The ubiquitin pathway in Parkinson's disease

Nature 395, 451-452 DOI: 10.1038/26652

Citation Report

#	Article	IF	CITATIONS
1	Maladie de Parkinson Vers un mécanisme de mort neuronale. Journal of Engineering and Technology Management - JET-M, 1997, 14, 25-45.	2.7	65
2	Intron-exon Structure of Ubiquitin C-terminal Hydrolase-L1. DNA Research, 1998, 5, 397-400.	3.4	25
3	Gene therapy for Parkinson's disease: review and update. Expert Opinion on Investigational Drugs, 1999, 8, 1551-1564.	4.1	1
4	Cluster headaches. Neurology, 1999, 53, 543-543.	1.1	31
5	Etiology of Parkinson's Disease. Canadian Journal of Neurological Sciences, 1999, 26, S5-S12.	0.5	23
6	Aberrant Protein Deposition and Neurological Disease. Journal of Biological Chemistry, 1999, 274, 37507-37510.	3.4	107
7	A chromosome 4p haplotype segregating with Parkinson's disease and postural tremor. Human Molecular Genetics, 1999, 8, 81-85.	2.9	229
8	Role of Mitochondria in Parkinson Disease. Biological Chemistry, 1999, 380, 865-70.	2.5	63
9	Evidence for Proteasome Involvement in Polyglutamine Disease: Localization to Nuclear Inclusions in SCA3/MJD and Suppression of Polyglutamine Aggregation in vitro. Human Molecular Genetics, 1999, 8, 673-682.	2.9	386
10	Candidate genes and Parkinson's disease. Neurology, 1999, 53, 1382-1382.	1.1	24
11	Axonal transport of synucleins is mediated by all rate components. European Journal of Neuroscience, 1999, 11, 3369-3376.	2.6	94
12	Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genetics, 1999, 23, 47-51.	21.4	467
13	Alphaâ€synuclein in Lewy Body Disease and Alzheimer's Disease. Brain Pathology, 1999, 9, 707-720.	4.1	217
14	Prospects for new restorative and neuroprotective treatments in Parkinson's disease. Nature, 1999, 399, A32-A39.	27.8	442
15	Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO Journal, 1999, 18, 3877-3887.	7.8	280
16	A novel transactivation domain in parkin. Trends in Biochemical Sciences, 1999, 24, 229-231.	7.5	145
17	Rapid-onset dystonia-parkinsonism: Linkage to chromosome 19q13. Annals of Neurology, 1999, 46, 176-182.	5.3	97
18	Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor. Annals of Neurology, 1999, 46, 249-252.	5.3	93

#	Article	IF	CITATIONS
19	Lymphocyte migration and multiple sclerosis: Relation with disease course and therapy. Annals of Neurology, 1999, 46, 253-256.	5.3	56
20	Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2. Annals of Neurology, 1999, 46, 256-259.	5.3	49
21	Increased tissue copper and manganese content in the lentiform nucleus in primary adult-onset dystonia. Annals of Neurology, 1999, 46, 260-263.	5.3	91
22	Selective suppression of cerebellar GABAergic transmission by an autoantibody to glutamic acid decarboxylase. Annals of Neurology, 1999, 46, 263-267.	5.3	109
23	Cytomegalovirus is not associated with IgM anti-myelin-associated glycoprotein/sulphate-3-glucuronyl paragloboside antibody-associated neuropathy. Annals of Neurology, 1999, 46, 267-270.	5.3	7
24	Ataxin 1 and ataxin 3 in neuronal intranuclear inclusion disease. Annals of Neurology, 1999, 46, 271-273.	5.3	46
25	Muscle phosphoglycerate mutase deficiency with tubular aggregates: Effect of dantrolene. Annals of Neurology, 1999, 46, 274-277.	5.3	29
26	Reduced expression of the G209A ?-synuclein allele in familial parkinsonism. Annals of Neurology, 1999, 46, 374-381.	5.3	89
27	Molecular Basis of the Neurodegenerative Disorders. New England Journal of Medicine, 1999, 340, 1970-1980.	27.0	380
28	Medical and Societal Consequences of the Human Genome Project. New England Journal of Medicine, 1999, 341, 28-37.	27.0	692
29	Protein Fate in Neurodegenerative Proteinopathies: Polyglutamine Diseases Join the (Mis)Fold. American Journal of Human Genetics, 1999, 64, 339-345.	6.2	184
30	Genetic Analysis of Families with Parkinson Disease that Carry the Ala53Thr Mutation in the Gene Encoding α-Synuclein. American Journal of Human Genetics, 1999, 65, 555-558.	6.2	124
31	Molecular genetics of familial parkinsonism. Parkinsonism and Related Disorders, 1999, 5, 145-155.	2.2	8
32	Positional cloning of the autosomal recessive juvenile parkinsonism (AR-JP) gene and its diversity in deletion mutations. Parkinsonism and Related Disorders, 1999, 5, 163-168.	2.2	9
33	Genetic susceptibility and the occurrence of Parkinson's disease. Parkinsonism and Related Disorders, 1999, 5, 173-177.	2.2	10
34	Genetics of Parkinson's disease. Biomedicine and Pharmacotherapy, 1999, 53, 109-116.	5.6	30
35	Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice. Neuron, 1999, 24, 879-892.	8.1	482
36	The Ile93Met mutation in the ubiquitin carboxy-terminal-hydrolase-L1 gene is not observed in European cases with familial Parkinson's disease. Neuroscience Letters, 1999, 270, 1-4.	2.1	75

#	Article	IF	CITATIONS
37	Aggregates in neurodegenerative disease: crowds and power?. Trends in Neurosciences, 1999, 22, 194-197.	8.6	86
38	Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Progress in Neurobiology, 1999, 59, 635-661.	5.7	9
39	Molecular Cloning of Chick UCH-6 Which Shares High Similarity with Human UCH-L3: Its Unusual Substrate Specificity and Tissue Distribution. Biochemical and Biophysical Research Communications, 1999, 264, 235-240.	2.1	7
40	Deubiquitinating Enzymes: Their Diversity and Emerging Roles. Biochemical and Biophysical Research Communications, 1999, 266, 633-640.	2.1	168
41	Association of a missense change in the D2 dopamine receptor with myoclonus dystonia. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5173-5176.	7.1	154
42	Parkinson's disease genetics comes of age. BMJ: British Medical Journal, 1999, 318, 1641-1642.	2.3	7
43	Isolation and Characterization of Cytosolic and Membrane-Bound Deubiquitinylating Enzymes from Bovine Brain. Journal of Biochemistry, 1999, 126, 612-623.	1.7	16
44	Low frequency of pathogenic mutations in the ubiquitin carboxyterminal hydrolase gene in familial Parkinson's disease. NeuroReport, 1999, 10, 427-429.	1.2	119
45	Identification and distribution of Parkin in rat brain. NeuroReport, 1999, 10, 3393-3397.	1.2	38
46	A nonpathogenic GAAGGA repeat in the Friedreich gene: Implications for pathogenesis. Neurology, 1999, 53, 1854-1854.	1.1	50
47	ï¼°ï¼2¥¼2ʾï¼2‹ï¼2‰ï¼2Žï¼2"ï¼2¥҄ų2Žç—…ç"ç©¶ã®é€²æ©. The Journal of the Japanese Society of Internal Medicir	ne, 20 00, 8	39,d970-1976
48	Tissue-specificity, functional characterization and subcellular localization of a rat ubiquitin-specific processing protease, UBP109, whose mRNA expression is developmentally regulated. Biochemical Journal, 2000, 349, 443-453.	3.7	11
49	Tissue-specificity, functional characterization and subcellular localization of a rat ubiquitin-specific processing protease, UBP109, whose mRNA expression is developmentally regulated. Biochemical Journal, 2000, 349, 443.	3.7	9
50	Exploratory saccades show no direction-specific deficit in neglect. Neurology, 2000, 54, 515-515.	1.1	43
51	The A53T α-Synuclein Mutation Increases Iron-Dependent Aggregation and Toxicity. Journal of Neuroscience, 2000, 20, 6048-6054.	3.6	504
52	Parkin is metabolized by the ubiquitin/proteosome system. NeuroReport, 2000, 11, 2635-2638.	1.2	52
53	Mutation analysis and association studies of the UCHL1 gene in German Parkinson's disease patients. NeuroReport, 2000, 11, 2079-2082.	1.2	143
54	Ischemic strokes are more severe in Poland than in the United States, Neurology, 2000, 54, 513-513	1.1	25

	CHAHON	REPORT	
#	Article	IF	CITATIONS
55	Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays, 2000, 22, 442-451.	2.5	764
56	Expression of ?-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: Genes associated with familial Parkinson's disease. Annals of Neurology, 2000, 47, 201-210.	5.3	194
57	Parkin deletions in a family with adult-onset, tremor-dominant parkinsonism: Expanding the phenotype. Annals of Neurology, 2000, 48, 65-71.	5.3	247
58	Parkin is associated with actin filaments in neuronal and nonneural cells. Annals of Neurology, 2000, 48, 737-744.	5.3	75
59	Neurosyphilis presenting as progressive supranuclear palsy. Movement Disorders, 2000, 15, 730-731.	3.9	32
60	Progressive myoclonic ataxia associated with celiac disease presenting as unilateral cortical tremor and dystonia. Movement Disorders, 2000, 15, 732-734.	3.9	25
61	Subhypnotic doses of zolpidem oppose dopaminergic-induced dyskinesia in Parkinson's disease. Movement Disorders, 2000, 15, 734-735.	3.9	38
62	Myasthenia gravis after botulinum toxin a for Meige syndrome. Movement Disorders, 2000, 15, 736-738.	3.9	36
63	Test-retest reliability of patient information on age of onset in essential tremor. Movement Disorders, 2000, 15, 738-741.	3.9	17
64	Chorea and jaw-opening dystonia as a manifestation of Neurobehcet's syndrome. Movement Disorders, 2000, 15, 741-744.	3.9	18
65	Young-onset Parkinson's disease: A clinical pathologic description of two siblings. Movement Disorders, 2000, 15, 744-746.	3.9	7
66	Posterior fossa arachnoid cyst associated with an exertional tremor. Movement Disorders, 2000, 15, 746-749.	3.9	10
67	Probable Cornelia de Lange syndrome with progressive parkinsonism and dystonia. Movement Disorders, 2000, 15, 749-751.	3.9	5
68	Linkage exclusion in French families with probable Parkinson's disease. Movement Disorders, 2000, 15, 1075-1083.	3.9	33
69	Autosomal recessive juvenile parkinsonism: A key to understanding nigral degeneration in sporadic Parkinson's disease. Neuropathology, 2000, 20, 85-90.	1.2	91
70	Late-onset neurodegenerative diseases-the role of protein insolubility. Journal of Anatomy, 2000, 196, 609-616.	1.5	59
71	Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics, 2000, 25, 302-305.	21.4	1,894
72	Drosophila models of human neurodegenerative disease. Cell Death and Differentiation, 2000, 7, 1075-1080.	11.2	74

#	Article	IF	CITATIONS
73	Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson's disease?. Nature Cell Biology, 2000, 2, E115-E119.	10.3	350
74	Parkin expression in the adult mouse brain. European Journal of Neuroscience, 2000, 12, 4181-4194.	2.6	37
75	Protein aggregation in Huntington's and Parkinson's disease: implications for therapy. Trends in Molecular Medicine, 2000, 6, 387-391.	2.6	46
76	Does failure of parkin-mediated ubiquitination cause juvenile parkinsonism?. Trends in Biochemical Sciences, 2000, 25, 524-527.	7.5	35
77	What causes the build-up of ubiquitin-containing inclusions in Parkinson's disease?. Mechanisms of Ageing and Development, 2000, 118, 15-22.	4.6	31
78	Plaque-associated α-synuclein (NACP) pathology in aged transgenic mice expressing amyloid precursor protein. Brain Research, 2000, 853, 381-383.	2.2	58
79	Progress in the clinical and molecular genetics of familial parkinsonism. Neurogenetics, 2000, 2, 207-218.	1.4	36
80	Structural changes in αâ€synuclein affect its chaperoneâ€like activity in vitro. Protein Science, 2000, 9, 2489-2496.	7.6	122
81	Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mammalian Genome, 2000, 11, 417-421.	2.2	63
82	Organization of the human synphilin-1 gene, a candidate for Parkinson's disease. Mammalian Genome, 2000, 11, 763-766.	2.2	21
83	Genetic influence on the development of Parkinson's disease. Journal of Neurology, 2000, 247, 1169-1174.	3.6	20
84	Involvement of α-synuclein in Parkinson's disease and other neurodegenerative disorders. Journal of Neural Transmission, 2000, 107, 31-40.	2.8	70
85	Parkinson's disease, smoking and family history. Journal of Neurology, 2000, 247, 793-798.	3.6	32
86	Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood, 2000, 95, 2577-2585.	1.4	105
87	Spinal cord astrocytoma: Response to PCV chemotherapy. Neurology, 2000, 54, 518-518.	1.1	25
88	Isolated musculocutaneous neuropathy caused by a proximal humeral exostosis. Neurology, 2000, 54, 494-494.	1.1	30
89	Neuropathology in Mice Expressing Human α-Synuclein. Journal of Neuroscience, 2000, 20, 6021-6029.	3.6	522
90	Proteasome Involvement and Accumulation of Ubiquitinated Proteins in Cerebellar Granule Neurons Undergoing Apoptosis. Journal of Neuroscience, 2000, 20, 589-599.	3.6	134

#	Article	IF	CITATIONS
91	Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12571-12576.	7.1	547
92	Right frontal areas 6 and 8 are associated with simultanapraxia, a subset of motor impersistence. Neurology, 2000, 54, 522-522.	1.1	4
93	Atypical Friedreich ataxia phenotype associated with a novel missense mutation in the <i>X25 gene</i> . Neurology, 2000, 54, 496-496.	1.1	26
94	A magnetization transfer imaging study of the brain in patients with migraine. Neurology, 2000, 54, 507-507.	1.1	53
95	No induction of apoptosis by IFN-β in human antigen-specific T cells. Neurology, 2000, 54, 485-485.	1.1	23
96	Identification of new and common mutations in the <i>EPM2A gene in Lafora disease</i> . Neurology, 2000, 54, 488-488.	1.1	42
97	Hemodynamic changes in simple partial epilepsy: A functional MRI study. Neurology, 2000, 54, 524-524.	1.1	63
98	A kindred with Parkinson's disease not showing genetic linkage to established loci. Neurology, 2000, 54, 504-504.	1.1	22
99	Micturitional disturbance in pure autonomic failure. Neurology, 2000, 54, 499-499.	1.1	31
100	Loss of ability to sneeze in lateral medullary syndrome. Neurology, 2000, 54, 520-520.	1.1	47
101	Decreased hemispheric water mobility in hemiplegic migraine related to mutation of <i>CACNA1A</i>		
	gene. Neurology, 2000, 54, 510-510.	1.1	68
102	gene. Neurology, 2000, 54, 510-510. An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology, 2000, 54, 502-502.	1.1	68 264
102 103	An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome.		
	An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology, 2000, 54, 502-502. Expression and Functional Analysis of Uch-L3 during Mouse Development. Molecular and Cellular	1.1	264
103	An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology, 2000, 54, 502-502. Expression and Functional Analysis of Uch-L3 during Mouse Development. Molecular and Cellular Biology, 2000, 20, 2498-2504. The Ubiquitin-Specific Protease Family from Arabidopsis.AtUBP1 and 2 Are Required for the Resistance	1.1 2.3	264 68
103 104	An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology, 2000, 54, 502-502. Expression and Functional Analysis of Uch-L3 during Mouse Development. Molecular and Cellular Biology, 2000, 20, 2498-2504. The Ubiquitin-Specific Protease Family from Arabidopsis.AtUBP1 and 2 Are Required for the Resistance to the Amino Acid Analog Canavanine. Plant Physiology, 2000, 124, 1828-1843. Parkin functions as an E2-dependent ubiquitin– protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proceedings of the National Academy of Sciences of the	1.1 2.3 4.8	264 68 123
103 104 105	An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology, 2000, 54, 502-502. Expression and Functional Analysis of Uch-L3 during Mouse Development. Molecular and Cellular Biology, 2000, 20, 2498-2504. The Ubiquitin-Specific Protease Family from Arabidopsis.AtUBP1 and 2 Are Required for the Resistance to the Amino Acid Analog Canavanine. Plant Physiology, 2000, 124, 1828-1843. Parkin functions as an E2-dependent ubiquitin– protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13354-13359.	1.1 2.3 4.8 7.1	264 68 123 916

#	Article	IF	CITATIONS
109	Identification and Characterization of TMEFF2, a Novel Survival Factor for Hippocampal and Mesencephalic Neurons. Genomics, 2000, 67, 146-152.	2.9	69
110	The RS447 Human Megasatellite Tandem Repetitive Sequence Encodes a Novel Deubiquitinating Enzyme with a Functional Promoter. Genomics, 2000, 67, 291-300.	2.9	36
111	Ubiquitin-Mediated Proteolysis and Human Disease. Molecular Genetics and Metabolism, 2000, 71, 261-266.	1.1	32
112	Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome. Seminars in Cell and Developmental Biology, 2000, 11, 141-148.	5.0	498
113	Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends in Neurosciences, 2000, 23, 599-605.	8.6	55
114	The ubiquitin carboxy-terminal hydrolase-L1 gene S18Y polymorphism does not confer protection against idiopathic Parkinson's disease. Neuroscience Letters, 2000, 293, 127-130.	2.1	56
115	Nuclear magnetic relaxation dispersion profiles of substantia nigra pars compacta in Parkinson's disease patients are consistent with protein aggregation. Neurochemistry International, 2000, 37, 331-336.	3.8	31
116	An interrupted 34-CAG repeat SCA-2 allele in patients with sporadic spinocerebellar ataxia. Neurology, 2000, 54, 491-491.	1.1	36
117	Association between a polymorphism of ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) gene and sporadic Parkinson's disease. Parkinsonism and Related Disorders, 2000, 6, 195-197.	2.2	61
118	Failure to find mutations in ubiquitin carboxy-terminal hydrolase L1 gene in familial Parkinson's disease. Parkinsonism and Related Disorders, 2000, 6, 199-200.	2.2	12
119	The genetics of Parkinson's disease. Current Opinion in Genetics and Development, 2000, 10, 292-298.	3.3	73
120	Reversing Neurodegeneration: A Promise Unfolds. Cell, 2000, 101, 1-4.	28.9	81
121	Advances in Research on Neurodegeneration. , 2000, , .		0
122	Maladie de Parkinson. Annales De L'Institut Pasteur / Actualités, 2000, 11, 25-45.	0.1	0
123	Aggregation of ubiquitin and a mutant ALS-linked SOD1 protein correlate with disease progression and fragmentation of the Golgi apparatus. Journal of the Neurological Sciences, 2000, 173, 53-62.	0.6	67
124	Association between Early-Onset Parkinson's Disease and Mutations in the <i>Parkin</i> Gene. New England Journal of Medicine, 2000, 342, 1560-1567.	27.0	1,448
125	Genetics of Movement Disorders: An Abbreviated Overview. Stereotactic and Functional Neurosurgery, 2001, 77, 48-60.	1.5	1
126	A polymorphic variation of serine to tyrosine at codon 18 in the ubiquitin C-terminal hydrolase-L1 gene is associated with a reduced risk of sporadic Parkinson's disease in a Japanese population. Journal of the Neurological Sciences, 2001, 189, 113-117.	0.6	85

#	Article	IF	CITATIONS
127	Characterization of alternatively spliced products and tissue-specific isoforms of USP28 and USP25. Genome Biology, 2001, 2, research0043.1.	9.6	58
128	Impairment of the Ubiquitin-Proteasome System by Protein Aggregation. Science, 2001, 292, 1552-1555.	12.6	2,034
130	Biochemical Analysis of Cybrids Expressing Mitochondrial DNA from Contursi Kindred Parkinson's Subjects. Experimental Neurology, 2001, 169, 479-485.	4.1	43
131	Does an inhibition of the ubiquitin/26S proteasome pathway of protein degradation underlie the pathogenesis of non-familial Alzheimer's disease?. Medical Hypotheses, 2001, 56, 395-399.	1.5	11
132	Origin of the Mutations in the parkin Gene in Europe: Exon Rearrangements Are Independent Recurrent Events, whereas Point Mutations May Result from Founder Effects. American Journal of Human Genetics, 2001, 68, 617-626.	6.2	106
133	PARK7, a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, on Chromosome 1p36. American Journal of Human Genetics, 2001, 69, 629-634.	6.2	349
134	Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Progress in Neurobiology, 2001, 63, 337-363.	5.7	37
135	Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neuroscience Letters, 2001, 297, 191-194.	2.1	604
137	Engineered modeling and the secrets of Parkinson's disease. Trends in Neurosciences, 2001, 24, S49-S55.	8.6	17
138	The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends in Neurosciences, 2001, 24, S7-S14.	8.6	184
139	The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders. Trends in Neurosciences, 2001, 24, 7-14.	8.6	161
140	Engineered modeling and the secrets of Parkinson's disease. Trends in Neurosciences, 2001, 24, 49-55.	8.6	12
141	Parkinson disease: etiology, pathogenesis and future of gene therapy. Neuroscience Research, 2001, 41, 5-12.	1.9	100
142	Ubiquitination of a New Form of α-Synuclein by Parkin from Human Brain: Implications for Parkinson's Disease. Science, 2001, 293, 263-269.	12.6	1,033
143	Cellular Defenses against Unfolded Proteins. Neuron, 2001, 29, 15-32.	8.1	948
144	Parkin and the Molecular Pathways of Parkinson's Disease. Neuron, 2001, 31, 885-888.	8.1	149
145	αâ€5ynuclein metabolism and aggregation is linked to ubiquitinâ€independent degradation by the proteasome. FEBS Letters, 2001, 509, 22-26.	2.8	326
146	Ubiquinone (Coenzyme Q ₁₀) and Mitochondria in Oxidative Stress of Parkinson's Disease. NeuroSignals, 2001, 10, 224-253.	0.9	131

#	Article	IF	CITATIONS
147	The G209A mutation in the alpha-synuclein gene in Brazilian families with Parkinson's disease. Arquivos De Neuro-Psiquiatria, 2001, 59, 722-724.	0.8	10
148	Satellite potentials on EMG: Neurophysiologic evidence of axonal transection in MS?. Neurology, 2001, 57, 1126-1128.	1.1	7
149	Expression of A53T Mutant But Not Wild-Type α-Synuclein in PC12 Cells Induces Alterations of the Ubiquitin-Dependent Degradation System, Loss of Dopamine Release, and Autophagic Cell Death. Journal of Neuroscience, 2001, 21, 9549-9560.	3.6	540
150	Parkin is linked to the ubiquitin pathway. Journal of Molecular Medicine, 2001, 79, 482-494.	3.9	69
151	No genetic association of the Ubiquitin Carboxy-terminal Hydrolase-L1 gene S18Y polymorphism with familial Parkinson's disease. Journal of Neural Transmission, 2001, 108, 979-984.	2.8	39
152	Autosomal-dominant Parkinson's disease linked to 2p13 is not caused by mutations in transforming growth factor alpha (TGF alpha). Journal of Neural Transmission, 2001, 108, 1029-1034.	2.8	6
153	Alpha-synuclein has an altered conformation and shows a tight intermolecular interaction with ubiquitin in Lewy bodies. Acta Neuropathologica, 2001, 102, 329-334.	7.7	31
154	Complex segregation analysis of Parkinson's disease in the Finnish population. Human Genetics, 2001, 108, 184-189.	3.8	16
155	Parkin is associated with cellular vesicles. Journal of Neurochemistry, 2001, 78, 42-54.	3.9	119
156	Proteasomal inhibition leads to formation of ubiquitin/αâ€synucleinâ€immunoreactive inclusions in PC12 cells. Journal of Neurochemistry, 2001, 78, 899-908.	3.9	253
157	Genetics of Parkinsonism: a review. Annals of Human Genetics, 2001, 65, 111-126.	0.8	63
158	Ubiquitin C-terminal hydrolase-L1 (PGP9.5) expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines, neurotrophic factors or heat stress. Neuropathology and Applied Neurobiology, 2001, 27, 95-104.	3.2	31
159	The ubiquitin protein catabolic disorders. Neuropathology and Applied Neurobiology, 2001, 27, 171-179.	3.2	70
160	NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6â€OHDA rat model of Parkinson's disease. European Journal of Neuroscience, 2001, 14, 391-400.	2.6	72
161	Mitochondria and degenerative disorders. American Journal of Medical Genetics Part A, 2001, 106, 27-36.	2.4	244
162	Parkin and Parkinson's: More than homonymy?. Annals of Neurology, 2001, 50, 283-285.	5.3	5
163	Prevalence of homozygous deletions of the parkin gene in a cohort of patients with sporadic and familial Parkinson's disease. Movement Disorders, 2001, 16, 111-113.	3.9	16
164	6-Hydroxydopamine increases ubiquitin-conjugates and protein degradation: implications for the pathogenesis of Parkinson's disease. Cellular and Molecular Neurobiology, 2001, 21, 771-781.	3.3	56

#	Article	IF	CITATIONS
165	Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nature Medicine, 2001, 7, 1144-1150.	30.7	710
166	Refinement of the PARK3 locus on chromosome 2p13 and the analysis of 14 candidate genes. European Journal of Human Genetics, 2001, 9, 659-666.	2.8	46
167	Alpha-synuclein and neurodegenerative diseases. Nature Reviews Neuroscience, 2001, 2, 492-501.	10.2	1,249
168	Failure of the ubiquitin–proteasome system in Parkinson's disease. Nature Reviews Neuroscience, 2001, 2, 589-594.	10.2	490
169	Comparison of Global Brain Gene Expression Profiles Between Inbred Long-Sleep and Inbred Short-Sleep Mice by High-Density Gene Array Hybridization. Alcoholism: Clinical and Experimental Research, 2001, 25, 810-818.	2.4	42
170	Caretaker or undertaker? The role of the proteasome in aging. Mechanisms of Ageing and Development, 2001, 122, 235-254.	4.6	84
171	Pharmacogenomics of neurodegenerative diseases. European Journal of Pharmacology, 2001, 413, 11-29.	3.5	51
172	Advances in genetic models of Parkinson's disease. Clinical Neuroscience Research, 2001, 1, 456-466.	0.8	8
173	Parkin: clinical aspects and neurobiology. Clinical Neuroscience Research, 2001, 1, 467-482.	0.8	15
174	Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. Journal of Neurochemistry, 2001, 77, 263-273.	3.9	89
175	Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Human Molecular Genetics, 2001, 10, 1963-1970.	2.9	102
176	Analysis of <i>α-synuclein, parkin, tau,</i> and <i>UCH-L1</i> in a Japanese Family with Autosomal Dominant Parkinsonism. European Neurology, 2001, 46, 20-24.	1.4	13
177	Creatine monohydrate does not increase strength in patients with hereditary neuropathy. Neurology, 2001, 57, 559-560.	1.1	18
178	Genome-wide scan for Parkinson's disease. Neurology, 2001, 57, 1124-1126.	1.1	84
179	Lack of association between ubiquitin carboxy-terminal hydrolase L1 gene polymorphism and PD. Neurology, 2001, 57, 560-561.	1.1	30
180	An algorithm (decision tree) for the management of Parkinson's disease (2001):. Neurology, 2001, 56, S1-S88.	1.1	565
181	Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Human Molecular Genetics, 2001, 10, 919-926.	2.9	442
182	Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10433-10438.	7.1	208

