Synaptic activation of kainate receptors on hippocampa

Nature Neuroscience 1, 479-486 DOI: 10.1038/2194

Citation Report

#	Article	IF	CITATIONS
1	Interneurons and the ghost of the sea. Nature Neuroscience, 1998, 1, 434-436.	7.1	15
2	Ca2+ and synaptic plasticity. Cell Calcium, 1998, 24, 377-385.	1.1	54
3	Evidence for Endogenous Excitatory Amino Acids as Mediators in DSI of GABAAergic Transmission in Hippocampal CA1. Journal of Neurophysiology, 1999, 82, 2556-2564.	0.9	34
4	Generation and Analysis of GluR5(Q636R) Kainate Receptor Mutant Mice. Journal of Neuroscience, 1999, 19, 8757-8764.	1.7	68
5	Ethanol Inhibition of Synaptically Evoked Kainate Responses in Rat Hippocampal CA3 Pyramidal Neurons. Molecular Pharmacology, 1999, 56, 85-90.	1.0	56
6	Kainate Receptors Coupled to G _i /G _o Proteins in the Rat Hippocampus. Molecular Pharmacology, 1999, 56, 429-433.	1.0	44
7	Heteromeric Kainate Receptors Formed by the Coassembly of GluR5, GluR6, and GluR7. Journal of Neuroscience, 1999, 19, 8281-8291.	1.7	120
8	Synaptically released glutamate reduces gamma -aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9932-9937.	3.3	113
9	Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. Proceedings of the United States of America, 1999, 96, 12917-12922.	3.3	115
10	Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro. European Journal of Neuroscience, 1999, 11, 3468-3480.	1.2	50
11	Developmental and activity- dependent regulation of kainate receptors at thalamocortical synapses. Nature, 1999, 400, 569-573.	13.7	217
12	Distinct kainate receptor phenotypes in immature and mature mouse cerebellar granule cells. Journal of Physiology, 1999, 517, 51-58.	1.3	45
13	Kainate receptor pharmacology and physiology. Cellular and Molecular Life Sciences, 1999, 56, 558-566.	2.4	24
14	The active role of astrocytes in synaptic transmission. Cellular and Molecular Life Sciences, 1999, 56, 991-1000.	2.4	77
15	Kainate receptors: subunits, synaptic localization and function. Trends in Pharmacological Sciences, 1999, 20, 26-35.	4.0	250
16	GABAergic neurons and GABAA-receptors in temporal lobe epilepsy. Neurochemistry International, 1999, 34, 435-445.	1.9	143
17	Larger intercellular variation in (Q/R) editing of GluR6 than GluR5 revealed by single cell RT-PCR. NeuroReport, 2000, 11, 3577-3582.	0.6	7
18	Early loss of interneurons and delayed subunit-specific changes in GABAA-receptor expression in a mouse model of mesial temporal lobe epilepsy. Hippocampus, 2000, 10, 305-324.	0.9	178

#	Article	IF	CITATIONS
19	lonotropic glutamate receptor modulation preferentially affects NMDA receptor expression in rat hippocampus. Synapse, 2000, 38, 294-304.	0.6	12
20	Glutamate Receptor Activation in the Kindled Dentate Gyrus. Epilepsia, 2000, 41, S100-S103.	2.6	13
21	Acute Effects of Ethanol on Kainate Receptors in Cultured Hippocampal Neurons. Alcoholism: Clinical and Experimental Research, 2000, 24, 220-225.	1.4	51
22	Kainate receptorâ€mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. Journal of Physiology, 2000, 523, 653-665.	1.3	163
23	Synaptic kainate receptors. Current Opinion in Neurobiology, 2000, 10, 342-351.	2.0	164
24	Identification of the Kainate Receptor Subunits Underlying Modulation of Excitatory Synaptic Transmission in the CA3 Region of the Hippocampus. Journal of Neuroscience, 2000, 20, 8269-8278.	1.7	162
25	Short-Term Potentiation of Miniature Excitatory Synaptic Currents Causes Excitation of Supraoptic Neurons. Journal of Neurophysiology, 2000, 83, 2542-2553.	0.9	63
26	Permanent Reduction of Seizure Threshold in Post-Ischemic CA3 Pyramidal Neurons. Journal of Neurophysiology, 2000, 83, 2040-2046.	0.9	39
27	Functional GluR6 Kainate Receptors in the Striatum: Indirect Downregulation of Synaptic Transmission. Journal of Neuroscience, 2000, 20, 2175-2182.	1.7	88
28	NMDA-Dependent Modulation of Hippocampal Kainate Receptors by Calcineurin and Ca ²⁺ /Calmodulin-Dependent Protein Kinase. Journal of Neuroscience, 2000, 20, 2766-2773.	1.7	46
29	GluR5 and GluR6 Kainate Receptor Subunits Coexist in Hippocampal Neurons and Coassemble to Form Functional Receptors. Journal of Neuroscience, 2000, 20, 196-205.	1.7	179
30	Classification of fusiform neocortical interneurons based on unsupervised clustering. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6144-6149.	3.3	286
31	Kainate receptor-mediated synaptic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6838-6843.	3.3	92
32	Ionotropic Glutamate Receptor Binding and Subunit mRNA Expression in Thalamic Nuclei in Schizophrenia. American Journal of Psychiatry, 2000, 157, 1811-1823.	4.0	219
33	Chapter IV AMPA, kainate and NMDA ionotropic glutamate receptor expression—an in situ hybridization atlas. Handbook of Chemical Neuroanatomy, 2000, , 99-143.	0.3	9
34	Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3631-3636.	3.3	121
35	Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1293-1298.	3.3	148
36	A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites. Neuroscience, 2000, 101, 337-348.	1.1	51

