 259, 338-49	12
82	A simple sequential-binding model for calcium puffs. 2009 , 19, 037109	25
81	Ca(2+) puffs originate from preestablished stable clusters of inositol trisphosphate receptors. 2009 , 2, ra77	63
80	Reduction of calcium release site models via fast/slow analysis and iterative aggregation/disaggregation. 2009 , 19, 037107	7
79	Observable effects of Ca2+ buffers on local Ca2+ signals. 2010 , 368, 5597-603	6
78	Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes. 2010 , 47, 273-86	28
77	TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. 2010 , 47, 378-86	108
76	Effects of motilin on intracellular free calcium in cultured smooth muscle cells from the antrum of neonatal rats. 2010 , 199, 53-61	6
75	Recording single-channel activity of inositol trisphosphate receptors in intact cells with a microscope, not a patch clamp. <i>Journal of General Physiology</i> , 2010 , 136, 119-27	44
74	Controlling intracellular Ca 2+ spiral waves by the local agonist in the cell membrane. 2010 , 19, 030508	6
73	Entropically modified spiking ability and periodicity in clustered channels. 2010 , 81, 051913	4
72	Puff-wave transition in an inhomogeneous model for calcium signals. 2010 , 81, 041904	7
71	Peptide-induced modulation of synaptic transmission and escape response in Drosophila requires two G-protein-coupled receptors. 2010 , 30, 14724-34	31
70	Mitochondrial Ca2+ uptake increases Ca2+ release from inositol 1,4,5-trisphosphate receptor clusters in smooth muscle cells. 2010 , 285, 2040-50	41

69	Exocytosis, dependent on Ca2+ release from Ca2+ stores, is regulated by Ca2+ microdomains. <i>Journal of Cell Science</i> , 2010 , 123, 3201-8	28
68	Unitary Ca(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions. <i>Journal of General Physiology</i> , 2010 , 136, 687-700	36
67	Theory and applications of geometric scaling of localized calcium release events. 2010, 299, C1036-46	О
66	Stochastic fire-diffuse-fire model with realistic cluster dynamics. 2010 , 82, 031910	5
65	Inositol (1,4,5)-trisphosphate receptor microarchitecture shapes Ca2+ puff kinetics. 2011 , 100, 822-31	16
64	Mean field strategies induce unrealistic non-linearities in calcium puffs. 2011 , 2, 46	9
63	The role of agonist-independent conformational transformation (AICT) in IPIcluster behavior. 2011 , 49, 145-52	4
62	Ca2+ signaling during maturation of cumulus-oocyte complex in mammals. 2011, 78, 744-56	20
61	Stochastic Petri net models of Ca2+ signaling complexes and their analysis. 2011 , 10, 1045-1075	8
60	Coherent calcium puff signals driven by intracellular noises. 2011 , 390, 1117-1123	5
59	Custom-made modification of a commercial confocal microscope to photolyze caged compounds using the conventional illumination module and its application to the observation of Inositol 1,4,5-trisphosphate-mediated calcium signals. 2011 , 16, 066013	7
58	Reduction of calcium release site models via moment fitting of phase-type distributions. 2011 , 8, 026015	1
57	PROPAGATION AND SYNCHRONIZATION OF Ca2+ SPIRAL WAVES IN EXCITABLE MEDIA. 2011 , 21, 587-601	10
56	Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales. 2012 , 3, 350	18
55	Dynamic clustering of IP3 receptors by IP3. 2012 , 40, 325-30	22
54	Multi-scale data-driven modeling and observation of calcium puffs. 2012 , 52, 152-60	27
53	Analysis of IP3 receptors in and out of cells. 2012 , 1820, 1214-27	12
52	Imaging calcium waves and sparks in central neurons. 2012 , 2012, 1087-91	5

51	The art of fluorescence imaging with chemical sensors. 2012 , 51, 3532-54	525
50	Fluoreszenzbildgebung mit chemischen Sensoren. 2012 , 124, 3590-3614	62
49	Dynamic Ca(2+) signal modalities in the vascular endothelium. 2012 , 19, 423-9	8
48	Signal mass and Cal+ kinetics in local calcium events: a modeling study. 2012 , 18, 721-36	1
47	Ca2+ sparks and puffs are generated and interact in rat hippocampal CA1 pyramidal neuron dendrites. 2013 , 33, 17777-88	20
46	Photolysis of caged compounds: studying Ca(2+) signaling and activation of Ca(2+)-dependent ion channels. 2013 , 2013,	5
45	How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. 2013 , 53, 41-54	24
44	TRP channel Ca(2+) sparklets: fundamental signals underlying endothelium-dependent hyperpolarization. 2013 , 305, C999-C1008	46
43	Regulation of cerebral artery smooth muscle membrane potential by Call+-activated cation channels. 2013 , 20, 337-47	15
42	Fluorescence fluctuations and equivalence classes of Call+ imaging experiments. <i>PLoS ONE</i> , 2014 , 9, e95860	8
42	Buffer regulation of calcium puff sequences. 2014 , 11, 016007	7
41	Buffer regulation of calcium puff sequences. 2014 , 11, 016007	7
41 40	Buffer regulation of calcium puff sequences. 2014 , 11, 016007 Translating intracellular calcium signaling into models. 2014 , 2014, Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some	7
41 40 39	Buffer regulation of calcium puff sequences. 2014 , 11, 016007 Translating intracellular calcium signaling into models. 2014 , 2014, Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages. 2015 , 2, 021005 The role of IP3 receptor channel clustering in Ca2+ wave propagation during oocyte maturation.	7 10 5
41 40 39 38	Buffer regulation of calcium puff sequences. 2014, 11, 016007 Translating intracellular calcium signaling into models. 2014, 2014, Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages. 2015, 2, 021005 The role of IP3 receptor channel clustering in Ca2+ wave propagation during oocyte maturation. 2014, 123, 83-101	7 10 5
41 40 39 38 37	Buffer regulation of calcium puff sequences. 2014, 11, 016007 Translating intracellular calcium signaling into models. 2014, 2014, Imaging with organic indicators and high-speed charge-coupled device cameras in neurons: some applications where these classic techniques have advantages. 2015, 2, 021005 The role of IP3 receptor channel clustering in Ca2+ wave propagation during oocyte maturation. 2014, 123, 83-101 Stochastic models of intracellular calcium signals. 2014, 534, 39-87 Frequency and relative prevalence of calcium blips and puffs in a model of small IPB clusters. 2014,	7 10 5 7 32

