CITATION REPORT List of articles citing

Crystal structure of botulinum neurotoxin type A and implications for toxicity

DOI: 10.1038/2338 Nature Structural Biology, 1998, 5, 898-902.

Source: https://exaly.com/paper-pdf/28895287/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
645	Paper Alert. 1998 , 6, 1613-1616		
644	Unraveling the structures and modes of action of bacterial toxins. 1998 , 8, 778-84		57
643	Preformed Bacterial Toxins. 1999 , 19, 583-599		14
642	Historical aspects of botulinum toxin: Justinus Kerner (1786-1862) and the "sausage poison". 1999 , 53, 1850-3		134
641	Clostridial toxins as therapeutic agents: benefits of natureB most toxic proteins. 1999 , 53, 551-75		135
640	Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain. 1999 , 96, 8467-70		121
639	Sequence homology and structural analysis of the clostridial neurotoxins. 1999 , 291, 1091-104		284
638	Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. 1999 , 354, 259-68		214
637	Is formation of visible channels in a phospholipid bilayer by botulinum neurotoxin type B sensitive to its disulfide?. 1999 , 128, 297-304		5
636	Analysis of mutants of tetanus toxin Hc fragment: ganglioside binding, cell binding and retrograde axonal transport properties. 2000 , 37, 1041-51		66
635	Characterization of nicking of the nontoxic-nonhemagglutinin components of Clostridium botulinum types C and D progenitor toxin. 2000 , 19, 575-81		13
634	Light chain of botulinum A neurotoxin expressed as an inclusion body from a synthetic gene is catalytically and functionally active. 2000 , 19, 475-87		48
633	Neurotoxins affecting neuroexocytosis. 2000 , 80, 717-66		1014
632	The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. 2000 , 275, 8889-94		112
631	Universal epitopes for human CD4+ cells on tetanus and diphtheria toxins. 2000 , 181, 1001-9		73
630	Tetanus. 2000 , 69, 292-301		155
629	Fermentation, purification, and efficacy of a recombinant vaccine candidate against botulinum neurotoxin type F from Pichia pastoris. 2000 , 18, 327-37		58

(2001-2000)

628	Cloning, expression, and one-step purification of the minimal essential domain of the light chain of botulinum neurotoxin type A. 2000 , 19, 125-30	26
627	How botulinum and tetanus neurotoxins block neurotransmitter release. 2000 , 82, 427-46	353
626	Development of vaccines for prevention of botulism. 2000 , 82, 955-66	165
625	The current use of botulinum toxin. 2000 , 7, 389-94	73
624	Structure-based sequence alignment for the beta-trefoil subdomain of the clostridial neurotoxin family provides residue level information about the putative ganglioside binding site. 2000 , 482, 119-24	36
623	Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. 2001 , 288, 1231-7	47
622	High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. 2001 , 289, 623-9	54
621	Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. 2002 , 291, 447-53	18
620	Tyrosine-1290 of tetanus neurotoxin plays a key role in its binding to gangliosides and functional binding to neurones. 2001 , 493, 45-9	25
619	Clostridium botulinum and the ophthalmologist: a review of botulism, including biological warfare ramifications of botulinum toxin. 2001 , 46, 25-34	33
618	Tetanus and botulinum neurotoxins: turning bad guys into good by research. 2001, 39, 27-41	135
617	Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity. 2001 , 39, 1151-9	39
616	Botulinum neurotoxin types B and E: purification, limited proteolysis by endoproteinase Glu-C and pepsin, and comparison of their identified cleaved sites relative to the three-dimensional structure of type A neurotoxin. 2001 , 39, 1515-31	32
615	Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. 2001 , 39, 1703-22	133
614	Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. 2001 , 39, 1793-803	255
613	Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. 2001 , 11, 221-259	99
612	High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F. 2001 , 296, 130-7	87
611	Botulinum toxin as a biological weapon: medical and public health management. 2001 , 285, 1059-70	1156

610	Enzymatic autocatalysis of botulinum A neurotoxin light chain. 2001 , 20, 221-31	42
609	Zinc coordination sphere in biochemical zinc sites. 2001 , 14, 271-313	524
608	High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type A. 2001 , 69, 570-4	58
607	The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. 2001 , 276, 32274-81	153
606	Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways. 2001 , 276, 31394-401	28
605	Zinc coordination sphere in biochemical zinc sites. 2001 , 85-127	20
604	Epitope mapping of neutralizing botulinum neurotoxin A antibodies by phage display. 2001 , 69, 6511-4	37
603	In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. 2002 , 277, 2650-6	50
602	Zinc-mediated dimerization and its effect on activity and conformation of staphylococcal enterotoxin type C. 2002 , 277, 22839-46	29
601	CLOSTRIDIAL NEUROTOXINS. 2002, 21, 203-227	3
600	Clostridium botulinum types C and D and the closely related Clostridium novyi. 2002 , 13, 75-90	10
599	Therapeutic use of botulinum toxins: background and history. 2002 , 18, S119-24	86
0		
598	Anthrax. Current Topics in Microbiology and Immunology, 2002, 3.3	7
598 597	Anthrax. Current Topics in Microbiology and Immunology, 2002, Characterization of Clostridium butyricum neurotoxin associated with food-borne botulism. 2002, 33, 177-184	7
	Characterization of Clostridium butyricum neurotoxin associated with food-borne botulism. 2002 ,	
597	Characterization of Clostridium butyricum neurotoxin associated with food-borne botulism. 2002, 33, 177-184 Spontaneous nicking in the nontoxic-nonhemagglutinin component of the Clostridium botulinum	3
597 596	Characterization of Clostridium butyricum neurotoxin associated with food-borne botulism. 2002 , 33, 177-184 Spontaneous nicking in the nontoxic-nonhemagglutinin component of the Clostridium botulinum toxin complex. 2002 , 292, 434-40	3

(2003-2002)

592	Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. 2002 , 25, 219-28	54
591	Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries. 2002 , 20, 1640-8	80
59 0	Characterization of Clostridium butyricum neurotoxin associated with food-borne botulism. 2002 , 33, 177-184	11
589	Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. 2002 , 27, 552-8	278
588	Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. 2002 , 96, 105-13	162
587	Bacterial protease inhibitors. 2002 , 22, 329-72	128
586	Botulinum neurotoxin and other treatments for fissure-in-ano and pelvic floor disorders. 2002 , 89, 950-61	49
585	Internalization and proteolytic action of botulinum toxins in CNS neurons and astrocytes. 1999 , 73, 372-9	55
584	Botulinum neurotoxin E-insensitive mutants of SNAP-25 fail to bind VAMP but support exocytosis. 1999 , 73, 2424-33	20
583	Spectroscopic analysis of low pH and lipid-induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation. 2002 , 99, 17-29	24
582	Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. 2002 , 970, 95-115	27
581	Structural aspects of the metzincin clan of metalloendopeptidases. 2003 , 24, 157-202	239
58c	The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. 2004 , 51, 631-43	185
579	Human CD4+ T-cell epitope repertoire on the C2 domain of coagulation factor VIII. 2003 , 1, 1777-84	88
57 ⁸	Moving across membranes. <i>Nature Structural Biology</i> , 2003 , 10, 2-3	11
577	Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nature Structural Biology, 2003 , 10, 13-8	256
576	The basic science of botulinum toxin. 2003 , 11, 431-8	21
575	Anthrax toxin. 2003 , 19, 45-70	469

574	Accommodation of a highly symmetric core within a symmetric protein superfold. 2003, 12, 2704-18	25
573	Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F. 2003 , 69, 297-303	107
572	Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. 2003 , 310, 84-93	89
571	Crystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds. 2003 , 312, 1303-8	44
570	Zinc Hydrolases. 2003 , 601-640	15
569	Design and synthesis of substrate-based inhibitors of botulinum neurotoxin type B metalloprotease. 2003 , 71, 602-19	16
568	Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. 2003 , 326, 835-47	122
567	Antagonism of botulinum toxin type A-induced cleavage of SNAP-25 in rat cerebral synaptosome by toosendanin. 2003 , 555, 375-9	24
566	Vaccination against type F botulinum toxin using attenuated Salmonella enterica var Typhimurium strains expressing the BoNT/F H(C) fragment. 2003 , 21, 1052-9	16
565	[Mode of action of botulinum neurotoxin: pathological, cellular and molecular aspect]. 2003, 46, 265-75	26
564	Complete DNA sequences of the botulinum neurotoxin complex of Clostridium botulinum type A-Hall (Allergan) strain. 2003 , 315, 21-32	33
563	Getting muscles moving again after botulinum toxin: novel therapeutic challenges. 2003 , 9, 291-9	47
562	The journey of tetanus and botulinum neurotoxins in neurons. 2003, 11, 431-7	176
561	Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. 2003 , 149, 3361-3370	67
560	Pharmacology of Botulinum Neurotoxins. 2003 , 14, 1-13	2
559	Catalytic mechanisms for metallopeptidases. 2004 , 268-289	9
558	The role of the interchain disulfide bond in governing the pharmacological actions of botulinum toxin. 2004 , 308, 857-64	33
557	Structural features of the botulinum neurotoxin molecule that govern binding and transcytosis across polarized human intestinal epithelial cells. 2004 , 310, 633-41	77