#	Article	IF	CITATIONS
37	Kainate receptor-mediated activation of the AP-1 transcription factor complex in cultured rat cerebellar granule cells. Brain Research Bulletin, 2000, 52, 127-133.	1.4	10
38	Kainate, a double agent that generates seizures: two decades of progress. Trends in Neurosciences, 2000, 23, 580-587.	4.2	601
39	Nucleus-specific expression of ionotropic glutamate receptor subunit mRNAs and binding sites in primate thalamus. Molecular Brain Research, 2000, 79, 1-17.	2.5	37
40	Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses. Neuron, 2000, 27, 327-338.	3.8	195
41	Subunit Composition of Kainate Receptors in Hippocampal Interneurons. Neuron, 2000, 28, 475-484.	3.8	194
42	Modulation of GABAergic Signaling among Interneurons by Metabotropic Glutamate Receptors. Neuron, 2000, 25, 663-672.	3.8	170
43	Developmental regulation of AMPA-receptor properties in CA1 pyramidal neurons of rat hippocampus. Neuropharmacology, 2000, 39, 931-942.	2.0	27
44	Pharmacology of AMPA/Kainate Receptor Ligands and Their Therapeutic Potential in Neurological and Psychiatric Disorders. Drugs, 2000, 59, 33-78.	4.9	119
45	Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels. Journal of the Autonomic Nervous System, 2000, 81, 110-121.	1.9	67
46	Ligands for Glutamate Receptors:  Design and Therapeutic Prospects. Journal of Medicinal Chemistry, 2000, 43, 2609-2645.	2.9	520
47	Long-term depression: a cascade of induction and expression mechanisms. Progress in Neurobiology, 2001, 65, 339-365.	2.8	224
48	Kainate Receptors Are Involved in Short- and Long-Term Plasticity at Mossy Fiber Synapses in the Hippocampus. Neuron, 2001, 29, 209-216.	3.8	297
49	Presynaptic Kainate Receptors that Enhance the Release of GABA on CA1 Hippocampal Interneurons. Neuron, 2001, 29, 497-508.	3.8	147
50	A Kainate Receptor Increases the Efficacy of GABAergic Synapses. Neuron, 2001, 30, 503-513.	3.8	117
51	Direct Presynaptic Regulation of GABA/Glycine Release by Kainate Receptors in the Dorsal Horn. Neuron, 2001, 32, 477-488.	3.8	116
52	Regulation of spontaneous inhibitory synaptic transmission by endogenous glutamate via non-NMDA receptors in cultured rat hippocampal neurons. Neuropharmacology, 2001, 40, 737-748.	2.0	22
53	Kainate receptors at corticothalamic synapses do not contribute to synaptic responses. Thalamus & Related Systems, 2001, 1, 187-196.	0.5	0
54	Molecular Physiology of Kainate Receptors. Physiological Reviews, 2001, 81, 971-998.	13.1	276

#	Article	IF	CITATIONS
55	Electrophysiological Characterization of "Giant―Cells in Stratum Radiatum of the CA3 Hippocampal Region. Journal of Neurophysiology, 2001, 85, 1998-2007.	0.9	8
56	Kainate Receptors Depress Excitatory Synaptic Transmission at CA3→CA1 Synapses in the Hippocampus via a Direct Presynaptic Action. Journal of Neuroscience, 2001, 21, 2958-2966.	1.7	146
57	Cholinergic Modulation of Excitatory Synaptic Transmission in the CA3 Area of the Hippocampus. Journal of Neuroscience, 2001, 21, 75-83.	1.7	133
58	Kinetics and Activation of Postsynaptic Kainate Receptors at Thalamocortical Synapses: Role of Glutamate Clearance. Journal of Neurophysiology, 2001, 86, 1139-1148.	0.9	52
59	Synaptically Activated Calcium Responses in Dendrites of Hippocampal Oriens-Alveus Interneurons. Journal of Neurophysiology, 2001, 85, 1603-1613.	0.9	9
60	Kindling Induces Transient NMDA Receptor–Mediated Facilitation of High-Frequency Input in the Rat Dentate Gyrus. Journal of Neurophysiology, 2001, 85, 2195-2202.	0.9	35
61	Presynaptic Kainate Receptors Regulate Spinal Sensory Transmission. Journal of Neuroscience, 2001, 21, 59-66.	1.7	148
62	Kainate Receptors Regulate Unitary IPSCs Elicited in Pyramidal Cells by Fast-Spiking Interneurons in the Neocortex. Journal of Neuroscience, 2001, 21, 2992-2999.	1.7	84
63	Maturation of channels and receptors: Consequences for excitability. International Review of Neurobiology, 2001, 45, 43-87.	0.9	14
64	Kainate receptor-dependent axonal depolarization and action potential initiation in interneurons. Nature Neuroscience, 2001, 4, 718-723.	7.1	142
65	Interneurons unbound. Nature Reviews Neuroscience, 2001, 2, 11-23.	4.9	585
66	In vivo, the direct and seizure-induced neuronal cytotoxicity of kainate and AMPA is modified by the non-competitive antagonist, GYKI 52466. Brain Research, 2001, 890, 66-77.	1.1	8
67	Characterization of the Rat GRIK5 Kainate Receptor Subunit Gene Promoter and Its Intragenic Regions Involved in Neural Cell Specificity. Journal of Biological Chemistry, 2001, 276, 42162-42171.	1.6	13
68	Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Progress in Brain Research, 2001, 132, 255-265.	0.9	91
69	Ethanol Antagonizes Kainate Receptor-Mediated Inhibition of Evoked GABAA Inhibitory Postsynaptic Currents in the Rat Hippocampal CA1 Region. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 937-944.	1.3	34
70	Characterisation of the effects of ATPA, a GLUK5 receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices. Neuropharmacology, 2002, 42, 889-902.	2.0	42
71	Modulation of spinal nociception by GluR5 kainate receptor ligands in acute and hyperalgesic states and the role of gabaergic mechanisms. Neuropharmacology, 2002, 43, 327-339.	2.0	8
72	Complex effects of CNQX on CA1 interneurons of the developing rat hippocampus. Neuropharmacology, 2002, 43, 523-529.	2.0	29

