Ooplasmic transfer in mature human oocytes

Molecular Human Reproduction 4, 269-280 DOI: 10.1093/molehr/4.3.269

Citation Report

#	Article	IF	CITATIONS
1	Recent Advances in Assisted Reproductive Technologies. Endocrine, 1998, 9, 15-26.	2.2	11
2	Genetics of oocyte ageing. Maturitas, 1998, 30, 143-169.	1.0	122
3	Chromosome abnormalities in human embryos. Human Reproduction Update, 1998, 4, 842-855.	5.2	238
4	Micromanipulation of human gametes and embryos: ooplasmic donation at fertilization VIDEO. Human Reproduction Update, 1998, 4, 195-196.	5.2	11
5	Mitochondrial DNA deletion in human oocytes and embryos. Molecular Human Reproduction, 1998, 4, 887-892.	1.3	93
6	Oocyte polarity: ICSI, cloning and related techniques. Human Reproduction, 1998, 13, 3303-3305.	0.4	21
7	Culture and quality control of embryos. Human Reproduction, 1998, 13, 137-144.	0.4	34
8	Mouse oocyte maturation: the effect of modified nucleocytoplasmic ratio. Reproduction, Nutrition, Development, 1998, 38, 665-670.	1.9	20
9	Genetic Engineering of Human Eggs and Embryos: Prelude to Cloning. Politics and the Life Sciences, 1998, 17, 33-34.	0.5	0
10	A macaque model for studying mechanisms controlling oocyte development and maturation in human and non-human primates. Human Reproduction, 1999, 14, 2544-2555.	0.4	70
11	Oocyte in-vitro maturation and follicle culture: current clinical achievements and future directions. Human Reproduction, 1999, 14, 145-161.	0.4	57
12	A reliable technique of nuclear transplantation for immature mammalian oocytes. Human Reproduction, 1999, 14, 1312-1317.	0.4	66
13	Alternative splicing of the telomerase catalytic subunit in human oocytes and embryos. Molecular Human Reproduction, 1999, 5, 845-850.	1.3	51
14	Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nature Genetics, 1999, 23, 90-93.	9.4	214
15	Unique checkpoints during the first cell cycle of fertilization after intracytoplasmic sperm injection in rhesus monkeys. Nature Medicine, 1999, 5, 431-433.	15.2	221
16	Prevention of human mitochondrial (mtDNA) disease by nucleus transplantation into an enucleated donor oocyte. , 1999, 87, 265-266.		29
17	In vitro maturation of human preovulatory oocytes reconstructed by germinal vesicle transfer11General Program Prize Paper at the 53rd Annual Meeting of the American Society for Reproductive Medicine, Cincinnati, Ohio, October 18–22, 1997 Fertility and Sterility, 1999, 71, 726-731.	0.5	146
18	Birth after the injection of sperm and the cytoplasm of tripronucleate zygotes into metaphase ii oocytes in patients with repeated implantation failure after assisted fertilization procedures. Fertility and Sterility, 1999, 72, 702-706.	0.5	63

ITATION REDO

#	Article	IF	CITATIONS
19	Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote, 2000, 8, 209-215.	0.5	138
20	Evaluation and treatment of low responders in assisted reproductive technology: a challenge to meet. Journal of Assisted Reproduction and Genetics, 2000, 17, 357-373.	1.2	78
21	The infertile couple – The future of assisted fertilization. Der Gynakologe, 2000, 33, 140-144.	1.0	0
22	Does blastocyst culture eliminate paternal chromosomal defects and select good embryos?. Human Reproduction, 2000, 15, 2455-2459.	0.4	22
23	Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Human Reproduction, 2000, 15, 2621-2633.	0.4	273
24	Chemically and mechanically induced membrane fusion: non-activating methods for nuclear transfer in mature human oocytes. Human Reproduction, 2000, 15, 1149-1154.	0.4	47
25	Spontaneous and artificial changes in human ooplasmic mitochondria. Human Reproduction, 2000, 15, 207-217.	0.4	49
26	Alternative sources of gametes: reality or science fiction?. Human Reproduction, 2000, 15, 988-998.	0.4	85
27	Manipulating the Human Embryo: Cell Cycle Checkpoint Controls. Cloning, 2000, 2, 1-7.	2.1	11
28	Improvements of preimplantation diagnosis of aneuploidy by using microwave hybridization, cell recycling and monocolour labelling of probes. Molecular Human Reproduction, 2000, 6, 849-854.	1.3	40
29	Mitochondrial genotype segregation and effects during mammalian development: Applications to biotechnology. Theriogenology, 2000, 53, 35-46.	0.9	34
30	Fertilization and elimination of the paternal mitochondrial genome. Human Reproduction, 2000, 15, 92-101.	0.4	93
31	Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertility and Sterility, 2000, 74, 573-578.	0.5	163
32	Sperm deposition site during ICSI affects fertilization and development. Fertility and Sterility, 2000, 73, 31-37.	0.5	88
33	Fertilizable oocytes reconstructed from patient's somatic cell nuclei and donor ooplasts. Reproductive BioMedicine Online, 2001, 2, 160-164.	1.1	81
34	Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Human Reproduction, 2001, 16, 909-917.	0.4	470
35	Genetic regulation of preimplantation embryo survival. Current Topics in Developmental Biology, 2001, 52, 151-192.	1.0	35
36	Effects of maternal age on oocyte developmental competence. Theriogenology, 2001, 55, 1303-1322.	0.9	160