(2004-2004)

556	Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: Evidence for noncanonical zinc protease activity. 2004 , 101, 6888-93	90
555	Plasma membrane localization signals in the light chain of botulinum neurotoxin. 2004 , 101, 3208-13	100
554	Inhibition of the protease activity of the light chain of type A botulinum neurotoxin by aqueous extract from stinging nettle (Urtica dioica) leaf. 2004 , 95, 215-9	10
553	Substrate recognition strategy for botulinum neurotoxin serotype A. 2004 , 432, 925-9	277
552	Intravesical therapy options for neurogenic detrusor overactivity. 2004 , 42, 267-72	43
551	European experience of 200 cases treated with botulinum-A toxin injections into the detrusor muscle for urinary incontinence due to neurogenic detrusor overactivity. 2004 , 45, 510-5	308
550	Medical aspects of biologic toxins. 2004 , 22, 509-32, vii	25
549	Glycosphingolipids-sweets for botulinum neurotoxin. 2004 , 21, 287-93	29
548	Mapping of the antibody-binding regions on the HN-domain (residues 449-859) of botulinum neurotoxin A with antitoxin antibodies from four host species. Full profile of the continuous antigenic regions of the H-chain of botulinum neurotoxin A. 2004 , 23, 39-52	40
547	Enzyme family classification by support vector machines. 2004 , 55, 66-76	118
546	An atomic resolution structure for human fibroblast growth factor 1. 2004 , 57, 626-34	31
545	Molecular targets of botulinum toxin at the mammalian neuromuscular junction. 2004 , 19 Suppl 8, S7-S16	26
544	Structure and enzymatic activity of botulinum neurotoxins. 2004 , 19 Suppl 8, S17-22	20
543	Is the light chain subcellular localization an important factor in botulinum toxin duration of action?. 2004 , 19 Suppl 8, S23-34	30
542	BotDB: A database resource for the clostridial neurotoxins. 2004 , 19 Suppl 8, S35-41	6
541	Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering. 2004 , 1696, 157-64	44
540	The analgesic potential of clostridial neurotoxin derivatives. 2004 , 13, 1437-43	12
539	Synthesis of a Gln-Phe hydroxy-ethylene dipeptide isostere. 2004 , 6, 4783-6	21

538	Identification of the major steps in botulinum toxin action. 2004 , 44, 167-93	437
537	Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies. 2004 , 572, 299-306	60
536	Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. 2004 , 578, 121-7	16
535	Tyrosine-728 and glutamic acid-735 are essential for the metalloproteolytic activity of the lethal factor of Bacillus anthracis. 2004 , 313, 496-502	45
534	Comparison of the pH-induced conformational change of different clostridial neurotoxins. 2004 , 319, 66-71	34
533	Cloning, high level expression, purification, and crystallization of the full length Clostridium botulinum neurotoxin type E light chain. 2004 , 34, 95-102	16
532	The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability. 2004 , 37, 187-95	63
531	The emerging role of therapeutic botulinum toxin in the treatment of cerebral palsy. 2004 , 145, S33-5	21
530	Pharmacology and clinical applications of botulinum toxins A and B. 2004 , 44, 147-63	25
529	Conformational sampling of the botulinum neurotoxin serotype A light chain: implications for inhibitor binding. 2005 , 13, 333-41	38
528	Medical aspects of toxin weapons. 2005 , 214, 210-20	92
5 2 7	Effect on gastric emptying and weight reduction of botulinum toxin-A injection into the gastric antral layer: an experimental study in the obese rat model. 2005 , 15, 1137-43	33
526	The evolving field of biodefence: therapeutic developments and diagnostics. 2005, 4, 281-97	128
525	Clostridium botulinum neurotoxins hpplications in medicine and potential agents of bioterrorism. 2005 , 27, 147-151	4
524	A new wrinkle on pain relief: re-engineering clostridial neurotoxins for analgesics. 2005 , 10, 563-9	24
523	Partial protection against Botulinum B neurotoxin-induced blocking of exocytosis by a potent inhibitor of its metallopeptidase activity. 2005 , 6, 1375-80	25
522	Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins. 2005 , 24, 337-68	6
521	The role of exoproteases in governing intraneuronal metabolism of botulinum toxin. 2005 , 24, 155-65	8

(2005-2005)

520	In situ data collection and structure refinement from microcapillary protein crystallization. 2005 , 38, 900-905	69
519	Common binding site for disialyllactose and tri-peptide in C-fragment of tetanus neurotoxin. 2005 , 61, 288-95	38
518	Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. 2005 , 73, 5450-7	226
517	Biologically active novel conformational state of botulinum, the most poisonous poison. 2005 , 280, 39346-52	44
516	Characterization of the interaction between subunits of the botulinum toxin complex produced by serotype D through tryptic susceptibility of the isolated components and complex forms. 2005 , 151, 1475-1483	23
515	Characterization of the antibody response to the receptor binding domain of botulinum neurotoxin serotypes A and E. 2005 , 73, 6998-7005	48
514	TEanos: physiopathologie, BidEniologie, formes cliniques, traitements et vaccination. 2005, 7, 23-41	6
513	Mapping of the Antibody and T Cell Recognition Profiles of the HN Domain (Residues 449 B 59) of the Heavy Chain of Botulinum Neurotoxin A in Two High-Responder Mouse Strains. 2005 , 34, 119-142	
512	Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition. 2005 , 44, 9574-80	54
511	The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. 2005 , 346, 1083-93	56
510	New insights into clostridial neurotoxin-SNARE interactions. 2005, 11, 377-81	67
509	Internalization and mechanism of action of clostridial toxins in neurons. 2005, 26, 761-7	93
508	Molecular definition of neuronal targets for novel neurotherapeutics: SNAREs and Kv1 channels. 2005 , 26, 753-60	1
507	N-terminal helix reorients in recombinant C-fragment of Clostridium botulinum type B. 2005 , 330, 97-103	10
506	Peptide inhibitors of botulinum neurotoxin by mRNA display. 2005 , 335, 1247-53	11
505	Preparation of specifically activatable endopeptidase derivatives of Clostridium botulinum toxins type A, B, and C and their applications. 2005 , 40, 31-41	20
504	Structural features common to intracellularly acting toxins from bacteria. 2005 , 45, 129-37	7
503	Structure and function of SNARE and SNARE-interacting proteins. 2005 , 38, 1-47	204

502	Identification of a botulinum neurotoxin A protease inhibitor displaying efficacy in a cellular model. 2006 , 3063-5	43
501	Synthesis, characterization and development of a high-throughput methodology for the discovery of botulinum neurotoxin a inhibitors. 2006 , 8, 513-21	64
500	Bacterial protein toxins and lipids: role in toxin targeting and activity. 2006 , 98, 633-51	17
499	Neurologists and the threat of bioterrorism. 2006 , 249, 55-62	9
498	Identification of a potent botulinum neurotoxin a protease inhibitor using in situ lead identification chemistry. 2006 , 8, 1729-32	97
497	A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. 2006 , 362, 733-42	108
496	Cloning, expression, and purification of C-terminal quarter of the heavy chain of botulinum neurotoxin type A. 2006 , 45, 288-95	14
495	Re-engineering the target specificity of Clostridial neurotoxins - a route to novel therapeutics. 2006 , 9, 101-7	44
494	Crystallization and preliminary X-ray analysis of a protease inhibitor from the latex of Carica papaya. 2006 , 62, 1239-42	3
493	Presynaptic enzymatic neurotoxins. 2006 , 97, 1534-45	84
492	Disulfide bond reduction corresponds to dimerization and hydrophobi-city changes of Clostridium botulinum type A neurotoxin. 2006 , 27, 1238-46	7
491	Structural basis of cell surface receptor recognition by botulinum neurotoxin B. 2006 , 444, 1096-100	167
490	Serotype-selective, small-molecule inhibitors of the zinc endopeptidase of botulinum neurotoxin serotype A. 2006 , 14, 395-408	67
489	Bis-imidazoles as molecular probes for peripheral sites of the zinc endopeptidase of botulinum neurotoxin serotype A. 2006 , 14, 3583-91	16
488	Botulinum neurotoxin light chain refolds at endosomal pH for its translocation. 2006 , 25, 455-62	33
487	Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. 2006 , 9, 73-92	47
486	Characterization of Clostridial botulinum neurotoxin channels in neuroblastoma cells. 2006, 9, 93-100	24
485	Botulinum neurotoxin - from laboratory to bedside. 2006 , 9, 133-40	53