#	Article	IF	CITATIONS
73	Metabotropic-Mediated Kainate Receptor Regulation of IsAHP and Excitability in Pyramidal Cells. Neuron, 2002, 34, 107-114.	3.8	195
74	Quantal Release of Glutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons. Neuron, 2002, 35, 147-159.	3.8	137
75	AMPA Receptors and Kainate Receptors Encode Different Features of Afferent Activity. Journal of Neuroscience, 2002, 22, 7434-7443.	1.7	88
76	Functional Stoichiometry of Glutamate Receptor Desensitization. Journal of Neuroscience, 2002, 22, 3392-3403.	1.7	76
77	Distally Directed Dendrotoxicity Induced by Kainic Acid in Hippocampal Interneurons of Green Fluorescent Protein-Expressing Transgenic Mice. Journal of Neuroscience, 2002, 22, 8052-8062.	1.7	52
78	Functional Characterization of Kainate Receptors in the Rat Nucleus Accumbens Core Region. Journal of Neurophysiology, 2002, 88, 41-48.	0.9	18
79	Paradoxical Anti-Epileptic Effects of a GluR5 Agonist of Kainate Receptors. Journal of Neurophysiology, 2002, 88, 523-527.	0.9	62
80	Glutamate-receptor-induced modulation of GABAergic synaptic transmission in the hippocampus. Pflugers Archiv European Journal of Physiology, 2002, 444, 26-37.	1.3	24
81	Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. Journal of Neurochemistry, 2002, 81, 1196-1211.	2.1	247
82	Glutamatergic Modulation of GABAergic Signaling Among Hippocampal Interneurons: Novel Mechanisms Regulating Hippocampal Excitability. Epilepsia, 2002, 43, 174-178.	2.6	59
83	Kindling enhances kainate receptor-mediated depression of GABAergic inhibition in rat granule cells. European Journal of Neuroscience, 2002, 16, 861-867.	1.2	19
84	Antagonists of GLUK5-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nature Neuroscience, 2002, 5, 796-804.	7.1	143
85	Presynaptic modulation controlling neuronal excitability and epileptogenesis: role of kainate, adenosine and neuropeptide Y receptors. Neurochemical Research, 2003, 28, 1501-1515.	1.6	43
86	Neurobiology of glutamatergic abnormalities in schizophrenia. Clinical Neuroscience Research, 2003, 3, 67-76.	0.8	12
87	Involvement of post-synaptic kainate receptors during synaptic transmission between unitary connections in rat neocortex. European Journal of Neuroscience, 2003, 17, 2344-2350.	1.2	45
88	Action of tachykinins in the rat hippocampus: modulation of inhibitory synaptic transmission. European Journal of Neuroscience, 2003, 17, 2639-2647.	1.2	32
89	Roles and rules of kainate receptors in synaptic transmission. Nature Reviews Neuroscience, 2003, 4, 481-495.	4.9	314
90	Channel-Opening Kinetics of GluR6 Kainate Receptorâ€. Biochemistry, 2003, 42, 12367-12375.	1.2	38