33	Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle. <i>Journal of General Physiology</i> , 2015 , 145, 173-84	3.4	13
32	Modulation of elementary calcium release mediates a transition from puffs to waves in an IP3R cluster model. 2015 , 11, e1003965		21
31	Some Background Physiology. 2016 , 3-27		
30	Functional Tuning of Intrinsic Endothelial Ca2+ Dynamics in Swine Coronary Arteries. 2016 , 118, 1078-9	0	25
29	Luminal Ca(2+) dynamics during IP3R mediated signals. 2016 , 13, 036006		3
28	Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. <i>Journal of Physiology</i> , 2016 , 594, 7267-7307	3.9	67
27	Mode switching of Inositol 1,4,5-trisphosphate receptor channel shapes the Spatiotemporal scales of Ca signals. 2016 , 42, 507-524		8
26	Ca tunnelling through the ER lumen as a mechanism for delivering Ca entering via store-operated Ca channels to specific target sites. <i>Journal of Physiology</i> , 2017 , 595, 2999-3014	3.9	37
25	FCS experiments to quantify Ca diffusion and its interaction with buffers. 2017, 146, 104203		3
24	IP receptor signaling and endothelial barrier function. 2017 , 74, 4189-4207		6
23	Determining the Roles of Inositol Trisphosphate Receptors in Neurodegeneration: Interdisciplinary Perspectives on a Complex Topic. 2017 , 54, 6870-6884		8
22	Dynamic Ca imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca puffs. 2018 , 71, 34-44		19
21	All three IP receptor isoforms generate Ca puffs that display similar characteristics. 2018, 11,		29
20	Using two dyes to observe the competition of Ca trapping mechanisms and their effect on intracellular Ca signals. 2018 , 15, 066006		4
19	Information Content in Stochastic Pulse Sequences of Intracellular Messengers. 2018, 6,		1
18	Functional Ca2+ Channels between Channel Clusters are Necessary for the Propagation of IP3R-Mediated Ca2+ Waves. 2019 , 24, 61		
17	Ca signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. <i>Journal of Physiology</i> , 2019 , 597, 3587-3617	3.9	12
16	Noise analysis of cytosolic calcium image data. 2020 , 86, 102152		4

CITATION REPORT

15	A high throughput machine-learning driven analysis of Ca spatio-temporal maps. 2020 , 91, 102260		4
14	The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. 2021 , 11, 1831-186	9	10
13	Calcium oscillations. 2008, 641, 1-27		35
12	Using calcium imaging as a readout of GPCR activation. <i>Methods in Molecular Biology</i> , 2011 , 746, 277-96	5 1.4	8
11	Isolated Neurohypophysial Terminals: Model for DepolarizationBecretion Coupling. <i>Neuromethods</i> , 2014 , 191-220	0.4	1
10	Ca(2+) signalling by IP(3) receptors. Sub-Cellular Biochemistry, 2012 , 59, 1-34	5.5	11
9	Dynamics of signaling between Ca(2+) sparks and Ca(2+)- activated K(+) channels studied with a novel image-based method for direct intracellular measurement of ryanodine receptor Ca(2+) current. <i>Journal of General Physiology</i> , 2000 , 116, 845-64	3.4	72
8	The organisation and functions of local Ca2+ signals. <i>Journal of Cell Science</i> , 2001 , 114, 2213-2222	5.3	335
7	Calcium puffs are generic InsP3-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. <i>Journal of Cell Science</i> , 2001 , 114, 3979-3989	5.3	89
6	Intra-cluster percolation of calcium signals. <i>PLoS ONE</i> , 2010 , 5, e8997	3.7	22
5	Calcium Complexities: New Fluorescence Techniques for Probing Mitochondria and Other Subcellular Compartments. 2000 , 697-713		
4	Intra-cellular Calcium Release Dynamics Due to Nanosecond Electric Pulsing. <i>Series in Bioengineering</i> , 2021 , 143-157	0.7	
3	Calcium Signaling Regulated by Cellular Membrane Systems and Calcium Homeostasis Perturbed in Alzheimer Disease Frontiers in Cell and Developmental Biology, 2022, 10, 834962	5.7	1
2	Presentation_1.pdf. 2018 ,		
1	Dillsive exit rates through pores in membrane-enclosed structures.		О