484	HOW BACTERIAL TOXINS PENETRATE THE INTESTINAL EPITHELIAL BARRIER: STRATEGIES TAKEN BY CHOLERA TOXIN AND BOTULINUM PROGENITOR TOXIN. 2006 , 25, 47-59		1
483	Uptake and transport of Clostridium neurotoxins. 2006 , 390-408		9
482	Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. 2007 , 282, 29604-11		130
481	Mechanism of substrate recognition by botulinum neurotoxin serotype A. 2007 , 282, 9621-9627		71
480	Trivalent vaccine against botulinum toxin serotypes A, B, and E that can be administered by the mucosal route. 2007 , 75, 3043-54		73
479	A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms. 2007 , 282, 24777-83		91
478	Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. 2007 , 104, 10447-52		132
477	Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. 2007 , 104, 359-64		154
476	An in vitro and in vivo disconnect uncovered through high-throughput identification of botulinum neurotoxin A antagonists. 2007 , 104, 2602-7		106
475	Inhibition of metalloprotease botulinum serotype A from a pseudo-peptide binding mode to a small molecule that is active in primary neurons. 2007 , 282, 5004-5014		90
474	Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. 2007 , 365, 196-210		114
473	Use of botulinum toxins in cancer therapy. 2007 , 16, 209-18		29
472	Peculiar binding of botulinum neurotoxins. 2007 , 2, 96-8		17
471	Botulinum neurotoxin heavy chain belt as an intramolecular chaperone for the light chain. <i>PLoS Pathogens</i> , 2007 , 3, 1191-4	7.6	74
470	Synthesis of soluble multivalent glycoconjugates that target the Hc region of botulinum neurotoxin A. 2007 , 17, 2459-64		24
469	Structures of Clostridium botulinum Neurotoxin Serotype A Light Chain complexed with small-molecule inhibitors highlight active-site flexibility. 2007 , 14, 533-42		104
468	Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase. 2007 , 1774, 213-22		15
467	Structure of rat acidic fibroblast growth factor at 1.4 A resolution. 2007 , 63, 65-8		3

466	Crystallization and preliminary X-ray analysis of the HA3 component of Clostridium botulinum type C progenitor toxin. 2007 , 63, 1038-40	4
465	Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. 2007 , 25, 107-16	151
464	Botulinum neurotoxin B-host receptor recognition: it takes two receptors to tango. 2007 , 14, 9-10	26
463	Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. 2008 , 10, 375-87	56
462	Effect of nicking the C-terminal region of the Clostridium botulinum serotype D neurotoxin heavy chain on its toxicity and molecular properties. 2007 , 26, 173-81	3
461	Long-time molecular dynamics simulations of botulinum biotoxin type-A at different pH values and temperatures. 2007 , 13, 559-72	6
460	Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity. 2008 , 27, 151-62	25
459	Tetanus, botulinum and snake presynaptic neurotoxins. 2008 , 19, 173-188	3
458	Clostridium neurotoxin fragments as potential targeting moieties for liposomal gene delivery to the CNS. 2008 , 9, 219-31	27
457	Three-dimensional database mining identifies a unique chemotype that unites structurally diverse botulinum neurotoxin serotype A inhibitors in a three-zone pharmacophore. 2008 , 3, 1905-12	34
456	The strange case of the botulinum neurotoxin: using chemistry and biology to modulate the most deadly poison. 2008 , 47, 8360-79	60
455	Der seltsame Fall des Botulinum-Neurotoxins: chemische und biologische Modulierung des tölichsten aller Gifte. 2008 , 120, 8488-8507	
454	Rhodanine derivatives as selective protease inhibitors against bacterial toxins. 2008, 71, 131-9	45
453	Molecular biology of botulinum neurotoxin serotype A: a cosmetic perspective. 2008, 7, 221-5	
452	Synthesis of substrates and inhibitors of botulinum neurotoxin type A metalloprotease. 2004 , 63, 181-93	30
451	Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster. 2008 , 8, 316	26
450	Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. 2008 , 336, 1-8	80
449	A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate. 2008 , 16, 1588-97	54

448	Biological Warfare Agents. 35-54		1
447	Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin. 2008 , 376, 854-67		41
446	Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D. 2008 , 44, 484-93		36
445	Molecular recognition of botulinum neurotoxin B heavy chain by human antibodies from cervical dystonia patients that develop immunoresistance to toxin treatment. 2008 , 45, 3878-88		25
444	Attomolar detection of botulinum toxin type A in complex biological matrices. 2008, 3, e2041		87
443	Botulism. 2008 , 91, 333-68		88
442	Catalytic features of the botulinum neurotoxin A light chain revealed by high resolution structure of an inhibitory peptide complex. 2008 , 47, 5736-45		54
441	Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. 2008 , 283, 16993-7002		86
440	Membrane Interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. 2008 , 283, 27668-27676		49
439	Structure- and substrate-based inhibitor design for Clostridium botulinum neurotoxin serotype A. 2008 , 283, 18883-91		49
438	Molecular architecture of botulinum neurotoxin E revealed by single particle electron microscopy. 2008 , 283, 3997-4003		34
437	Fabrication of Synaptotagmin II-Functionalized Neuromimetic Copolymeric Nanomembranes. 2008 , 13, 198-205		
436	Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. <i>PLoS Pathogens</i> , 2008 , 4, e1000129	7.6	138
435	Botulinum neurotoxin devoid of receptor binding domain translocates active protease. <i>PLoS Pathogens</i> , 2008 , 4, e1000245	7.6	70
434	Substrate binding mode and its implication on drug design for botulinum neurotoxin A. <i>PLoS Pathogens</i> , 2008 , 4, e1000165	7.6	44
433	Presynaptic neurotoxins with enzymatic activities. 2008 , 129-70		47
432	Recombinant holotoxoid vaccine against botulism. 2008 , 76, 437-42		50
431	Drug Insight: biological effects of botulinum toxin A in the lower urinary tract. 2008 , 5, 319-28		93

430	Epitope characterization and variable region sequence of f1-40, a high-affinity monoclonal antibody to botulinum neurotoxin type a (Hall strain). 2009 , 4, e4924	8
429	Extraction and inhibition of enzymatic activity of botulinum neurotoxins/A1, /A2, and /A3 by a panel of monoclonal anti-BoNT/A antibodies. 2009 , 4, e5355	53
428	Defense Against Biological Weapons (Biodefense). 2009 , 221-305	
427	Botulinum Neurotoxin Modular Nanomachine. 2009 , 30-40.e2	
426	Interactions Between Botulinum Neurotoxins and Synaptic Vesicle Proteins. 2009, 41-52.e2	
425	Immune Recognition of Botulinum Neurotoxins A and B: Molecular Elucidation of Immune Protection Against the Toxins. 2009 , 53-76.e8	
424	Molecular Structures and Functional Relationships of Botulinum Neurotoxins. 2009, 15-29.e1	1
423	Botulism Vaccines and the Immune Response. 2009 , 374-388.e1	
422	Understanding Botulinum Neurotoxin Mechanism of Action and Structure to Enhance Therapeutics and Improve Care. 2009 , 349-359.e1	
421	Bivalent recombinant vaccine for botulinum neurotoxin types A and B based on a polypeptide comprising their effector and translocation domains that is protective against the predominant A and B subtypes. 2009 , 77, 2795-801	22
420	Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A. 2009 , 53, 3478-86	60
419	Characterization of the epitope region of F1-2 and F1-5, two monoclonal antibodies to Botulinum neurotoxin type A. 2009 , 28, 315-25	10
418	Bimodal modulation of the botulinum neurotoxin protein-conducting channel. 2009, 106, 1330-5	73
417	Neutralizing antibodies of botulinum neurotoxin serotype A screened from a fully synthetic human antibody phage display library. 2009 , 14, 991-8	20
416	The structural basis of allosteric regulation in proteins. 2009 , 583, 1692-8	148
415	Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. 2009 , 583, 2321-5	12
414	TCEP treatment reduces proteolytic activity of BoNT/B in human neuronal SHSY-5Y cells. 2009, 107, 1021-30	13
413	Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. 2009 , 110, 1942-54	134

(2009-2009)

412	Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. 2009 , 25, 179-84		57
411	Pharmacophore-guided lead optimization: the rational design of a non-zinc coordinating, sub-micromolar inhibitor of the botulinum neurotoxin serotype a metalloprotease. 2009 , 19, 5811-3		37
410	Structure and stability effects of mutations designed to increase the primary sequence symmetry within the core region of a beta-trefoil. 2001 , 10, 2587-99		59
409	Catalytic properties of botulinum neurotoxin subtypes A3 and A4. 2009 , 48, 2522-8		56
408	The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. 2009 , 380, 76-80		77
407	Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel. 2009 , 54, 565-9		41
406	Receptor and substrate interactions of clostridial neurotoxins. 2009 , 54, 550-60		82
405	Engineered toxins: new therapeutics. 2009 , 54, 587-92		32
404	Association of botulinum neurotoxins with synaptic vesicle protein complexes. 2009, 54, 570-4		28
403	Immune recognition of BoNTs A and B: how anti-toxin antibodies that bind to the heavy chain obstruct toxin action. 2009 , 54, 600-13		7
402	Botulism and vaccines for its prevention. 2009 , 27 Suppl 4, D33-9		83
401	Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin. 2009 , 385, 1193-206		33
400	Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. 2009 , 386, 233-45		137
399	Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition. 2009 , 491, 75-84		33
398	Biology and genomic analysis of Clostridium botulinum. <i>Advances in Microbial Physiology</i> , 2009 , 55, 183-265, 320	4.4	176
397	Renewable surface fluorescence sandwich immunoassay biosensor for rapid sensitive botulinum toxin detection in an automated fluidic format. 2009 , 134, 987-96		31
396	Clostridial toxins. 2009 , 4, 1021-64		149
395	[Mechanisms of action of botulinum toxins and neurotoxins]. 2009 , 136 Suppl 4, S73-6		9