	Сітат	CITATION REPORT	
#	Article	IF	Citations
91	Kainate receptors and synaptic transmission. Progress in Neurobiology, 2003, 70, 387-407.	2.8	240
92	Sex differences in response to kainic acid and estradiol in the hippocampus of newborn rats. Neuroscience, 2003, 116, 383-391.	1.1	51
93	Noncanonical Signaling by Ionotropic Kainate Receptors. Neuron, 2003, 39, 543-553.	3.8	143
94	Glutamatergic Calcium Responses in the Developing Lateral Superior Olive: Receptor Types and Their Specific Activation by Synaptic Activity Patterns. Journal of Neurophysiology, 2003, 90, 2581-2591.	0.9	38
95	Alcohol potently inhibits the kainate receptor-dependent excitatory drive of hippocampal interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6813-6818.	3.3	89
96	Bidirectional Modulation of GABA Release by Presynaptic Glutamate Receptor 5 Kainate Receptors in the Basolateral Amygdala. Journal of Neuroscience, 2003, 23, 442-452.	1.7	107
97	Spontaneous Synaptic Activity Is Primarily GABAergic in Vestibular Nucleus Neurons of the Chick Embryo. Journal of Neurophysiology, 2003, 90, 1182-1192.	0.9	22
98	Presynaptic Inactivation of Action Potentials and Postsynaptic Inhibition of GABAA Currents Contribute to KA-Induced Disinhibition in CA1 Pyramidal Neurons. Journal of Neurophysiology, 2004, 92, 873-882.	0.9	14
99	Molecular Mechanisms Underlying Specificity of Excitotoxic Signaling in Neurons. Current Molecular Medicine, 2004, 4, 137-147.	0.6	118
100	When astrocytes signal, kainate receptors respond. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2649-2650.	3.3	25
101	Attenuated Plasticity of Postsynaptic Kainate Receptors in Hippocampal CA3 Pyramidal Neurons. Journal of Neuroscience, 2004, 24, 6228-6236.	1.7	22
102	Hippocampal Long-Term Potentiation Suppressed by Increased Inhibition in the Ts65Dn Mouse, a Genetic Model of Down Syndrome. Journal of Neuroscience, 2004, 24, 8153-8160.	c 1.7	427
103	Distinct Roles for the Kainate Receptor Subunits GluR5 and GluR6 in Kainate-Induced Hippocampal Gamma Oscillations. Journal of Neuroscience, 2004, 24, 9658-9668.	1.7	215
104	From The Cover: Astrocyte-mediated activation of neuronal kainate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3172-3177.	3.3	200
105	Translamellar Disinhibition in the Rat Hippocampal Dentate Cyrus after Seizure-Induced Degeneration of Vulnerable Hilar Neurons. Journal of Neuroscience, 2004, 24, 853-864.	1.7	80
106	A Mosaic of Functional Kainate Receptors in Hippocampal Interneurons. Journal of Neuroscience, 2004, 24, 8986-8993.	1.7	116
107	Kainate receptor trafficking: physiological roles and molecular mechanisms. , 2004, 104, 163-172.		40
108	The Effects of Activation of Kainate Receptors on Tonic and Phasic Gabaergic Inhibition in Interneurons in Field Ca1 of Guinea Pig Hippocampus Slices. Neuroscience and Behavioral Physiology, 2004, 34, 123-130.	0.2	2

# 109	ARTICLE Neurogranin is expressed by principal cells but not interneurons in the rodent and monkey neocortex and hippocampus. Journal of Comparative Neurology, 2004, 479, 30-42.	IF 0.9	CITATIONS
110	Synaptic structural abnormalities in the Ts65Dn mouse model of down syndrome. Journal of Comparative Neurology, 2004, 480, 281-298.	0.9	286
111	Expression of functional kainate and AMPA receptors in developing lateral superior olive neurons of the rat. Journal of Neurobiology, 2004, 59, 272-288.	3.7	10
112	Molecular Biology and Ontogeny of Glutamate Receptors in the Mammalian Central Nervous System. Journal of Child Neurology, 2004, 19, 343-360.	0.7	93
113	Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons. Trends in Neurosciences, 2004, 27, 30-40.	4.2	232
114	Characterisation of the effects of ATPA, a GLUK5 kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices. Neuropharmacology, 2004, 47, 363-372.	2.0	22
115	Presynaptic ionotropic receptors and control of transmitter release. Nature Reviews Neuroscience, 2004, 5, 135-145.	4.9	209
116	Short-term Effects of Kainic Acid on CA1 Hippocampal Interneurons Differentially Vulnerable to Excitotoxicity. Epilepsia, 2005, 46, 837-848.	2.6	24
117	Nicotine-induced switch in the nicotinic cholinergic mechanisms of facilitation of long-term potentiation induction. European Journal of Neuroscience, 2005, 22, 845-860.	1.2	56
118	Profound regulation of neonatal CA1 rat hippocampal GABAergic transmission by functionally distinct kainate receptor populations. Journal of Physiology, 2005, 567, 131-142.	1.3	49
119	Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neuroscience and Behavioral Physiology, 2005, 35, 253-266.	0.2	34
120	Kainate Receptor-Mediated Synaptic Transmission in the Adult Anterior Cingulate Cortex. Journal of Neurophysiology, 2005, 94, 1805-1813.	0.9	87
121	Propofol-Block of SK Channels in Reticular Thalamic Neurons Enhances GABAergic Inhibition in Relay Neurons. Journal of Neurophysiology, 2005, 93, 1935-1948.	0.9	44
122	Developmental Changes in AMPA and Kainate Receptor-Mediated Quantal Transmission at Thalamocortical Synapses in the Barrel Cortex. Journal of Neuroscience, 2005, 25, 5259-5271.	1.7	44
123	Recurrent Mossy Fibers Establish Aberrant Kainate Receptor-Operated Synapses on Granule Cells from Epileptic Rats. Journal of Neuroscience, 2005, 25, 8229-8239.	1.7	123
124	Endogenous Activation of Kainate Receptors Regulates Glutamate Release and Network Activity in the Developing Hippocampus. Journal of Neuroscience, 2005, 25, 4473-4484.	1.7	105
125	Nootropic Agents Enhance the Recruitment of Fast GABAA Inhibition in Rat Neocortex. Cerebral Cortex, 2005, 15, 921-928.	1.6	9
126	Subcellular localization and trafficking of kainate receptors. Trends in Pharmacological Sciences, 2005, 26, 20-26.	4.0	100