#	Article	IF	CITATIONS
37	Maturation of the reconstructed oocytes by germinal vesicle transfer in rabbits and mice. Theriogenology, 2001, 56, 855-866.	0.9	8
38	Human Germline Gene Therapy Reconsidered. Human Gene Therapy, 2001, 12, 1449-1458.	1.4	30
39	Regulation of the transition from research to clinical practice in human assisted conception. Human Fertility, 2001, 4, 172-176.	0.7	13
40	Ultrastructural evaluation of recurrent and in-vitro maturation resistant metaphase I arrested oocytes. Human Reproduction, 2001, 16, 2394-2398.	0.4	28
41	Reproduction in the Noughties: will the scientists have all the fun?. Journal of Anatomy, 2001, 198, 385-398.	0.9	5
42	Improving in vitro Maturation of Oocytes in the Human Taking Lessons from Experiences in Animal Species. Reproduction in Domestic Animals, 2001, 36, 11-17.	0.6	9
43	Viable rabbits derived from reconstructed Oocytes by germinal vesicle transfer after intracytoplasmic sperm injection (ICSI). Molecular Reproduction and Development, 2001, 58, 180-185.	1.0	53
44	Commuting the death sentence: how oocytes strive to survive. Nature Reviews Molecular Cell Biology, 2001, 2, 838-848.	16.1	329
45	The lack of influence of age on male fertility. American Journal of Obstetrics and Gynecology, 2001, 184, 818-824.	0.7	135
46	Preliminary findings in germinal vesicle transplantation of immature human oocytes. Human Reproduction, 2001, 16, 730-736.	0.4	55
47	Epigenetic and experimental modifications in early mammalian development: Part I: Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Human Reproduction Update, 2001, 7, 217-228.	5.2	77
48	Pregnancy after cytoplasmic transfer in a couple suffering from idiopathic infertility: Case report. Human Reproduction, 2001, 16, 1469-1472.	0.4	50
49	Biochemical and Developmental Evidence That Ooplasmic Maturation of Prepubertal Bovine Oocytes Is Compromised1. Biology of Reproduction, 2001, 64, 1761-1768.	1.2	105
50	Mitochondria in human offspring derived from ooplasmic transplantation: Brief communication. Human Reproduction, 2001, 16, 513-516.	0.4	308
51	Mitochondrial Activity in Response to Serum Starvation in Bovine (Bos taurus) Cell Culture. Cloning and Stem Cells, 2002, 4, 223-229.	2.6	27
52	Ooplasmic donation in humans: The potential for epigenic modifications. Human Reproduction, 2002, 17, 850-852.	0.4	78
53	Ooplasmic Transfer — Proceed with Care. New England Journal of Medicine, 2002, 346, 773-775.	13.9	32
54	Stage-Specific Expression of the Mitochondrial Germ Cell Epitope PG2 During Postnatal Differentiation of Rabbit Germ Cells1, Biology of Reproduction, 2002, 67, 196-203	1.2	7