394 Botulisme. **2009**, 6, 1-17

393	Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. 2009 , 48, 56	31-41	122
392	Clostridial neurotoxins: mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering. <i>Toxins</i> , 2010 , 2, 665-82	4.9	49
391	Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. <i>Biochemical Journal</i> , 2010 , 431, 207-16	3.8	65
390	Low pH-induced pore formation by the T domain of botulinum toxin type A is dependent upon NaCl concentration. 2010 , 236, 191-201		7
389	Inhibition of botulinum neurotoxin a toxic action in vivo by synthetic synaptosome- and blocking antibody-binding regions. 2010 , 29, 320-7		5
388	Preliminary X-ray crystallographic study of the receptor-binding domain of the D/C mosaic neurotoxin from Clostridium botulinum. 2010 , 66, 608-10		3
387	Adenovirus F protein as a delivery vehicle for botulinum B. 2010 , 11, 36		6
386	The zinc-dependent protease activity of the botulinum neurotoxins. <i>Toxins</i> , 2010 , 2, 978-97	4.9	17
385	Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. <i>Toxins</i> , 2010 , 2, 683-737	4.9	66
384	Iterative structure-based peptide-like inhibitor design against the botulinum neurotoxin serotype A. 2010 , 5, e11378		22
383	Light chain separated from the rest of the type a botulinum neurotoxin molecule is the most catalytically active form. 2010 , 5, e12872		13
382	Protein Domain Analysis of C. botulinum Type A Neurotoxin and Its Relationship with Other Botulinum Serotypes. <i>Toxins</i> , 2010 , 2, 1-9	4.9	2
381	Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies. 2010 , 15, 42-51		24
380	SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. 2010 , 107, 18197-201		37
379	Interaction of botulinum toxin with the epithelial barrier. 2010 , 2010, 974943		25
378	Targeted secretion inhibitors-innovative protein therapeutics. <i>Toxins</i> , 2010 , 2, 2795-815	4.9	31
377	A V H H that neutralizes the zinc metalloproteinase activity of botulinum neurotoxin type A. 2010 , 285, 9657-9666		47

376	[Botulinum neurotoxin]. 2010 , 166, 7-20	5
375	Lipid and cationic polymer based transduction of botulinum holotoxin, or toxin protease alone, extends the target cell range and improves the efficiency of intoxication. 2010 , 55, 619-29	9
374	Clostridium botulinum and Clostridium tetani. 2010,	
373	Toxin-mediated syndromes of the nervous system. 2010 , 96, 257-72	2
372	Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA. 2010 , 49, 8117-26	48
371	Molecular basis of activation of endopeptidase activity of botulinum neurotoxin type E. 2010 , 49, 2510-9	12
370	Analysis of Botulinum Neurotoxin Serotype A Metalloprotease Inhibitors: Analogs of a Chemotype for Therapeutic Development in the Context of a Three-Zone Pharmacophore. 2010 , 2010, 11-18	8
369	A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region. 2010 , 397, 1106-18	66
368	Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. 2010 , 397, 1287-97	32
367	In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin. 2010 , 396, 854-60	37
366	Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. 2010 , 71, 62-73	24
365	Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from Murraya koenigii. 2010 , 494, 15-22	20
364	Botulinum neurotoxin: a marvel of protein design. 2010 , 79, 591-617	325
363	Molecular, Clinical and Environmental Toxicology. 2010,	8
362	Clostridium botulinum und seine Toxine: Krankheitserreger und potentielle Biowaffe?. 2011 , 61, 126-141	
361	An overview of botulinum toxins: past, present, and future. 2011 , 38, 409-26, vi	37
360	Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. 2011 , 57, 1008-16	29
359	Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: insight into the ganglioside binding mechanism. 2011 , 411, 433-9	19

358	Small molecule inhibitors as countermeasures for botulinum neurotoxin intoxication. 2010 , 16, 202-20	30
357	Regions of recognition by blocking antibodies on the light chain of botulinum neurotoxin A: antigenic structure of the entire toxin. 2011 , 216, 698-706	12
356	Regions of botulinum neurotoxin A light chain recognized by human anti-toxin antibodies from cervical dystonia patients immunoresistant to toxin treatment. The antigenic structure of the active toxin recognized by human antibodies. 2011 , 216, 782-92	22
355	Structure and activity of a functional derivative of Clostridium botulinum neurotoxin B. 2011 , 174, 52-7	16
354	[A modular and non pathogenic type A botulinum toxin]. 2011 , 27, 694-6	
353	Forensic Aspects of Biological Toxins. 2011 , 327-353	Ο
352	Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. <i>PLoS Pathogens</i> , 2011 , 7, e1002008	107
351	Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination. 2011 , 6, e20352	39
350	Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. 2011 , 13, 1731-43	56
349	Engineering toxins for 21st century therapies. 2011 , 278, 899-904	8
348	Unique ganglioside binding by botulinum neurotoxins C and D-SA. 2011 , 278, 4486-96	20
347	Molecular structures and functional relationships in clostridial neurotoxins. 2011 , 278, 4467-85	58
346	Exchange of the H(CC) domain mediating double receptor recognition improves the pharmacodynamic properties of botulinum neurotoxin. 2011 , 278, 4506-15	30
345	Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. 2011 , 278, 4454-66	35
344	Time-dependent botulinum neurotoxin serotype A metalloprotease inhibitors. 2011 , 19, 7338-48	14
343	Injections of Botulinum Toxin A into the detrusor to treat neurogenic detrusor overactivity secondary to spinal cord injury. 2011 , 43, 655-62	17
342	Structures of engineered Clostridium botulinum neurotoxin derivatives. 2011 , 67, 1466-72	7
341	Synergistic capture of Clostridium botulinum type A neurotoxin by scFv antibodies to novel epitopes. 2011 , 108, 2456-67	4

340	Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity. 2011 , 413, 36-42	21
339	Structural characterization of three novel hydroxamate-based zinc chelating inhibitors of the Clostridium botulinum serotype A neurotoxin light chain metalloprotease reveals a compact binding site resulting from 60/70 loop flexibility. 2011 , 50, 4019-28	25
338	Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. <i>Toxins</i> , 2011 , 3, 345-55	24
337	Epitope characterization of sero-specific monoclonal antibody to Clostridium botulinum neurotoxin type A. 2011 , 30, 503-10	3
336	Purification, modeling, and analysis of botulinum neurotoxin subtype A5 (BoNT/A5) from Clostridium botulinum strain A661222. 2011 , 77, 4217-22	31
335	Studies of the mechanistic details of the pH-dependent association of botulinum neurotoxin with membranes. 2011 , 286, 27011-8	19
334	Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons. 2011 , 286, 26828-37	32
333	Recombinant botulinum neurotoxin A heavy chain-based delivery vehicles for neuronal cell targeting. 2011 , 24, 247-53	19
332	Basic tetrapeptides as potent intracellular inhibitors of type A botulinum neurotoxin protease activity. 2011 , 286, 1802-11	22
331	Unique ganglioside recognition strategies for clostridial neurotoxins. 2011 , 286, 34015-22	41
330	Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. 2011 , 286, 35966-35976	115
329	Evidence that botulinum toxin receptors on epithelial cells and neuronal cells are not identical: implications for development of a non-neurotropic vaccine. 2011 , 336, 605-12	18
328	Neutralizing human monoclonal antibodies binding multiple serotypes of botulinum neurotoxin. 2011 , 24, 321-31	64
327	Botulinum neurotoxins and botulism: a novel therapeutic approach. <i>Toxins</i> , 2011 , 3, 469-88 4.9	20
326	Longer-acting and highly potent chimaeric inhibitors of excessive exocytosis created with domains from botulinum neurotoxin A and B. <i>Biochemical Journal</i> , 2012 , 444, 59-67	33
325	Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. 2012 , 13, 2219-38	106
324	Purification and characterization of a novel subtype a3 botulinum neurotoxin. 2012, 78, 3108-13	22
323	A coincidence detector triggers botulinum neurotoxin translocation. 2012 , 7, 185-8	

322	Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. 2012 , 287, 1657-61	23
321	Obstructing toxin pathways by targeted pore blockage. 2012 , 112, 6388-430	32
320	Hybrid compounds: from simple combinations to nanomachines. 2012 , 26, 21-31	29
319	Engineered domain-based assays to identify individual antibodies in oligoclonal combinations targeting the same protein. 2012 , 430, 141-50	27
318	Location of the synaptosome-binding regions on botulinum neurotoxin B. 2012 , 51, 316-28	7
317	Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. 2012 , 335, 977-81	160
316	Development of highly sensitive chemiluminescence enzyme immunoassay based on the anti-recombinant H(C) subunit of botulinum neurotoxin type A monoclonal antibodies. 2012 , 735, 23-30	14
315	Molecular immune recognition of botulinum neurotoxin B. The light chain regions that bind human blocking antibodies from toxin-treated cervical dystonia patients. Antigenic structure of the entire BoNT/B molecule. 2012 , 217, 17-27	15
314	Antibodies against a synthetic peptide designed to mimic a surface area of the H chain of botulinum neurotoxin A. 2012 , 142, 20-7	2
313	Botulinum Toxin for Facial Rejuvenation. 2012 , 219-229	1
312	Vaccines against botulism. 2012 , 15, 317-24	31
311	High sensitivity ELISA for detection of botulinum neurotoxin serotype F. 2012 , 31, 233-9	5
310	Small-molecule quinolinol inhibitor identified provides protection against BoNT/A in mice. 2012 , 7, e47110	8
309	Tyrosine phosphorylation of botulinum neurotoxin protease domains. 2012 , 3, 102	8
308	Cloning, Expression, Purification, and Characterization of Clostridium botulinum Neurotoxin Serotype F Domains. 2012 , 2, 1-15	1
307	Roles of Cellular Redox Factors in Pathogen and Toxin Entry in the Endocytic Pathways. 2012 ,	2
306	Crystallization and preliminary X-ray analysis of the Clostridium botulinum type D nontoxic nonhaemagglutinin. 2012 , 68, 227-30	1
305	Glycine insertion at protease cleavage site of SNAP25 resists cleavage but enhances affinity for botulinum neurotoxin serotype A. 2012 , 21, 318-26	4