#	Article	IF	CITATIONS
127	Kainate receptors and rhythmic activity in neuronal networks: hippocampal gamma oscillations as a tool. Journal of Physiology, 2005, 562, 65-72.	1.3	72
128	Cortical Glutamatergic Markers in Schizophrenia. Neuropsychopharmacology, 2005, 30, 1521-1531.	2.8	61
129	Disrupting Protein-Protein Interaction: Therapeutic Tools Against Brain Damage. , 2005, , 255-289.		0
130	Presynaptic Regulation of the Inhibitory Transmission by GluR5-Containing Kainate Receptors in Spinal Substantia Gelatinosa. Molecular Pain, 2006, 2, 1744-8069-2-29.	1.0	22
131	Kainate receptor physiology. Current Opinion in Pharmacology, 2006, 6, 89-97.	1.7	185
132	A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations. Neuropharmacology, 2006, 50, 47-56.	2.0	21
133	Presynaptic inhibition by kainate receptors converges mechanistically with presynaptic inhibition by adenosine and GABAB receptors. Neuropharmacology, 2006, 51, 1030-1037.	2.0	22
134	Kainate Receptor–Mediated Inhibition of Glutamate Release Involves Protein Kinase A in the Mouse Hippocampus. Journal of Neurophysiology, 2006, 96, 1829-1837.	0.9	44
135	Variable Kainate Receptor Distributions of Oriens Interneurons. Journal of Neurophysiology, 2006, 96, 1683-1689.	0.9	11
136	Localization and function of pre- and postsynaptic kainate receptors in the rat globus pallidus. European Journal of Neuroscience, 2006, 23, 374-386.	1.2	30
137	Influence of agonist concentration on AMPA and kainate channels in CA1 pyramidal cells in rat hippocampal slices. Journal of Physiology, 2006, 573, 371-394.	1.3	29
138	Kainate receptors. Cell and Tissue Research, 2006, 326, 457-482.	1.5	230
139	Kainate receptor activation potentiates GABAergic synaptic transmission in the nucleus accumbens core. Brain Research, 2006, 1088, 73-82.	1.1	3
140	Presynaptic Kainate Receptor Activation Is a Novel Mechanism for Target Cell-Specific Short-Term Facilitation at Schaffer Collateral Synapses. Journal of Neuroscience, 2006, 26, 10796-10807.	1.7	49
141	Kainate Receptors and Pain: From Dorsal Root Ganglion to the Anterior Cingulate Cortex. Current Pharmaceutical Design, 2007, 13, 1597-1605.	0.9	42
142	FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Human Molecular Genetics, 2007, 16, 640-650.	1.4	145
143	Synaptic Kainate Receptors Tune Oriens-Lacunosum Moleculare Interneurons to Operate at Theta Frequency. Journal of Neuroscience, 2007, 27, 9560-9572.	1.7	76
144	Kainate receptors with a metabotropic modus operandi. Trends in Neurosciences, 2007, 30, 630-637.	4.2	93

#	Article	IF	CITATIONS
145	Pre- and postsynaptic effects of kainate on layer II/III pyramidal cells in rat neocortex. Neuropharmacology, 2007, 53, 37-47.	2.0	37
146	Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. Neuroscience, 2007, 146, 1000-1012.	1.1	15
147	Genetic and pharmacological studies of GluR5 modulation of inhibitory synaptic transmission in the anterior cingulate cortex of adult mice. Developmental Neurobiology, 2007, 67, 146-157.	1.5	35
148	Synaptic kainate currents reset interneuron firing phase. Journal of Physiology, 2007, 578, 259-273.	1.3	19
149	Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. Journal of Physiology, 2007, 581, 241-254.	1.3	134
150	PKC-dependent autoregulation of membrane kainate receptors. EMBO Journal, 2007, 26, 4359-4367.	3.5	44
151	Metabotropic actions of kainate receptors in the CNS. Journal of Neurochemistry, 2007, 103, 2121-2135.	2.1	52
152	Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by Group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. Journal of Neural Transmission, 2007, 114, 1425-1431.	1.4	39
153	Roles of distinct glutamate receptors in induction of antiâ€Hebbian longâ€ŧerm potentiation. Journal of Physiology, 2008, 586, 1481-1486.	1.3	40
154	Kainate Receptors. , 2008, , 99-158.		4
154 155		3.8	4
	Kainate Receptors. , 2008, , 99-158.	3.8 2.0	
155	 Kainate Receptors. , 2008, , 99-158. Role of Clutamate Autoreceptors at Hippocampal Mossy Fiber Synapses. Neuron, 2008, 60, 1082-1094. Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC 		68
155 156	Kainate Receptors. , 2008, , 99-158. Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses. Neuron, 2008, 60, 1082-1094. Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC facilitation in rat neocortex. Neuropharmacology, 2008, 55, 106-116. No genetic association between polymorphisms in the kainate-type glutamate receptor gene, GRIK4, and schizophrenia in the Chinese population. Progress in Neuro-Psychopharmacology and Biological	2.0	68 31
155 156 157	 Kainate Receptors. , 2008, , 99-158. Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses. Neuron, 2008, 60, 1082-1094. Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC facilitation in rat neocortex. Neuropharmacology, 2008, 55, 106-116. No genetic association between polymorphisms in the kainate-type glutamate receptor gene, GRIK4, and schizophrenia in the Chinese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 876-880. Temporal Profile of Clinical Signs and Histopathologic Changes in an F-344 Rat Model of Kainic 	2.0 2.5	68 31 8
155 156 157 158	Kainate Receptors., 2008, 99-158. Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses. Neuron, 2008, 60, 1082-1094. Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC facilitation in rat neocortex. Neuropharmacology, 2008, 55, 106-116. No genetic association between polymorphisms in the kainate-type glutamate receptor gene, GRIK4, and schizophrenia in the Chinese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 876-880. Temporal Profile of Clinical Signs and Histopathologic Changes in an F-344 Rat Model of Kainic Acidà€"induced Mesial Temporal Lobe Epilepsy. Toxicologic Pathology, 2008, 36, 932-943. Subunit-Dependent Postsynaptic Expression of Kainate Receptors on Hippocampal Interneurons in Area	2.0 2.5 0.9	68 31 8 32
155 156 157 158	Kainate Receptors., 2008, 99-158. Role of Glutamate Autoreceptors at Hippocampal Mossy Fiber Synapses. Neuron, 2008, 60, 1082-1094. Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC facilitation in rat neocortex. Neuropharmacology, 2008, 55, 106-116. No genetic association between polymorphisms in the kainate-type glutamate receptor gene, GRIK4, and schizophrenia in the Chinese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 876-880. Temporal Profile of Clinical Signs and Histopathologic Changes in an F-344 Rat Model of Kainic Acidà€"Induced Mesial Temporal Lobe Epilepsy. Toxicologic Pathology, 2008, 36, 932-943. Subunit-Dependent Postsynaptic Expression of Kainate Receptors on Hippocampal Interneurons in Area CA1. Journal of Neuroscience, 2009, 29, 563-574. Role of Ionotropic Glutamate Receptors in Long-Term Potentiation in Rat Hippocampal CA1	2.0 2.5 0.9 1.7	 68 31 8 32 29