#	Article	IF	CITATIONS
183	Parkin Accumulation in Aggresomes Due to Proteasome Impairment. Journal of Biological Chemistry, 2002, 277, 47870-47877.	3.4	132
184	The genetic basis of Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 363-370.	1.9	57
185	A Rhodopsin Mutant Linked to Autosomal Dominant Retinitis Pigmentosa Is Prone to Aggregate and Interacts with the Ubiquitin Proteasome System. Journal of Biological Chemistry, 2002, 277, 34150-34160.	3.4	278
186	Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology, 2002, 58, 179-185.	1.1	230
187	Linkage stratification and mutation analysis at the parkin locus identifies mutation positive Parkinson's disease families. Journal of Medical Genetics, 2002, 39, 489-492.	3.2	54
188	Age-Environment and Gene-Environment Interactions in the Pathogenesis of Parkinson's Disease. Reviews on Environmental Health, 2002, 17, 51-64.	2.4	55
189	Familial Lewy Body Diseases. Journal of Geriatric Psychiatry and Neurology, 2002, 15, 217-223.	2.3	12
190	The "new" mitochondrial disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 144-149.	1.9	22
191	Two large British kindreds with familial Parkinson's disease: a clinicoâ€pathological and genetic study. Brain, 2002, 125, 44-57.	7.6	28
192	Numerous Proteins in Mammalian Cells Are Prone to Iron-Dependent Oxidation and Proteasomal Degradation. Developmental Neuroscience, 2002, 24, 114-124.	2.0	24
193	Molecular Findings in Familial Parkinson Disease in Spain. Archives of Neurology, 2002, 59, 966.	4.5	59
194	Mapping the Progress of Alzheimer's and Parkinson's Disease. Advances in Behavioral Biology, 2002, , .	0.2	5
195	Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. Journal of Cell Biology, 2002, 157, 417-427.	5.2	197
196	Functional ATPase Activity of p97/Valosin-containing Protein (VCP) Is Required for the Quality Control of Endoplasmic Reticulum in Neuronally Differentiated Mammalian PC12 Cells. Journal of Biological Chemistry, 2002, 277, 47358-47365.	3.4	127
197	The differential diagnosis of Parkinson's disease. Reviews in Clinical Gerontology, 2002, 12, 40-51.	0.5	0
198	Formation of Mallory Body-like Inclusions and Cell Death Induced by Deregulated Expression of Keratin 18. Molecular Biology of the Cell, 2002, 13, 3441-3451.	2.1	24
199	Evaluation of 50 probands with early-onset Parkinson's disease for <i>Parkin</i> mutations. Neurology, 2002, 58, 1239-1246.	1.1	164
200	Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Human Molecular Genetics, 2002, 11, 2895-2904.	2.9	148

#	Article	IF	CITATIONS
201	Parkinson's disease. International Review of Neurobiology, 2002, 53, 283-314.	2.0	7
202	Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. NeuroReport, 2002, 13, 1437-1441.	1.2	254
203	The Ubiquitin/Proteasome Pathway in Neurological Disorders. , 2002, , 137-153.		2
204	Antiparkinsonian Drugs and Their Neuroprotective Effects Biological and Pharmaceutical Bulletin, 2002, 25, 284-290.	1.4	20
205	Familial Aggregation of Parkinson Disease. Archives of Neurology, 2002, 59, 848-50.	4.5	75
206	Chapter 5 Mitochondrial Abnormalities in Neurodegenerative Disorders. Blue Books of Practical Neurology, 2002, 26, 143-174.	0.1	3
207	Parkinson-Like Neurodegeneration Induced by Targeted Overexpression of α-Synuclein in the Nigrostriatal System. Journal of Neuroscience, 2002, 22, 2780-2791.	3.6	633
208	Toxic Proteins in Neurodegenerative Disease. Science, 2002, 296, 1991-1995.	12.6	1,103
209	The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. Physiological Reviews, 2002, 82, 373-428.	28.8	3,696
210	Proteasomal Inhibition-Induced Inclusion Formation and Death in Cortical Neurons Require Transcription and Ubiquitination. Molecular and Cellular Neurosciences, 2002, 21, 223-238.	2.2	118
211	The UCH-L1 Gene Encodes Two Opposing Enzymatic Activities that Affect α-Synuclein Degradation and Parkinson's Disease Susceptibility. Cell, 2002, 111, 209-218.	28.9	760
212	Estradiol protects dopaminergic neurons in a MPP+Parkinson's disease model. Neuropharmacology, 2002, 42, 1056-1064.	4.1	109
213	Parkin and CASK/LIN-2 Associate via a PDZ-mediated Interaction and Are Co-localized in Lipid Rafts and Postsynaptic Densities in Brain. Journal of Biological Chemistry, 2002, 277, 486-491.	3.4	162
214	PARK3 Influences Age at Onset in Parkinson Disease: A Genome Scan in the GenePD Study. American Journal of Human Genetics, 2002, 70, 1089-1095.	6.2	96
215	Genome Screen to Identify Susceptibility Genes for Parkinson Disease in a Sample without parkin Mutations. American Journal of Human Genetics, 2002, 71, 124-135.	6.2	162
216	Parkin Protects against the Toxicity Associated with Mutant α-Synuclein. Neuron, 2002, 36, 1007-1019.	8.1	542
217	Expression of protein gene product 9.5 in the anterior lens epithelial cells of atopic cataracts. Journal of Cataract and Refractive Surgery, 2002, 28, 2035-2039.	1.5	7
218	Parkinson's disease: one biochemical pathway to fit all genes?. Trends in Molecular Medicine, 2002, 8, 236-240.	6.7	68

#	Article	IF	CITATIONS
219	Parkinson's genetics—creating exciting new insights. Parkinsonism and Related Disorders, 2002, 8, 459-464.	2.2	7
220	Genetic and environmental factors in cancer and neurodegenerative diseases. Mutation Research - Reviews in Mutation Research, 2002, 512, 135-153.	5.5	143
221	Mitochondrial involvement in Parkinson's disease. Neurochemistry International, 2002, 40, 533-541.	3.8	171
222	Protein misfolding in Alzheimer's and Parkinson's disease: genetics and molecular mechanisms. Neurobiology of Aging, 2002, 23, 957-976.	3.1	124
223	Stem cells in the treatment of Parkinson's disease. Brain Research Bulletin, 2002, 57, 795-808.	3.0	103
224	Development of New Treatments for Parkinson's Disease in Transgenic Animal Models: A Role for β-Synuclein. NeuroToxicology, 2002, 23, 461-468.	3.0	33
225	Parkinson's Genetics: Molecular Insights for the New Millennium. NeuroToxicology, 2002, 23, 503-514.	3.0	19
226	Parkinson's Disease: Current and Future Challenges. NeuroToxicology, 2002, 23, 443-450.	3.0	97
227	The human sideroflexin 5 (SFXN5) gene: sequence, expression analysis and exclusion as a candidate for PARK3. Gene, 2002, 285, 229-237.	2.2	22
228	A mutation in the human neurofilament M gene in Parkinson's disease that suggests a role for the cytoskeleton in neuronal degeneration. Neuroscience Letters, 2002, 322, 57-61.	2.1	58
229	The Tau H1 Haplotype is associated with Parkinson's disease in the Norwegian population. Neuroscience Letters, 2002, 322, 83-86.	2.1	68
230	Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington's disease. Neuroscience Letters, 2002, 328, 1-4.	2.1	85
231	Selective loss of 20S proteasome α-subunits in the substantia nigra pars compacta in Parkinson's disease. Neuroscience Letters, 2002, 326, 155-158.	2.1	221
232	Etiology of Parkinson's disease: Genetics and environment revisited. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13972-13974.	7.1	84
233	Inherited movement disorders. Neurologic Clinics, 2002, 20, 759-778.	1.8	7
234	Kognitive Defizite bei idiopathischem Parkinson-Syndrom, Lewy-Körperchen-Erkrankung und Steele-Richardson-Olszewski-Syndrom. , 2002, , .		Ο
237	Progressive supranuclear palsy and tau hyperphosphorylation in a patient with a C212Y parkin mutation. Journal of Alzheimer's Disease, 2002, 4, 399-404.	2.6	38
238	Glutathione, iron and Parkinson's disease. Biochemical Pharmacology, 2002, 64, 1037-1048.	4.4	372

#	Article	IF	CITATIONS
239	Proteomic identification of oxidatively modified proteins in alzheimer's disease brain. part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 2002, 33, 562-571.	2.9	545
240	MPTP. Neurotoxicology and Teratology, 2002, 24, 607-620.	2.4	123
241	Novel heteroplasmic mtDNA mutation in a family with heterogeneous clinical presentations. Annals of Neurology, 2002, 51, 118-122.	5.3	47
242	Association studies of multiple candidate genes for Parkinson's disease using single nucleotide polymorphisms. Annals of Neurology, 2002, 51, 133-136.	5.3	200
243	A novel, blood-based diagnostic assay for limb girdle muscular dystrophy 2B and miyoshi myopathy. Annals of Neurology, 2002, 51, 129-133.	5.3	98
244	Parkinson's genetics: An embarrassment of riches. Annals of Neurology, 2002, 51, 7-8.	5.3	12
245	Apolipoprotein E affects the central nervous system response to injury and the development of cerebral edema. Annals of Neurology, 2002, 51, 113-117.	5.3	106
246	Is the therapeutic application of neurotrophic factors dead?. Annals of Neurology, 2002, 51, 8-11.	5.3	48
247	Thrombolysis in stroke beyond three hours: Targeting patients with diffusion and perfusion MRI. Annals of Neurology, 2002, 51, 11-13.	5.3	64
248	A new locus for Parkinson's disease (<i>PARK8</i>) maps to chromosome 12p11.2–q13.1. Annals of Neurology, 2002, 51, 296-301.	5.3	608
249	Platelet-activating factor acetylhydrolase activity in cerebrospinal fluid of children with acute systemic or neurological illness. Annals of Neurology, 2002, 51, 760-763.	5.3	7
250	Striatal monoaminergic terminals in Lewy body and Alzheimer's dementias. Annals of Neurology, 2002, 51, 767-771.	5.3	38
251	Activity of the hypothalamic–pituitary–adrenal axis in multiple sclerosis: Correlations with gadoliniumâ€enhancing lesions and ventricular volume. Annals of Neurology, 2002, 51, 763-767.	5.3	55
252	Mitochondrial DNA nucleotide changes C14482G and C14482A in the ND6 gene are pathogenic for Leber's hereditary optic neuropathy. Annals of Neurology, 2002, 51, 774-778.	5.3	50
253	Human herpesvirus 6 encephalitis associated with hypersensitivity syndrome. Annals of Neurology, 2002, 51, 771-774.	5.3	87
254	Brain proteasomal function in sporadic Parkinson's disease and related disorders. Annals of Neurology, 2002, 51, 779-782.	5.3	86
255	Increased expression of the amyloid precursor βâ€secretase in Alzheimer's disease. Annals of Neurology, 2002, 51, 783-786.	5.3	540
256	High headache prevalence among women with hemochromatosis: The Nord-TrÃ,ndelag health study. Annals of Neurology, 2002, 51, 786-789.	5.3	21

#	Article	IF	CITATIONS
257	Thrombolysis induces cerebral hemorrhage in a mouse model of cerebral amyloid angiopathy. Annals of Neurology, 2002, 51, 790-793.	5.3	45
258	A susceptibility gene for lateâ€onset idiopathic Parkinson's disease. Annals of Neurology, 2002, 52, 549-555.	5.3	239
259	Differential neuropathological alterations in transgenic mice expressing αâ€synuclein from the plateletâ€derived growth factor and Thyâ€1 promoters. Journal of Neuroscience Research, 2002, 68, 568-578.	2.9	441
260	Genetics of parkinsonism. Movement Disorders, 2002, 17, 645-656.	3.9	107
261	ACT and UCH-L1 polymorphisms in Parkinson's disease and age of onset. Movement Disorders, 2002, 17, 767-771.	3.9	46
262	Dopaâ€responsive parkinsonism phenotype of spinocerebellar ataxia type 2. Movement Disorders, 2002, 17, 1046-1051.	3.9	67
263	Polymorphisms in iron-responsive binding protein 2 and lack of association with sporadic Parkinson's disease. Movement Disorders, 2002, 17, 1302-1304.	3.9	5
264	Large French-Canadian family with Lewy body parkinsonism: Exclusion of known loci. Movement Disorders, 2002, 17, 1205-1212.	3.9	3
265	Animal models of Parkinson's disease. BioEssays, 2002, 24, 308-318.	2.5	494
266	Familial conformational diseases and dementias. Human Mutation, 2002, 20, 1-14.	2.5	51
267	Significance of the parkin gene and protein in understanding Parkinson's disease. Current Neurology		
	and Neuroscience Reports, 2002, 2, 296-302.	4.2	13
268	and Neuroscience Reports, 2002, 2, 296-302. The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-446.	4.2	13 27
268 269	and Neuroscience Reports, 2002, 2, 296-302.		
	and Neuroscience Reports, 2002, 2, 296-302. The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-446. Mutation analysis and association studies of nuclear factor-κB1 in sporadic Parkinson's disease	4.2	27
269	and Neuroscience Reports, 2002, 2, 296-302. The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-446. Mutation analysis and association studies of nuclear factor-κB1 in sporadic Parkinson's disease patients. Journal of Neural Transmission, 2002, 109, 1181-1188. Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating	4.2 2.8	27 12
269 270	 and Neuroscience Reports, 2002, 2, 296-302. The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-446. Mutation analysis and association studies of nuclear factor-κB1 in sporadic Parkinson's disease patients. Journal of Neural Transmission, 2002, 109, 1181-1188. Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating to Parkinson's disease. Amino Acids, 2002, 23, 57-63. Clinical features and laboratory findings for differentiating parkinsonian syndromes. Journal of 	4.2 2.8 2.7	27 12 59
269 270 271	and Neuroscience Reports, 2002, 2, 296-302. The genetics of Parkinson's disease. Current Neurology and Neuroscience Reports, 2002, 2, 439-446. Mutation analysis and association studies of nuclear factor-ήB1 in sporadic Parkinson's disease patients. Journal of Neural Transmission, 2002, 109, 1181-1188. Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating to Parkinson's disease. Amino Acids, 2002, 23, 57-63. Clinical features and laboratory findings for differentiating parkinsonian syndromes. Journal of Neurology, 2002, 249, 1-1.	4.2 2.8 2.7 3.6	27 12 59 7

#	Article	IF	CITATIONS
275	Synphilin-1 degradation by the ubiquitin-proteasome pathway and effects on cell survival. Journal of Neurochemistry, 2002, 83, 346-352.	3.9	31
276	Proteasomal degradation of tau protein. Journal of Neurochemistry, 2002, 83, 176-185.	3.9	302
277	Aggresomeâ€related biogenesis of Lewy bodies. European Journal of Neuroscience, 2002, 16, 2136-2148.	2.6	243
278	Molecular genetic analysis of the alpha-synuclein and the parkin gene in Parkinson's disease in Finland. European Journal of Neurology, 2002, 9, 479-483.	3.3	15
279	Parkinsonism proteolysis and proteasomes. Cell Death and Differentiation, 2002, 9, 479-482.	11.2	4
280	Pathogenesis of parkinson's disease: dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience, 2002, 3, 932-942.	10.2	1,070
281	REVIEW: Prospects of genetic epidemiology in the 21st century. European Journal of Epidemiology, 2002, 18, 607-616.	5.7	12
282	Parkin's Substrates and the Pathways Leading to Neuronal Damage. NeuroMolecular Medicine, 2003, 3, 1-14.	3.4	48
283	Role of Protein Aggregation in Mitochondrial Dysfunction and Neurodegeneration in Alzheimer's and Parkinson's Diseases. NeuroMolecular Medicine, 2003, 4, 21-36.	3.4	410
284	Role for the Ubiquitin-Proteasome System in Parkinson's Disease and Other Neurodegenerative Brain Amyloidoses. NeuroMolecular Medicine, 2003, 4, 95-108.	3.4	50
285	Yeast Cells Provide Insight into Alpha-Synuclein Biology and Pathobiology. Science, 2003, 302, 1772-1775.	12.6	710
286	α-Synuclein Is Degraded by Both Autophagy and the Proteasome. Journal of Biological Chemistry, 2003, 278, 25009-25013.	3.4	1,246
287	cDNA microarray analysis of changes in gene expression associated with MPP+ toxicity in SH-SY5Y cells. Neurochemical Research, 2003, 28, 1873-1881.	3.3	18
288	Interactions Between Environmental and Genetic Factors in the Pathophysiology of Parkinson's Disease. IUBMB Life, 2003, 55, 323-327.	3.4	14
289	In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease. Cerebellum, 2003, 2, 270-278.	2.5	32
290	Molecular Mechanisms of Neurodegeneration in Parkinson's Disease: Clues from Mendelian Syndromes. IUBMB Life, 2003, 55, 315-322.	3.4	15
291	Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 2003, 12, 1945-1958.	2.9	328
292	A clinical-genetic study of Parkinson's disease in a genetically isolated community. Journal of Neurology, 2003, 250, 1056-1062.	3.6	13

#	Article	IF	CITATIONS
293	Familial Parkinson?s disease: a hint to elucidate the mechanisms of nigral degeneration. Journal of Neurology, 2003, 250, 1-1.	3.6	14
294	Toward identification of susceptibility genes for sporadic Parkinson?s disease. Journal of Neurology, 2003, 250, 1-1.	3.6	28
295	Genes and parkinsonism. Lancet Neurology, The, 2003, 2, 221-228.	10.2	98
296	Drug discovery in the ubiquitin regulatory pathway. Drug Discovery Today, 2003, 8, 746-754.	6.4	57
297	A linkage study of candidate loci in familial Parkinson's Disease. BMC Neurology, 2003, 3, 6.	1.8	14
298	Subtoxic concentration of manganese synergistically potentiates 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells. Brain Research, 2003, 961, 131-138.	2.2	20
299	Effect of proteasome inhibitor on cultured mesencephalic dopaminergic neurons. Brain Research, 2003, 964, 228-236.	2.2	52
300	Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Research, 2003, 966, 194-205.	2.2	92
301	Proteasome inhibition arrests neurite outgrowth and causes ?dying-back? degeneration in primary culture. Journal of Neuroscience Research, 2003, 74, 906-916.	2.9	53
302	S18Y polymorphism in the UCH‣1 gene and Parkinson's disease: Evidence for an ageâ€dependent relationship. Movement Disorders, 2003, 18, 130-137.	3.9	61
303	Reliability of reported age at onset for Parkinson's disease. Movement Disorders, 2003, 18, 275-279.	3.9	29
304	Essential tremor is not associated with αâ€synuclein gene haplotypes. Movement Disorders, 2003, 18, 823-826.	3.9	19
305	Clinical features and neuroimaging ofPARK7-linked parkinsonism. Movement Disorders, 2003, 18, 751-757.	3.9	71
306	Lack of effect of polymorphisms in dopamine metabolism related genes on imaging of TRODAT-1 in striatum of asymptomatic volunteers and patients with Parkinson's disease. Movement Disorders, 2003, 18, 804-812.	3.9	48
307	Complex interactions in Parkinson's disease: A two-phased approach. Movement Disorders, 2003, 18, 631-636.	3.9	30
308	Influence of target size on vertical gaze palsy in a pathologically proven case of progressive supranuclear palsy. Movement Disorders, 2003, 18, 818-822.	3.9	10
309	Visual hallucinations as REM sleep behavior disorders in patients with Parkinson's disease. Movement Disorders, 2003, 18, 812-817.	3.9	93
310	Familial influence on parkinsonism in a rural area of Turkey (K?z?lcaboluk-Denizli): A community-based case-control study. Movement Disorders, 2003, 18, 799-804.	3.9	19

	CITATION R	EPORT	
#	Article	IF	CITATIONS
311	Normal intracortical excitability in developmental stuttering. Movement Disorders, 2003, 18, 826-830.	3.9	30
312	Models of Parkinson's disease. Movement Disorders, 2003, 18, 729-737.	3.9	72
313	Suggestive linkage to chromosome 19 in a large Cuban family with late-onset Parkinson's disease. Movement Disorders, 2003, 18, 1240-1249.	3.9	26
314	Impact of genetic analysis on Parkinson's disease research. Movement Disorders, 2003, 18, 96-98.	3.9	17
315	Genetic and environmental factors in the cause of Parkinson's disease. Annals of Neurology, 2003, 53, S16-S25.	5.3	327
316	Proteolytic stress: A unifying concept for the etiopathogenesis of Parkinson's disease. Annals of Neurology, 2003, 53, S73-S86.	5.3	173
317	Transgenic mouse models of dopamine deficiency. Annals of Neurology, 2003, 54, S91-S102.	5.3	20
318	Familial aggregation of early―and lateâ€onset Parkinson's disease. Annals of Neurology, 2003, 54, 507-513.	5.3	96
319	Discovery of Inhibitors that Elucidate the Role of UCH-L1 Activity in the H1299 Lung Cancer Cell Line. Chemistry and Biology, 2003, 10, 837-846.	6.0	232
320	Peptidase activities of the 20/26S proteasome and a novel protease in human brain. Journal of Neurochemistry, 2003, 84, 392-396.	3.9	8
321	Proteasome inhibition by paired helical filamentâ€ŧau in brains of patients with Alzheimer's disease. Journal of Neurochemistry, 2003, 85, 115-122.	3.9	436
322	Role of nitric oxide in rotenone-induced nigro-striatal injury. Journal of Neurochemistry, 2003, 86, 1338-1345.	3.9	121
323	Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. Journal of Neurochemistry, 2003, 86, 1297-1307.	3.9	239
324	A novel ubiquitin-specific protease, synUSP, is localized at the post-synaptic density and post-synaptic lipid raft. Journal of Neurochemistry, 2003, 87, 665-675.	3.9	26
325	Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC12 cells. Journal of Neurochemistry, 2004, 88, 114-123.	3.9	110
326	Genotype-phenotype correlation: Familial Parkinson disease. Neuropathology, 2003, 23, 90-94.	1.2	15
327	NEDD8 protein is involved in ubiquitinated inclusion bodies. Journal of Pathology, 2003, 199, 259-266.	4.5	72
328	The role of α-synuclein in Parkinson's disease: insights from animal models. Nature Reviews Neuroscience, 2003, 4, 727-738.	10.2	317

		CITATION R	EPORT	
#	Article		IF	CITATIONS
329	Mutations in NR4A2 associated with familial Parkinson disease. Nature Genetics, 2003	, 33, 85-89.	21.4	447
330	Alzheimer's Disease and Parkinson's Disease. New England Journal of Medicine, 2003,	348, 1356-1364.	27.0	1,161
331	Polymorphism in the human DJ-1 gene is not associated with sporadic dementia with L Parkinson's disease. Neuroscience Letters, 2003, 352, 151-151.	ewy bodies or	2.1	0
332	Polymorphism in the human DJ-1 gene is not associated with sporadic dementia with L Parkinson's disease. Neuroscience Letters, 2003, 352, 151-153.	ewy bodies or	2.1	34
333	Ubiquitination of α-Synuclein Is Not Required for Formation of Pathological Inclusions α-Synucleinopathies. American Journal of Pathology, 2003, 163, 91-100.	in	3.8	129
334	Zeroing in on the Pathogenic Form of α-Synuclein and Its Mechanism of Neurotoxicity Disease. Biochemistry, 2003, 42, 7871-7878.	in Parkinson's	2.5	429
335	Altered Proteasomal Function in Sporadic Parkinson's Disease. Experimental Neurolog 38-46.	y, 2003, 179,	4.1	503
336	Subcutaneous Rotenone Exposure Causes Highly Selective Dopaminergic Degeneratio Aggregation. Experimental Neurology, 2003, 179, 9-16.	n and α-Synuclein	4.1	599
337	Cloning and expression analysis of a Parkinson's disease gene, uch-L1, and its pror Biochemical and Biophysical Research Communications, 2003, 312, 601-607.	noter in zebrafish.	2.1	58
338	Are Ubiquitination Pathways Central to Parkinson's Disease?. Cell, 2003, 114, 1-8.		28.9	216
339	Alterations of structure and hydrolase activity of parkinsonism-associated human ubiq carboxyl-terminal hydrolase L1 variants. Biochemical and Biophysical Research Commu 304, 176-183.	uitin nications, 2003,	2.1	151
340	Part I: Parkin-associated proteins and Parkinson's disease. Neuropharmacology, 2003,	45, 1-13.	4.1	65
341	Part II: α-synuclein and its molecular pathophysiological role in neurodegenerative dise Neuropharmacology, 2003, 45, 14-44.	ease.	4.1	254
342	High expression of nicotinamide N-methyltransferase in patients with idiopathic Parkin Neuroscience Letters, 2003, 342, 13-16.	son's disease.	2.1	87
343	Mutation analysis of the neurofilament M gene in Parkinson's disease. Neuroscience Lo 125-129.	etters, 2003, 351,	2.1	28
344	SEPT5_v2 is a parkin-binding protein. Molecular Brain Research, 2003, 117, 179-189.		2.3	110
345	Role of α-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinson Neuroscience, 2003, 118, 985-1002.	ism in mice.	2.3	138
346	Neurological disease: UPS stops delivering!. Trends in Pharmacological Sciences, 2003	, 24, 18-23.	8.7	34

ARTICLE IF CITATIONS Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends in 347 133 8.6 Neurosciences, 2003, 26, 73-80. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on 348 3.3 169 neurodegeneration. Current Opinion in Genetics and Development, 2003, 13, 253-261. Transforming growth factor \$beta;1 overexpression in the nigrostriatal system increases the 349 2.2 31 dopaminergic deficit of MPTP mice. Molecular and Cellular Neurosciences, 2003, 23, 614-625. Lack of p53 delays apoptosis, but increases ubiquitinated inclusions, in proteasomal inhibitor-treated cultured cortical neurons. Molecular and Cellular Neurosciences, 2003, 24, 430-441. Parkin Is a Component of an SCF-like Ubiquitin Ligase Complex and Protects Postmitotic Neurons from 351 8.1 370 Kainate Excitotoxicity. Neuron, 2003, 37, 735-749. Parkin Suppresses Dopaminergic Neuron-Selective Neurotoxicity Induced by Pael-R in Drosophila. Neuron, 2003, 37, 911-924. 8.1 353 Parkinson's Disease. Neuron, 2003, 39, 889-909. 8.1 4,639 The Ubiquitin Proteasome System in Neurodegenerative Diseases. Neuron, 2003, 40, 427-446. 354 8.1 909 Two large Polish kindreds with levodopa-responsive Parkinsonism not linked to known Parkinsonian 355 2.2 2 genes and loci. Parkinsonism and Related Disorders, 2003, 9, 193-200. The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism and 2.2 Related Disorders, 2003, 9, 59-64. Deubiquitinating enzymesâ€"the importance of driving in reverse along the ubiquitinâ€"proteasome 357 2.8 169 pathway. International Journal of Biochemistry and Cell Biology, 2003, 35, 590-605. Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Ageing 10.9 105 Research Reviews, 2003, 2, 343-356. Monitoring the ubiquitin/proteasome system in conformational diseases. Ageing Research Reviews, 359 10.9 39 2003, 2, 433-449. Salsolinol Causing Parkinsonism Activates Endoplasmic Reticulum-Stress Signaling Pathways in Human Dopaminergic SK-N-SH Cells. NeuroSignals, 2003, 12, 315-324. 361 Molecular Pathways of Neurodegeneration in Parkinson's Disease. Science, 2003, 302, 819-822. 12.6 1,530 Î \pm -Synuclein Aggregation: A Link Between Mitochondrial Defects and Parkinson's Disease?. Antioxidants 43 and Redox Signaling, 2003, 5, 337-348. Potential Therapeutic Properties of Green Tea Polyphenols in Parkinson???s Disease. Drugs and Aging, 363 2.7 125 2003, 20, 711-721. HUMANNEURODEGENERATIVEDISEASEMODELINGUSINGDROSOPHILA. Annual Review of Neuroscience, 364 2003, 26, 627-656.