(2013-2012)

304	Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. 2012 , 51, 5655-62		22
303	Therapien gegen Bakterientoxine. 2012 , 124, 4098-4121		2
302	Targeting bacterial toxins. 2012 , 51, 4024-45		46
301	Domain-based assays of individual antibody concentrations in an oligoclonal combination targeting a single protein. 2012 , 421, 351-61		22
300	The synthesis of 2,5-bis(4-amidinophenyl)thiophene derivatives providing submicromolar-range inhibition of the botulinum neurotoxin serotype A metalloprotease. 2012 , 53, 374-9		19
299	Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, 2013,	3.3	1
298	Botulinum neurotoxins. 2013 , 67, 31-6		34
297	Botulinum neurotoxins: mechanism of action. 2013 , 67, 87-93		58
296	Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and B impacts their toxicity at the neuromuscular junction and central neurons. 2013 , 75, 108-21		8
295	Structural insights into the functional role of the Hcn sub-domain of the receptor-binding domain of the botulinum neurotoxin mosaic serotype C/D. 2013 , 95, 1379-85		7
294	Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. 2013 , 430, 38-42		27
293	Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. 2013 , 75, 101-7		34
292	Biopolymers for Health, Food, and Cosmetic Applications. 2013, 801-849		30
291	Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A). <i>PLoS Pathogens</i> , 2013 , 9, e1003369	7.6	55
29 0	In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH). 2013 , 55, 159-67		37
289	Botulism and Tetanus. 2013 , 247-290		6
288	Enhancing the protective immune response against botulism. 2013 , 81, 2638-44		15
287	Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. <i>Biochemical Journal</i> , 2013 , 453, 37-47	3.8	37

286	The C terminus of the catalytic domain of type A botulinum neurotoxin may facilitate product release from the active site. 2013 , 288, 24223-33	18
285	Molecular assembly of botulinum neurotoxin progenitor complexes. 2013, 110, 5630-5	59
284	The receptor binding domain of botulinum neurotoxin serotype A (BoNT/A) inhibits BoNT/A and BoNT/E intoxications in vivo. 2013 , 20, 1266-73	8
283	Zinc Hydrolases. 2014 ,	
282	Comparative in vitro and in vivo assessment of toxin neutralization by anti-tetanus toxin monoclonal antibodies. 2014 , 10, 344-51	17
281	Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. 2014 , 8, 1870-1878	71
280	Development of neutralizing scFv-Fc against botulinum neurotoxin A light chain from a macaque immune library. 2014 , 6, 446-59	35
279	Structural basis of the pH-dependent assembly of a botulinum neurotoxin complex. 2014 , 426, 3773-3782	22
278	Use of Non-Pathogenic Biological Agents as Biological Warfare Simulants for the Development of a Stand-Off Detection System. 2014 , 06,	5
277	Absorption and Transport of Botulinum Neurotoxins. 2014 , 35-68	4
276	Pharmacology of Botulinum Neurotoxins: Exploitation of Their Multifunctional Activities as Transmitter Release Inhibitors and Neuron-Targeted Delivery Vehicles. 2014 , 9-33	
275	Engineered botulinum neurotoxins as new therapeutics. 2014 , 54, 27-51	46
274	Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. 2014 , 505, 108-11	83
273	Chapter 3: Molecular basis for the therapeutic effectiveness of botulinum neurotoxin type A. 2014 , 33 Suppl 3, S14-20	21
272	Botulinum neurotoxins: new questions arising from structural biology. 2014 , 39, 517-26	21
271	Botulinum neurotoxins: new questions arising from structural biology. 2014 , 39, 517-26 Botulinum neurotoxins: genetic, structural and mechanistic insights. 2014 , 12, 535-49	362
·		

268	Chemical and biological warfare agents. 2014 , 521-538		1
267	Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening. 2014 , 28, 765-78		13
266	Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria. 2014 , 57, 4134-53		22
265	Covalent functionalization of gold nanoparticles as electronic bridges and signal amplifiers towards an electrochemical immunosensor for botulinum neurotoxin type A. 2014 , 61, 547-53		44
264	Mechanisms of enhanced neutralization of botulinum neurotoxin by monoclonal antibodies conjugated to antibodies specific for the erythrocyte complement receptor. 2014 , 57, 247-54		10
263	Pathogenesis of Clostridium botulinum in Humans. 2015 , 821-839		2
262	Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors. <i>Scientific Reports</i> , 2015 , 5, 13397	4.9	9
261	Understanding peptide competitive inhibition of botulinum neurotoxin A binding to SV2 protein via molecular dynamics simulations. 2015 , 103, 597-608		6
260	Epitope targeting of tertiary protein structure enables target-guided synthesis of a potent in-cell inhibitor of botulinum neurotoxin. 2015 , 54, 7114-9		22
259	Botulism (Clostridium botulinum). 2015 , 2763-2767.e2		4
258	Monoclonal Antibodies that Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B. <i>Toxins</i> , 2015 , 7, 3405-23	4.9	13
257	Current status and future directions of botulinum neurotoxins for targeting pain processing. <i>Toxins</i> , 2015 , 7, 4519-63	4.9	46
256	Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype. 2015 , 10, e0116381		51
255	Biological Toxins and Bioterrorism. <i>Toxinology</i> , 2015 ,	O	1
254	Uptake and transport of clostridial neurotoxins. 2015 , 337-360		2
253	Engineering of botulinum neurotoxins as novel therapeutic tools. 2015 , 995-1015		2
252	On botulinum neurotoxin variability. 2015 , 6,		66
251	Botulinum toxin for the treatment of bruxism. 2015 , 33, 291-8		11

250 Clostridium botulinum and Associated Neurotoxins. 2015, 1015-1029

249	Challenges in Developing Biotoxin Inhibitors. <i>Toxinology</i> , 2015 , 357-373	Ο	2
248	Immunoprecipitation of native botulinum neurotoxin complexes from Clostridium botulinum subtype A strains. 2015 , 81, 481-91		11
247	Diverse binding modes, same goal: The receptor recognition mechanism of botulinum neurotoxin. 2015 , 117, 225-231		24
246	Molecular basis of immunogenicity to botulinum neurotoxins and uses of the defined antigenic regions. 2015 , 107, 50-8		7
245	Current gaps in basic science knowledge of botulinum neurotoxin biological actions. 2015 , 107, 59-63		14
244	Botulinum toxin for the treatment of bruxism. 2015 , 33, 292-299		18
243	The C-terminal heavy-chain domain of botulinum neurotoxin a is not the only site that binds neurons, as the N-terminal heavy-chain domain also plays a very active role in toxin-cell binding and interactions. 2015 , 83, 1465-76		11
242	Epitope Targeting of Tertiary Protein Structure Enables Target-Guided Synthesis of a Potent In-Cell Inhibitor of Botulinum Neurotoxin. 2015 , 127, 7220-7225		3
241	Fast, Ratiometric FRET from Quantum Dot Conjugated Stabilized Single Chain Variable Fragments for Quantitative Botulinum Neurotoxin Sensing. 2015 , 15, 7161-7		34
240	The thioredoxin reductaseThioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles. 2015 , 107, 32-6		23
239	Structural and functional analysis of botulinum neurotoxin subunits for pH-dependent membrane channel formation and translocation. 2015 , 1854, 1510-6		5
238	From GFP to Elactamase: advancing intact cell imaging for toxins and effectors. 2015, 73, ftv097		5
237	A Heterologous Reporter Defines the Role of the Tetanus Toxin Interchain Disulfide in Light-Chain Translocation. 2015 , 83, 2714-24		11
236	Structure of the BoNT/A1receptor complex. 2015 , 107, 25-31		4
235	Molecular dynamics simulations of wild type and mutants of botulinum neurotoxin A complexed with synaptic vesicle protein 2C. 2015 , 11, 223-31		16
234	A conserved tryptophan (W91) at the barrel-lid junction modulates the packing and stability of Kunitz (STI) family of inhibitors. 2015 , 1854, 55-64		5
233	Surface Plasmon Resonance Sensing of Biological Warfare Agent Botulinum Neurotoxin A. 2016 , 7,		5

(2016-2016)