#	Article	IF	CITATIONS
163	Ageâ€dependent enhancement of inhibitory synaptic transmission in CA1 pyramidal neurons via GluR5 kainate receptors. Hippocampus, 2009, 19, 706-717.	0.9	12
164	Distinct modes of modulation of GABAergic transmission by Group I metabotropic glutamate receptors in rat entorhinal cortex. Hippocampus, 2010, 20, 980-993.	0.9	10
165	α2 Nicotine receptors function as a molecular switch to continuously excite a subset of interneurons in rat hippocampal circuits. European Journal of Neuroscience, 2009, 29, 1588-1603.	1.2	36
166	A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors. Neuron, 2009, 61, 385-396.	3.8	194
167	The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology, 2009, 56, 6-21.	2.0	138
168	Kainate receptors: Pharmacology, function and therapeutic potential. Neuropharmacology, 2009, 56, 90-113.	2.0	242
169	Kainate receptors in epilepsy and excitotoxicity. Neuroscience, 2009, 158, 309-323.	1.1	183
170	Postnatal change of CluR5 kainate receptor expression in the substantia gelatinosa neuron of the trigeminal subnucleus caudalis in mice. Brain Research, 2010, 1346, 52-61.	1.1	7
171	Synaptic drive at developing synapses: Transient upregulation of kainate receptors. Developmental Neurobiology, 2010, 70, 737-750.	1.5	7
172	Subunit-specific desensitization of heteromeric kainate receptors. Journal of Physiology, 2010, 588, 683-700.	1.3	36
173	Synaptic activation of kainate receptors gates presynaptic CB1 signaling at GABAergic synapses. Nature Neuroscience, 2010, 13, 197-204.	7.1	62
174	Glia-Dependent Switch of Kainate Receptor Presynaptic Action. Journal of Neuroscience, 2010, 30, 985-995.	1.7	33
175	Kainate Receptor–Induced Ectopic Spiking of CA3 Pyramidal Neurons Initiates Network Bursts in Neonatal Hippocampus. Journal of Neurophysiology, 2010, 104, 1696-1706.	0.9	13
176	A Selective Interplay between Aberrant EPSPKA and INaP Reduces Spike Timing Precision in Dentate Granule Cells of Epileptic Rats. Cerebral Cortex, 2010, 20, 898-911.	1.6	33
177	Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 2010, 62, 405-496.	7.1	2,973
178	Estimating the Synaptic Current in a Multiconductance AMPA Receptor Model. Biophysical Journal, 2011, 101, 781-792.	0.2	18
180	Metabotropic Actions of Kainate Receptors in the Regulation of IsAHP and Excitability in CA1 Pyramidal Cells. Advances in Experimental Medicine and Biology, 2011, 717, 49-58.	0.8	12
181	Kainate Receptors with a Metabotropic Signature Enhance Hippocampal Excitability by Regulating the Slow After-Hyperpolarization in CA3 Pyramidal Neurons. Advances in Experimental Medicine and Biology, 2011, 717, 59-68.	0.8	4