#	Article	IF	CITATIONS
365	Association between Parkinson's disease and polymorphisms in the nNOS and iNOS genes in a community-based case-control study. Human Molecular Genetics, 2003, 12, 79-86.	2.9	108
366	Dorfin Localizes to Lewy Bodies and Ubiquitylates Synphilin-1. Journal of Biological Chemistry, 2003, 278, 29106-29114.	3.4	66
367	A haplotype at the <i>PARK3</i> locus influences onset age for Parkinson's disease. Neurology, 2003, 61, 1557-1561.	1.1	49
368	Diseaseâ \in specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB Journal, 2003, 17, 2014-2024.	0.5	140
369	The DJ-1L166P mutant protein associated with early onset Parkinson's disease is unstable and forms higher-order protein complexes. Human Molecular Genetics, 2003, 12, 2807-2816.	2.9	128
370	Parkin Cleaves Intracellular α-Synuclein Inclusions via the Activation of Calpain. Journal of Biological Chemistry, 2003, 278, 41890-41899.	3.4	68
371	Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. Human Molecular Genetics, 2003, 12, 1223-1231.	2.9	124
372	Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12438-12443.	7.1	114
373	Mutation Screening and Association Analysis of the Parkin Gene in Parkinson's Disease Patients from South-West China. European Neurology, 2003, 49, 85-89.	1.4	25
374	Parkin is recruited into aggresomes in a stress-specific manner: over-expression of parkin reduces aggresome formation but can be dissociated from parkin's effect on neuronal survival. Human Molecular Genetics, 2003, 13, 117-135.	2.9	72
375	Parkinson's disease: piecing together a genetic jigsaw. Brain, 2003, 126, 1722-1733.	7.6	121
376	Molecular analyses of Machado-Joseph disease. Cytogenetic and Genome Research, 2003, 100, 261-275.	1.1	22
377	Parkinsonian Mimetics Induce Aspects of Unfolded Protein Response in Death of Dopaminergic Neurons. Journal of Biological Chemistry, 2003, 278, 19367-19377.	3.4	337
379	Positive and negative regulation of APP amyloidogenesis by sumoylation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 259-264.	7.1	140
380	Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Human Molecular Genetics, 2003, 12, 517-526.	2.9	352
381	Deubiquitinating Enzymes as Cellular Regulators. Journal of Biochemistry, 2003, 134, 9-18.	1.7	127
382	The 1.1-Ã resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9256-9261.	7.1	281
383	The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Human Molecular Genetics, 2003, 12, 1427-1437.	2.9	217

#	ARTICLE	IF	CITATIONS
384	Inhibition of Proteasomal Activity Causes Inclusion Formation in Neuronal and Non-Neuronal Cells Overexpressing Parkin. Molecular Biology of the Cell, 2003, 14, 4541-4556.	2.1	116
385	Morphogenesis of Lewy Bodies: Dissimilar Incorporation of α-Synuclein, Ubiquitin, and p62. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1241-1253.	1.7	240
386	Parkinson's Disease: α -Synuclein and Parkin in Protein Aggregation and the Reversal of Unfolded Protein Stress. , 2003, 232, 57-66.		5
387	Parkin mutations are frequent in patients with isolated earlyâ€onset parkinsonism. Brain, 2003, 126, 1271-1278.	7.6	279
388	Neuroendocrinology of Neurodegenerative Diseases. Neuroendocrinology, 2003, 78, 244-252.	2.5	23
389	Neurotrophins and Neurodegenerative Diseases: Receptors Stuck in Traffic?. Journal of Neuropathology and Experimental Neurology, 2003, 62, 340-350.	1.7	35
390	Gene Transfer into the Central and Peripheral Nervous System: Applications for the Treatment of Neurodegenerative Diseases and Peripheral Neuropathies. Biotechnology and Genetic Engineering Reviews, 2003, 20, 49-76.	6.2	2
391	Mutation screening and association study of the UBE2H gene on chromosome 7q32 in autistic disorder. Psychiatric Genetics, 2003, 13, 221-225.	1.1	26
392	Etiology of Parkinson's Disease. Canadian Journal of Neurological Sciences, 2003, 30, S10-S18.	0.5	47
393	Deubiquitinating Enzymes: Their Roles in Development, Differentiation, and Disease. International Review of Cytology, 2003, 229, 43-72.	6.2	22
394	Update on Parkinson Disease. Annals of Internal Medicine, 2003, 138, 651.	3.9	127
395	Gene Therapy with Virus Vectors for specific Disease of the Nervous System. International Review of Neurobiology, 2003, 55, 223-241.	2.0	3
396	The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochemical Society Transactions, 2003, 31, 474-481.	3.4	112
397	Fine Structure and Biochemical Mechanisms Underlying Nigrostriatal Inclusions and Cell Death after Proteasome Inhibition. Journal of Neuroscience, 2003, 23, 8955-8966.	3.6	188
398	Cyclin-Dependent Kinase Activity Is Required for Apoptotic Death But Not Inclusion Formation in Cortical Neurons after Proteasomal Inhibition. Journal of Neuroscience, 2003, 23, 1237-1245.	3.6	107
399	Transgenic mouse models of neurodegenerative disease. , 2004, , 533-557.		0
401	Proteolytic Dysfunction in Neurodegenerative Disorders. International Review of Neurobiology, 2004, 62, 95-119.	2.0	19
402	The Role of Ubiquitin-Protein Ligases in Neurodegenerative Disease. Neurodegenerative Diseases, 2004, 1, 71-87.	1.4	64

#	Article	IF	CITATIONS
403	The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain, 2004, 128, 405-416.	7.6	101
404	Parkinson'sDivergent Causes, Convergent Mechanisms. Science, 2004, 304, 1120-1122.	12.6	391
405	Functional Consequences of α-Synuclein Tyrosine Nitration. Journal of Biological Chemistry, 2004, 279, 47746-47753.	3.4	237
406	Proteome Analysis of DNA Damage-induced Neuronal Death Using High Throughput Mass Spectrometry. Journal of Biological Chemistry, 2004, 279, 26685-26697.	3.4	25
407	Gene therapy for Parkinson's disease. Expert Reviews in Molecular Medicine, 2004, 6, 1-18.	3.9	11
408	Genome-wide scan linkage analysis for Parkinson's disease: the European genetic study of Parkinson's disease. Journal of Medical Genetics, 2004, 41, 900-907.	3.2	38
409	Transduction Profiles of Recombinant Adeno-Associated Virus Vectors Derived from Serotypes 2 and 5 in the Nigrostriatal System of Rats. Journal of Virology, 2004, 78, 6808-6817.	3.4	90
410	α-Synuclein Is Required for the Fibrillar Nature of Ubiquitinated Inclusions Induced by Proteasomal Inhibition in Primary Neurons. Journal of Biological Chemistry, 2004, 279, 46915-46920.	3.4	45
411	Analysis of the PINK1 Gene in a Large Cohort of Cases With Parkinson Disease. Archives of Neurology, 2004, 61, 1898-904.	4.5	162
412	No evidence for heritability of Parkinson disease in Swedish twins. Neurology, 2004, 63, 305-311.	1.1	108
413	CHIP-Hsc70 Complex Ubiquitinates Phosphorylated Tau and Enhances Cell Survival. Journal of Biological Chemistry, 2004, 279, 4869-4876.	3.4	411
414	The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 2004, 127, 420-430.	7.6	404
415	Familial Parkinson's Disease-associated L166P Mutation Disrupts DJ-1 Protein Folding and Function. Journal of Biological Chemistry, 2004, 279, 8506-8515.	3.4	253
416	Ubiquitin and ubiquitin-related proteins in neurons and dendrites of brains of atypical Pick's disease without Pick bodies. Neuropathology, 2004, 24, 38-45.	1.2	11
417	Ubiquitin and ubiquitin-related proteins in the brains of patients with atypical Pick's disease without Pick bodies and dementia with motor neuron disease. Neuropathology, 2004, 24, 306-314.	1.2	7
418	Protein misfolding in neurodegenerative diseases. Neuropathology and Applied Neurobiology, 2004, 30, 215-224.	3.2	95
419	Modulating huntingtin half-life alters polyglutamine-dependent aggregate formation and cell toxicity. Journal of Neurochemistry, 2004, 89, 962-973.	3.9	32
420	UCH‣1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease. Journal of Neurochemistry, 2004, 90, 379-391.	3.9	110

#	Article	IF	CITATIONS
421	Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases. Nature Cell Biology, 2004, 6, 1054-1061.	10.3	775
422	Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature Medicine, 2004, 10, 1055-1063.	30.7	624
423	Biomarkers of neurodegenerative disorders: How good are they?. Cell Research, 2004, 14, 349-358.	12.0	87
424	DJâ€l has a role in antioxidative stress to prevent cell death. EMBO Reports, 2004, 5, 213-218.	4.5	786
425	Accumulation of protein <i>O</i> â€GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high <i>O</i> â€GlcNAc metabolism. Journal of Neurochemistry, 2004, 89, 1044-1055.	3.9	97
426	Earlyâ€onset Dementia with Lewy Bodies. Brain Pathology, 2004, 14, 137-147.	4.1	26
427	Disease modification in Parkinson's disease. Lancet Neurology, The, 2004, 3, 362-368.	10.2	65
428	PINK, PANK, or PARK? A clinicians' guide to familial parkinsonism. Lancet Neurology, The, 2004, 3, 652-662.	10.2	61
429	Wlds-Mediated Protection of Dopaminergic Fibers in an Animal Model of Parkinson Disease. Current Biology, 2004, 14, 326-330.	3.9	132
430	The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1695, 3-17.	4.1	131
431	Mechanism and function of deubiquitinating enzymes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1695, 189-207.	4.1	799
432	The Role of α-Synuclein Assembly and Metabolism in the Pathogenesis of Lewy Body Disease. Journal of Molecular Neuroscience, 2004, 24, 343-352.	2.3	45
433	Oxidative Stress, Induced by 6-Hydroxydopamine, Reduces Proteasome Activities in PC12 Cells: Implications for the Pathogenesis of Parkinson's Disease. Journal of Molecular Neuroscience, 2004, 24, 387-400.	2.3	52
434	Pathological Proteins in Parkinson's Disease: Focus on the Proteasome. Journal of Molecular Neuroscience, 2004, 24, 425-442.	2.3	50
435	Proteomic Approach to Studying Parkinson's Disease. Molecular Neurobiology, 2004, 29, 271-288.	4.0	33
436	Linkage Between the Proteasome Pathway and Neurodegenerative Diseases and Aging. Molecular Neurobiology, 2004, 30, 201-222.	4.0	38
437	Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx, 2004, 1, 139-154.	6.0	218
438	Parkinson's Disease I: Degeneration and Dysfunction of Dopaminergic Neurons. , 2004, , 537-548.		Ο

#	Article	IF	CITATIONS
439	Similarities between Methamphetamine Toxicity and Proteasome Inhibition. Annals of the New York Academy of Sciences, 2004, 1025, 162-170.	3.8	45
440	Chasing genes in Alzheimer?s and Parkinson?s disease. Human Genetics, 2004, 114, 413-438.	3.8	46
441	Genetic causes of Parkinson?s disease: UCHL-1. Cell and Tissue Research, 2004, 318, 189-194.	2.9	51
442	Neuronal pathology in Parkinson?s disease. Cell and Tissue Research, 2004, 318, 135-147.	2.9	79
443	Genes in familial parkinsonism and their role in sporadic Parkinson?s disease. Journal of Neurology, 2004, 251, VI/2-6.	3.6	9
444	Inhibition of proteasome activity sensitizes dopamine neurons to protein alterations and oxidative stress. Journal of Neural Transmission, 2004, 111, 1237-1251.	2.8	52
445	Neuromelanin inhibits enzymatic activity of 26S proteasome in human dopaminergic SH-SY5Y cells. Journal of Neural Transmission, 2004, 111, 1253-1265.	2.8	46
446	Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson?s disease. Journal of Molecular Medicine, 2004, 82, 163-174.	3.9	125
447	Unraveling the pathogenesis of Parkinson?s disease ? the contribution of monogenic forms. Cellular and Molecular Life Sciences, 2004, 61, 1729-50.	5.4	46
448	Identification ofpost-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics, 2004, 4, 2234-2241.	2.2	92
449	Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics, 2004, 4, 3943-3952.	2.2	246
450	Dopaminergic neuronal loss and motor deficits in <i>Caenorhabditis elegans</i> overexpressing human αâ€synuclein. Journal of Neurochemistry, 2003, 86, 165-172.	3.9	328
451	Neuroprotection by monoamine oxidase B inhibitors: a therapeutic strategy for Parkinson's disease?. BioEssays, 2004, 26, 80-90.	2.5	54
452	parkin mutation analysis in clinic patients with early-onset Parkinson's disease. American Journal of Medical Genetics Part A, 2004, 129A, 44-50.	2.4	49
453	The new mutation, E46K, of αâ€synuclein causes parkinson and Lewy body dementia. Annals of Neurology, 2004, 55, 164-173.	5.3	2,367
454	UCHL1 is a Parkinson's disease susceptibility gene. Annals of Neurology, 2004, 55, 512-521.	5.3	227
455	Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Annals of Neurology, 2004, 56, 149-162.	5.3	498
456	Novel homozygous p.E64D mutation in DJ1 in early onset Parkinson disease (PARK7). Human Mutation, 2004, 24, 321-329.	2.5	117

#	Article	IF	Citations
457	Differences in age at onset and familial aggregation between clinical types of idiopathic Parkinson's disease. Movement Disorders, 2004, 19, 1059-1064.	3.9	41
458	Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Movement Disorders, 2004, 19, 622-629.	3.9	127
459	Lentiviral vectors for treating and modeling human CNS disorders. Journal of Gene Medicine, 2004, 6, 951-962.	2.8	68
460	Does αâ€synuclein modulate dopaminergic synaptic content and tone at the synapse?. FASEB Journal, 2004, 18, 637-647.	0.5	157
461	Mechanism of neurodegenerative disease: role of the ubiquitin proteasome system. Annals of Medicine, 2004, 36, 315-320.	3.8	123
462	Microarray expression analysis of gad mice implicates involvement of Parkinson's disease associated UCH-L1 in multiple metabolic pathways. Molecular Brain Research, 2004, , .	2.3	0
463	Genetics of neurological disorders. Expert Review of Molecular Diagnostics, 2004, 4, 317-332.	3.1	17
464	Mutations in the Glucocerebrosidase Gene and Parkinson's Disease in Ashkenazi Jews. New England Journal of Medicine, 2004, 351, 1972-1977.	27.0	559
465	Genetics of Parkinson disease. NeuroRx, 2004, 1, 235-242.	6.0	35
466	Dysregulation of Gene Expression in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Substantia Nigra. Journal of Neuroscience, 2004, 24, 7445-7454.	3.6	98
467	Oxidative Modifications and Down-regulation of Ubiquitin Carboxyl-terminal Hydrolase L1 Associated with Idiopathic Parkinson's and Alzheimer's Diseases. Journal of Biological Chemistry, 2004, 279, 13256-13264.	3.4	520
468	<i>Drosophila parkin</i> mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development (Cambridge), 2004, 131, 2183-2194.	2.5	387
469	Mutant genes responsible for Parkinson's disease. Current Opinion in Pharmacology, 2004, 4, 79-84.	3.5	30
470	Genetic contributions to Parkinson's disease. Brain Research Reviews, 2004, 46, 44-70.	9.0	83
471	To serve and protect? Interventions in the subthalamic nucleus for Parkinson's disease. Experimental Neurology, 2004, 185, 201-203.	4.1	2
472	α-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson's disease. FEBS Letters, 2004, 565, 1-5.	2.8	135
473	Δ12-Prostaglandin J2 inhibits the ubiquitin hydrolase UCH-L1 and elicits ubiquitin–protein aggregation without proteasome inhibition. Biochemical and Biophysical Research Communications, 2004, 319, 1171-1180.	2.1	79
474	Testing the ubiquitin–proteasome hypothesis of neurodegeneration in vivo. Trends in Neurosciences, 2004, 27, 66-69.	8.6	36

~		~	
CITA	TION	KEP	ORT

#	Article	IF	CITATIONS
475	Association of a variation in the promoter region of the brain-derived neurotrophic factor gene with familial Parkinson's disease. Parkinsonism and Related Disorders, 2004, 10, 213-219.	2.2	31
476	Genes, proteins, and neurotoxins involved in Parkinson's disease. Progress in Neurobiology, 2004, 73, 151-177.	5.7	162
477	Rings, chains and ladders: ubiquitin goes to work in the neuron. Progress in Neurobiology, 2004, 73, 227-257.	5.7	26
478	Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Progress in Neurobiology, 2004, 73, 311-357.	5.7	133
479	Role of Ubiquitin Carboxy Terminal Hydrolase-L1 in Neural Cell Apoptosis Induced by Ischemic Retinal Injury in Vivo. American Journal of Pathology, 2004, 164, 59-64.	3.8	68
480	Microarray expression analysis of gad mice implicates involvement of Parkinson's disease associated UCH-L1 in multiple metabolic pathways. Molecular Brain Research, 2004, 126, 88-97.	2.3	23
481	Microtubule-associated protein tau gene: a risk factor in human neurodegenerative diseases. Neurobiology of Disease, 2004, 15, 449-460.	4.4	35
482	Genetic analysis of DJ-1 in a cohort Parkinson's disease patients of different ethnicity. Neuroscience Letters, 2004, 367, 109-112.	2.1	24
483	A deletion in DJ-1 and the risk of dementia—a population-based survey. Neuroscience Letters, 2004, 372, 196-199.	2.1	7
484	SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson's disease. Neuroscience Research, 2004, 48, 195-202.	1.9	139
485	Dimerization of Parkinson's disease-causing DJ-1 and formation of high molecular weight complexes in human brain. Molecular and Cellular Neurosciences, 2004, 27, 236-246.	2.2	58
486	Genetics and Parkinson's disease. Journal of Clinical Neuroscience, 2004, 11, 119-123.	1.5	27
487	α‧ynuclein and Parkinson's disease. FASEB Journal, 2004, 18, 617-626.	0.5	262
488	The PARK8 Locus in Autosomal Dominant Parkinsonism: Confirmation of Linkage and Further Delineation of the Disease-Containing Interval. American Journal of Human Genetics, 2004, 74, 11-19.	6.2	195
489	Parkinson's disease. Lancet, The, 2004, 363, 1783-1793.	13.7	1,095
491	DE NOVO SYNTHESIS OF UBIQUITIN CARBOXYL-TERMINAL HYDROLASE ISOZYME L1 IN ROSTRAL VENTROLATERAL MEDULLA IS CRUCIAL TO SURVIVAL DURING MEVINPHOS INTOXICATION. Shock, 2004, 22, 575-581.	2.1	9
492	Parkin and relatives: the RBR family of ubiquitin ligases. Physiological Genomics, 2004, 17, 253-263.	2.3	103
494	Genetics of Parkinson's disease. Current Opinion in Neurology, 2005, 18, 363-369.	3.6	173

#	Article	IF	CITATIONS
496	Proteasome Inhibitors Protect Against Degeneration of Nigral Dopaminergic Neurons in Hemiparkinsonian Rats. Journal of Pharmacological Sciences, 2005, 97, 203-211.	2.5	45
497	Does Proteosome Inhibition Decrease or Accelerate Toxin-Induced Dopaminergic Neurodegeneration?. Journal of Pharmacological Sciences, 2005, 97, 457-460.	2.5	6
498	Pathophysiology, pleotrophy and paradigm shifts: genetic lessons from Parkinson's disease. Biochemical Society Transactions, 2005, 33, 586-590.	3.4	39
499	Molecular genetic pathways in Parkinson's disease: a review. Clinical Science, 2005, 109, 355-364.	4.3	37
500	The genetic epidemiology of neurodegenerative disease. Journal of Clinical Investigation, 2005, 115, 1449-1457.	8.2	518
501	Parkinson's Disease: Assays for the Ubiquitin Ligase Activity of Neural Parkin. , 2005, 301, 351-370.		15
502	Transglutaminases in Neurodegenerative Disorders. , 2005, 38, 139-157.		18
503	<i>Drosophila</i> as a Model for Human Neurodegenerative Disease. Annual Review of Genetics, 2005, 39, 153-171.	7.6	383
504	Potentiation of ATP-induced currents due to the activation of P2X receptors by ubiquitin carboxy-terminal hydrolase L1. Journal of Neurochemistry, 2005, 92, 1061-1072.	3.9	15
505	Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses: a microarray analysis. Journal of Neurochemistry, 2005, 94, 943-956.	3.9	93
506	Induction and attenuation of neuronal apoptosis by proteasome inhibitors in murine cortical cell cultures. Journal of Neurochemistry, 2005, 95, 684-694.	3.9	31
507	Accumulation of NEDD8 in neuronal and glial inclusions of neurodegenerative disorders. Neuropathology and Applied Neurobiology, 2005, 31, 53-61.	3.2	91
508	Effect of ubiquitin expression on neuropathogenesis in a mouse model of familial amyotrophic lateral sclerosis. Neuropathology and Applied Neurobiology, 2005, 31, 20-33.	3.2	15
509	Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson's disease. Cell Death and Differentiation, 2005, 12, 1202-1204.	11.2	49
510	PARK11 is not linked with Parkinson's disease in European families. European Journal of Human Genetics, 2005, 13, 193-197.	2.8	23
511	Redox proteomics analysis of oxidatively modified proteins in C93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2005, 39, 453-462.	2.9	129
512	Genetic association analysis: lessons from the study of Alzheimers Disease. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 573, 152-159.	1.0	14
513	In search of genes involved in neurodegenerative disorders. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 592, 89-101.	1.0	25

		EPORT	
# 514	ARTICLE Glaucoma: Thinking in new ways—a rÃ1e for autonomous axonal self-destruction and other compartmentalised processes?. Progress in Retinal and Eye Research, 2005, 24, 639-662.	IF 15.5	CITATIONS
515	Ubiquitin C-terminal hydrolase L3 (Uchl3) is involved in working memory. Hippocampus, 2005, 15, 610-621.	1.9	56
516	Familial Parkinson's disease: Clinical and genetic analysis of four Basque families. Annals of Neurology, 2005, 57, 365-372.	5.3	56
517	An <i>LRRK2</i> mutation as a cause for the parkinsonism in the original <i>PARK8</i> family. Annals of Neurology, 2005, 57, 918-921.	5.3	254
518	Tau is not normally degraded by the proteasome. Journal of Neuroscience Research, 2005, 80, 400-405.	2.9	43
519	Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults. Journal of Neuroscience Research, 2005, 82, 232-244.	2.9	43
520	Analysis of the glucocerebrosidase gene in Parkinson's disease. Movement Disorders, 2005, 20, 367-370.	3.9	107
521	Parkinson's disease: A broken nosology. Movement Disorders, 2005, 20, S2-S4.	3.9	18
522	UCHL-1 gene in multiple system atrophy: A haplotype tagging approach. Movement Disorders, 2005, 20, 1338-1343.	3.9	17
523	Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 809-820.	4.9	33
524	A genome wide linkage disequilibrium screen in Parkinson's disease. Journal of Neurology, 2005, 252, 597-602.	3.6	7
525	Differential expression of splice variant and wild-type parkin in sporadic Parkinson's disease. Neurogenetics, 2005, 6, 179-184.	1.4	33
526	Understanding and treating neurodegeneration: insights from the flies. Age, 2005, 27, 225-239.	3.0	0
527	Genetics of Parkinsonism. Current Neurology and Neuroscience Reports, 2005, 5, 397-404.	4.2	15
528	Neurodegenerative Disorders: The Role of Genetic Factors in Their Origin and the Efficiency of Treatment. Human Physiology, 2005, 31, 472-482.	0.4	3
529	A comparative proteomic analysis of the rat brain during rebound hyperphagia induced by space-restriction. Molecular and Cellular Biochemistry, 2005, 276, 21-29.	3.1	6
530	Olfactory epithelia differentially express neuronal markers. Journal of Neurocytology, 2005, 34, 217-240.	1.5	54
531	Protein misfolding and cellular defense mechanisms in neurodegenerative diseases. , 2005, , 108-130.		Ο