232	Botulinum Neurotoxin Serotype A Recognizes Its Protein Receptor SV2 by a Different Mechanism than Botulinum Neurotoxin B Synaptotagmin. <i>Toxins</i> , 2016 , 8,	4.9	23	
231	Military Importance of Natural Toxins and Their Analogs. 2016 , 21,		18	
230	High-Throughput Screening Uncovers Novel Botulinum Neurotoxin Inhibitor Chemotypes. 2016 , 18, 4	61-74	2	
229	New Elements To Consider When Modeling the Hazards Associated with Botulinum Neurotoxin in Food. 2016 , 198, 204-11		2	
228	Bacterial Toxins Latructure, Properties and Mode of Action. 2016 , 71-93			
227	Implication of Molten Globule on the Function and Toxicity of a Protein. 2016 , 73-112			
226	The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. <i>Scientific Reports</i> , 2016 , 6, 30257	4.9	67	
225	Molecular Assembly of Clostridium botulinum progenitor M complex of type E. <i>Scientific Reports</i> , 2015 , 5, 17795	4.9	13	
224	Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. <i>Current Topics in Microbiology and Immunology</i> , 2017 , 406, 1-37	3.3	33	
223	Neurotoxic Weapons and Syndromes. 2016 , 38, 214-27		1	
222	Clostridium botulinum and Clostridium tetani Neurotoxins. 2016, 71-106		3	
221	Expression and purification of recombinant TAT-BoNT/A under denaturing and native conditions. 2016 , 7, 478-483		5	
220	Protein Toxins in Modeling Biochemistry. 2016 ,			
219	Sporicidal performance induced by photocatalytic production of organic peroxide under visible light irradiation. <i>Scientific Reports</i> , 2016 , 6, 33715	4.9	9	
218	Mechanism of substrate recognition by the novel Botulinum Neurotoxin subtype F5. <i>Scientific Reports</i> , 2016 , 6, 19875	4.9	5	
217	Overview of Botulinum Toxins for Aesthetic Uses. 2016 , 43, 459-71		37	
216	Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. 2016 , 85, 89-102		17	
215	Immunological Characterization and Neutralizing Ability of Monoclonal Antibodies Directed Against Botulinum Neurotoxin Type H. 2016 , 213, 1606-14		32	

214	In Vivo Toxicity and Immunological Characterization of Detoxified Recombinant Botulinum Neurotoxin Type A. 2016 , 33, 639-52		12
213	Foods of Non-Animal Origin. 2016 ,		3
212	TAT-BoNT/A(M) a novel fusion protein as a therapeutic agent: analysis of transcutaneous delivery and enzyme activity. 2016 , 100, 2785-95		7
211	On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. 2016 , 1858, 467-74		62
210	Bacterial Signaling to the Nervous System through Toxins and Metabolites. 2017 , 429, 587-605		78
209	Challenges in searching for therapeutics against Botulinum Neurotoxins. 2017 , 12, 497-510		31
208	Conjugate of an IgG Binding Domain with Botulinum Neurotoxin A Lacking the Acceptor Moiety Targets Its SNARE Protease into TrkA-Expressing Cells When Coupled to Anti-TrkA IgG or Fc-NGF. 2017 , 28, 1684-1692		5
207	Metal Ions Effectively Ablate the Action of Botulinum Neurotoxin A. 2017 , 139, 7264-7272		12
206	Insights into the Mechanisms by Which Clostridial Neurotoxins Discriminate between Gangliosides. 2017 , 56, 2571-2583		5
205	Understanding the molecular basis of stability in Kunitz (STI) family of inhibitors in terms of a conserved core tryptophan residue: A theoretical investigation. 2017 , 75, 233-240		
204	Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells. 2017 , 52, 461-473		24
203	Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. 2017 , 69, 200-235		324
202	Neuronal entry and high neurotoxicity of botulinum neurotoxin A require its N-terminal binding sub-domain. <i>Scientific Reports</i> , 2017 , 7, 44474	4.9	5
201	Botulinum Toxin for Asians. 2017 ,		7
200	Glycans Confer Specificity to the Recognition of Ganglioside Receptors by Botulinum Neurotoxin A. 2017 , 139, 218-230		40
199	Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. 2017 , 591, 3781-3792		10
198	Botulinum Toxins A and E Inflict Dynamic Destabilization on t-SNARE to Impair SNARE Assembly and Membrane Fusion. 2017 , 25, 1679-1686.e5		5
197	High Yield Preparation of Functionally Active Catalytic-Translocation Domain Module of Botulinum Neurotoxin Type A That Exhibits Uniquely Different Enzyme Kinetics. 2017 , 36, 489-501		1

196	Design of modified botulinum neurotoxin A1 variants with a shorter persistence of paralysis and duration of action. 2017 , 139, 101-108	11
195	Uptake of Clostridial Neurotoxins into Cells and Dissemination. <i>Current Topics in Microbiology and Immunology</i> , 2017 , 406, 39-78	13
194	The structure of the tetanus toxin reveals pH-mediated domain dynamics. 2017, 18, 1306-1317	43
193	Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. 2017 , 85,	21
192	A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A. 2017 , 27, 675-678	9
191	Utilizing Ayurvedic literature for the identification of novel phytochemical inhibitors of botulinum neurotoxin A. 2017 , 197, 211-217	1
190	Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. 2017 , 19, e12647	30
189	Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development. 2017 , 106, 477-494	15
188	A Cell Line for Detection of Botulinum Neurotoxin Type B. 2017 , 8, 796	14
187	Disulfide bond formation in prokaryotes. 2018 , 3, 270-280	72
186	Yesterday and Today: The Impact of Research Conducted at Camp Detrick on Botulinum Toxin. 2018 , 183, 85-95	3
185	The travel diaries of tetanus and botulinum neurotoxins. 2018 , 147, 58-67	42
184	Botulinum Toxins: Molecular Structures and Synaptic Physiology. 2018 , 1-12	2
183	The Use of Neurotoxins in the Male Face. 2018 , 36, 29-42	6
182	A mutated recombinant subunit vaccine protects mice and guinea pigs against botulinum type A intoxication. 2018 , 14, 329-336	4
181	Tetanus toxin C-fragment protects against excitotoxic spinal motoneuron degeneration in vivo. Scientific Reports, 2018 , 8, 16584 4.9	1
180	Botulinum Toxins, Diversity, Mode of Action, Epidemiology of Botulism in France. 2018,	3
179	Basics of Structure and Mechanisms of Function of Botulinum Toxin - How Does it Work?. 2018 , 11-17	O

178	Botulinum Toxin Treatment. 2018,		1
177	A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. 2018 , 9, 5367		16
176	A Single Tri-Epitopic Antibody Virtually Recapitulates the Potency of a Combination of Three Monoclonal Antibodies in Neutralization of Botulinum Neurotoxin Serotype A. <i>Toxins</i> , 2018 , 10,	4.9	4
175	Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. <i>Toxins</i> , 2018 , 10,	4.9	12
174	Variability of Botulinum Toxins: Challenges and Opportunities for the Future. <i>Toxins</i> , 2018 , 10,	4.9	10
173	Molecular Mechanisms of Botulinum Toxin. 102-105		
172	A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency. <i>PLoS Pathogens</i> , 2018 , 14, e1007048	7.6	20
171	Foodborne Botulism From a Systems Biology Perspective. 2018 , 275-308		
170	Protein Toxins That Utilize Gangliosides as Host Receptors. 2018 , 156, 325-354		16
169	Light Chain Diversity among the Botulinum Neurotoxins. <i>Toxins</i> , 2018 , 10,	4.9	13
169 168	Light Chain Diversity among the Botulinum Neurotoxins. <i>Toxins</i> , 2018 , 10, Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. <i>Toxins</i> , 2018 , 10,	4.9	13
	Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity.		
168	Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins, 2018, 10, Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of		17
168 167	Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins, 2018, 10, Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. 2018, 430, 3190-3199 A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin	4.9	17 4
168 167 166	Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins, 2018, 10, Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. 2018, 430, 3190-3199 A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. Toxins, 2018, 10, Crystal Structure of Botulinum Neurotoxin A2 in Complex with the Human Protein Receptor SV2C	4.9	17 4 20
168 167 166	Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins, 2018, 10, Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. 2018, 430, 3190-3199 A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. Toxins, 2018, 10, Crystal Structure of Botulinum Neurotoxin A2 in Complex with the Human Protein Receptor SV2C Reveals Plasticity in Receptor Binding. Toxins, 2018, 10,	4.9	17 4 20 8
168 167 166 165	Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. <i>Toxins</i> , 2018 , 10, Direct Detection of Membrane-Inserting Fragments Defines the Translocation Pores of a Family of Pathogenic Toxins. 2018 , 430, 3190-3199 A Three Monoclonal Antibody Combination Potently Neutralizes Multiple Botulinum Neurotoxin Serotype E Subtypes. <i>Toxins</i> , 2018 , 10, Crystal Structure of Botulinum Neurotoxin A2 in Complex with the Human Protein Receptor SV2C Reveals Plasticity in Receptor Binding. <i>Toxins</i> , 2018 , 10, Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. <i>Toxins</i> , 2018 , 10,	4.9	17 4 20 8 36