\sim		<u>_</u>	
		Repo	DT
\sim	IIAI	KLPU	ALC L

#	Article	IF	CITATIONS
55	Poor responders: does the protocol make a difference?. Current Opinion in Obstetrics and Gynecology, 2002, 14, 275-281.	0.9	38
56	Ooplasmic transfer: animal models assist human studies. Reproductive BioMedicine Online, 2002, 5, 26-35.	1.1	40
57	The use of primates as models for assisted reproduction. Reproductive BioMedicine Online, 2002, 5, 50-55.	1.1	20
58	Oocyte-induced haploidization. Reproductive BioMedicine Online, 2002, 4, 237-242.	1.1	45
59	Preimplantation genetic diagnosis of numerical and structural chromosome abnormalities. Reproductive BioMedicine Online, 2002, 4, 183-196.	1.1	169
60	Mitochondrial genotype segregation and the bottleneck. Reproductive BioMedicine Online, 2002, 4, 248-255.	1.1	19
61	Assisted Reproductive Technologies and Embryo Culture Methods for Farm Animals. , 2002, , 513-568.		1
62	Are we ignoring potential dangers of in vitro fertilization and related treatments?. Nature Medicine, 2002, 8, S14-S18.	15.2	8
63	Towards single embryo transfer in IVF. Journal of Reproductive Immunology, 2002, 55, 141-148.	0.8	22
65	Donor oocyte cytoplasmic transfer did not enhance implantation of embryos of women with poor ovarian reserve. Journal of Assisted Reproduction and Genetics, 2002, 19, 113-117.	1.2	9
66	Asynchronous cytoplast and karyoplast transplantation reveals that the cytoplasm determines the developmental fate of the nucleus in mouse oocytes. Molecular Reproduction and Development, 2003, 65, 278-282.	1.0	13
67	The Mitochondrial Genome in Embryo Technologies. Reproduction in Domestic Animals, 2003, 38, 290-304.	0.6	26
68	Male age is not an independent factor to affect the outcome of assisted reproductive techniques. Journal of Developmental and Physical Disabilities, 2003, 26, 161-165.	3.6	9
69	Seeds of doubt. Nature, 2003, 422, 656-658.	13.7	71
70	Microfilament disruption is required for enucleation and nuclear transfer in germinal vesicle but not metaphase II human oocytes. Fertility and Sterility, 2003, 79, 677-681.	0.5	17
71	Micromanipulation of the human oocyte. Reproductive BioMedicine Online, 2003, 7, 634-640.	1.1	13
72	Somatic cell haploidization: an update. Reproductive BioMedicine Online, 2003, 6, 60-65.	1.1	29
73	Multiple pregnancy — The evidence for single-embryo transfer. Human Fertility, 2003, 6, S65-S67.	0.7	1

#	ARTICLE	IF	Citations
74	Development of mouse embryos derived from oocytes reconstructed by metaphase I spindle transfer. Zygote, 2003, 11, 53-59.	0.5	6
75	Metaphase II nuclei generated by germinal vesicle transfer in mouse oocytes support embryonic development to term. Human Reproduction, 2003, 18, 1903-1907.	0.4	38
76	Role of the mitochondrial genome in assisted reproductive technologies and embryonic stem cell-based therapeutic cloning. Reproduction, Fertility and Development, 2004, 16, 743.	0.1	29
77	Cytoplasmic Transfer in Mammalian Eggs and Embryos. , 2004, 254, 313-324.		Ο
78	Age-associated alteration of gene expression patterns in mouse oocytes. Human Molecular Genetics, 2004, 13, 2263-2278.	1.4	455
79	Cytoplasmic transfer in oocytes: biochemical aspects. Human Reproduction Update, 2004, 10, 241-250.	5.2	38
80	The consequences of nuclear transfer for mammalian foetal development and offspring survival. A mitochondrial DNA perspective. Reproduction, 2004, 127, 631-641.	1.1	81
81	Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Human Reproduction, 2004, 19, 1837-1841.	0.4	93
82	Obtaining mice that carry human mitochondrial DNA transmitted to the progeny. Molecular Reproduction and Development, 2004, 68, 299-307.	1.0	19
83	Alpha Page. Journal of Assisted Reproduction and Genetics, 2004, 21, 27-28.	1.2	2
84	Why Do Older Women Have Poor Implantation Rates? A Possible Role of the Mitochondria. Journal of Assisted Reproduction and Genetics, 2004, 21, 79-83.	1.2	57
85	What does the human Y chromosome sequence suggest about diploidy?. Systematics and Biodiversity, 2004, 2, 1-7.	0.5	1
86	Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Molecular Human Reproduction, 2004, 10, 23-32.	1.3	172
87	Efficacy of blastocyst transfer after implantation failure. Reproductive BioMedicine Online, 2004, 9, 630-636.	1.1	58
88	Cytoplasmic transfer in the mouse in conjunction with intracytoplasmic sperm injection. Reproductive BioMedicine Online, 2004, 8, 75-80.	1.1	8
89	Telomere biology in mammalian germ cells and during development. Developmental Biology, 2004, 274, 15-30.	0.9	112
90	Genetic and epigenetic modifications associated with human ooplasm donation and mitochondrial heteroplasmy – considerations for interpreting studies of heritability and reproductive outcome. Medical Hypotheses, 2004, 62, 612-617.	0.8	12
91	Involvement of Apoptosis in Disruption of Developmental Competence of Bovine Oocytes by Heat Shock During Maturation1. Biology of Reproduction, 2004, 71, 1898-1906.	1.2	173