			C	Citation	Report	
#	Article				IF	CITATIONS
533	Neuroprotective Therapy in Parkinson's Disease: Current Status and New Directions fr	rom				

#	Article	IF	CITATIONS
553	ATPase Activity of p97/Valosin-containing Protein Is Regulated by Oxidative Modification of the Evolutionally Conserved Cysteine 522 Residue in Walker A Motif. Journal of Biological Chemistry, 2005, 280, 41332-41341.	3.4	58
554	Parkin Stabilizes Microtubules through Strong Binding Mediated by Three Independent Domains. Journal of Biological Chemistry, 2005, 280, 17154-17162.	3.4	117
555	The genetic and molecular bases of monogenic disorders affecting proteolytic systems. Journal of Medical Genetics, 2005, 42, 529-539.	3.2	20
556	Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proceedings of the United States of America, 2005, 102, 10345-10350.	7.1	227
557	Neuroanatomical Phenotyping in the Mouse: The Dopaminergic System. Veterinary Pathology, 2005, 42, 753-773.	1.7	38
559	Mammalian E4 Is Required for Cardiac Development and Maintenance of the Nervous System. Molecular and Cellular Biology, 2005, 25, 10953-10964.	2.3	54
560	Neurogenetics II: complex disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 623-631.	1.9	14
561	Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Human Molecular Genetics, 2005, 14, 1709-1725.	2.9	338
562	RING Finger Ubiquitin-Protein Isopeptide Ligase Nrdp1/FLRF Regulates Parkin Stability and Activity. Journal of Biological Chemistry, 2005, 280, 9425-9430.	3.4	50
563	Molecular pathogenesis of Parkinson's disease. Human Molecular Genetics, 2005, 14, 2749-2755.	2.9	187
564	Intracellular dopamine oxidation mediates rotenone-induced apoptosis in PC12 cells. Acta Pharmacologica Sinica, 2005, 26, 17-26.	6.1	45
565	High-Resolution Whole-Genome Association Study of Parkinson Disease. American Journal of Human Genetics, 2005, 77, 685-693.	6.2	479
566	Parkinson's disease: the first common neurological disease due to auto-intoxication?. QJM - Monthly Journal of the Association of Physicians, 2005, 98, 215-226.	0.5	45
567	How proteomics reveals potential biomarkers in brain diseases. Expert Review of Proteomics, 2005, 2, 901-913.	3.0	14
568	Genetics of Parkinson's disease. Annals of Medicine, 2005, 37, 86-96.	3.8	67
569	Mitochondrial Inhibition and Oxidative Stress: Reciprocating Players in Neurodegeneration. Antioxidants and Redox Signaling, 2005, 7, 1117-1139.	5.4	75
570	Increased Levels of Ubiquitin in the 6-OHDA-Lesioned Striatum of Rats. Journal of Proteome Research, 2005, 4, 223-226.	3.7	36
571	MOLECULAR PATHOPHYSIOLOGY OF PARKINSON'S DISEASE. Annual Review of Neuroscience, 2005, 28, 57-87.	10.7	1,111

#	Article	IF	CITATIONS
572	Stem cells may reshape the prospect of Parkinson's disease therapy. Molecular Brain Research, 2005, 134, 34-51.	2.3	55
573	Synphilin-1 and parkin show overlapping expression patterns in human brain and form aggresomes in response to proteasomal inhibition. Neurobiology of Disease, 2005, 20, 401-411.	4.4	40
574	UCHL1 is associated with Parkinson's disease: A case-unaffected sibling and case-unrelated control study. Neuroscience Letters, 2005, 381, 131-134.	2.1	25
575	SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neuroscience Letters, 2005, 381, 74-79.	2.1	57
576	Development, characterisation and epitope mapping of novel monoclonal antibodies for DJ-1 (PARK7) protein. Neuroscience Letters, 2005, 383, 225-230.	2.1	11
577	Dieldrin-Induced Neurotoxicity: Relevance to Parkinson's Disease Pathogenesis. NeuroToxicology, 2005, 26, 701-719.	3.0	172
578	Autotoxicity, methylation and a road to the prevention of Parkinson's disease. Journal of Clinical Neuroscience, 2005, 12, 6-11.	1.5	56
579	Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene, 2005, 361, 133-139.	2.2	206
580	A Genomic and Functional Inventory of Deubiquitinating Enzymes. Cell, 2005, 123, 773-786.	28.9	1,593
581	Parkinson's disease: from causes to mechanisms. Comptes Rendus - Biologies, 2005, 328, 131-142.	0.2	47
582	Neuronal inclusions in degenerative disorders. Brain Research Bulletin, 2005, 65, 275-290.	3.0	23
583	Ubiquitin–proteasome system and Parkinson's diseases. Experimental Neurology, 2005, 191, S17-S27.	4.1	198
584	Lewy bodies in Parkinson's disease: Protectors or perpetrators?. Experimental Neurology, 2005, 195, 1-6.	4.1	24
585	The aggravating role of the ubiquitin–proteasome system in neurodegeneration. FEBS Letters, 2005, 579, 571-576.	2.8	44
586	Early-onset Parkinson's disease in a Chinese population: 99mTc-TRODAT-1 SPECT, Parkin gene analysis and clinical study. Parkinsonism and Related Disorders, 2005, 11, 173-180.	2.2	37
587	New insights on brain stem death: From bedside to bench. Progress in Neurobiology, 2005, 77, 396-425.	5.7	45
588	To die or grow: Parkinson's disease and cancer. Trends in Neurosciences, 2005, 28, 348-352.	8.6	110
589	Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience, 2005, 135, 829-838.	2.3	54

CITATION REPORT ARTICLE IF CITATIONS Parkinson's disease as a disorder of the aging. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 0.5 2 299-305. Ubiquitination of α-Synucleinâ€. Biochemistry, 2005, 44, 361-368. 2.5 Rotenone Rat and Other Neurotoxin Models of Parkinson Disease., 2005, , 161-172. 0 THE BIOCHEMISTRY OF PARKINSON'S DISEASE. Annual Review of Biochemistry, 2005, 74, 29-52. 11.1 Narrative Review: Protein Degradation and Human Diseases: The Ubiquitin Connection. Annals of 3.9 192 Internal Medicine, 2006, 145, 676. Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?. Quarterly Reviews of Biophysics, 2006, 39, 167-201. 5.7 Modulatory Neurotransmitter Systems and Behavior: Towards Zebrafish Models of 1.1 245 Neurodegenerative Diseases. Zebrafish, 2006, 3, 235-247. Embryonic Stem Cells. Pharmaceutical Medicine, 2006, 20, 107-114. 0.4 Validity and Utility of a LRRK2 G2019S Mutation Test for the Diagnosis of Parkinson's Disease. Genetic 32 1.7 Testing and Molecular Biomarkers, 2006, 10, 221-227. Protein oxidation and degradation during aging: Role in skin aging and neurodegeneration. Free 3.3 Radical Research, 2006, 40, 1259-1268. Existing dopaminergic therapies for Parkinson's disease. Expert Opinion on Therapeutic Patents, 2006, 5.013 16, 1613-1625. Photoreceptor Cell Apoptosis in the Retinal Degeneration of Uchl3-Deficient Mice. American Journal 3.8 of Pathology, 2006, 169, 132-141. Substrate Recognition and Catalysis by UCH-L1â€. Biochemistry, 2006, 45, 14717-14725. 2.5 31 The neurotoxicity of amphetamines: Bridging drugs of abuse and neurodegenerative disorders. 4.1 34 Experimental Neurology, 2006, 201, 24-31. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering. Biochemical and Biophysical Research Communications, 2006, 339, 2.1 16 717-725. Novel covalent modifications of α-synuclein during the recovery from proteasomal dysfunction. Biochemical and Biophysical Research Communications, 2006, 346, 1312-1319. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation

610LRRK2: a common pathway for parkinsonism, pathogenesis and prevention?. Trends in Molecular6.786Medicine, 2006, 12, 76-82.

7.1

717

of <i>Drosophila</i> Pink1 is rescued by Parkin. Proceedings of the National Academy of Sciences of

the United States of America, 2006, 103, 10793-10798.

#

590

593

594

595

598

599

600

602

605

606

607

608

#	Article	IF	CITATIONS
611	Proteasomal inhibition hypersensitizes differentiated neuroblastoma cells to oxidative damage. Neuroscience Letters, 2006, 399, 27-32.	2.1	42
612	Analysis of the PINK1 gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan. Neuroscience Letters, 2006, 394, 33-36.	2.1	37
613	Parkin mutations in familial and sporadic Parkinson's disease among Indians. Parkinsonism and Related Disorders, 2006, 12, 239-245.	2.2	43
614	Parkin-mediated lysine 63-linked polyubiquitination: A link to protein inclusions formation in Parkinson's and other conformational diseases?. Neurobiology of Aging, 2006, 27, 524-529.	3.1	130
615	Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiology of Aging, 2006, 27, 530-545.	3.1	144
616	Diagnosis and treatment of Parkinson disease: molecules to medicine. Journal of Clinical Investigation, 2006, 116, 1744-1754.	8.2	538
617	Gene Therapy for Parkinson's Disease. , 2006, , 91-108.		0
618	Frameshift proteins in Alzheimer's disease and in other conformational disorders: Time for the ubiquitin-proteasome system. Journal of Alzheimer's Disease, 2006, 9, 319-325.	2.6	35
620	Molecular misreading: the occurrence of frameshift proteins in different diseases1. Biochemical Society Transactions, 2006, 34, 738-742.	3.4	13
621	Impact of Functional Age on the Use of Dopamine Agonists in Patients With Parkinson Disease. Neurologist, 2006, 12, 214-223.	0.7	20
622	Drosophila and C. elegans Models of Human Age-Associated Neurodegenerative Diseases. , 2006, , 347-369.		1
623	Parkinson's Disease and Genetics. Neurologist, 2006, 12, 240-244.	0.7	6
624	Chaperone Suppression of Aggregated Protein Toxicity. , 2006, , 137-164.		1
625	The Cast of Molecular Characters in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 80-92.	3.8	35
626	Mechanistic Approaches to Parkinson's Disease Pathogenesis. Brain Pathology, 2002, 12, 499-510.	4.1	115
627	The role of mitochondria in inherited neurodegenerative diseases. Journal of Neurochemistry, 2006, 97, 1659-1675.	3.9	161
628	Parkinson's disease: the genetics of a heterogeneous disorder. European Journal of Neurology, 2006, 13, 616-627.	3.3	41
629	Parkin gene variations in late-onset Parkinson's disease: comparison between Norwegian and German cohorts. Acta Neurologica Scandinavica, 2006, 113, 9-13.	2.1	23

		CITATION R	EPORT	
#	Article		IF	Citations
630	Genetics of Parkinson's Disease. Annals of the New York Academy of Sciences, 2000, 9	20, 28-32.	3.8	56
631	Chronic Dementing Conditions, Genomics, and New Opportunities for Nursing Interver of Nursing Scholarship, 2006, 38, 328-334.	ntions. Journal	2.4	6
632	Genetics of Parkinson disease: paradigm shifts and future prospects. Nature Reviews G 306-318.	enetics, 2006, 7,	16.3	642
633	Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature Review Neuroscience, 2006, 7, 207-219.	s	10.2	773
634	The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2 780-786.	2006, 443,	27.8	1,477
635	Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death an Differentiation, 2006, 13, 96-108.	d	11.2	161
636	RNA knockdown as a potential therapeutic strategy in Parkinson's disease. Gene Thera 517-524.	ру, 2006, 13,	4.5	41
637	Molecular genetics of Parkinson's disease. Russian Journal of Genetics, 2006, 42, 8	58-871.	0.6	3
638	α-Synuclein Budding Yeast Model: Toxicity Enhanced by Impaired Proteasome and Oxic Journal of Molecular Neuroscience, 2006, 28, 161-178.	dative Stress.	2.3	63
639	Role of DJ-1 in Parkinson's Disease. Journal of Molecular Neuroscience, 2006, 29, 215-2	26.	2.3	87
640	Genes and the Environment in Neurodegeneration. Bioscience Reports, 2006, 26, 341-	367.	2.4	94
641	Cellular and Molecular Mechanisms of Parkinson's Disease: Neurotoxins, Causative Inflammatory Cytokines. Cellular and Molecular Neurobiology, 2006, 26, 779-800.	Genes, and	3.3	107
642	Parkin Modulates Gene Expression in Control and Ceramide-Treated PC12 Cells. Molect Reports, 2006, 33, 13-32.	ular Biology	2.3	22
643	Neuromelanin induces oxidative stress in mitochondria through release of iron: mechar the inhibition of 26S proteasome. Journal of Neural Transmission, 2006, 113, 633-644.	nism behind	2.8	63
644	Mutation analysis of the seven in absentia homolog 1 (SIAH1) gene in Parkinson's Neural Transmission, 2006, 113, 1903-1908.	disease. Journal of	2.8	13
645	Oxidative stress regulated expression of Ubiquitin Carboxyl-terminal Hydrolase-L1: Role survival. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 104		4.9	64
646	Whole genome expression profiling of the medial and lateral substantia nigra in Parkins Neurogenetics, 2006, 7, 1-11.	son's disease.	1.4	212
647	Transcriptome analysis reveals link between proteasomal and mitochondrial pathways disease. Neurogenetics, 2006, 7, 139-148.	in Parkinson's	1.4	85

#	Article	IF	CITATIONS
648	Genetic susceptibility to Parkinson's disease among South and North Indians: I. Role of polymorphisms in dopamine receptor and transporter genes and association of DRD4 120-bp duplication marker. Neurogenetics, 2006, 7, 223-229.	1.4	23
649	Evidence for novel loci for late-onset Parkinson's disease in a genetic isolate from the Netherlands. Human Genetics, 2006, 119, 51-60.	3.8	4
650	The ubiquitin-specific protease USP25 interacts with three sarcomeric proteins. Cellular and Molecular Life Sciences, 2006, 63, 723-734.	5.4	44
651	Rifampicin attenuates the MPTP-induced neurotoxicity in mouse brain. Brain Research, 2006, 1082, 196-204.	2.2	42
652	Protective role of heat shock and heat shock protein 70 in lactacystin-induced cell death both in the rat substantia nigra and PC12 cells. Brain Research, 2006, 1087, 159-167.	2.2	31
653	Genetic association between Ubiquitin Carboxy-terminal Hydrolase-L1 gene S18Y polymorphism and sporadic Alzheimer's disease in a Chinese Han population. Brain Research, 2006, 1087, 28-32.	2.2	45
654	Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson's disease. Neurobiology of Disease, 2006, 21, 305-313.	4.4	92
655	Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiology of Disease, 2006, 22, 265-273.	4.4	59
656	Intersecting pathways to neurodegeneration in Parkinson's disease: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin–proteasome system. Neurobiology of Disease, 2006, 22, 404-420.	4.4	313
657	Proteasome dysfunction in aged human α-synuclein transgenic mice. Neurobiology of Disease, 2006, 23, 120-126.	4.4	82
658	Inhibitory effects of pesticides on proteasome activity: Implication in Parkinson's disease. Neurobiology of Disease, 2006, 23, 198-205.	4.4	134
659	PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson's disease rat model. Neurobiology of Disease, 2006, 24, 144-158.	4.4	169
660	Silencing of theUCHL1 gene in human colorectal and ovarian cancers. International Journal of Cancer, 2006, 119, 1338-1344.	5.1	90
661	Recessive Parkinson's disease. Movement Disorders, 2006, 21, 885-893.	3.9	31
662	Clinicogenetic study of mutations inLRRK2 exon 41 in Parkinson's disease patients from 18 countries. Movement Disorders, 2006, 21, 1102-1108.	3.9	113
663	Ubiquitin–proteasome system and Parkinson's disease. Movement Disorders, 2006, 21, 1806-1823.	3.9	175
664	Case–control study of UCHL1 S18Y variant in Parkinson's disease. Movement Disorders, 2006, 21, 1765-1768.	3.9	26
665	[18F]FDOPA PET as an endophenotype for Parkinson's Disease linkage studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2006. 141B. 245-249.	1.7	11

#	Article	IF	CITATIONS
666	Clinical heterogeneity of αâ€synuclein gene duplication in Parkinson's disease. Annals of Neurology, 2006, 59, 298-309.	5.3	308
667	UCHL-1is not a Parkinson's disease susceptibility gene. Annals of Neurology, 2006, 59, 627-633.	5.3	123
668	Synphilin Isoforms and the Search for a Cellular Model of Lewy Body Formation in Parkinson's Disease. Cell Cycle, 2006, 5, 2082-2086.	2.6	19
669	Genetic Testing in Parkinson Disease. Archives of Neurology, 2006, 63, 1232.	4.5	67
670	Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain, 2006, 129, 686-694.	7.6	146
671	Clinical Implications of Parkinson's Disease Genetics. Seminars in Neurology, 2006, 26, 492-498.	1.4	13
672	PINK1 protein in normal human brain and Parkinson's disease. Brain, 2006, 129, 1720-1731.	7.6	291
673	Role of Ubiquitylation in Cellular Membrane Transport. Physiological Reviews, 2006, 86, 669-707.	28.8	193
674	β-synuclein modulates α-synuclein neurotoxicity by reducing α-synuclein protein expression. Human Molecular Genetics, 2006, 15, 3002-3011.	2.9	75
675	Replication of twelve association studies for Huntington's disease residual age of onset in large Venezuelan kindreds. Journal of Medical Genetics, 2006, 44, 44-50.	3.2	76
676	Multiple candidate gene analysis identifies α-synuclein as a susceptibility gene for sporadic Parkinson's disease. Human Molecular Genetics, 2006, 15, 1151-1158.	2.9	210
677	Evidence for a Role of the Ubiquitin-Proteasome Pathway in Pancreatic Islets. Diabetes, 2006, 55, 1223-1231.	0.6	52
679	Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation. Journal of Cell Science, 2006, 119, 162-171.	2.0	67
680	Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1661-1668.	7.1	401
681	Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4675-4680.	7.1	162
683	Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regenerative Medicine, 2007, 2, 425-446.	1.7	55
684	Reversible Monoubiquitination Regulates the Parkinson Disease-associated Ubiquitin Hydrolase UCH-L1. Journal of Biological Chemistry, 2007, 282, 10567-10575.	3.4	85
685	Emerging Roles for Ubiquitin and Protein Degradation in Neuronal Function. Pharmacological Reviews, 2007, 59, 14-39.	16.0	202

# 687	ARTICLE Clinical Diagnosis and Management of Dystonia. , 0, , .	IF	CITATIONS
688	Identification of methylation-silenced genes in colorectal cancer cell lines: Genomic screening using oligonucleotide arrays. Scandinavian Journal of Gastroenterology, 2007, 42, 1486-1494.	1.5	21
689	Nonparametric estimation of age-at-onset distributions from censored kin-cohort data. Biometrika, 2007, 94, 403-403.	2.4	10
691	Parkinsons Disease: Genetics and Beyond. Current Neuropharmacology, 2007, 5, 99-113.	2.9	28
692	Ubiquitin Carboxyl-Terminal Hydrolase L1, a Novel Deubiquitinating Enzyme in the Vasculature, Attenuates NF-κB Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2184-2190.	2.4	66
694	Translational considerations for CNS gene therapy. Expert Opinion on Biological Therapy, 2007, 7, 305-318.	3.1	16
695	Translating Genetic Findings into Therapy in Parkinson Disease. Recent Patents on CNS Drug Discovery, 2007, 2, 229-237.	0.9	0
696	Merging Mouse Transcriptome Analyses with Parkinson's Disease Linkage Studies. DNA Research, 2007, 14, 79-89.	3.4	6
697	Parkinson disease, 10 years after its genetic revolution: Multiple clues to a complex disorder. Neurology, 2007, 69, 2093-2104.	1.1	191
698	Gene-expression profiling in Parkinson's disease: discovery of valid biomarkers, molecular targets and biochemical pathways. Future Neurology, 2007, 2, 29-38.	0.5	8
699	Inflammatory Mediators Leading to Protein Misfolding and Uncompetitive/Fast Offâ€Rate Drug Therapy for Neurodegenerative Disorders. International Review of Neurobiology, 2007, 82, 1-27.	2.0	59
700	Parkinson Disease: Molecular Insights. , 2007, , 221-239.		0
701	Genetic and Environmental Factors in Neurodegenerative Diseases. , 2007, , 89-114.		1
702	Genetics of Parkinson's Disease. , 2007, , 663-697.		5
703	Genetics of Parkinson disease. Genetics in Medicine, 2007, 9, 801-811.	2.4	101
704	Impact of recent genetic findings in Parkinson??s disease. Current Opinion in Neurology, 2007, 20, 453-464.	3.6	93
705	Leucine-Rich Repeat kinase 2 G2385R variant is a risk factor for Parkinson disease in Asian population. NeuroReport, 2007, 18, 273-275.	1.2	141
706	PARK10 Candidate RNF11 Is Expressed by Vulnerable Neurons and Localizes to Lewy Bodies in Parkinson Disease Brain. Journal of Neuropathology and Experimental Neurology, 2007, 66, 955-964.	1.7	28

#	Article	IF	CITATIONS
707	The ubiquitin–proteasome pathway in health and disease of the nervous system. Trends in Neurosciences, 2007, 30, 587-595.	8.6	98
708	S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism and Related Disorders, 2007, 13, 295-298.	2.2	46
709	DJ-1 and UCH-L1 gene activity patterns in the brains of controls, Parkinson and schizophrenia patients and in rodents. Physiology and Behavior, 2007, 92, 46-53.	2.1	21
710	rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson's disease. Experimental Neurology, 2007, 207, 289-301.	4.1	62
711	Role of complement in neurodegeneration and neuroinflammation. Molecular Immunology, 2007, 44, 999-1010.	2.2	280
712	Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 193M mutant. Neurochemistry International, 2007, 50, 119-129.	3.8	97
713	The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochemistry International, 2007, 51, 105-111.	3.8	250
714	Modulation of parkin gene expression in noradrenergic neuronal cells. International Journal of Developmental Neuroscience, 2007, 25, 491-497.	1.6	2
715	Genetics of parkinsonism. Parkinsonism and Related Disorders, 2007, 13, S233-S241.	2.2	46
717	Ubiquitin–proteasome system dysfunction in Parkinson's disease: current evidence and controversies. Expert Review of Proteomics, 2007, 4, 769-781.	3.0	68
718	Molecular Pathology in Clinical Practice. , 2007, , .		8
719	Genetics of Parkinson's disease and parkinsonism. Expert Review of Neurotherapeutics, 2007, 7, 657-666.	2.8	30
720	Parkinson's disease: animal models. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 265-287.	1.8	11
721	Genetic aspects of Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 217-244.	1.8	2
722	Proteinâ€handling dysfunction in Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 571-590.	1.8	0
723	Epidemiology of Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 129-151.	1.8	50
724	Transgenic Mice with Human Mutant Genes Causing Parkinson's Disease and Amyotrophic Lateral Sclerosis Provide Common Insight into Mechanisms of Motor Neuron Selective Vulnerability to Degeneration. Reviews in the Neurosciences, 2007, 18, 115-36.	2.9	55
725	History of Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 107-128.	1.8	7

#	Article	IF	CITATIONS
726	Increased Striatal mRNA and Protein Levels of the Immunophilin FKBP-12 in Experimental Parkinson's Disease and Identification of FKBP-12-Binding Proteins. Journal of Proteome Research, 2007, 6, 3952-3961.	3.7	29
727	Psychotropic and Neurotropic Activity. , 2007, , 565-876.		6
728	Current Concepts on the Etiology and Pathogenesis of Parkinson Disease. , 2007, , 105-127.		0
730	Clinical Overview and Phenomenology of Movement Disorders. , 2007, , 1-42.		6
731	Lack of mutations in spinocerebellar ataxia type 2 and 3 genes in a Taiwanese (ethnic Chinese) cohort of familial and early-onset parkinsonism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 434-438.	1.7	8
732	Pathogenic mutations in Parkinson disease. Human Mutation, 2007, 28, 641-653.	2.5	212
733	Proteasome inhibitor model of Parkinson's disease in mice is confounded by neurotoxicity of the ethanol vehicle. Movement Disorders, 2007, 22, 403-407.	3.9	22
734	Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease. Movement Disorders, 2007, 22, 1481-1484.	3.9	103
735	Construction and validation of a Parkinson's disease mutation genotyping array for the Parkin gene. Movement Disorders, 2007, 22, 932-937.	3.9	16
736	Levodopa responsiveness in disorders with parkinsonism: A review of the literature. Movement Disorders, 2007, 22, 2141-2148.	3.9	72
737	The pathogenesis of cell death in Parkinson's disease – 2007. Movement Disorders, 2007, 22, S335-S342.	3.9	191
738	Update on the genetics of Parkinson's disease. Movement Disorders, 2007, 22, S343-S350.	3.9	143
739	Optimizing human post-mortem brain tissue gene expression profiling in Parkinson's disease and other neurodegenerative disorders: From target "fishing―to translational breakthroughs. Journal of Neuroscience Research, 2007, 85, 3013-3024.	2.9	21
740	Role of the ubiquitin proteasome system in Parkinson's disease. BMC Biochemistry, 2007, 8, S13.	4.4	99
741	Proteome analysis of substantia nigra and striatal tissue in the mouse MPTP model of Parkinson's disease. Proteomics - Clinical Applications, 2007, 1, 1559-1569.	1.6	11
742	Neurodegenerative amyloidoses: Yeast model. Molecular Biology, 2007, 41, 308-315.	1.3	9
743	Altered gene expression in cells from patients with lysosomal storage disorders suggests impairment of the ubiquitin pathway. Cell Death and Differentiation, 2007, 14, 511-523.	11.2	55
744	A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132. Journal of Neurochemistry, 2007, 102, 913-921.	3.9	30