#	Article	IF	CITATIONS
182	Acidosis leads to brain dysfunctions through impairing cortical GABAergic neurons. Biochemical and Biophysical Research Communications, 2011, 410, 775-779.	1.0	12
183	Acidosis leads to neurological disorders through overexciting cortical pyramidal neurons. Biochemical and Biophysical Research Communications, 2011, 415, 224-228.	1.0	11
184	Kainate receptors coming of age: milestones of two decades of research. Trends in Neurosciences, 2011, 34, 154-163.	4.2	241
185	Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1. Nature Neuroscience, 2011, 14, 866-873.	7.1	111
186	Synaptic Targeting and Functional Modulation of GluK1 Kainate Receptors by the Auxiliary Neuropilin and Tolloid-Like (NETO) Proteins. Journal of Neuroscience, 2011, 31, 7334-7340.	1.7	82
187	Neto1 Is an Auxiliary Subunit of Native Synaptic Kainate Receptors. Journal of Neuroscience, 2011, 31, 10009-10018.	1.7	78
188	Pharmacological Activation of Kainate Receptors Drives Endocannabinoid Mobilization. Journal of Neuroscience, 2011, 31, 3243-3248.	1.7	44
189	NMDA receptor activation enhances inhibitory GABAergic transmission onto hippocampal pyramidal neurons via presynaptic and postsynaptic mechanisms. Journal of Neurophysiology, 2011, 105, 2897-2906.	0.9	59
190	Neto1 and Neto2: auxiliary subunits that determine key properties of native kainate receptors. Journal of Physiology, 2012, 590, 2217-2223.	1.3	57
191	Synaptic Kainate Receptors in CA1 Interneurons Gate the Threshold of Theta-Frequency-Induced Long-Term Potentiation. Journal of Neuroscience, 2012, 32, 18215-18226.	1.7	13
192	Kainate receptor-mediated synaptic transmissions in the adult rodent insular cortex. Journal of Neurophysiology, 2012, 108, 1988-1998.	0.9	24
193	Channel-Opening Kinetic Mechanism of Wild-Type GluK1 Kainate Receptors and a C-Terminal Mutant. Biochemistry, 2012, 51, 761-768.	1.2	9
194	Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nature Reviews Neuroscience, 2012, 13, 675-686.	4.9	81
195	Alkalosis leads to the over-activity of cortical principal neurons. Neuroscience Letters, 2012, 525, 117-122.	1.0	10
196	An impairment of cortical GABAergic neurons is involved in alkalosis-induced brain dysfunctions. Biochemical and Biophysical Research Communications, 2012, 419, 627-631.	1.0	7
197	Kainate Receptor-Mediated Modulation of Hippocampal Fast Spiking Interneurons in a Rat Model of Schizophrenia. PLoS ONE, 2012, 7, e32483.	1.1	11
198	Metabotropic signaling by kainate receptors. Environmental Sciences Europe, 2012, 1, 399-410.	2.6	10
199	Dendritic calcium mechanisms and longâ€ŧerm potentiation in cortical inhibitory interneurons. European Journal of Neuroscience, 2012, 35, 496-506.	1.2	21

ARTICLE IF CITATIONS # GluK1 inhibits calcium dependent and independent transmitter release at associational/commissural 200 0.9 8 synapses in area CA3 of the hippocampus. Hippocampus, 2012, 22, 57-68. Kainate Receptors in Health and Disease. Neuron, 2013, 80, 292-311. 3.8 234 202 Kainate receptors in epilepsy. Environmental Sciences Europe, 2013, 2, 75-83. 2.6 0 Homeostatic Control of Synaptic Transmission by Distinct Glutamate Receptors. Neuron, 2013, 78, 687-699. Kainate Induces Mobilization of Synaptic Vesicles at the Growth Cone through the Activation of 204 1.6 17 Protein Kinase A. Cerebral Cortex, 2013, 23, 531-541. Selective Block of Postsynaptic Kainate Receptors Reveals Their Function at Hippocampal Mossy Fiber 1.6 Synapses. Cerebral Cortex, 2013, 23, 323-331. Contributions of different kainate receptor subunits to the properties of recombinant homomeric 206 1.1 28 and heteromeric receptors. Neuroscience, 2014, 278, 70-80. Kainate receptors in the hippocampus. European Journal of Neuroscience, 2014, 39, 1835-1844. 1.2 Contribution of Aberrant GluK2-Containing Kainate Receptors to Chronic Seizures in Temporal Lobe 208 2.9 58 Epilepsy. Cell Reports, 2014, 8, 347-354. Different AMPA receptor subtypes mediate the distinct kinetic components of a biphasic EPSC in 209 1.3 hippocampal interneurons. Frontiers in Synaptic Neuroscience, 2015, 7, 7. Molecular alterations in areas generating fast ripples in an animal model of temporal lobe epilepsy. 210 2.1 14 Neurobiology of Disease, 2015, 78, 35-44. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors. 1.1 Neuroscience, 2015, 298, 448-454. Physiopathology of kainate receptors in epilepsy. Current Opinion in Pharmacology, 2015, 20, 83-88. 212 1.7 69 Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. Journal of Physiology, 2016, 594, 5471-5490. 1.3 Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. 214 3.3 162 Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5222-31. Non-canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels. Neuron, 2016, 92, 316-329. 83 Synaptic Targeting of Kainate Receptors. Cerebral Cortex, 2016, 26, 1464-1472. 216 1.6 30 Hippocampal GABAergic Inhibitory Interneurons. Physiological Reviews, 2017, 97, 1619-1747. 13.1 601