160	Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. 2019 , 193, 135-155	9
159	Intravesikale Botulinumtoxintherapie der Beraktiven Harnblase. 2019 , 23, 26-29	
158	Strategies to Counteract Botulinum Neurotoxin A: Nature® Deadliest Biomolecule. 2019, 52, 2322-2331	15
157	Safety and pharmacodynamics of a novel recombinant botulinum toxin E (rBoNT-E): Results of a phase 1 study in healthy male subjects compared with abobotulinumtoxinA (Dysport[]). 2019 , 407, 116516	9
156	The History of Botulinum Toxins in Medicine: A Thousand Year Journey. 2021 , 263, 3-10	7
155	Targeted 8-hydroxyquinoline fragment based small molecule drug discovery against neglected botulinum neurotoxin type F. 2019 , 92, 103297	2
154	Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. <i>Toxins</i> , 2019 , 11,	12
153	Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. <i>Toxins</i> , 2019 , 11,	2
152	Rapid and Sensitive Nano-Immunosensors for Botulinum. 2019 , 4, 1754-1760	19
151	Overview on the Systematics of Biotoxins as Threat Agents. 2019 , 339-357	
150	Defense Against Biological Attacks. 2019 ,	
149	Biological Toxins as the Potential Tools for Bioterrorism. 2019 , 20,	47
148	The Structure and Classification of Botulinum Toxins. 2021 , 263, 11-33	9
147	Clostridium botulinum. 2019 , 487-512	4
146	Targeting Metalloenzymes for Therapeutic Intervention. 2019 , 119, 1323-1455	109
145	mutagenesis: decreasing the immunogenicity of botulinum toxin type A. 2019 , 37, 4767-4778	3
144	Botulinum and Tetanus Neurotoxins. 2019 , 88, 811-837	70
143	Functional fluorescence assay of botulinum neurotoxin A in complex matrices using magnetic beads. 2019 , 281, 912-919	5

Atlas of Surgical Therapy for Migraine and Tension-Type Headache. **2020**,

141	Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. 2020 , 178, 33-40		3
140	Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. 2020 , 175, 36-43		2
139	The Novel Clostridial Neurotoxin Produced by Strain IBCA10-7060 Is Immunologically Equivalent to BoNT/HA. <i>Toxins</i> , 2019 , 12,	4.9	10
138	Botulinum Toxin Treatment in Surgery, Dentistry, and Veterinary Medicine. 2020,		
137	High-resolution crystal structures of the botulinum neurotoxin binding domains from subtypes A5 and A6. 2020 , 10, 1474-1481		2
136	Special Delivery: Potential Mechanisms of Botulinum Neurotoxin Uptake and Trafficking within Motor Nerve Terminals. 2020 , 21,		4
135	The 25 kDa H Domain of Clostridial Neurotoxins Is Indispensable for Their Neurotoxicity. <i>Toxins</i> , 2020 , 12,	4.9	3
134	BAcTrace, a tool for retrograde tracing of neuronal circuits in Drosophila. 2020 , 17, 1254-1261		6
133	Two VHH Antibodies Neutralize Botulinum Neurotoxin E1 by Blocking Its Membrane Translocation in Host Cells. <i>Toxins</i> , 2020 , 12,	4.9	2
132	Tetanus Toxin -Loop Contributes to Light-Chain Translocation. 2020 , 5,		6
131	Botulinum Endopeptidase: SAXS Experiments and MD Simulations Reveal Extended Solution Structures That Account for Its Biochemical Properties. 2020 , 124, 5801-5812		1
130	Endocytosis, trafficking and exocytosis of intact full-length botulinum neurotoxin type a in cultured rat neurons. 2020 , 78, 80-87		2
129	Immunological characterisation and immunoprotective efficacy of functional domain antigens of botulinum neurotoxin serotype A. 2020 , 38, 2978-2983		2
128	Neuronal selectivity of botulinum neurotoxins. 2020 , 178, 20-32		7
127	Novel Native and Engineered Botulinum Neurotoxins. 2021 , 263, 63-89		5
126	Botulinum Neurotoxins: Mechanism of Action. 2021 , 263, 35-47		16
125	Analyses of the folding sites of irregular Erefoil fold proteins through sequence-based techniques and GEmodel simulations. 2020 , 21, 28		3

124	Chronic Pelvic Pain and Pelvic Dysfunctions. <i>Urodynamics, Neurourology and Pelvic Floor Dysfunctions</i> , 2021 ,	0.1	Ο
123	Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3. 2021, 296, 100684		О
122	Botulinum Toxin. 2021 , 389-392		
121	Harnessing the Membrane Translocation Properties of AB Toxins for Therapeutic Applications. <i>Toxins</i> , 2021 , 13,	4.9	3
120	Redirecting drug repositioning to discover innovative cosmeceuticals. 2021 , 30, 628-644		13
119	Re-engineering Botox. 2021 , 371, 782		1
118	Characterization of clostridium botulinum neurotoxin serotype A (BoNT/A) and fibroblast growth factor receptor interactions using novel receptor dimerization assay. <i>Scientific Reports</i> , 2021 , 11, 7832	4.9	1
117	Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HC/A). 2021 , 10, 196-207		1
116	Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. 2021 , 22,		1
115	A Rabbit Model for the Evaluation of Drugs for Treating the Chronic Phase of Botulism. <i>Toxins</i> , 2021 , 13,	4.9	О
114	Spectroscopic evidence of tetanus toxin translocation domain bilayer-induced refolding and insertion. 2021 , 120, 4763-4776		1
113	Botulinum neurotoxin inhibitor binding dynamics and kinetics relevant for drug design. 2021 , 1865, 129	933	2
112	Bacterial proteomics and its application for pathogenesis studies. 2021,		О
111	The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197. 2021 , 105, 1683-1692		
110	Introduction. 2021 , 1-14		
109	Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. <i>Toxins</i> , 2021 , 13,	4.9	15
108	Botulism.		2
107	Bacterial Toxins. 2006 , 893-955		1

106	Neurotoxigenic Clostridia. 2006 , 679-697		2
105	Prevention and Treatment of Botulism. 2014 , 291-342		1
104	The Botulinum Neurotoxin Complex and the Role of Ancillary Proteins. 2014 , 69-101		5
103	Translocation, Entry into the Cell. 2014 , 151-170		4
102	Protease Activity of the Botulinum Neurotoxins. 2014 , 171-189		2
101	CD4+ T cells specific for factor VIII as a target for specific suppression of inhibitor production. 2001 , 489, 119-34		17
100	Future Developments: Engineering the Neurotoxin. 2014 , 177-192		1
99	Botulinum Neurotoxin: Basic Facts, Physiology and Pharmacology. 2020 , 45-50		1
98	Clostridium Botulinum and C. perfringens in Vegetable Foods: Chemistry of Related Toxins. 2016 , 19-39		2
97	Progress in cell based assays for botulinum neurotoxin detection. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 364, 257-85	.3	49
96	Assembly and function of the botulinum neurotoxin progenitor complex. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 364, 21-44	.3	55
95	The elusive compass of clostridial neurotoxins: deciding when and where to go?. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 364, 91-113	.3	29
94	Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 364, 115-37	.3	22
93	Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 364, 139-57	.3	47
92	Structure and function of anthrax toxin. Current Topics in Microbiology and Immunology, 2002, 271, 61-853.	.3	68
91	Clostridial Neurotoxins. 2000 , 407-443		8
90	Progress in Cell Based Assays for Botulinum Neurotoxin Detection. <i>Current Topics in Microbiology and Immunology</i> , 2012 , 257-285	.3	7

(2015-2012)

88	Assembly and Function of the Botulinum Neurotoxin Progenitor Complex. <i>Current Topics in Microbiology and Immunology</i> , 2012 , 21-44	3.3	2
87	Biological warfare agents. 2010 , 559-578		6
86	Evolutionary Traits of Toxins. <i>Toxinology</i> , 2015 , 527-557	О	2
85	Evolutionary Traits of Toxins. 2014 , 1-27		1
84	Clostridium botulinum (Botulism). 2010 , 3097-3102		2
83	Attack of the nervous system by clostridial toxins: physical findings, cellular and molecular actions. 2006 , 348-389		11
82	Medical applications of botulinum neurotoxins. 2006 , 959-975		2
81	Improving vaccines, antimicrobials, and antitoxins through research. 2007 , 286-304		1
80	BAcTrace a new tool for retrograde tracing of neuronal circuits.		2
79	Characterization of clostridium botulinum neurotoxin serotype A (BoNT/A) and fibroblast growth factor receptor interactions using a novel receptor dimerization assay.		1
78	Clostridium *. 2011 , 834-857		10
77	Clostridium. 940-966		4
76	Clostridium botulinum. 441-463		5
75	Functional characterisation of tetanus and botulinum neurotoxins binding domains. 1999 , 112, 2715-27	24	124
74	Mucosal targeting of a BoNT/A subunit vaccine adjuvanted with a mast cell activator enhances induction of BoNT/A neutralizing antibodies in rabbits. 2011 , 6, e16532		33
73	Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain. 2012 , 7, e43845		14
72	Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. 2012 , 7, e49516		66
71	Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity. 2015 , 10, e0135306		12