#	Article	IF	CITATIONS
745	Lack of evidence for an association between <i>UCHL1</i> S18Y and Parkinson's disease. European Journal of Neurology, 2008, 15, 134-139.	3.3	25
746	SUMO on the road to neurodegeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 694-706.	4.1	159
747	Parkin interacts with LIM Kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination. Experimental Cell Research, 2007, 313, 2858-2874.	2.6	66
748	Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson's disease. , 2007, 114, 327-344.		58
749	Candidate genes affecting Drosophila life span identified by integrating microarray gene expression analysis and QTL mapping. Mechanisms of Ageing and Development, 2007, 128, 237-249.	4.6	61
750	Mechanisms of Disease II: Cellular Protein Quality Control. Seminars in Pediatric Neurology, 2007, 14, 15-25.	2.0	29
751	Age-associated increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease?. Neurobiology of Disease, 2007, 25, 134-149.	4.4	362
752	Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology, 2007, 68, 1820-1825.	1.1	237
753	Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases. Cellular and Molecular Life Sciences, 2007, 64, 1609-1620.	5.4	53
754	Is the ubiquitin-proteasome system impaired in Huntington's disease?. Cellular and Molecular Life Sciences, 2007, 64, 2245-2257.	5.4	67
755	Corrective effect of flavonoid-containing preparation extralife on the development of Parkinson's syndrome. Bulletin of Experimental Biology and Medicine, 2007, 144, 42-45.	0.8	4
756	In parkinsonian substantia nigra, α-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. Journal of Neural Transmission, 2007, 114, 1559-1567.	2.8	110
757	Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neuroscience Bulletin, 2007, 23, 67-74.	2.9	11
758	Endoplasmic reticulum stress contributes to the cell death induced by UCH-L1 inhibitor. Molecular and Cellular Biochemistry, 2008, 318, 109-115.	3.1	38
759	Synphilin-1 isoforms in Parkinson's disease: regulation by phosphorylation and ubiquitylation. Cellular and Molecular Life Sciences, 2008, 65, 80-88.	5.4	27
760	The roles of the proteasome pathway in signal transduction and neurodegenerative diseases. Neuroscience Bulletin, 2008, 24, 183-194.	2.9	30
761	Nonsynonymous Polymorphisms of Histamine-Metabolising Enzymes in Patients with Parkinson's Disease. NeuroMolecular Medicine, 2008, 10, 10-16.	3.4	31
762	Mitochondrial Medicine for Aging and Neurodegenerative Diseases. NeuroMolecular Medicine, 2008, 10, 291-315.	3.4	197

#	Article	IF	CITATIONS
763	Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. Journal of Neural Transmission, 2008, 115, 831-842.	2.8	50
764	Microarray expression analysis reveals genetic pathways implicated in C621 synphilin-1-mediated toxicity. Journal of Neural Transmission, 2008, 115, 941-958.	2.8	2
765	A comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients. Journal of Neural Transmission, 2008, 115, 1141-1148.	2.8	25
766	Neuroproteomics as a promising tool in Parkinson's disease research. Journal of Neural Transmission, 2008, 115, 1413-1430.	2.8	26
767	Genes associated with Parkinson syndrome. Journal of Neurology, 2008, 255, 8-17.	3.6	78
768	Deubiquitylating enzymes and disease. BMC Biochemistry, 2008, 9, S3.	4.4	67
769	Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. Journal of Neurochemistry, 2008, 77, 263-273.	3.9	4
770	Cytosolic O-glycosylation is abundant in nerve terminals. Journal of Neurochemistry, 2008, 79, 1080-1089.	3.9	177
771	Proteasome subunit proteins and neuropathology in tauopathies and synucleinopathies: Consequences for proteomic analyses. Proteomics, 2008, 8, 1221-1236.	2.2	27
772	Redox proteomics studies of <i>in vivo</i> amyloid betaâ€peptide animal models of Alzheimer's disease: Insight into the role of oxidative stress. Proteomics - Clinical Applications, 2008, 2, 685-696.	1.6	21
773	The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. BioEssays, 2008, 30, 1075-1083.	2.5	65
774	The use of cell-free systems to characterize parkinson's disease-related gene products. , 2008, , 597-627.		1
775	Viral Vectors. , 2008, , 269-284.		0
776	Yeast as a model for studying human neurodegenerative disorders. Biotechnology Journal, 2008, 3, 325-338.	3.5	72
777	Advances in the genetics of Parkinson's disease. Acta Pharmacologica Sinica, 2008, 29, 21-34.	6.1	27
778	Parkinson's disease: A genetic perspective. FEBS Journal, 2008, 275, 1377-1383.	4.7	97
779	Emerging pathways in genetic Parkinson's disease: Autosomalâ€recessive genes in Parkinson's disease â€ common pathway?. FEBS Journal, 2008, 275, 5758-5766.	"a 4.7	57
780	Founder mutation p.R1441C in the leucine-rich repeat kinase 2 gene in Belgian Parkinson's disease patients. European Journal of Human Genetics, 2008, 16, 471-479.	2.8	47

#	Article	IF	CITATIONS
781	Zebrafish as a new animal model for movement disorders. Journal of Neurochemistry, 2008, 106, 1991-1997.	3.9	121
782	Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin Câ€terminal hydrolase L1 gene. European Journal of Neuroscience, 2008, 27, 691-701.	2.6	68
783	Mitochondria and ubiquitin-proteasomal system interplay: Relevance to Parkinson's disease. Free Radical Biology and Medicine, 2008, 45, 820-825.	2.9	37
784	Expression of the deubiquitinating enzyme mUBPy in the mouse brain. Brain Research, 2008, 1195, 56-66.	2.2	17
785	BV-2 stimulation by lactacystin results in a strong inflammatory reaction and apoptotic neuronal death in SH-SY5Y cells. Brain Research, 2008, 1205, 116-121.	2.2	20
786	Generation of a α-synuclein-based rat model of Parkinson's disease. Neurobiology of Disease, 2008, 30, 8-18.	4.4	34
787	Proteome analysis of human substantia nigra in Parkinson's disease. Proteome Science, 2008, 6, 8.	1.7	137
788	Emerging Roles of <i>S</i> -Nitrosylation in Protein Misfolding and Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2008, 10, 87-102.	5.4	106
789	Structural And Functional Organization Of The Synapse. , 2008, , .		8
790	Immunoproteasome Activity in the Nervous System. , 2008, , 223-234.		0
791	Genetics of Parkinson's Disease. , 2008, , 9-33.		2
793	Lrrk2 and α-synuclein are co-regulated in rodent striatum. Molecular and Cellular Neurosciences, 2008, 39, 586-591.	2.2	36
794	Pramipexole has astrocyte-mediated neuroprotective effects against lactacystin toxicity. Neuroscience Letters, 2008, 440, 97-102.	2.1	25
795	Lack of evidence for association of a UCH-L1 S18Y polymorphism with Parkinson's disease in a Han-Chinese population. Neuroscience Letters, 2008, 442, 200-202.	2.1	25
796	Natural killer cells of Parkinson's disease patients are set up for activation: A possible role for innate immunity in the pathogenesis of this disease. Parkinsonism and Related Disorders, 2008, 14, 46-51.	2.2	59
797	An analysis of genetic studies of Parkinson's disease in Africa. Parkinsonism and Related Disorders, 2008, 14, 177-182.	2.2	13
798	Autosomal dominant dopa-responsive parkinsonism in a multigenerational Swiss family. Parkinsonism and Related Disorders, 2008, 14, 465-470.	2.2	57
799	Disease-modifying drugs and Parkinson's disease. Progress in Neurobiology, 2008, 84, 25-39.	5.7	43

#	Article	IF	CITATIONS
800	The neuronal ubiquitin-proteasome system: Murine models and their neurological phenotype. Progress in Neurobiology, 2008, 85, 176-193.	5.7	31
801	Progress in Parkinson's disease—Where do we stand?. Progress in Neurobiology, 2008, 85, 376-392.	5.7	164
802	In vivo gene delivery for development of mammalian models for Parkinson's disease. Experimental Neurology, 2008, 209, 89-100.	4.1	35
803	MALDI Imaging of Formalin-Fixed Paraffin-Embedded Tissues: Application to Model Animals of Parkinson Disease for Biomarker Hunting. Journal of Proteome Research, 2008, 7, 969-978.	3.7	157
804	Molecular Basis for the Structural Instability of Human DJ-1 Induced by the L166P Mutation Associated with Parkinson's Disease. Biochemistry, 2008, 47, 9380-9393.	2.5	41
805	Monoubiquitylation of α-Synuclein by Seven in Absentia Homolog (SIAH) Promotes Its Aggregation in Dopaminergic Cells. Journal of Biological Chemistry, 2008, 283, 3316-3328.	3.4	153
806	Formation of Dopamine Adducts Derived from Brain Polyunsaturated Fatty Acids. Journal of Biological Chemistry, 2008, 283, 34887-34895.	3.4	62
807	Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Human Molecular Genetics, 2008, 17, 1482-1496.	2.9	87
808	Insights into links between familial and sporadic Parkinson's disease: Physical relationship between UCH-L1 variants and chaperone-mediated autophagy. Autophagy, 2008, 4, 827-829.	9.1	40
809	Novel <i>ATP13A2</i> variant associated with Parkinson disease in Taiwan and Singapore. Neurology, 2008, 71, 1727-1732.	1.1	96
810	α-Synuclein Protofibrils Inhibit 26 S Proteasome-mediated Protein Degradation. Journal of Biological Chemistry, 2008, 283, 20288-20298.	3.4	106
811	Aberrant Interaction between Parkinson Disease-associated Mutant UCH-L1 and the Lysosomal Receptor for Chaperone-mediated Autophagy. Journal of Biological Chemistry, 2008, 283, 23731-23738.	3.4	193
812	Oxidative Modification of Peroxiredoxin Is Associated with Drug-induced Apoptotic Signaling in Experimental Models of Parkinson Disease. Journal of Biological Chemistry, 2008, 283, 9986-9998.	3.4	96
813	The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells. Human Molecular Genetics, 2008, 17, 2160-2171.	2.9	64
814	Animal Models of Parkinson's Disease to Aid Drug Discovery and Development. , 2008, , 159-205.		3
815	Aggresome Formation and Neurodegenerative Diseases: Therapeutic Implications. Current Medicinal Chemistry, 2008, 15, 47-60.	2.4	193
816	Lack of replication of association between GIGYF2 variants and Parkinson disease. Human Molecular Genetics, 2008, 18, 341-346.	2.9	55
817	HSP70 and Constitutively Active HSF1 Mediate Protection Against CDCrel-1-mediated Toxicity. Molecular Therapy, 2008, 16, 1048-1055.	8.2	30

#	Article	IF	CITATIONS
818	Aggregopathy in Neurodegenerative Diseases: Mechanisms and Therapeutic Implication. Neurodegenerative Diseases, 2008, 5, 321-338.	1.4	55
820	Progress in the pathogenesis and genetics of Parkinson's disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2215-2227.	4.0	63
821	Mutation Analysis of the PINK1 Gene in 391 Patients With Parkinson Disease. Archives of Neurology, 2008, 65, 802-8.	4.5	75
822	The Etiopathogenesis of Parkinson's Disease: Basic Mechanisms of Neurodegeneration. , 2008, , 1-23.		0
823	Protein stability and aggregation in Parkinson's disease. Biochemical Journal, 2008, 413, 1-13.	3.7	42
824	Aggregates Assembled From Overexpression of Wild-Type α-Synuclein are not Toxic to Human Neuronal Cells. Journal of Neuropathology and Experimental Neurology, 2008, 67, 1084-1096.	1.7	39
825	Zebrafish: An in vivo model for the study of neurological diseases. Neuropsychiatric Disease and Treatment, 2008, 4, 567.	2.2	159
826	Yeast Cells as a Discovery Platform for Parkinson's Disease and other Protein Misfolding Diseases. , 2008, , 505-536.		0
827	Neurogenetics of dementia. , 0, , 27-44.		0
828	The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 2009, 72, S1-136.	1.1	685
829	Regulation of Synaptic Structure by Ubiquitin C-Terminal Hydrolase L1. Journal of Neuroscience, 2009, 29, 7857-7868.	3.6	127
830	Synphilin-1A Inhibits Seven in Absentia Homolog (SIAH) and Modulates α-Synuclein Monoubiquitylation and Inclusion Formation. Journal of Biological Chemistry, 2009, 284, 11706-11716.	3.4	31
831	A Population-Based Study of Parkinsonism in an Amish Community. Neuroepidemiology, 2009, 33, 225-230.	2.3	24
832	Endoplasmic Reticulum Protein Quality Control in Neurodegenerative Disease: The Good, the Bad and the Therapy. Current Medicinal Chemistry, 2009, 16, 615-626.	2.4	81
833	Physiological and Pathological Role of Alpha-synuclein in Parkinson's Disease Through Iron Mediated Oxidative Stress; The Role of a Putative Iron-responsive Element. International Journal of Molecular Sciences, 2009, 10, 1226-1260.	4.1	75
834	Molecular Pathology of Lewy Body Diseases. International Journal of Molecular Sciences, 2009, 10, 724-745.	4.1	101
835	Association Between the Ubiquitin Carboxyl-Terminal Esterase L1 Gene (UCHL1) S18Y Variant and Parkinson's Disease: A HuGE Review and Meta-Analysis. American Journal of Epidemiology, 2009, 170, 1344-1357.	3.4	67
836	Commitment of 1-Methyl-4-phenylpyrinidinium Ion-induced Neuronal Cell Death by Proteasome-mediated Degradation of p35 Cyclin-dependent Kinase 5 Activator. Journal of Biological Chemistry, 2009, 284, 26029-26039.	3.4	27

#	Article	IF	CITATIONS
837	Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Reviews in Molecular Medicine, 2009, 11, e22.	3.9	255
838	Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 667, 82-97.	1.0	239
839	Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiology of Disease, 2009, 34, 487-500.	4.4	140
840	Genome-wide loss-of-function analysis of deubiquitylating enzymes for zebrafish development. BMC Genomics, 2009, 10, 637.	2.8	65
841	The polyubiquitin <i>Ubc</i> gene modulates histone H2A monoubiquitylation in the R6/2 mouse model of Huntington's disease. Journal of Cellular and Molecular Medicine, 2009, 13, 2645-2657.	3.6	23
842	Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain Research, 2009, 1254, 18-27.	2.2	131
843	Leucineâ€rich repeat kinase 2 (LRRK2): A key player in the pathogenesis of Parkinson's disease. Journal of Neuroscience Research, 2009, 87, 1283-1295.	2.9	109
844	Non-synonymous GIGYF2 variants in Parkinson's disease from two Asian populations. Human Genetics, 2009, 126, 425-430.	3.8	17
845	Whole-genome conditional two-locus analysis identifies novel candidate genes for late-onset Parkinson's disease. Neurogenetics, 2009, 10, 173-181.	1.4	13
846	Cell death: protein misfolding and neurodegenerative diseases. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 455-468.	4.9	167
847	Recent advances in using Drosophila to model neurodegenerative diseases. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1008-1020.	4.9	28
848	Mitochondrial respiratory dysfunction and mutations in mitochondrial DNA in PINK1 familial Parkinsonism. Journal of Bioenergetics and Biomembranes, 2009, 41, 509-516.	2.3	21
849	Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. Proteomics, 2009, 9, 4284-4297.	2.2	70
850	Think locally: control of ubiquitinâ€dependent protein degradation in neurons. EMBO Reports, 2009, 10, 44-50.	4.5	77
851	Parkinson's Disease and Cancer. Annals of the New York Academy of Sciences, 2009, 1155, 324-334.	3.8	35
852	Effects of UCH‣1 on αâ€synuclein overâ€expression mouse model of Parkinson's disease. Journal of Neurochemistry, 2009, 108, 932-944.	3.9	60
853	The Parkinson diseaseâ€associated A30P mutation stabilizes αâ€synuclein against proteasomal degradation triggered by heme oxygenaseâ€1 overâ€expression in human neuroblastoma cells. Journal of Neurochemistry, 2009, 110, 719-733.	3.9	61
854	Pathogenesis of familial Parkinson's disease: new insights based on monogenic forms of Parkinson's disease. Journal of Neurochemistry, 2009, 111, 1075-1093.	3.9	93

#	Article	IF	CITATIONS
855	Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radical Research, 2009, 43, 417-430.	3.3	53
856	Parkinson's disease: The syndrome, the pathogenesis and pathophysiology. Cortex, 2009, 45, 915-921.	2.4	139
857	Targets for neuroprotection in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 676-687.	3.8	147
858	Genetic models of Parkinson disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 604-615.	3.8	50
859	Mendelian forms of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 587-596.	3.8	139
860	Abnormal serum concentrations of proteins in Parkinson's disease. Biochemical and Biophysical Research Communications, 2009, 389, 321-327.	2.1	19
861	The genetics of Parkinson's syndromes: a critical review. Current Opinion in Genetics and Development, 2009, 19, 254-265.	3.3	195
862	LRRK2 gene G2019S mutation and SNPs [haplotypes] in subtypes of Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 175-180.	2.2	15
863	Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 721-727.	2.2	49
864	Early involvement of the cerebral cortex in Parkinson's disease: Convergence of multiple metabolic defects. Progress in Neurobiology, 2009, 88, 89-103.	5.7	92
865	Ubiquitin dimers control the hydrolase activity of UCH-L3. Neurochemistry International, 2009, 54, 314-321.	3.8	27
866	Proteomics in animal models of Alzheimer's and Parkinson's diseases. Ageing Research Reviews, 2009, 8, 1-17.	10.9	73
867	Cell Death Pathways in Parkinson's Disease: Role of Mitochondria. Antioxidants and Redox Signaling, 2009, 11, 2135-2149.	5.4	70
868	Parkinson-Linked Genes and Toxins That Affect Neuronal Cell Death Through the Bcl-2 Family. Antioxidants and Redox Signaling, 2009, 11, 529-540.	5.4	36
869	The emerging role of autophagy in Parkinson's disease. Molecular Brain, 2009, 2, 29.	2.6	82
870	<i>Drosophila</i> Models of Neurodegenerative Diseases. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 315-342.	22.4	204
872	A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2097-2103.	7.1	200
873	Identification of Glutathione S-Transferase Pi as a Protein Involved in Parkinson Disease Progression. American Journal of Pathology, 2009, 175, 54-65.	3.8	75

ARTICLE IF CITATIONS Does autophagy worsen or improve the survival of dopaminergic neurons?. Parkinsonism and Related 874 2.2 14 Disorders, 2009, 15, S24-S27. Etiology and Pathogenesis of Parkinson Disease. Neurologic Clinics, 2009, 27, 583-603. 1.8 Use of a phosphosensor dye in proteomic analysis of human mutant tau transgenic mice. NeuroReport, 876 1.2 8 2009, 20, 1648-1653. Targeting the Progression of Parkinsons Disease. Current Neuropharmacology, 2009, 7, 9-36. 877 2.9 Ring Finger Ubiquitin Protein Ligases and Their Implication to the Pathogenesis of Human Diseases. 878 1.9 29 Current Pharmaceutical Design, 2009, 15, 3697-3715. Network Building of Proteins in a Biochemical Pathway: A Computational Biology Related Model for 879 1.5 Target Discovery and Drug-Design. Current Bioinformatics, 2010, 5, 290-295. Proteasome Inhibitor Lactacystin Induces Cholinergic Degeneration. Canadian Journal of 882 0.5 3 Neurological Sciences, 2010, 37, 229-234. Role of the ubiquitin–proteasome system and autophagy in polyglutamine neurodegenerative diseases. 884 Future Neurology, 2010, 5, 105-112. Mitochondrial Pathobiology in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Journal of 885 2.6 27 Alzheimer's Disease, 2010, 20, S335-S356. The Genetics of Parkinson Disease. Journal of Geriatric Psychiatry and Neurology, 2010, 23, 228-242. 2.3 259 Involvement of the cerebral cortex in Parkinson disease linked with G2019S LRRK2 mutation without 887 7.725 cognitive impairment. Acta Neuropathologica, 2010, 120, 155-167. Parkinson's disease: oxidative stress and therapeutic approaches. Neurological Sciences, 2010, 31, 88 531-540. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis: 889 4.9 140 an International Journal on Programmed Cell Death, 2010, 15, 1292-1311. Biomarkers for prediction and targeted prevention of Alzheimer's and Parkinson's diseases: 890 6.1 evaluation of drug clinical efficacy. EPMA Journal, 2010, 1, 273-292. Redox Reactions Induced by Nitrosative Stress Mediate Protein Misfolding and Mitochondrial 891 4.0 130 Dysfunction in Neurodegenerative Diseases. Molecular Neurobiology, 2010, 41, 55-72. Accelerated formation of \hat{l} ±-synuclein oligomers by concerted action of the 20S proteasome and 892 familial Parkinson mutations. Journal of Bioenergetics and Biomembranes, 2010, 42, 85-95. Dynamic regulation of glutamate decarboxylase 67 gene expression by alternative promoters and 893 2.311 splicing during rat testis maturation. Molecular Biology Reports, 2010, 37, 3111-3119. Electromyographic Manifestations of Hereditary Signs of Extrapyramidal Insufficiency. 894 Neurophysiology, 2010, 42, 39-49.

#	Article	IF	CITATIONS
895	Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: A pathogenetically based approach. Neurobiology of Disease, 2010, 39, 229-241.	4.4	67
896	The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 1-6.	7.4	77
897	Parkin dosage mutations in patients with early-onset sporadic and familial Parkinson's disease in Chinese: An independent pathogenic role. Brain Research, 2010, 1358, 30-38.	2.2	13
898	Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Human Mutation, 2010, 31, 763-780.	2.5	428
899	Protein degradation, aggregation, and misfolding. Movement Disorders, 2010, 25, S49-54.	3.9	121
900	Parkinson's at risk syndrome: Can Parkinson's disease be predicted?. Movement Disorders, 2010, 25, S89-93.	3.9	73
901	Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons. Journal of Biomedical Science, 2010, 17, 66.	7.0	5
902	Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) S18Y polymorphism in Alzheimer's disease. Molecular Neurodegeneration, 2010, 5, 11.	10.8	17
903	The pattern of neuronal loss and survival may reflect differential expression of proteasome activators in Parkinson's disease. Synapse, 2010, 64, 241-250.	1.2	32
904	Proteasome inhibition in medaka brain induces the features of Parkinson's disease. Journal of Neurochemistry, 2010, 115, 178-187.	3.9	46
905	Protein aggregation in Parkinson's disease. Acta Neurologica Scandinavica, 2010, 122, 82-87.	2.1	26
906	Mitochondrial dysfunction and loss of Parkinson's diseaseâ€linked proteins contribute to neurotoxicity of manganeseâ€containing welding fumes. FASEB Journal, 2010, 24, 4989-5002.	0.5	2
907	Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Frontiers in Neuroanatomy, 2010, 4, 140.	1.7	55
908	PARK5, UCH-L1. , 2010, , 388-389.		1
909	Modelling the Role of UCH-L1 on Protein Aggregation in Age-Related Neurodegeneration. PLoS ONE, 2010, 5, e13175.	2.5	21
910	Genetics in Parkinson's disease. Journal of the Korean Medical Association, 2010, 54, 70.	0.3	2
911	Ubiquitin-Dependent Protein Degradation. , 2010, , 699-752.		1
912	Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Human Molecular Genetics, 2010, 19, 4726-4734.	2.9	59

#	Article	IF	CITATIONS
913	Cyclopentenone prostaglandin-induced unfolding and aggregation of the Parkinson disease-associated UCH-L1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6835-6840.	7.1	70
914	Mitochondrial dysfunction and loss of Parkinson's disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB Journal, 2010, 24, 4989-5002.	0.5	75
915	Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9117-9122.	7.1	96
916	Ubiquitin Enzymes, Ubiquitin and Proteasome Activity in Blood Mononuclear Cells of MCI, Alzheimer and Parkinson Patients. Current Alzheimer Research, 2010, 7, 549-555.	1.4	26
917	Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Human Molecular Genetics, 2010, 19, 3771-3781.	2.9	93
918	Transgenic Mouse Models of Parkinsons Disease and Huntingtons Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 455-470.	1.4	9
919	Neurochemistry Changes Associated with Mutations in Familial Parkinsons Disease. Current Medicinal Chemistry, 2010, 17, 4378-4391.	2.4	4
920	Degradation of ubiquitin: The fate of the cellular reaper. Cell Cycle, 2010, 9, 523-530.	2.6	87
922	Morbo di Parkinson idiopatico: aspetti clinici, diagnostici e terapeutici. EMC - Neurologia, 2010, 10, 1-29.	0.0	0
923	Genetics of Parkinson's Disease—An Overview. Blue Books of Neurology, 2010, , 15-39.	0.1	1
924	PARK2: Parkin Mutations Responsible for Familial Parkinson's Disease. Blue Books of Neurology, 2010, 34, 54-65.	0.1	0
925	Molecular Mechanisms of Pathogenesis of Parkinson's Disease. International Review of Cell and Molecular Biology, 2010, 281, 229-266.	3.2	55
926	Role of epigenetics in Alzheimer's and Parkinson's disease. Epigenomics, 2010, 2, 671-682.	2.1	99
927	Identification of autoantigens specific for systemic lupus erythematosus with central nervous system involvement. Lupus, 2010, 19, 717-726.	1.6	18
928	Does Impairment of the Ubiquitin-Proteasome System or the Autophagy-Lysosome Pathway Predispose Individuals to Neurodegenerative Disorders such as Parkinson's Disease?. Journal of Alzheimer's Disease, 2010, 19, 1-9.	2.6	89
929	Understanding the molecular basis of Parkinson's disease, identification of biomarkers and routes to therapy. Expert Review of Proteomics, 2010, 7, 565-578.	3.0	19
930	Pathogenesis of Parkinson's disease: emerging role of molecular chaperones. Trends in Molecular Medicine, 2010, 16, 27-36.	6.7	72
931	Identification of a novel chemical potentiator and inhibitors of UCH-L1 by in silico drug screening. Neurochemistry International, 2010, 56, 679-686.	3.8	23