#	Article	IF	CITATIONS
218	Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. Journal of Comparative Neurology, 2017, 525, 976-1033.	0.9	39
219	Inhibition of spontaneous synchronous activity of hippocampal neurons by excitation of GABAergic neurons. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2017, 11, 261-274.	0.3	6
220	Antiepileptic and Neuroprotective Effects of Oleamide in Rat Striatum on Kainate-Induced Behavioral Seizure and Excitotoxic Damage via Calpain Inhibition. Frontiers in Pharmacology, 2017, 8, 817.	1.6	22
221	Interneuron synaptopathy in developing rat cortex induced by the pro-inflammatory cytokine LIF. Experimental Neurology, 2018, 302, 169-180.	2.0	11
222	Synaptic Integration in Cortical Inhibitory Neuron Dendrites. Neuroscience, 2018, 368, 115-131.	1.1	18
223	Cell Type-Specific Activity During Hippocampal Network Oscillations In Vitro. Springer Series in Computational Neuroscience, 2018, , 327-364.	0.3	0
224	Kainate Receptors Play a Role in Modulating Synaptic Transmission in the Olfactory Bulb. Neuroscience, 2018, 391, 25-49.	1.1	6
225	Kainate Receptors: Role in Epilepsy. Frontiers in Molecular Neuroscience, 2018, 11, 217.	1.4	55
226	The Role of Kainate Receptors in the Pathophysiology of Hypoxia-Induced Seizures in the Neonatal Mouse. Scientific Reports, 2018, 8, 7035.	1.6	21
227	NETO1 Regulates Postsynaptic Kainate Receptors in CA3 Interneurons During Circuit Maturation. Molecular Neurobiology, 2019, 56, 7473-7489.	1.9	6
228	Development of Cortical Pyramidal Cell and Interneuronal Dendrites: a Role for Kainate Receptor Subunits and NETO1. Molecular Neurobiology, 2019, 56, 4960-4979.	1.9	26
229	Regulation of chemoconvulsantâ€induced seizures by storeâ€operated Orai1 channels. Journal of Physiology, 2020, 598, 5391-5409.	1.3	9
230	Kainate Receptor Activation Shapes Short-Term Synaptic Plasticity by Controlling Receptor Lateral Mobility at Glutamatergic Synapses. Cell Reports, 2020, 31, 107735.	2.9	15
231	Kainate receptor regulation of synaptic inhibition in the hippocampus. Journal of Physiology, 2021, 599, 485-492.	1.3	11
232	Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity. Neuroscience, 2021, 456, 17-26.	1.1	20
233	Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Experimental Biology and Medicine, 2021, 246, 1069-1083.	1.1	73
235	Losing balance: Kainate receptors and psychiatric disorders comorbidities. Neuropharmacology, 2021, 191, 108558.	2.0	10
237	Kainate receptors: from synaptic activity to disease. FEBS Journal, 2022, 289, 5074-5088.	2.2	14

	CITATION	REPORT	
#	Article	IF	CITATIONS
238	Kainate receptors in the developing neuronal networks. Neuropharmacology, 2021, 195, 108585.	2.0	12
239	Astrocytes in Neural Circuits: Key Factors in Synaptic Regulation and Potential Targets for Neurodevelopmental Disorders. Frontiers in Molecular Neuroscience, 2021, 14, 729273.	1.4	19
240	Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology, 2021, 197, 108696.	2.0	14
241	Neuronal Activity Patterns During Hippocampal Network Oscillations In Vitro. , 2010, , 247-276.		5
242	Metabotropic Actions of Kainate Receptors in the Control of GABA Release. Advances in Experimental Medicine and Biology, 2011, 717, 1-10.	0.8	28
243	BTB-Kelch Proteins and Ubiquitination of Kainate Receptors. Advances in Experimental Medicine and Biology, 2011, 717, 115-125.	0.8	12
244	Role of Kainate Receptors in Network Activity during Development. Advances in Experimental Medicine and Biology, 2011, 717, 81-91.	0.8	13
246	Physiology of the GABA and Glycine Systems. Handbook of Experimental Pharmacology, 2001, , 3-76.	0.9	4
247	Glutamate-Mediated Synaptic Excitation of Cortical Interneurons. Handbook of Experimental Pharmacology, 1999, , 363-398.	0.9	16
248	Kainate Receptors. Handbook of Experimental Pharmacology, 1999, , 275-307.	0.9	7
249	Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3631-6.	3.3	78
251	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	7.1	237
252	Increased Anxiety-Like Behavior and Enhanced Synaptic Efficacy in the Amygdala of GluR5 Knockout Mice. PLoS ONE, 2007, 2, e167.	1.1	74
253	Neto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1. ELife, 2015, 4, .	2.8	26
254	Delineation of the Physiological Role of Kainate Receptors by Use of Subtype Selective Ligands. , 2004, , 27-46.		1
255	Kainate Receptor Functions. , 2009, , 257-264.		0
256	Les récepteurs kaÃ ⁻ nate postsynaptiques modifient le codage de l'information danslescellules granulaires du gyrus denté dans un modèle animal d'épilepsie du lobe temporal. Epilepsies, 2010, 22, 62-68.	0.0	0
257	Gap Junctions and the Notion of Electrical Coupling Between Axons. , 2010, , 212-243.		0

#	Article	IF	CITATIONS
258	Cerebellar Ataxia. , 2010, , 152-177.		0
260	Epileptiform Discharges In Vitro. , 2010, , 302-312.		0
262	Cortical Neurons and Their Models. , 2010, , 179-211.		0
264	Persistent Gamma Oscillations. , 2010, , 282-301.		0
265	Very Fast Oscillations. , 2010, , 245-268.		0
268	Historical Prelude. , 2010, , 16-30.		0
269	Beta-2 Oscillations. , 2010, , 269-281.		0
270	Overview of In Vivo Cortical Oscillations. , 2010, , 31-69.		0
272	Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neuroscience and Behavioral Physiology, 2005, 35, 253-266.	0.2	15
274	Activation of Extrasynaptic Kainate Receptors Drives Hilar Mossy Cell Activity. Journal of Neuroscience, 2022, 42, 2872-2884.	1.7	8
275	mRNA editing of kainate receptor subunits: what do we know so far?. Reviews in the Neurosciences, 2022, 33, 641-655.	1.4	1
282	Seizure-induced strengthening of a recurrent excitatory circuit in the dentate gyrus is proconvulsant. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
283	Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Frontiers in Synaptic Neuroscience, 0, 14, .	1.3	12
284	Diffusional extrasynaptic neurotransmission via glutamate and GABA. Neuroscience and Behavioral Physiology, 2005, 35, 253-266.	0.2	6
285	Excitatory synchronization of rat hippocampal interneurons during network activation in vitro. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	1