#	Article	IF	CITATIONS
92	Mitochondrial dysfunction in reproduction. Mitochondrion, 2004, 4, 577-600.	1.6	70
93	Comparison of mitochondrial DNA contents in human embryos with good or poor morphology at the 8-cell stage. Fertility and Sterility, 2004, 81, 73-79.	0.5	51
94	Dynamic changes in microtubular cytoskeleton of human postmature oocytes revert after ooplasm transfer. Fertility and Sterility, 2004, 81, 323-331.	0.5	23
95	Heritability of menopausal age in mothers and daughters. Fertility and Sterility, 2004, 82, 1348-1351.	0.5	128
96	Subcellular characterization of the primordial germ cell antigen PG2 in adult oocytes. Histochemistry and Cell Biology, 2005, 124, 275-284.	0.8	6
97	Microinjection of Cytoplasm or Mitochondria Derived from Somatic Cells Affects Parthenogenetic Development of Murine Oocytes1. Biology of Reproduction, 2005, 72, 1397-1404.	1.2	65
98	The role of aromatase inhibitors in ameliorating deleterious effects of ovarian stimulation on outcome of infertility treatment. Reproductive Biology and Endocrinology, 2005, 3, 54.	1.4	46
99	Mitochondria directly influence fertilisation outcome in the pig. Reproduction, 2006, 131, 233-245.	1.1	289
101	Poor Responders in IVF: Cancellation of a First Cycle Is Not Predictive of a Subsequent Failure. Annals of the New York Academy of Sciences, 2006, 1092, 418-425.	1.8	14
102	Sperm retention site and its influence on cleavage rate and early development following intracytoplasmic sperm injection. Journal of Assisted Reproduction and Genetics, 2006, 23, 63-67.	1.2	3
103	Mitochondrial dynamics and aging: Mitochondrial interaction preventing individuals from expression of respiratory deficiency caused by mutant mtDNA. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 473-481.	1.9	43
104	The transmission of OXPHOS disease and methods to prevent this. Human Reproduction Update, 2006, 12, 119-136.	5.2	44
105	Investigation and treatment of repeated implantation failure following IVF-ET. Human Reproduction, 2006, 21, 3036-3043.	0.4	386
106	Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity. Reproduction, 2007, 133, 709-718.	1.1	45
107	Neutral Mitochondrial Heteroplasmy Alters Physiological Function in Mice1. Biology of Reproduction, 2007, 77, 569-576.	1.2	78
108	Reconstruction of ooplasm recipient oocytes with frozen-thawed donor microcytoplasts and influence on the microtubular spindle. Fertility and Sterility, 2007, 87, 923-933.	0.5	1
109	Oocyte dysmorphism is not associated with aneuploidy in the developing embryo. Fertility and Sterility, 2007, 88, 811-816.	0.5	34
110	Impact of Assisted Reproductive Technologies: A Mitochondrial Perspective of Cytoplasmic Transplantation. Current Topics in Developmental Biology, 2007, 77, 229-249.	1.0	31