#	Article	IF	CITATIONS
932	Association between GBA L444P mutation and sporadic Parkinson's disease from Mainland China. Neuroscience Letters, 2010, 469, 256-259.	2.1	56
933	No evidence for pathogenic role of GICYF2 mutation in Parkinson disease in Japanese patients. Neuroscience Letters, 2010, 479, 245-248.	2.1	7
934	Protein quality control mechanisms and neurodegenerative disorders: Checks, balances and deadlocks. Neuroscience Research, 2010, 68, 159-166.	1.9	23
935	Mechanisms of rotenone-induced proteasome inhibition. NeuroToxicology, 2010, 31, 367-372.	3.0	63
936	Ubiquitin specific proteases USP24 and USP40 and ubiquitin thiolesterase UCHL1 polymorphisms have synergic effect on the risk of Parkinson's disease among Taiwanese. Clinica Chimica Acta, 2010, 411, 955-958.	1.1	24
937	UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Progress in Neurobiology, 2010, 90, 327-362.	5.7	213
938	Parkinson's disease: Exit toxins, enter genetics. Progress in Neurobiology, 2010, 90, 146-156.	5.7	43
939	Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. Pharmaceuticals, 2010, 3, 839-915.	3.8	179
940	Ubiquitination in Postsynaptic Function and Plasticity. Annual Review of Cell and Developmental Biology, 2010, 26, 179-210.	9.4	243
941	Expression in the mammalian retina of parkin and UCH-L1, two components of the ubiquitin-proteasome system. Brain Research, 2010, 1352, 70-82.	2.2	42
942	Parkinson's Disease: Genetics. , 2010, , 425-430.		0
943	Region-Specific Protein Abundance Changes in the Brain of MPTP-Induced Parkinson's Disease Mouse Model. Journal of Proteome Research, 2010, 9, 1496-1509.	3.7	69
946	Mouse Mutagenesis and Disease Models for Neuropsychiatric Disorders. Current Topics in Behavioral Neurosciences, 2011, 7, 1-35.	1.7	9
947	Cellular Effects of Heavy Metals. , 2011, , .		60
948	Role of ubiquitin–proteasome-mediated proteolysis in nervous system disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 128-140.	1.9	87
949	The serine protease HtrA2 cleaves UCH-L1 and inhibits its hydrolase activity: Implication in the UCH-L1-mediated cell death. Biochemical and Biophysical Research Communications, 2011, 415, 24-29.	2.1	10
950	Parkinson disease: Insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy, 2011, 42, 131-141.	2.1	65
951	Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson's disease in rats. Neurochemistry International, 2011, 58, 839-849.	3.8	34

#	Article	IF	CITATIONS
952	Parkinson's disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1. Neurochemistry International, 2011, 59, 251-258.	3.8	8
953	Analysis of mutations and the association between polymorphisms in the cerebral dopamine neurotrophic factor (CDNF) gene and Parkinson disease. Neuroscience Letters, 2011, 493, 97-101.	2.1	23
954	Insulin-like growth factor-I mediates neuroprotection in proteasome inhibition-induced cytotoxicity in SH-SY5Y cells. Molecular and Cellular Neurosciences, 2011, 47, 181-190.	2.2	37
955	Case-control study of the UCH-L1 S18Y variant in sporadic Parkinson's disease in the Chinese population. Journal of Clinical Neuroscience, 2011, 18, 541-544.	1.5	10
956	The Effect of Parkinson's-Disease-Associated Mutations on the Deubiquitinating Enzyme UCH-L1. Journal of Molecular Biology, 2011, 407, 261-272.	4.2	61
957	Balancing act: deubiquitinating enzymes in the nervous system. Trends in Neurosciences, 2011, 34, 370-382.	8.6	122
958	Pharmacological Therapy in Parkinson's Disease: Focus on Neuroprotection. CNS Neuroscience and Therapeutics, 2011, 17, 345-367.	3.9	28
959	Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Experimental Neurology, 2011, 228, 118-125.	4.1	74
962	Mitochondria and Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-2.	1.1	3
963	Neuropathology and Neurochemistry of Nonmotor Symptoms in Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-13.	1.1	51
964	Toxin-Induced and Genetic Animal Models of Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-14.	1.1	54
965	Drosophila Models of Parkinson's Disease: Discovering Relevant Pathways and Novel Therapeutic Strategies. Parkinson's Disease, 2011, 2011, 1-14.	1.1	59
966	Mitochondrial Dysfunction in Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-18.	1.1	100
967	Genetic basis of Parkinson's disease: inheritance, penetrance, and expression. The Application of Clinical Genetics, 2011, 4, 67.	3.0	96
968	The Hsp70 Chaperone System in Parkinson's Disease. , 2011, , .		3
970	Localization of MAP1-LC3 in Vulnerable Neurons and Lewy Bodies in Brains of Patients With Dementia With Lewy Bodies. Journal of Neuropathology and Experimental Neurology, 2011, 70, 264-280.	1.7	55
971	Protection Against Dopaminergic Neurodegeneration in Parkinson's Disease–Model Animals by a Modulator of the Oxidized Form of DJ-1, a Wild-type of Familial Parkinson's Disease–Linked PARK7. Journal of Pharmacological Sciences, 2011, 117, 189-203.	2.5	46
972	NFâ€₽̂B signaling inhibits ubiquitin carboxylâ€ŧerminal hydrolase L1 gene expression. Journal of Neurochemistry, 2011, 116, 1160-1170.	3.9	27

#	Article	IF	CITATIONS
973	Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. British Journal of Pharmacology, 2011, 164, 1357-1391.	5.4	576
974	Parkinson's disease and cancer: two wars, one front. Nature Reviews Cancer, 2011, 11, 813-823.	28.4	146
975	Mitochondrial dysfunction in Parkinson's disease. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2011, 5, 313-336.	0.4	2
976	Mutant ubiquitin (UBB ⁺¹) associated with neurodegenerative disorders is hydrolyzed by ubiquitin C-terminal hydrolase L3 (UCH-L3). FEBS Letters, 2011, 585, 2568-2574.	2.8	35
977	Genetic variations of Omi/HTRA2 in Chinese patients with Parkinson's disease. Brain Research, 2011, 1385, 293-297.	2.2	18
978	What Genetics Tells us About the Causes and Mechanisms of Parkinson's Disease. Physiological Reviews, 2011, 91, 1161-1218.	28.8	515
979	Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. BioFactors, 2011, 37, 228-240.	5.4	101
980	Epidemiology and etiology of Parkinson's disease: a review of the evidence. European Journal of Epidemiology, 2011, 26, 1-58.	5.7	897
981	Transgenic animal models of neurodegeneration based on human genetic studies. Journal of Neural Transmission, 2011, 118, 27-45.	2.8	38
982	Backbone and side-chain 1H, 15N and 13C resonance assignments of S18Y mutant of ubiquitin carboxy-terminal hydrolase L1. Biomolecular NMR Assignments, 2011, 5, 165-168.	0.8	3
983	Common variants in PARK loci and related genes and Parkinson's disease. Movement Disorders, 2011, 26, 280-288.	3.9	43
984	The most cited works in Parkinson's disease. Movement Disorders, 2011, 26, 380-390.	3.9	54
985	Etiology and pathogenesis of Parkinson's disease. Movement Disorders, 2011, 26, 1049-1055.	3.9	536
986	Parkinson's disease, proteins, and prions: Milestones. Movement Disorders, 2011, 26, 1056-1071.	3.9	36
987	Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Movement Disorders, 2011, 26, 1593-1604.	3.9	141
988	Pathogenic effects of novel mutations in the Pâ€type ATPase <i>ATP13A2</i> (<i>PARK9</i>) causing Kuforâ€Rakeb syndrome, a form of earlyâ€onset parkinsonism. Human Mutation, 2011, 32, 956-964.	2.5	105
989	The association between Parkinson's disease and melanoma. International Journal of Cancer, 2011, 128, 2251-2260.	5.1	126
990	Zinc(II) Complexes of Ubiquitin: Speciation, Affinity and Binding Features. Chemistry - A European Journal, 2011, 17, 11596-11603.	3.3	34

#	Article	IF	CITATIONS
991	Imbalanced estrogen metabolism in the brain: possible relevance to the etiology of Parkinson's disease. Biomarkers, 2011, 16, 434-444.	1.9	13
992	Mitochondria as a Therapeutic Target for Aging and Neurodegenerative Diseases. Current Alzheimer Research, 2011, 8, 393-409.	1.4	189
993	Neurological biomarkers in the perioperative period. British Journal of Anaesthesia, 2011, 107, 844-858.	3.4	68
995	S-Nitrosylation of Critical Protein Thiols Mediates Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2011, 14, 1479-1492.	5.4	83
996	Structure of Ubiquitin-fold Modifier 1-specific Protease UfSP2. Journal of Biological Chemistry, 2011, 286, 10248-10257.	3.4	47
997	Clinical overview and phenomenology of movement disorders. , 2011, , 1-35.		7
998	Current concepts on the etiology and pathogenesis of Parkinson disease. , 2011, , 93-118.		2
999	Ubiquitin Carboxyl-Terminal Esterase L1(UCHL1)S18Y Polymorphism In Patients With Cataracts. Ophthalmic Genetics, 2011, 32, 75-79.	1.2	5
1001	Comprehensive mutational analysis of LRRK2 reveals variants supporting association with autosomal dominant Parkinson's disease. Journal of Human Genetics, 2011, 56, 671-675.	2.3	10
1002	Fixing the broken system of genetic locus symbols. Neurology, 2012, 78, 1016-1024.	1.1	70
1003	Genetics of Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a008888-a008888.	6.2	1,026
1004	Motor Neuron-specific Disruption of Proteasomes, but Not Autophagy, Replicates Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2012, 287, 42984-42994.	3.4	162
1005	Clinical Approach to Parkinson's Disease: Features, Diagnosis, and Principles of Management. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a008870-a008870.	6.2	288
1006	AUTOPHAGY IN HUNTINGTON'S AND PARKINSON'S DISEASES: PATHOGENIC MECHANISMS AND THERAP POTENTIALS. , 2012, , 259-284.	eutic	0
1007	THE POTENTIAL OF AUTOPHAGY REGULATION IN THE TREATMENT OF NEURODEGENERATIVE DISEASES. , 2012, , 305-330.		0
1008	Genetic modifiers of Huntington's disease: beyond CAG. Future Neurology, 2012, 7, 93-109.	0.5	20
1009	The Role of Deubiquitinating Enzymes in Synaptic Function and Nervous System Diseases. Neural Plasticity, 2012, 2012, 1-13.	2.2	46
1010	Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1. Scientific Reports, 2012, 2, 262.	3.3	18

	CHATION		
#	Article	IF	Citations
1011	Regulation of parkin and PINK1 by neddylation. Human Molecular Genetics, 2012, 21, 2514-2523.	2.9	60
1012	Energy landscape of knotted protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17783-17788.	7.1	91
1013	Molecular evaluation of human Ubiquilin 2 gene PXX domain in familial frontotemporal dementia patients. Journal of Neurology, 2012, 259, 2488-2490.	3.6	2
1014	Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology and Medicine, 2012, 53, 1791-1806.	2.9	89
1016	Gene expression profiling and therapeutic interventions in neurodegenerative diseases: a comprehensive study on potentiality and limits. Expert Opinion on Drug Discovery, 2012, 7, 245-259.	5.0	18
1017	Disturbed sleep/wake rhythms and neuronal cell loss in lateral hypothalamus and retina of mice with a spontaneous deletion in the ubiquitin carboxyl-terminal hydrolase L1 gene. Neurobiology of Aging, 2012, 33, 393-403.	3.1	20
1018	The ubiquitin proteasome system in neurodegenerative diseases: Culprit, accomplice or victim?. Progress in Neurobiology, 2012, 96, 190-207.	5.7	112
1019	Protein homeostasis and aging: Role of ubiquitin protein ligases. Neurochemistry International, 2012, 60, 443-447.	3.8	49
1020	DNA promoter methylation as a diagnostic and therapeutic biomarker in gallbladder cancer. Clinical Epigenetics, 2012, 4, 11.	4.1	30
1021	Genetics and Epigenetics of Parkinson's Disease. Scientific World Journal, The, 2012, 2012, 1-12.	2.1	148
1022	Biology of Mitochondria in Neurodegenerative Diseases. Progress in Molecular Biology and Translational Science, 2012, 107, 355-415.	1.7	141
1023	Defective Autophagy in Parkinson's Disease: Role of Oxidative Stress. Molecular Neurobiology, 2012, 46, 639-661.	4.0	124
1024	Overexpression of Parkin Ameliorates Dopaminergic Neurodegeneration Induced by 1- Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine in Mice. PLoS ONE, 2012, 7, e39953.	2.5	63
1025	Parkinson's Disease: Leucine-Rich Repeat Kinase 2 and Autophagy, Intimate Enemies. Parkinson's Disease, 2012, 2012, 1-9.	1.1	6
1026	Cyclin-Dependent Kinase 5 – An Emerging Player in Parkinson's Disease Pathophysiology. , 2012, , .		0
1027	Parkinsonâ \in ™s Disease: Insights from the Laboratory and Clinical Therapeutics. , 0, , .		0
1028	Animal Models of Parkinsonâ \in Ms Disease Induced by Toxins and Genetic Manipulation. , 2012, , .		0
1031	Selective neuroprotective effects of the S18Y polymorphic variant of UCH-L1 in the dopaminergic system. Human Molecular Genetics, 2012, 21, 874-889.	2.9	34

#	Article	IF	CITATIONS
1032	Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathologica, 2012, 124, 153-172.	7.7	213
1033	Synaptic Dysfunction in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2012, 970, 553-572.	1.6	209
1034	Role of the ubiquitin–proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cellular and Molecular Life Sciences, 2012, 69, 2691-2715.	5.4	22
1035	Overexpression of ubiquitin carboxyl terminal hydrolase impairs multiple pathways during eye development in Drosophila melanogaster. Cell and Tissue Research, 2012, 348, 453-463.	2.9	15
1036	Control of BACE1 degradation and APP processing by ubiquitin carboxylâ€ŧerminal hydrolase L1. Journal of Neurochemistry, 2012, 120, 1129-1138.	3.9	72
1037	Hypoxia regulation of ATP13A2 (PARK9) gene transcription. Journal of Neurochemistry, 2012, 122, 251-259.	3.9	27
1038	Aberrant structures of Parkinson's disease-associated ubiquitin C-terminal hydrolase L1 predicted by molecular dynamics. Chemical Physics Letters, 2012, 535, 163-168.	2.6	3
1039	Fas expression promotes proteasomal activity in toxin-induced parkinsonism. Acta Neuropsychiatrica, 2012, 24, 166-171.	2.1	0
1040	Contribution of active site glutamine to rate enhancement in ubiquitin Câ€ŧerminal hydrolases. FEBS Journal, 2012, 279, 1106-1118.	4.7	16
1041	The modulation of Amyotrophic Lateral Sclerosis risk by Ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiology of Disease, 2012, 45, 356-361.	4.4	66
1042	Neurochemistry and the non-motor aspects of PD. Neurobiology of Disease, 2012, 46, 508-526.	4.4	73
1043	Porcine UCHL1: genomic organization, chromosome localization and expression analysis. Molecular Biology Reports, 2012, 39, 1095-1103.	2.3	4
1044	A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP. Journal of Neural Transmission, 2012, 119, 297-312.	2.8	30
1045	Reprint of: Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology and Medicine, 2013, 62, 186-201.	2.9	97
1046	Analysis of EIF4G1 in ethnic Chinese. BMC Neurology, 2013, 13, 38.	1.8	14
1048	Could Dysregulation of UPS be a Common Underlying Mechanism for Cancer and Neurodegeneration? Lessons from UCHL1. Cell Biochemistry and Biophysics, 2013, 67, 45-53.	1.8	46
1049	Neuronal Ubiquitin Homeostasis. Cell Biochemistry and Biophysics, 2013, 67, 67-73.	1.8	58
1050	Ubiquitin–Proteasome System Impairment and MPTP-Induced Oxidative Stress in the Brain of C57BL/6 Wild-type and GSTP Knockout Mice. Molecular Neurobiology, 2013, 47, 662-672.	4.0	25

IF

ARTICLE

CITATIONS

Basal Ganglia Disorders., 2013, , 1-39. 0 1051 Alpha-synuclein and Protein Degradation Systems: a Reciprocal Relationship. Molecular Neurobiology, 4.0 222 2013, 47, 537-551. Sulfatide accumulation in the dystrophic terminals of gracile axonal dystrophy mice: lipid analysis 1053 using matrix-assisted laser desorption/ionization imaging mass spectrometry. Medical Molecular 1.0 10 Morphology, 2013, 46, 160-165. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. 1054 2.9 296 Free Radical Biology and Medicine, 2013, 62, 170-185. Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. Advances in 1055 0.6 3 Predictive, Preventive and Personalised Medicine, 2013, , . The Importance of Olfactory and Motor Endpoints for Zebrafish Models of Neurodegenerative Disease., 2013,, 651-678. Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 1057 5.1 19 in melanoma. International Journal of Cancer, 2013, 133, n/a-n/a. SUMO1 modulates Al² generation via BACE1 accumulation. Neurobiology of Aging, 2013, 34, 650-662. 1058 3.148 Glutathione S-transferase omega suppresses the defective phenotypes caused by PINK1 loss-of-function 1059 2.1 14 in Drosophila. Biochemical and Biophysical Research Communications, 2013, 437, 615-619. 1060 Ubiquitin C-terminal Hydrolase-L1., 2013, , 2038-2043. 1 Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proceedings of the National Academy of Sciences of the United States 1061 7.1144 of America, 2013, 110, 3489-3494. Other Calpains., 2013,, 2027-2038. 1062 Monogenic Parkinson's disease and parkinsonism: Clinical phenotypes and frequencies of known 1063 2.2 202 mutations. Parkinsonism and Related Disorders, 2013, 19, 407-415. Production of Polyclonal Anti-dUCH (Drosophila Ubiquitin Carboxyl-terminal Hydrolase) Antibodies. 1064 1.6 Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 105-112. 1065 Handbook of Parkinson's Disease., 2013,,. 14 Network modeling to identify new mechanisms and therapeutic targets for Parkinson's disease. Expert 1066 Review of Neurotherapeutics, 2013, 13, 685-693. Deubiquitylases From Genes to Organism. Physiological Reviews, 2013, 93, 1289-1315. 1067 28.8 350 Targeting the Chameleon: a Focused Look at α-Synuclein and Its Roles in Neurodegeneration. Molecular Neurobiology, 2013, 47, 446-459.

#	Article	IF	CITATIONS
1069	Ubiquitin Hydrolase UCH-L1 Destabilizes mTOR Complex 1 by Antagonizing DDB1-CUL4-Mediated Ubiquitination of Raptor. Molecular and Cellular Biology, 2013, 33, 1188-1197.	2.3	63
1070	Limelight on Alpha-Synuclein: Pathological and Mechanistic Implications in Neurodegeneration. Journal of Parkinson's Disease, 2013, 3, 415-459.	2.8	68
1071	eGFP Expression under <i>UCHL1</i> Promoter Genetically Labels Corticospinal Motor Neurons and a Subpopulation of Degeneration-Resistant Spinal Motor Neurons in an ALS Mouse Model. Journal of Neuroscience, 2013, 33, 7890-7904.	3.6	69
1072	Ubiquitin C-terminal Hydrolase L1 (UCH-L1) Acts as a Novel Potentiator of Cyclin-dependent Kinases to Enhance Cell Proliferation Independently of Its Hydrolase Activity. Journal of Biological Chemistry, 2013, 288, 12615-12626.	3.4	34
1074	Animal models of Parkinson's disease and related disorders. , 2013, , 295-330.		0
1075	A Novel Approach to Detect Cumulative Genetic Effects and Genetic Interactions in Crohn's Disease. Inflammatory Bowel Diseases, 2013, 19, 1.	1.9	15
1076	Parkinson's Disease: From Genetics to Treatments. Cell Transplantation, 2013, 22, 639-652.	2.5	21
1077	Profiling of Parkin-Binding Partners Using Tandem Affinity Purification. PLoS ONE, 2013, 8, e78648.	2.5	38
1078	Therapeutic Targets in the Ubiquitin-proteasome System for Alzheimer's Disease. Current Enzyme Inhibition, 2013, 9, 46-54.	0.4	1
1079	DJ-1 Interacts with and Regulates Paraoxonase-2, an Enzyme Critical for Neuronal Survival in Response to Oxidative Stress. PLoS ONE, 2014, 9, e106601.	2.5	42
1080	Proteomic Analysis of Lymphoblastoid Cells from Nasu-Hakola Patients: A Step Forward in Our Understanding of This Neurodegenerative Disorder. PLoS ONE, 2014, 9, e110073.	2.5	13
1081	The degeneration and replacement of dopamine cells in Parkinsonââ,¬â,,¢s disease: the role of aging. Frontiers in Neuroanatomy, 2014, 8, 80.	1.7	28
1082	Genetic Insights into Sporadic Parkinson's Disease Pathogenesis. Current Genomics, 2014, 14, 486-501.	1.6	68
1083	The Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) C Terminus Plays a Key Role in Protein Stability, but Its Farnesylation Is Not Required for Membrane Association in Primary Neurons. Journal of Biological Chemistry, 2014, 289, 36140-36149.	3.4	33
1084	Failure of Ubiquitin Proteasome System: Risk for Neurodegenerative Diseases. Neurodegenerative Diseases, 2014, 14, 161-175.	1.4	34
1085	<i>UCH-L1</i> S18Y Variant and Risk of Parkinson's Disease in Asian Populations: An Updated Meta-Analysis. Neurodegenerative Diseases, 2014, 14, 194-203.	1.4	4
1086	Mitochondrial dysfunction in Parkinson's disease: a possible target for neuroprotection. Frontiers in Biology, 2014, 9, 489-503.	0.7	2
1087	Transcriptional regulation of human <scp>USP</scp> 24 gene expression by NFâ€kappa B. Journal of Neurochemistry, 2014, 128, 818-828.	3.9	11

#	Article	IF	CITATIONS
1088	Differential Loss of Prolyl Isomerase or Chaperone Activity of Ran-binding Protein 2 (Ranbp2) Unveils Distinct Physiological Roles of Its Cyclophilin Domain in Proteostasis. Journal of Biological Chemistry, 2014, 289, 4600-4625.	3.4	15
1089	Amide-Type Adduct of Dopamine – Plausible Cause of Parkinson Diseases. Sub-Cellular Biochemistry, 2014, 77, 49-60.	2.4	4
1090	The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 86-96.	4.1	130
1091	α-Synuclein in Parkinson's Disease: Pathogenic Function and Translation into Animal Models. Neurodegenerative Diseases, 2014, 14, 1-17.	1.4	39
1092	Roles of Multiple Types of Autophagy in Neurodegenerative Diseases. , 2014, , 61-68.		0
1093	Advances in the Genetics of Parkinson's Disease: A Guide for the Clinician. Movement Disorders Clinical Practice, 2014, 1, 3-13.	1.5	17
1094	Are dopamine derivatives implicated in the pathogenesis of Parkinson's disease?. Ageing Research Reviews, 2014, 13, 107-114.	10.9	66
1095	The Ubiquitin-Proteasome System in Neurodegeneration. Antioxidants and Redox Signaling, 2014, 21, 2302-2321.	5.4	116
1096	Increased levels of <scp>UCHL</scp> 1 are a compensatory response to disrupted ubiquitin homeostasis in spinal muscular atrophy and do not represent a viable therapeutic target. Neuropathology and Applied Neurobiology, 2014, 40, 873-887.	3.2	23
1097	G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology, 2014, 324, 1-9.	4.2	40
1098	Protein recycling pathways in neurodegenerative diseases. Alzheimer's Research and Therapy, 2014, 6, 13.	6.2	29
1099	Upregulation of human PINK1 gene expression by NFήB signalling. Molecular Brain, 2014, 7, 57.	2.6	18
1100	CSF α-synuclein and UCH-L1 levels in Parkinson's disease and atypical parkinsonian disorders. Parkinsonism and Related Disorders, 2014, 20, 382-387.	2.2	68
1101	Endogenous neurotoxic dopamine derivative covalently binds to Parkinson's diseaseâ€associated ubiquitin Câ€ŧerminal hydrolase L1 and alters its structure and function. Journal of Neurochemistry, 2014, 130, 826-838.	3.9	27
1102	The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Molecular Genetics, 2014, 23, 5227-5242.	2.9	264
1103	Lack of Neuroprotective Effect of Celastrol Under Conditions of Proteasome Inhibition by Lactacystin in In Vitro and In Vivo Studies: Implications for Parkinson's Disease. Neurotoxicity Research, 2014, 26, 255-273.	2.7	37
1104	The mitochondrial permeability transition pore regulates Parkinson's disease development in mutant α-synuclein transgenic mice. Neurobiology of Aging, 2014, 35, 1132-1152.	3.1	97
1105	Chronic l-DOPA treatment attenuates behavioral and biochemical deficits induced by unilateral lactacystin administration into the rat substantia nigra. Behavioural Brain Research, 2014, 261, 79-88.	2.2	19

#	Article	IF	CITATIONS
1106	Role of genomics in translational research for Parkinson's disease. Biochemical and Biophysical Research Communications, 2014, 452, 226-235.	2.1	15
1107	Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends in Cell Biology, 2014, 24, 506-514.	7.9	519
1108	Emerging bioinformatics approaches for analysis of NGS-derived coding and non-coding RNAs in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 2014, 8, 89.	3.7	17
1109	Emerging evidence of coding mutations in the ubiquitin–proteasome system associated with cerebellar ataxias. Human Genome Variation, 2014, 1, 14018.	0.7	32
1110	Compensatory role of the Nrf2–ARE pathway against paraquat toxicity: Relevance of 26S proteasome activity. Journal of Pharmacological Sciences, 2015, 129, 150-159.	2.5	19
1111	The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell, 2015, 14, 715-724.	6.7	61
1112	Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo. Scientific Reports, 2014, 4, 7298.	3.3	112
1113	<i>S</i> -Mercuration of ubiquitin carboxyl-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells. Journal of Toxicological Sciences, 2015, 40, 887-893.	1.5	13
1114	Corticospinal Motor Neurons Are Susceptible to Increased ER Stress and Display Profound Degeneration in the Absence of UCHL1 Function. Cerebral Cortex, 2015, 25, 4259-4272.	2.9	69
1115	The KM-parkin-DB: A Sub-set <i>MutationView</i> Database Specialized for <i>PARK2</i> (PARKIN) Variants. Human Mutation, 2015, 36, E2430-E2440.	2.5	6
1116	Aspects génétiques. , 2015, , 21-31.e2.		0
1117	Molecular diagnostics of neurodegenerative disorders. Frontiers in Molecular Biosciences, 2015, 2, 54.	3.5	120
1118	Proteomics in Traditional Chinese Medicine with an Emphasis on Alzheimer's Disease. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-17.	1.2	9
1119	Ubiquitin-Proteasome System in Neurodegenerative Disorders. Journal of Drug Metabolism & Toxicology, 2015, 06, .	0.1	13
1120	Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocrine-Related Cancer, 2015, 22, T35-T54.	3.1	111
1121	Decreased behavioral response to intranigrally administered GABAA agonist muscimol in the lactacystin model of Parkinson's disease may result from partial lesion of nigral non-dopamine neurons: Comparison to the classical neurotoxin 6-OHDA. Behavioural Brain Research, 2015, 283, 203-214.	2.2	9
1122	Photosensitized Oxidation of Lens Proteins Exposed to UVA-Visible Light at Low Oxygen Concentration: Its Effect on the Proteasome System. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 239-274.	0.4	0
1123	Rodent Models of Autosomal Dominant Parkinson Disease. , 2015, , 307-328.		0