70	The Translocation Domain of Botulinum Neurotoxin A Moderates the Propensity of the Catalytic Domain to Interact with Membranes at Acidic pH. 2016 , 11, e0153401		8
69	Cargo-delivery platforms for targeted delivery of inhibitor cargos against botulism. 2014 , 14, 2081-93		6
68	Botulinum neurotoxins: perspective on their existence and as polyproteins harboring viral proteases. 2006 , 52, 1-8		17
67	Pharmacology, immunology, and current developments. 2011 , 1-14		1
66	Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. <i>Toxins</i> , 2020 , 13,	4.9	5
65	Clostridium botulinum and the clinical laboratorian: a detailed review of botulism, including biological warfare ramifications of botulinum toxin. 2004 , 128, 653-62		52
64	Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. 2021, 9,		4
63	Pharmacological Countermeasures for Botulinum Intoxication*. 2000,		О
62	Neurotoxins.		
61	Clostridium botulinum. 2003,		1
60	Forensic Aspects of Biologic Toxins This work was partially supported by Department of Defense Contract DAMD-17-98-C-8030 and NIAID grants AI056493 and AI53389-01. 2005 , 131-156		
59	Pharmacology, Immunology and Current Developments. 2006 , 15-31		1
58	Botulinum Toxin: From Molecule to Clinic. 2006 , 343-354		
58 57	Botulinum Toxin: From Molecule to Clinic. 2006 , 343-354 Three-Dimensional Protein Structures of Light Chains of Botulinum Neurotoxin Serotypes A, B, and E and Tetanus Neurotoxin. 2006 , 33-60		
	Three-Dimensional Protein Structures of Light Chains of Botulinum Neurotoxin Serotypes A, B, and		
57	Three-Dimensional Protein Structures of Light Chains of Botulinum Neurotoxin Serotypes A, B, and E and Tetanus Neurotoxin. 2006 , 33-60 Mechanism of Action of Botulinum Neurotoxin and Overview of Medical Countermeasures for		
57 56	Three-Dimensional Protein Structures of Light Chains of Botulinum Neurotoxin Serotypes A, B, and E and Tetanus Neurotoxin. 2006 , 33-60 Mechanism of Action of Botulinum Neurotoxin and Overview of Medical Countermeasures for Intoxication. 2007 ,		

(2020-2012)

52	Synchronized Chaperone Function of Botulinum Neurotoxin Domains Mediates Light Chain Translocation into Neurons. <i>Current Topics in Microbiology and Immunology</i> , 2012 , 115-137	3.3	1
51	Study for the structures of the HA complexes produced by Clostridium botulinum type A mutant strain. 2012 , 124, 137-143		
50	BacterialLectinDb: An integrated bacterial lectin database. 2012, 8, 281-3		
49	Botulinum toxin: From molecule to clinic. 2012 , 399-412		
48	Bacterial Toxins. 2013 , 499-554		
47	Challenges in Developing Inhibitors Against Toxins. 2014 , 1-16		
46	Overview and History of Botulinum Neurotoxin Research. 2014 , 1-7		1
45	Neurotoxin Structure. 2014 , 103-127		
44	Basic Chemistry of Botulinum Neurotoxins Relevant to Vaccines, Diagnostics, and Countermeasures. 2014 , 1-33		
43	Neurotoxigenic Clostridia. 688-702		
42	Basic Chemistry of Botulinum Neurotoxins Relevant to Vaccines, Diagnostics, and Countermeasures. <i>Toxinology</i> , 2015 , 469-504	О	
41	Tetanus and Botulinum Neurotoxins. 2016 , 1-16		
40	Botoxology. 2017 , 1-28		1
39	Clostridium botulinum and the Most Poisonous Poison. 2017 , 553-601		O
38	Tetanus and Botulinum Neurotoxins. <i>Toxinology</i> , 2018 , 171-186	О	
37	Light Chain LC and TAT-EGFP-HCS of Botulinum Toxin Expression and Biological Function in vitro and in vivo. <i>Current Proteomics</i> , 2019 , 16, 175-180	0.7	
36	Molecular Structure and Mechanisms of Action of Botulinum Neurotoxins. 2020 , 15-26		
35	Resolving the Molecular Steps in Clostridial Neurotoxin Light Chain Translocation. 2020 , 1, 123-134		

34	Botulinum Toxin Type A and Its Possible Mechanisms on Wound Healing. <i>Modern Plastic Surgery</i> , 2020 , 10, 38-55	0.3	О
33	111111112020 , 24-42	0.1	
32	Neurotoxine botulique´: mEanismes molEulaires et cellulaires de son action sur le systEne nerveux. <i>Bulletin De Ly</i> Academie Nationale De Medecine, 2020 , 204, 369-378	0.1	
31	Structure-based drug discovery for botulinum neurotoxins. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 364, 197-218	3.3	2
30	Transforming the domain structure of botulinum neurotoxins into novel therapeutics. <i>Current Topics in Microbiology and Immunology</i> , 2013 , 364, 287-306	3.3	8
29	Botulinum Neurotoxins. 251-262		
28	Botulinum Toxin in Chronic Pelvic Pain Management. <i>Urodynamics, Neurourology and Pelvic Floor Dysfunctions</i> , 2021 , 217-229	0.1	
27	C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. <i>Biochemical Journal</i> , 2000 , 347 Pt 1, 199-204	3.8	20
26	Inhibition of catalytic activities of botulinum neurotoxin light chains of serotypes A, B and E by acetate, sulfate and calcium. <i>International Journal of Biochemistry and Molecular Biology</i> , 2012 , 3, 313-21	1 ^{0.4}	4
25	Production and characterization of recombinant light chain and carboxyterminal heavy chain fragments of tetanus toxin. <i>Avicenna Journal of Medical Biotechnology</i> , 2013 , 5, 220-6	1.4	О
24	Probing the structure and function of the protease domain of botulinum neurotoxins using single-domain antibodies <i>PLoS Pathogens</i> , 2022 , 18, e1010169	7.6	2
23	High Precision Use of Botulinum Toxin Type A (BONT-A) in Aesthetics Based on Muscle Atrophy, Is Muscular Architecture Reprogramming a Possibility? A Systematic Review of Literature on Muscle Atrophy after BoNT-A Injections <i>Toxins</i> , 2022 , 14,	4.9	О
22	Botulinum Toxin A: Practical Tips for Use in the Field of Aesthetic Medicine. 2022, 193-211		
21	Construction and validation of safe Clostridium botulinum Group II surrogate strain producing inactive botulinum neurotoxin type E toxoid <i>Scientific Reports</i> , 2022 , 12, 1790	4.9	2
20	Crystal Structures of Botulinum Neurotoxin Subtypes A4 and A5 Cell Binding Domains in Complex with Receptor Ganglioside <i>Toxins</i> , 2022 , 14,	4.9	2
19	Aggregates Sealed by Ions <i>Methods in Molecular Biology</i> , 2022 , 2340, 309-341	1.4	О
18	Functional EL-HN Fragment as a Potent Candidate Vaccine for the Prevention of Botulinum Neurotoxin Serotype E <i>Toxins</i> , 2022 , 14,	4.9	2
17	Microbial carbohydrate-binding toxins - From etiology to biotechnological application <i>Biotechnology Advances</i> , 2022 , 107951	17.8	1

CITATION REPORT

16	Serotype Features of 17 Suspected Cases of Foodborne Botulism in China 2019-2022 Revealed by a Multiplex Immuno-Endopep-MS Method <i>Frontiers in Microbiology</i> , 2022 , 13, 869874	5.7	
15	Structural Analysis of Botulinum Neurotoxins Type B and E by Cryo-EM <i>Toxins</i> , 2021 , 14,	4.9	O
14	Bacterial AB toxins and hostfhicrobe interactions. Advances in Microbial Physiology, 2022,	4.4	О
13	Identification of divergent botulinum neurotoxin homologs in Paeniclostridium ghonii.		O
12	In silico conformational features of botulinum toxins A1 and E1 according to the intraluminal acidification.		О
11	In Silico Conformational Features of Botulinum Toxins A1 and E1 According to Intraluminal Acidification. 2022 , 14, 644		O
10	Synthesizing the biochemical and semiconductor worlds: the future of nucleic acid nanotechnology. 2022 , 14, 15586-15595		О
9	Botulinum Neurotoxin Type A Directly Affects Sebocytes and Modulates Oleic Acid-Induced Lipogenesis. 2022 , 14, 708		Ο
8	The Light Chain Domain and Especially the C-Terminus of Receptor-Binding Domain of the Botulinum Neurotoxin (BoNT) Are the Hotspots for Amino Acid Variability and Toxin Type Diversity. 2022 , 13, 1915		О
7	How Botulinum Neurotoxin Light Chain A1 Maintains Stable Association with the Intracellular Neuronal Plasma Membrane. 2022 , 14, 814		O
6	Functional Deimmunization of Botulinum Neurotoxin Protease Domain via Computationally Driven Library Design and Ultrahigh-Throughput Screening.		O
5	A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes. 2023 , 15, 92		1
4	A DARPin Increases the Catalytic Activity of Botulinum Neurotoxin A1.		O
3	Detection of Harmful Microbes. 2023 , 453-491		O
2	Xeomin [®] , a Commercial Formulation of Botulinum Neurotoxin Type A, Promotes Regeneration in a Preclinical Model of Spinal Cord Injury. 2023 , 15, 248		О
1	New botulinum neurotoxin constructs for treatment of chronic pain. 2023, 6, e202201631		O