#	Article	IF	Citations
1124	A molecular census of 26 <i>S</i> proteasomes in intact neurons. Science, 2015, 347, 439-442.	12.6	287
1125	Parkinson's disease as a result of aging. Aging Cell, 2015, 14, 293-308.	6.7	165
1126	Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2213-2224.	3.8	47
1127	Association of ubiquitin carboxy-terminal hydrolase-L1 in cerebrospinal fluid with clinical severity in a cohort of patients with Guillain–Barré syndrome. Neurological Sciences, 2015, 36, 921-926.	1.9	2
1128	Control of Autophagy in Parkinson's Disease. Current Topics in Neurotoxicity, 2015, , 91-122.	0.4	1
1130	UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. Trends in Molecular Medicine, 2015, 21, 622-632.	6.7	108
1131	Neuroprotective effects of Eucommia ulmoides Oliv. and its bioactive constituent work via ameliorating the ubiquitin-proteasome system. BMC Complementary and Alternative Medicine, 2015, 15, 151.	3.7	23
1132	α-Synuclein and nonhuman primate models of Parkinson's disease. Journal of Neuroscience Methods, 2015, 255, 38-51.	2.5	29
1133	Exploring the Role of Autophagy in the Pathogenesis of Rotenone-induced Toxicity. Current Topics in Neurotoxicity, 2015, , 225-245.	0.4	0
1134	F-box protein 7 mutations promote protein aggregation in mitochondria and inhibit mitophagy. Human Molecular Genetics, 2015, 24, 6314-6330.	2.9	64
1135	Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio). Aquatic Toxicology, 2015, 167, 200-208.	4.0	58
1136	Ubiquitin C-terminal hydrolase 1: A novel functional marker for liver myofibroblasts and a therapeutic target in chronic liver disease. Journal of Hepatology, 2015, 63, 1421-1428.	3.7	41
1137	Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cellular and Molecular Life Sciences, 2015, 72, 1811-1824.	5.4	36
1138	Genetics and Molecular Biology of Parkinson Disease. , 2015, , 243-257.		0
1139	Therapeutic strategies in Parkinson's disease: what we have learned from animal models. Annals of the New York Academy of Sciences, 2015, 1338, 16-37.	3.8	27
1141	Potential Neuroprotective Activity of Ginseng in Parkinson's Disease: A Review. Journal of NeuroImmune Pharmacology, 2015, 10, 14-29.	4.1	78
1142	Genetic Counseling for Adult Neurogenetic Disease. , 2015, , .		1
1143	Association between ubiquitin carboxy-terminal hydrolase-L1 S18Y variant and risk of Parkinson's disease: the impact of ethnicity and onset age. Neurological Sciences, 2015, 36, 179-188.	1.9	14

ARTICLE IF CITATIONS Neurotoxicology., 0,,. 0 1144 Mechanisms Implicated in Parkinson Disease from Genetic Perspective. Medical & Clinical Reviews, 2016, 1145 0.3 2, . Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Frontiers in Aging 1146 3.4 215 Neuroscience, 2016, 8, 303. Neuroprotective and Therapeutic Strategies against Parkinson's Disease: Recent Perspectives. 1147 146 International Journal of Molecular Sciences, 2016, 17, 904. The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in 1148 1.9 14 Drosophila. BMC Neuroscience, 2016, 17, 24. Proteostasis regulation by the ubiquitin system. Essays in Biochemistry, 2016, 60, 143-151. 4.7 Novel<i>UCHL1</i>mutations reveal new insights into ubiquitin processing. Human Molecular 1150 2.9 22 Genetics, 2017, 26, ddw391. OCT in Central Nervous System Diseases., 2016,,. 1152 Substrate specificity of the ubiquitin and Ubl proteases. Cell Research, 2016, 26, 441-456. 12.0 92 hVMAT2: A Target of Individualized Medication for Parkinson's Disease. Neurotherapeutics, 2016, 13, 4.4 623-634. 1154 Animal Models in Neuro Ophthalmology., 2016, , 239-263. 0 The Knotted Protein UCH-L1 Exhibits Partially Unfolded Forms under Native Conditions that Share Common Structural Features with Its Kinetic Folding Intermediates. Journal of Molecular Biology, 4.2 44 2016, 428, 2507-2520. The Immunoproteasome in oxidative stress, aging, and disease. Critical Reviews in Biochemistry and 1156 5.2 72 Molecular Biology, 2016, 51, 268-281. Evidence of mutations in <i>RIC3 </i> acetylcholine receptor chaperone as a novel cause of autosomal-dominant Parkinson's disease with non-motor phenotypes. Journal of Medical Genetics, 3.2 2016, 53, 559-566. Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from 1158 6.7 54 normal controls. Aging Cell, 2016, 15, 924-939. The genetic background of Parkinson's disease: current progress and future prospects. Acta 2.1 205 Neurologica Scandinavica, 2016, 134, 314-326. The Basics of Autophagy., 2016, , 3-20. 1160 6 Genetic analysis of the CHCHD2 gene in a cohort of Chinese patients with Parkinson disease. 2.1

CITATION REPORT

Neuroscience Letters, 2016, 629, 116-118.

#	Article	IF	Citations
1162	Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochemical Journal, 2016, 473, 2453-2462.	3.7	193
1163	Neuroprotective Effects of Germinated Brown Rice in Rotenone-Induced Parkinson's-Like Disease Rats. NeuroMolecular Medicine, 2016, 18, 334-346.	3.4	17
1164	Protection against neurodegenerative disease on Earth and in space. Npj Microgravity, 2016, 2, 16013.	3.7	10
1165	Increased Cerebrospinal Fluid Levels of Ubiquitin Carboxyl-Terminal Hydrolase L1 in Patients with Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders Extra, 2016, 6, 283-294.	1.3	33
1166	Identification of TMEM230 mutations in familial Parkinson's disease. Nature Genetics, 2016, 48, 733-739.	21.4	146
1167	Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Medical Genomics, 2016, 9, 12.	1.5	29
1168	Interfacial Enzyme Function Visualized Using Neutron, X-Ray, and Light-Scattering Methods. , 2016, , 149-190.		1
1169	The Evolution of Genetics: Alzheimer's and Parkinson's Diseases. Neuron, 2016, 90, 1154-1163.	8.1	81
1170	Neurodegeneration and Alzheimer's disease (AD). What Can Proteomics Tell Us About the Alzheimer's Brain?. Molecular and Cellular Proteomics, 2016, 15, 409-425.	3.8	79
1171	Absence of <scp>UCHL</scp> 1 function leads to selective motor neuropathy. Annals of Clinical and Translational Neurology, 2016, 3, 331-345.	3.7	33
1172	Adaptive soft molecular self-assemblies. Soft Matter, 2016, 12, 337-357.	2.7	129
1173	Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson's Disease. Molecular Neurobiology, 2017, 54, 1404-1418.	4.0	40
1174	An updated review of Parkinson's disease genetics and clinicopathological correlations. Acta Neurologica Scandinavica, 2017, 135, 273-284.	2.1	137
1175	High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Research, 2017, 27, 373-385.	12.0	54
1176	ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives. Bioinformatics, 2017, 33, 661-668.	4.1	37
1177	Tau interactome mappingÂbased identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathologica, 2017, 133, 731-749.	7.7	74
1178	Blood RNA biomarkers in prodromal PARK4 and REM sleep behavior disorder show role of complexin-1 loss for risk of Parkinson's disease. DMM Disease Models and Mechanisms, 2017, 10, 619-631.	2.4	20
1179	The ubiquitin-proteasome system: A potential therapeutic target for heart failure. Journal of Heart and Lung Transplantation, 2017, 36, 708-714.	0.6	34

_		_
C	TVL	Report
\sim		KLFOK

#	Article	IF	CITATIONS
1180	A comprehensive overview of the neuropsychiatry of Parkinson's disease: A review. Bulletin of the Menninger Clinic, 2017, 81, 53-105.	0.6	15
1181	Role of the Ubiquitin C-Terminal Hydrolase L1-Modulated Ubiquitin Proteasome System in Auditory Cortex Senescence. Orl, 2017, 79, 153-163.	1.1	8
1182	Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) Promotes Hippocampus-Dependent Memory via Its Deubiquitinating Effect on TrkB. Journal of Neuroscience, 2017, 37, 5978-5995.	3.6	22
1184	Epigenetics in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2017, 978, 363-390.	1.6	50
1185	Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson's Disease. Advances in Neurobiology, 2017, 14, 3-30.	1.8	66
1186	Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function. Redox Biology, 2017, 11, 456-468.	9.0	32
1187	Mass Spectrometric Analysis of Cerebrospinal Fluid Ubiquitin in Alzheimer's Disease and Parkinsonian Disorders. Proteomics - Clinical Applications, 2017, 11, 1700100.	1.6	28
1188	Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments. Translational Neurodegeneration, 2017, 6, 28.	8.0	353
1189	The Molecular Physiopathogenesis of Islet Amyloidosis. Handbook of Experimental Pharmacology, 2017, 245, 271-312.	1.8	4
1190	An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nature Communications, 2017, 8, 347.	12.8	151
1190 1191	An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nature Communications, 2017, 8, 347. Impact of Loss of Proteostasis on Central Nervous System Disorders. , 2017, , 131-162.	12.8	151 O
	interaction network. Nature Communications, 2017, 8, 347.	12.8 5.9	
1191	interaction network. Nature Communications, 2017, 8, 347. Impact of Loss of Proteostasis on Central Nervous System Disorders. , 2017, , 131-162. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications.		0
1191 1192	 interaction network. Nature Communications, 2017, 8, 347. Impact of Loss of Proteostasis on Central Nervous System Disorders., 2017, , 131-162. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer and Metastasis Reviews, 2017, 36, 669-682. Role of Apolipoproteins and α-Synuclein in Parkinson's Disease. Journal of Molecular Neuroscience, 	5.9	0 69
1191 1192 1193	 interaction network. Nature Communications, 2017, 8, 347. Impact of Loss of Proteostasis on Central Nervous System Disorders., 2017, , 131-162. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer and Metastasis Reviews, 2017, 36, 669-682. Role of Apolipoproteins and α-Synuclein in Parkinson's Disease. Journal of Molecular Neuroscience, 2017, 62, 344-355. 	5.9 2.3	0 69 36
1191 1192 1193 1194	 interaction network. Nature Communications, 2017, 8, 347. Impact of Loss of Proteostasis on Central Nervous System Disorders., 2017, , 131-162. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer and Metastasis Reviews, 2017, 36, 669-682. Role of Apolipoproteins and α-Synuclein in Parkinson's Disease. Journal of Molecular Neuroscience, 2017, 62, 344-355. Gene Linkage and Systems Biology. Advances in Neurobiology, 2017, 15, 479-489. Investigation into experimental toxicological properties of plant protection products having a 	5.9 2.3 1.8	0 69 36 0
1191 1192 1193 1194 1195	 interaction network. Nature Communications, 2017, 8, 347. Impact of Loss of Proteostasis on Central Nervous System Disorders. , 2017, , 131-162. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer and Metastasis Reviews, 2017, 36, 669-682. Role of Apolipoproteins and α-Synuclein in Parkinson's Disease. Journal of Molecular Neuroscience, 2017, 62, 344-355. Gene Linkage and Systems Biology. Advances in Neurobiology, 2017, 15, 479-489. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemiaâ€. EFSA Journal, 2017, 15, e04691. MOLECULAR DOCKING STUDY OF NEUROPROTECTIVEPLANT-DERIVED BIOMOLECULES IN PARKINSONà€™S 	 5.9 2.3 1.8 1.8 	0 69 36 0 20

#	Article	IF	CITATIONS
1199	The Importance of Olfactory and Motor Endpoints for Zebrafish Models of Neurodegenerative Disease. , 2017, , 525-554.		1
1201	Ubiquitin C-Terminal Hydrolase L1 regulates autophagy by inhibiting autophagosome formation through its deubiquitinating enzyme activity. Biochemical and Biophysical Research Communications, 2018, 497, 726-733.	2.1	19
1202	Biomarkers for detection, prognosis and therapeutic assessment of neurological disorders. Reviews in the Neurosciences, 2018, 29, 771-789.	2.9	4
1203	Genetics of Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 211-227.	1.8	96
1204	A Natively Monomeric Deubiquitinase UCH-L1 Forms Highly Dynamic but Defined Metastable Oligomeric Folding Intermediates. Journal of Physical Chemistry Letters, 2018, 9, 2433-2437.	4.6	13
1205	Rare Disease Mechanisms Identified by Genealogical Proteomics of Copper Homeostasis Mutant Pedigrees. Cell Systems, 2018, 6, 368-380.e6.	6.2	16
1206	Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Experimental Neurology, 2018, 303, 142-152.	4.1	27
1207	The genetics of Parkinson disease. Ageing Research Reviews, 2018, 42, 72-85.	10.9	398
1208	Structural and biochemical analyses reveal ubiquitin C-terminal hydrolase-L1 as a specific client of the peroxiredoxin II chaperone. Archives of Biochemistry and Biophysics, 2018, 640, 61-74.	3.0	5
1210	Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cellular and Molecular Neurobiology, 2018, 38, 1153-1178.	3.3	102
1211	Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson's Disease. Scientific Reports, 2018, 8, 4468.	3.3	20
1212	Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024091.	6.2	353
1213	UCH‣1 promotes invasion of breast cancer cells through activating Akt signaling pathway. Journal of Cellular Biochemistry, 2018, 119, 691-700.	2.6	34
1214	An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Archives of Toxicology, 2018, 92, 41-82.	4.2	77
1215	<scp>A</scp> <scp>P</scp> arkinson's disease gene, <scp>DJ</scp> â€1, repairs brain injury through <scp>S</scp> ox9 stabilization and astrogliosis. Glia, 2018, 66, 445-458.	4.9	33
1216	Parkinson's disease: experimental models and reality. Acta Neuropathologica, 2018, 135, 13-32.	7.7	89
1217	Identification and functional analysis of a potential key IncRNA involved in fat loss of cancer cachexia. Journal of Cellular Biochemistry, 2018, 119, 1679-1688.	2.6	19
1218	Drosophila Model in the Study Role of UCH-L1. , 2018, , .		1

#	Article	IF	CITATIONS
1219	Ubiquitin C-terminal Hydrolase L1 Regulates Lipid Raft-dependent Endocytosis. Experimental Neurobiology, 2018, 27, 377-386.	1.6	5
1220	SPECT Molecular Imaging in Familial Parkinson's Disease. International Review of Neurobiology, 2018, 142, 225-260.	2.0	3
1221	Parkinson's Disease: Insights from Drosophila Model. , 2018, , .		3
1222	The Endolysosomal System and Proteostasis: From Development to Degeneration. Journal of Neuroscience, 2018, 38, 9364-9374.	3.6	94
1223	Parkinson's Disease: Biomarkers, Treatment, and Risk Factors. Frontiers in Neuroscience, 2018, 12, 612.	2.8	340
1224	Lysosomes, autophagosomes and Alzheimer pathology in dementia with Lewy body disease. Neuropathology, 2018, 38, 347-360.	1.2	5
1225	Microarray Analysis of the Molecular Mechanism Involved in Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-12.	1.1	22
1226	Neuronal Proteomic Analysis of the Ubiquitinated Substrates of the Disease-Linked E3 Ligases Parkin and Ube3a. BioMed Research International, 2018, 2018, 1-14.	1.9	12
1227	Parkinson's Disease Model. Advances in Experimental Medicine and Biology, 2018, 1076, 41-61.	1.6	16
1228	Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, 2018, , .	1.6	13
1229	Curcumin Effectively Rescued Parkinson's Disease-Like Phenotypes in a Novel <i>Drosophila melanogaster</i> Model with dUCH Knockdown. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	42
1230	Salidroside Promotes the Pathological α-Synuclein Clearance Through Ubiquitin-Proteasome System in SH-SY5Y Cells. Frontiers in Pharmacology, 2018, 9, 377.	3.5	28
1231	Dysfunction of Protein Quality Control in Parkinsonism–Dementia Complex of Guam. Frontiers in Neurology, 2018, 9, 173.	2.4	6
1232	Linking Glycation and Glycosylation With Inflammation and Mitochondrial Dysfunction in Parkinson's Disease. Frontiers in Neuroscience, 2018, 12, 381.	2.8	51
1233	Topologically knotted deubiquitinases exhibit unprecedented mechanostability to withstand the proteolysis by an AAA+ protease. Scientific Reports, 2018, 8, 7076.	3.3	31
1234	Parkinson's Disease and Melanoma: Co-Occurrence and Mechanisms. Journal of Parkinson's Disease, 2018, 8, 385-398.	2.8	72
1235	Identification of Proteins Differentially Expressed by Quercetin Treatment in a Middle Cerebral Artery Occlusion Model: A Proteomics Approach. Neurochemical Research, 2018, 43, 1608-1623.	3.3	37
1236	The role of lysosomes and autophagosomes in frontotemporal lobar degeneration. Neuropathology and Applied Neurobiology, 2019, 45, 244-261.	3.2	20

#	Article	IF	CITATIONS
1237	Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. International Journal of Molecular Sciences, 2019, 20, 3848.	4.1	23
1238	UCHL1 regulates muscle fibers and mTORC1 activity in skeletal muscle. Life Sciences, 2019, 233, 116699.	4.3	15
1239	Approach to Assessment of Parkinson Disease with Emphasis on Genetic Testing. Medical Clinics of North America, 2019, 103, 1055-1075.	2.5	9
1240	Bone Marrow Mesenchymal Stem Cells' Secretome Exerts Neuroprotective Effects in a Parkinson's Disease Rat Model. Frontiers in Bioengineering and Biotechnology, 2019, 7, 294.	4.1	70
1241	SQSTM1/p62: A Potential Target for Neurodegenerative Disease. ACS Chemical Neuroscience, 2019, 10, 2094-2114.	3.5	107
1242	Treatment of Neurodegenerative Diseases with Bioactive Components of <i>Tripterygium wilfordii</i> . The American Journal of Chinese Medicine, 2019, 47, 769-785.	3.8	36
1243	Impact of gene mutation in the development of Parkinson's disease. Genes and Diseases, 2019, 6, 120-128.	3.4	76
1245	Evaluating Dose- and Time-Dependent Effects of Vitamin C Treatment on a Parkinson's Disease Fly Model. Parkinson's Disease, 2019, 2019, 1-14.	1.1	17
1246	Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiology of Disease, 2019, 127, 114-130.	4.4	21
1247	Identification of proteins differentially expressed by glutamate treatment in cerebral cortex of neonatal rats. Laboratory Animal Research, 2019, 35, 24.	2.5	5
1248	Ubiquitin Carboxyl-Terminal Hydrolase L1Âin Parkinson's Disease. , 0, , .		3
1249	A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discovery, 2019, 5, 152.	4.7	10
1250	Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Molecular Brain, 2019, 12, 100.	2.6	122
1251	Theoretical and Experimental Approaches Aimed at Drug Design Targeting Neurodegenerative Diseases. Processes, 2019, 7, 940.	2.8	7
1252	Advances in the Research of Risk Factors and Prodromal Biomarkers of Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 973-990.	3.5	39
1253	Brain aging: A <i>lanus</i> â€faced player between health and neurodegeneration. Journal of Neuroscience Research, 2020, 98, 299-311.	2.9	35
1254	Effects of particle size on the quality attributes of wheat flour made by the milling process. Cereal Chemistry, 2020, 97, 172-182.	2.2	18
1255	Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis. Acta Neuropathologica, 2020, 139, 119-134.	7.7	73

	Сітатіо	n Report	
#	Article	IF	Citations
1256	Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140330.	2.3	10
1257	Molecular evolutionary and structural analysis of human UCHL1 gene demonstrates the relevant role of intragenic epistasis in Parkinson's disease and other neurological disorders. BMC Evolutionary Biology, 2020, 20, 130.	3.2	7
1258	A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biology, 2020, 37, 101676.	9.0	17
1259	UCHL1 from serum and CSF is a candidate biomarker for amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2020, 7, 1420-1428.	3.7	15
1260	Rpt2 proteasome subunit reduction causes Parkinson's disease like symptoms in Drosophila. IBRO Reports, 2020, 9, 65-77.	0.3	9
1261	Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos. Journal of the American Chemical Society, 2020, 142, 16825-16841.	13.7	46
1262	Development of Ubiquitin Variants with Selectivity for Ubiquitin C-Terminal Hydrolase Deubiquitinases. Biochemistry, 2020, 59, 3447-3462.	2.5	11
1263	Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. International Journal of Molecular Sciences, 2020, 21, 4028.	4.1	29
1264	Ubiquitin Carboxyl-Terminal Hydrolases (UCHs): Potential Mediators for Cancer and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 3910.	4.1	20
1265	Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Biomolecules, 2020, 10, 796.	4.0	17
1266	Deubiquitinating Enzymes in Parkinson's Disease. Frontiers in Physiology, 2020, 11, 535.	2.8	13
1267	Ubiquitin carboxyâ€ŧerminal hydrolase <scp>L1</scp> – physiology and pathology. Cell Biochemistry and Function, 2020, 38, 533-540.	2.9	25
1268	Gene Panel Sequencing Identifies Novel Pathogenic Mutations in Moroccan Patients with Familial Parkinson Disease. Journal of Molecular Neuroscience, 2021, 71, 142-152.	2.3	4
1269	The role of ubiquitinase in B cell development and function. Journal of Leukocyte Biology, 2021, 109, 395-405.	3.3	2
1270	Ubiquitin Carboxyl-Terminal Hydrolases and Human Malignancies: The Novel Prognostic and Therapeutic Implications for Head and Neck Cancer. Frontiers in Oncology, 2020, 10, 592501.	2.8	8
1271	Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. Journal of Personalized Medicine, 2021, 11, 69.	2.5	4
1272	Etiology and pathogenesis of Parkinson disease. , 2021, , 121-163.e16.		2
1273	Alpha-Synucleinopathies. , 2021, , 387-410.		0

# 1274	ARTICLE Clinical overview and phenomenology of movement disorders. , 2021, , 1-51.e27.	IF	Citations 3
1275	Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Current Neurology and Neuroscience Reports, 2021, 21, 15.	4.2	22
1276	Optimization and Anti-Cancer Properties of Fluoromethylketones as Covalent Inhibitors for Ubiquitin C-Terminal Hydrolase L1. Molecules, 2021, 26, 1227.	3.8	8
1277	Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10, 256.	5.1	37
1278	The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. Journal of Neuroscience, 2021, 41, 2796-2813.	3.6	6
1279	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	9.0	75
1280	Post-Translational Modifications of Deubiquitinating Enzymes: Expanding the Ubiquitin Code. Frontiers in Pharmacology, 2021, 12, 685011.	3.5	34
1281	Identification and validation of selective deubiquitinase inhibitors. Cell Chemical Biology, 2021, 28, 1758-1771.e13.	5.2	17
1282	Loss of UCHL1 rescues the defects related to Parkinson's disease by suppressing glycolysis. Science Advances, 2021, 7, .	10.3	29
1283	Nanozymes as efficient tools for catalytic therapeutics. View, 2022, 3, 20200147.	5.3	23
1284	Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Molecular Psychiatry, 2022, 27, 259-268.	7.9	37
1285	Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Frontiers in Neurology, 2021, 12, 661117.	2.4	23
1286	Recalling the pathology of Parkinson's disease; lacking exact figure of prevalence and genetic evidence in Asia with an alarming outcome: A time to stepâ€up. Clinical Genetics, 2021, 100, 659-677.	2.0	8
1287	Analysis of mutations associated with Parkinson's disease in patients of the Krasnoyarsk region. Russian Neurological Journal, 2021, 26, 15-22.	0.3	0
1288	Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases. Ageing Research Reviews, 2021, 69, 101367.	10.9	18
1289	Effects of deubiquitylases on the biological behaviors of neural stem cells. Developmental Neurobiology, 2021, 81, 847-858.	3.0	0
1290	The role of neuroimaging in Parkinson's disease. Journal of Neurochemistry, 2021, 159, 660-689.	3.9	35
1291	Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Frontiers in Molecular Neuroscience, 2021, 14, 733012.	2.9	15

#	Article	IF	CITATIONS
1292	All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells, 2021, 10, 2438.	4.1	22
1293	Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2197-2222.	3.0	24
1294	Comprehensive Perspectives on Experimental Models for Parkinson's Disease. , 2021, 12, 223.		12
1295	Young-Onset Parkinson Disease With and Without Parkin Gene Mutations. Archives of Neurology, 2003, 60, 713.	4.5	35
1298	Back and to the Future: From Neurotoxinâ€Induced to Human Parkinson's Disease Models. Current Protocols in Neuroscience, 2020, 91, e88.	2.6	36
1299	The Gad Mouse: A Window Into UPS-Related Neurodegeneration and the Function of the Function of the Function of the Deubiquitinating Enzyme Uch-L1. , 2006, , 185-198.		1
1300	Inflammation as a Mediator of Oxidative Stress and UPS Dysfunction. , 2006, , 105-131.		5
1301	Role of the Ubiquitin Proteasome System During Neuronal Cell Death. , 2006, , 133-148.		2
1302	Transplantation in Parkinson's Disease. , 2006, 557, 221-248.		8
1303	Update on Parkinson's Disease Genetics. , 2007, , 31-43.		1
1304	The Cancer Degradome. , 2008, , .		17
1305	Protease Genomics and the Cancer Degradome. , 2008, , 3-15.		6
1306	Novel Therapeutic Target in PD: Experimental Models. , 2008, , 57-73.		1
1307	Genetic Models of Parkinson's. Neuromethods, 2021, , 37-84.	0.3	2
1308	Dynamic Role of Ubiquitination in the Management of Misfolded Proteins Associated with Neurodegenerative Diseases. Focus on Structural Biology, 2009, , 77-95.	0.1	2
1309	Gene- and Cell-Based Approaches for Neurodegenerative Disease. Advances in Experimental Medicine and Biology, 2010, 671, 117-130.	1.6	10
1310	Mechanism, Specificity and Structure of the Deubiquitinases. Sub-Cellular Biochemistry, 2010, 54, 69-87.	2.4	90
1311	Mouse Models of α-Synucleinopathy and Lewy Pathology. Advances in Experimental Medicine and Biology, 2001, 487, 147-167.	1.6	8

#	Article	IF	CITATIONS
1312	Ubiquitin and the Molecular Pathology of Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2001, 487, 169-186.	1.6	32
1313	Posttranslational Modifications of Tubulin. , 2012, , 241-257.		1
1314	The Interplay Between Proteostasis Systems and Parkinson's Disease. Advances in Experimental Medicine and Biology, 2020, 1233, 223-236.	1.6	6
1315	Assessing neuroprotection in Parkinson's disease: from the animal models to molecular neuroimaging in vivo. , 2006, , 133-141.		7
1316	The role of protein aggregates in neuronal pathology: guilty, innocent, or just trying to help?. , 2006, , 111-117.		25
1317	The effect of neuromelanin on the proteasome activity in human dopaminergic SH-SY5Y cells. , 2006, , 125-132.		7
1318	Genetic causes of Parkinson's disease: extending the pathway. , 2006, , 181-189.		4
1319	Progress in familial Parkinson's disease. , 2006, , 191-204.		16
1320	Genetic and DAT imaging studies of familial parkinsonism in a Taiwanese cohort. , 2006, , 235-240.		15
1321	Applications of the Drosophila Retina to Human Disease Modeling. Results and Problems in Cell Differentiation, 2002, 37, 257-275.	0.7	7
1322	Protein Degradation in Alzheimer's Disease and Aging of the Brain. Progress in Molecular and Subcellular Biology, 2002, 29, 43-60.	1.6	4
1323	Protein Degradation in Human Disease. Progress in Molecular and Subcellular Biology, 2002, 29, 61-84.	1.6	5
1324	Selective upregulation of the ubiquitin-proteasome proteolytic pathway proteins, proteasome zeta chain and isopeptidase T in fetal Down syndrome. , 2001, , 117-130.		11
1325	Apoptosis as a general cell death pathway in neurodegenerative diseases. , 2000, , 153-166.		25
1326	PARKIN as a pathogenic gene for autosomal recessive juvenile parkinsonism. , 2000, , 19-30.		7
1327	Importance of familial Parkinson's disease and parkinsonism to the understanding of nigral degeneration in sporadic Parkinson's disease. , 2000, , 101-116.		9
1328	Metals Induced Disruption of Ubiquitin Proteasome System, Activation of Stress Signaling and Apoptosis. , 2011, , 291-311.		1
1329	The Use of Biomarkers for Prediction and Prevention of Alzheimer's and Parkinson's Diseases. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 95-140.	0.6	2

	Сітатіо	n Report	
#	Article	IF	CITATIONS
1330	Neurodegeneration and neuroprotection in Parkinson disease. Neurotherapeutics, 2004, 1, 139-154.	4.4	2
1331	Mitochondrial. , 2005, , 124-148.		1
1332	Neurobiology of Disorders with Lewy Bodies. , 2001, , 173-182.		2
1334	Genetics of Parkinsonism: a review. Annals of Human Genetics, 2001, 65, 111-26.	0.8	20
1335	Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death and Differentiation, 2021, 28, 538-556.	11.2	27
1336	The ubiquitin–proteasome system and neurodegenerative disorders. Essays in Biochemistry, 2005, 41, 157-171.	4.7	39
1337	The ubiquitin–proteasome system and neurodegenerative disorders. Essays in Biochemistry, 2005, 41, 157.	4.7	49
1338	Parkin expression in the adult mouse brain. European Journal of Neuroscience, 2000, 12, 4181-4194.	2.6	13
1339	The human genome project: evolving status and emerging opportunities for disease prevention. , 2000, , 45-60.		3
1340	Comparison of Global Brain Gene Expression Profiles Between Inbred Long-Sleep and Inbred Short-Sleep Mice by High-Density Gene Array Hybridization. Alcoholism: Clinical and Experimental Research, 2001, 25, 810-818.	2.4	1
1341	The genetics of Parkinson's disease. Current Opinion in Neurology, 1999, 12, 427-432.	3.6	15
1342	Molecular pathogenesis of movement disorders: are protein aggregates a common link in neuronal degeneration?. Current Opinion in Neurology, 1999, 12, 433-439.	3.6	33
1344	Regulation of Â-Synuclein Expression: Implications for Parkinson's Disease. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 409-416.	1.1	11
1345	The Hunt for a Cure for Parkinson's Disease. Science of Aging Knowledge Environment: SAGE KE, 2001, 2001, 1re-1.	0.8	2
1346	Ubiquitin, Proteasomes, and the Aging Brain. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 6re-6.	0.8	69
1347	NEUROSCIENCE: Parkin and Its Substrates. Science, 2001, 293, 224-225.	12.6	15
1348	Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. Journal of Clinical Investigation, 2010, 120, 1084-1096.	8.2	604
1349	Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood, 2000, 95, 2577-2585.	1.4	8

#	Article	IF	CITATIONS
1350	NMDA Receptors in Drosophila. Frontiers in Neuroscience, 2008, , 213-233.	0.0	6
1351	Diseases of movement and system degenerations. , 2008, , 889-1030.		8
1352	Parkinson's disease in twins. Neurology, 1999, 53, 566-566.	1.1	32
1353	Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson's disease. Neurology, 1999, 53, 1858-1858.	1.1	186
1354	A multi-incident, Old-Order Amish family with PD. Neurology, 2002, 58, 568-574.	1.1	10
1355	Neuroprotection and dopamine agonists. Neurology, 2002, 58, S9-18.	1.1	75
1356	Etiology of Parkinson's disease. Neurology, 2006, 66, S10-23.	1.1	179
1357	The pathogenesis of cell death in Parkinson's disease. Neurology, 2006, 66, S24-36.	1.1	275
1358	Differential Effects of UCHL1 Modulation on Alpha-Synuclein in PD-Like Models of Alpha-Synucleinopathy. PLoS ONE, 2012, 7, e34713.	2.5	66
1359	Genetic Background Alters the Severity and Onset of Neuromuscular Disease Caused by the Loss of Ubiquitin-Specific Protease 14 (Usp14). PLoS ONE, 2013, 8, e84042.	2.5	15
1360	N-Terminal Truncated UCH-L1 Prevents Parkinson's Disease Associated Damage. PLoS ONE, 2014, 9, e99654.	2.5	22
1361	Familial Parkinson's disease based on the single gene defects. JuntendoÌ,, Igaku, 2001, 47, 53-70.	0.1	1
1362	Rationale for Therapeutic Silencing of Alpha-Synuclein in Parkinson's Disease. Journal of Movement Disorders, 2011, 4, 1-7.	1.3	13
1363	Neurogenic inflammation: neuropeptides and nitric oxide synthase in patients with endometriosis and pelvic pain. Russian Journal of Human Reproduction, 2019, 25, 67.	0.3	5
1365	Plasma ubiquitin C-terminal hydrolase L1 levels reflect disease stage and motor severity in Parkinson's disease. Aging, 2020, 12, 1488-1495.	3.1	15
1366	Role of angiotensin-converting enzyme 2 in neurodegenerative diseases during the COVID-19 pandemic. Aging, 2020, 12, 24453-24461.	3.1	8
1367	Application of Proteomic Tools in Modern Nanotechnological Approaches Towards Effective Management of Neurodegenerative Disorders. Current Drug Metabolism, 2015, 16, 376-388.	1.2	12
1368	Not Just a Fishing Trip - Environmental Genomics Using Zebrafish. Current Genomics, 2004, 5, 395-407.	1.6	16

#	Article	IF	CITATIONS
1369	Genetic Factors in Parkinsons Disease and Potential Therapeutic Targets. Current Neuropharmacology, 2003, 1, 301-313.	2.9	4
1370	Drug Targets from Genetics: Alpha-Synuclein. CNS and Neurological Disorders - Drug Targets, 2011, 10, 712-723.	1.4	9
1371	DJ-1 Mutations are Rare in a Swedish Parkinson Cohort. The Open Neurology Journal, 2011, 5, 8-11.	0.4	3
1372	Postmortem studies in Parkinson's disease. Dialogues in Clinical Neuroscience, 2004, 6, 281-293.	3.7	74
1373	Re-circulating Phagocytes Loaded with CNS Debris: A Potential Marker of Neurodegeneration in Parkinsons Disease?. AIMS Medical Science, 2015, 2, 26-34.	0.4	5
1374	Biochemical and molecular features of LRRK2 and its pathophysiological roles in Parkinson's disease. BMB Reports, 2010, 43, 233-244.	2.4	41
1375	<i>Bcl-2</i> homologue <i>Debcl</i> enhances <i>α-synuclein</i> -induced phenotypes in <i>Drosophila</i> . PeerJ, 2016, 4, e2461.	2.0	8
1376	UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase–substrate interactions in eukaryotic species. Nucleic Acids Research, 2022, 50, D719-D728.	14.5	46
1377	Crystal structures of two alanylpiperidine analogues. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 1095-1098.	0.5	0
1378	Protein clearance strategies for disease intervention. Journal of Neural Transmission, 2022, 129, 141-172.	2.8	15
1379	Autosomal-dominantly inherited forms of Parkinson's disease. , 2000, , 31-40.		3
1380	Progress in Familial Parkinson's Disease Journal of Clinical Biochemistry and Nutrition, 2000, 28, 143-157.	1.4	0
1381	Genetic Risk Factors in Parkinson's Disease. Advances in Behavioral Biology, 2002, , 251-257.	0.2	1
1382	Ubiquitination of a Novel form of α-Synuclein by Parkin. Advances in Behavioral Biology, 2002, , 301-304.	0.2	1
1383	Etiology, Pathogenesis, and Genetics of Parkinson's Disease. Advances in Behavioral Biology, 2002, , 239-244.	0.2	0
1384	Molecular Biology of α-Synuclein. Advances in Behavioral Biology, 2002, , 497-508.	0.2	0
1386	Neuroprotection in Parkinson's Disease. Advances in Behavioral Biology, 2002, , 373-378.	0.2	1
1387	Ubiquitin-Proteasome Pathway is a Key to Understanding of Nigral Degeneration in Autosomal Recessive Juvenile Parkinson's Disease. Advances in Behavioral Biology, 2002, , 291-296.	0.2	Ο

#	Article	IF	CITATIONS
1389	PARK3, Ubiquitin Hydrolase-L1 and Other PD Loci. , 2003, , 315-323.		0
1390	Die diffuse Lewy-Körperchen-Erkrankung oder besser das Parkinson-Syndrom mit früher Demenz — eine neue KrankheitsentitĂജ. , 2003, , 21-35.		0
1391	Hétérogénéité de la maladie de Parkinson. Bulletin De L'Academie Nationale De Medecine, 2003, 187, 259-276.	0.0	1
1395	Glutamate Transmission in the Pathogenesis of Parkinson's Disease. , 2004, , 229-242.		1
1396	Die Parkinson-Krankheit. , 2004, , 200-227.		14
1397	Genetics of Parkinson's disease. Dialogues in Clinical Neuroscience, 2004, 6, 295-301.	3.7	3
1400	Genetics of Parkinson's Disease. , 0, , 40-40.		0
1401	Erkrankungen der Basalganglien. , 2005, , 583-624.		0
1403	Genetics Of Parkinson's Disease. Neurological Disease and Therapy, 2005, , 611-631.	0.0	0
1405	Abnormal Aggregation of Brain Proteins and the Causing Neuropathic Diseases. Hamon, 2006, 16, 70-74.	0.0	0
1406	Etiology and pathogenesis of Parkinson's disease. Juntendol̀,, Igaku, 2006, 52, 152-162.	0.1	0
1407	Pathology of the Dystonias. Medical Psychiatry, 2006, , 65-92.	0.2	1
1408	Ubiquitination and Proteasomal Protein Degradation in Neurons. , 2007, , 653-662.		0
1409	Neurodegenerative Disorders. , 2007, , 179-189.		0
1410	LRRK2-Associated Parkinsonism. , 2007, , 45-59.		0
1411	The Proteasome, Protein Aggregation, and Neurodegeneration. , 2007, , 371-408.		0
1413	Cellular and Molecular Mechanisms Underlying Parkinson's Disease: The Role of Molecular Chaperones. , 2008, , 51-68.		1
1414	Genetic Models of Familial Parkinson's Disease. , 2008, , 225-236.		0

#	Article	IF	Citations
1416	Protein Oxidation Triggers the Unfolded Protein Response and Neuronal Injury in Chemically Induced Parkinson Disease. , 2009, , 179-192.		0
1417	Neurodegenerative Disorders. , 2009, , 177-187.		0
1418	Molecular Biology of Parkinson's Disease. Nucleic Acids and Molecular Biology, 2009, , 277-289.	0.2	0
1419	Protein Misfolding, Mitochondrial Disturbances, And Kynurenines In The Pathogenesis Of Neurodegenerative Disorders. , 2009, , 452-472.		0
1420	9.7 Neuroprotective Strategies in Parkinson's Disease. , 2009, , 498-508.		0
1421	Excitatory Amino Acids, S-Nitrosylation, and Protein Misfolding in Neurodegenerative. Oxidative Stress and Disease, 2009, , .	0.3	0
1425	The Genetics of Alzheimer's Disease and Parkinson's Disease. Advances in Neurobiology, 2011, , 695-755.	1.8	7
1426	Aspects génétiques. , 2011, , 21-31.		0
1427	Étiopathogénie. , 2011, , 9−19.		0
1429	Advances in the Genetics of Human Tremor. , 2013, , 53-78.		0
1431	Animal models of Parkinson's disease and related disorders. , 2013, , 281-316.		0
1432	Ubiquitin-Dependent Protein Degradation. , 2013, , .		1
1436	Anti-Parkinson Activity. , 2015, , 1-43.		0
1437	Anti-Parkinson Activity. , 2015, , 1-45.		0
1438	Étiopathogénie. , 2015, , 13-19.e2.		0
1439	Anti-Parkinson Activity. , 2016, , 1515-1551.		0
1441	Neurodegenerative Disease. , 2017, , 289-318.		2
1442	Genes involved in the development of Parkinson. , 2017, 1, 039-051.		1

#	Article	IF	CITATIONS
1443	A Preliminary Study on Parkinson's Disease with Regularized Logistic Regression Method. Open Journal of Social Sciences, 2019, 07, 126-132.	0.3	0
1444	Alpha-Synucleinopathies. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 274-297.	0.1	2
1445	Evaluation of ubiquitin C-terminal hydrolase-L1 enzyme levels in patients with epilepsy. Arquivos De Neuro-Psiquiatria, 2020, 78, 424-429.	0.8	4
1446	Animal Models in Neuro Ophthalmology. , 2020, , 401-426.		0
1447	Development of Ubiquitin Tools for Studies of Complex Ubiquitin Processing Protein Machines. Current Organic Chemistry, 2020, 23, 2614-2625.	1.6	1
1449	Parkinson's Disease and Related Disorders. , 2006, , 199-212.		0
1450	Frameshift Mutant Ubiquitin in Alzheimer's Disease and Other Neurodegenerative Disorders. , 2006, , 237-246.		0
1451	Neurogenetics in Parkinson's Disease. , 2008, , 9-16.		0
1452	Ubiquitin and Protein Degradation in Synapse Function. , 2008, , 553-600.		0
1453	Genetics of Parkinson disease. Neurotherapeutics, 2004, 1, 235-242.	4.4	0
1453 1454	Genetics of Parkinson disease. Neurotherapeutics, 2004, 1, 235-242. Understanding the Pathogenesis Involved in Parkinson's Disease and Potential Therapeutic Treatment Strategies. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 88-102.	4.4 1.1	0
	Understanding the Pathogenesis Involved in Parkinson's Disease and Potential Therapeutic Treatment		
1454	Understanding the Pathogenesis Involved in Parkinson's Disease and Potential Therapeutic Treatment Strategies. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 88-102.	1.1	6
1454 1455	Understanding the Pathogenesis Involved in Parkinson's Disease and Potential Therapeutic Treatment Strategies. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 88-102. The aetiology of idiopathic Parkinson's disease. Journal of Clinical Pathology, 2001, 54, 369-80. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Molecular Vision, 2008, 14,	1.1	6 13
1454 1455 1456	Understanding the Pathogenesis Involved in Parkinson's Disease and Potential Therapeutic Treatment Strategies. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 88-102. The aetiology of idiopathic Parkinson's disease. Journal of Clinical Pathology, 2001, 54, 369-80. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Molecular Vision, 2008, 14, 1770-83. A Novel <scp><i>TFG</i> </scp> Mutation in a Korean Family with <scp>î±â€§ynucleinopathy</scp> and	1.1 1.9 1.1	6 13 39
1454 1455 1456 1460	Understanding the Pathogenesis Involved in Parkinson's Disease and Potential Therapeutic Treatment Strategies. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 88-102. The aetiology of idiopathic Parkinson's disease. Journal of Clinical Pathology, 2001, 54, 369-80. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Molecular Vision, 2008, 14, 1770-83. A Novel <scp><i>TFG</i>A Novel <scp><i>TFG</i>A Novel <scp><i>TFG</i>Mutation in a Korean Family with <scp>î±â€6ynucleinopathy</scp> and Amyotrophic Lateral Sclerosis. Movement Disorders, 2022, 37, 384-391.PET Imaging of VMAT2 with the Novel Radioligand [¹⁸F]FE-DTBZ-d4 in Nonhuman Primates: Comparison with [¹¹C]DTBZ and [¹⁸F]FE-DTBZ. ACS Chemical Neuroscience,</scp></scp></scp>	1.1 1.9 1.1 3.9	6 13 39 7
1454 1455 1456 1460 1461	Understanding the Pathogenesis Involved in Parkinson's Disease and Potential Therapeutic Treatment Strategies. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 88-102. The aetiology of idiopathic Parkinson's disease. Journal of Clinical Pathology, 2001, 54, 369-80. Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Molecular Vision, 2008, 14, 1770-83. A Novel <scp><i>TFG</i></scp> Mutation in a Korean Family with <scp>αâ€6ynucleinopathy</scp> and Amyotrophic Lateral Sclerosis. Movement Disorders, 2022, 37, 384-391. PET Imaging of VMAT2 with the Novel Radioligand [¹⁸ F]FE-DTBZ-d4 in Nonhuman Primates: Comparison with [¹¹ C]DTBZ and [¹⁸ F]FE-DTBZ. ACS Chemical Neuroscience, 2021, 12, 4580-4586.	1.1 1.9 1.1 3.9 3.5	6 13 39 7 8

~			~	
C	ΙΤΛΤΙ	ON	Repc	DT
\sim	плп		NLFC	

#	Article	IF	CITATIONS
1465	Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Research Reviews, 2022, 74, 101554.	10.9	30
1466	Circular breakdown of neural networks due to loss of deubiquitinating enzyme (UCH-L1) in gracile axonal dystrophy (<i>gad</i>) mouse. AIMS Molecular Science, 2021, 8, 311-324.	0.5	0
1467	Parkinson's disease: From genetics to molecular dysfunction and targeted therapeutic approaches. Genes and Diseases, 2023, 10, 786-798.	3.4	4
1468	Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of poly-GA aggregation. Acta Neuropathologica Communications, 2022, 10, 22.	5.2	22
1469	Atypical Ubiquitination and Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 3705.	4.1	16
1470	α-Synuclein at the Presynaptic Axon Terminal as a Double-Edged Sword. Biomolecules, 2022, 12, 507.	4.0	4
1471	Ubiquitin Carboxyl-Terminal Hydrolase L1 of Cardiomyocytes Promotes Macroautophagy and Proteostasis and Protects Against Post-myocardial Infarction Cardiac Remodeling and Heart Failure. Frontiers in Cardiovascular Medicine, 2022, 9, 866901.	2.4	4
1472	Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells, 2022, 11, 1205.	4.1	20
1473	Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Frontiers in Microbiology, 2021, 12, 805223.	3.5	2
1474	Ubiquitin Proteasome System and Microtubules Are Master Regulators of Central and Peripheral Nervous System Axon Degeneration. Cells, 2022, 11, 1358.	4.1	4
1479	The Ubiquitin–Proteasome System in Parkinson's Disease. , 0, , 169-194.		0
1480	Parkinson disease: analysis of mitochondrial DNA in monozygotic twins. Neurogenetics, 2000, 2, 227-30.	1.4	7
1481	Role of DJ-1 in parkinson's disease. Journal of Molecular Neuroscience, 2007, 31, 307-307.	2.3	30
1482	Ubiquitinated inclusions and neuronal cell death. Histology and Histopathology, 2003, 18, 509-17.	0.7	29
1483	Exploring the Role of Ubiquitin–Proteasome System in Parkinson's Disease. Molecular Neurobiology, 2022, 59, 4257-4273.	4.0	24
1484	Ubiquitin and Ubiquitin-like Proteins in Cancer, Neurodegenerative Disorders, and Heart Diseases. International Journal of Molecular Sciences, 2022, 23, 5053.	4.1	22
1487	Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Frontiers in Oncology, 0, 12, .	2.8	5
1488	Identification of the ubiquitin–proteasome pathway domain by hyperparameter optimization based on a 2D convolutional neural network. Frontiers in Genetics, 0, 13, .	2.3	4

#	Article	IF	CITATIONS
1490	Identification of <scp> <i>UBA1</i> </scp> as the causative gene of an Xâ€linked <scp>nonâ€Kennedy SBMA</scp> . European Journal of Neurology, 0, , .	3.3	0
1491	Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Experimental Neurology, 2022, 357, 114203.	4.1	16
1492	The role of heat shock proteins in preventing amyloid toxicity. Frontiers in Molecular Biosciences, 0, 9, .	3.5	2
1493	Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells, 2022, 11, 4062.	4.1	1
1494	Relevance of Fluorodopa PET Scan in Dopamine Responsive Dystonia and Juvenile Parkinsonism: A Systematic Review. Neurology International, 2022, 14, 997-1006.	2.8	0
1495	Parkinson's Disease: A Comprehensive Overview of the Disease. , 0, , .		0
1496	Intracellular Signaling Pathways in Parkinson's Disease. , 2011, , 247-282.		0
1497	A Mouse Model to Test Novel Therapeutics for Parkinson's Disease: an Update on the Thy1-aSyn ("line) Tj ETO	2q110.78	4314 rgBT
1497 1498	A Mouse Model to Test Novel Therapeutics for Parkinson's Disease: an Update on the Thy1-aSyn ("line) Tj ETO Una mutaciÃ ³ n en el gen PARK2 causa enfermedad de Parkinson juvenil en una extensa familia colombiana. latreia, 2009, 22, .	Qq110.78	4314 rgBT 3
	Una mutación en el gen PARK2 causa enfermedad de Parkinson juvenil en una extensa familia	T.T	0
1498	Una mutación en el gen PARK2 causa enfermedad de Parkinson juvenil en una extensa familia colombiana. latreia, 2009, 22, . Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from <i>in</i>	0.1	3
1498 1499	Una mutaciÃ ³ n en el gen PARK2 causa enfermedad de Parkinson juvenil en una extensa familia colombiana. latreia, 2009, 22, . Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from <i>in vivo</i> PET Imaging Studies. Current Neuropharmacology, 2023, 21, 1241-1272. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Research	0.1	3
1498 1499 1500	Una mutaciÃ ³ n en el gen PARK2 causa enfermedad de Parkinson juvenil en una extensa familia colombiana. latreia, 2009, 22, . Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from <i>in vivo</i> PET Imaging Studies. Current Neuropharmacology, 2023, 21, 1241-1272. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Research Reviews, 2023, 86, 101856. Ubiquitin Câ€'terminal hydrolaseâ€'L1: A new cancer marker and therapeutic target with dual effects	0.1 2.9 10.9	3 2 11
1498 1499 1500	Una mutación en el gen PARK2 causa enfermedad de Parkinson juvenil en una extensa familia Colombiana. latreia, 2009, 22, . Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from <i>in vivo</i> PET Imaging Studies. Current Neuropharmacology, 2023, 21, 1241-1272. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Research Reviews, 2023, 86, 101856. Ubiquitin Câ€'terminal hydrolaseâ€'L1: A new cancer marker and therapeutic target with dual effects (Review). Oncology Letters, 2023, 25, .	0.1 2.9 10.9 1.8	3 2 11 4

Proteostasis and Ribostasis Impairment as Common Cell Death Mechanisms in Neurodegenerative 1504

#	Article	IF	CITATIONS
1508	Role of NFE2L1 in the Regulation of Proteostasis: Implications for Aging and Neurodegenerative Diseases. Biology, 2023, 12, 1169.	2.8	0
1509	A sporadic Parkinson's disease model via silencing of the ubiquitin–proteasome/E3 ligase component,ÂSKP1A. Journal of Neural Transmission, 0, , .	2.8	0
1510	Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Translational Neurodegeneration, 2023, 12, .	8.0	8
1511	Enzyodynamic therapy at nanoscale. , 2023, 2, .		0
1512	Proteostasis defects: Medicinal challenges of imperfect aging & neurodegeneration. Translational Medicine of Aging, 2023, 7, 87-97.	1.3	0
1513	Proteotoxic stress and the ubiquitin proteasome system. Seminars in Cell and Developmental Biology, 2023, , .	5.0	1
1514	Advances in the Genetics of Human Tremor. Contemporary Clinical Neuroscience, 2023, , 43-74.	0.3	0
1515	Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila. Nature Communications, 2024, 15, .	12.8	0
1516	Ubiquitin Carboxyl-Terminal Hydrolase L1 and Its Role in Parkinson's Disease. International Journal of Molecular Sciences, 2024, 25, 1303.	4.1	1
1517	Parkinson's Disease Dementia Patients: Expression of Glia Maturation Factor in the Brain. International Journal of Molecular Sciences, 2024, 25, 1182.	4.1	0
1518	Altered Protein Dynamics and a More Reactive Catalytic Cysteine in a Neurodegeneration-associated UCHL1 Mutant. Journal of Molecular Biology, 2024, 436, 168438.	4.2	0