#	Article	IF	CITATIONS
111	Duplication of the sperm genome by human androgenetic embryo production: towards testing the paternal genome prior to fertilization. Reproductive BioMedicine Online, 2007, 14, 504-514.	1.1	20
112	Sperm retention site and its influence on pronucleus stage evaluation following intracytoplasmic sperm injection. Reproductive Medicine and Biology, 2007, 6, 171-174.	1.0	0
113	Mitochondria transfer can enhance the murine embryo development. Journal of Assisted Reproduction and Genetics, 2007, 24, 445-449.	1.2	38
114	Effect of Mitochondrial Transplantation from Cumulus Granular Cells to the Early Embryos of Aged Mice. Reproduction and Contraception, 2008, 19, 211-218.	0.1	0
115	Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer. Zygote, 2008, 16, 211-222.	0.5	33
116	Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. Human Reproduction Update, 2008, 14, 669-678.	5.2	55
117	What can we learn from gene expression profiling of mouse oocytes?. Reproduction, 2008, 135, 581-592.	1.1	33
118	Reverse genetic studies of mitochondrial DNA-based diseases using a mouse model. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2008, 84, 155-165.	1.6	7
119	Effects of ooplasm transfer on paternal genome function in mice. Human Reproduction, 2009, 24, 2718-2728.	0.4	21
120	Effects of Ooplasm Manipulation on DNA Methylation and Growth of Progeny in Mice1. Biology of Reproduction, 2009, 80, 464-472.	1.2	36
121	Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 2009, 461, 367-372.	13.7	504
122	Surgeryâ€assisted reproductive technology hybrid therapy: A reproductive procedure for an infertile woman of late reproductive age with multiple myomas. Journal of Obstetrics and Gynaecology Research, 2009, 35, 827-831.	0.6	3
123	Mitochondrial functions on oocytes and preimplantation embryos. Journal of Zhejiang University: Science B, 2009, 10, 483-492.	1.3	134
124	Mitochondrial complementation preventing respiratory dysfunction caused by mutant mtDNA. BioFactors, 2009, 35, 130-137.	2.6	18
125	Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reproduction Update, 2009, 15, 573-585.	5.2	414
126	Mitochondrial distribution and activity in human mature oocytes: gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation. Fertility and Sterility, 2009, 91, 249-255.	0.5	30
127	Metaphase II karyoplast transfer from human in-vitro matured oocytes to enuclueated mature oocytes. Reproductive BioMedicine Online, 2009, 19, 514-520.	1.1	16
128	"Babies with some animal DNA in themâ€: A woman's choice?. International Journal of Feminist Approaches To Bioethics, 2009, 2, 75-96.	0.1	3

#	Article	IF	CITATIONS
129	Micromanipulation Techniques in IVF. Journal of Reproductive and Stem Cell Biotechnology, 2010, 1, 108-119.	0.1	1
130	Generation of pluripotent stem cells from eggs of aging mice. Aging Cell, 2010, 9, 113-125.	3.0	13
131	Mitochondrial genome and human mitochondrial diseases. Molecular Biology, 2010, 44, 665-681.	0.4	12
132	Chromosome transfer in mature oocytes. Nature Protocols, 2010, 5, 1138-1147.	5.5	37
134	Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mitochondrion, 2010, 10, 137-142.	1.6	35
135	The use of mitochondrial nutrients to improve the outcome of infertility treatment in older patients. Fertility and Sterility, 2010, 93, 272-275.	0.5	97
136	Metaphase II human oocyte morphology: contributing factors and effects on fertilization potential and embryo developmental ability in ICSI cycles. Fertility and Sterility, 2010, 94, 1115-1117.	0.5	43
137	Ooplasm transfer and interspecies somatic cell nuclear transfer: heteroplasmy, pattern of mitochondrial migration and effect on embryo development. Zygote, 2011, 19, 147-156.	0.5	21
138	Therapeutic treatments of mtDNA diseases at the earliest stages of human development. Mitochondrion, 2011, 11, 820-828.	1.6	25
139	Fertility after age 45: From natural conception to Assisted Reproductive Technology and beyond. Maturitas, 2011, 70, 216-221.	1.0	12
140	Ooplast-mediated developmental rescue of bovine oocytes exposed to ethidium bromide. Reproductive BioMedicine Online, 2011, 22, 172-183.	1.1	32
141	Improvement of Porcine Oocytes with Low Developmental Ability after Fusion of Cytoplasmic Fragments Prepared by Serial Centrifugation. Journal of Reproduction and Development, 2011, 57, 620-626.	0.5	4
142	Artificial gametes. , 0, , 177-185.		0
143	The contribution of mitochondrial function to reproductive aging. Journal of Assisted Reproduction and Genetics, 2011, 28, 773-783.	1.2	160
144	Mitochondrial biology in reproduction. Reproductive Medicine and Biology, 2011, 10, 251-258.	1.0	11
145	Effect of Cytoplasmic Volume on Developmental Competence of Buffalo (<i>Bubalus bubalis</i>) Embryos Produced Through Hand-Made Cloning. Cellular Reprogramming, 2011, 13, 257-262.	0.5	27
146	Effects of electric field on early preimplantation development in vitro in mice and rats. Human Reproduction, 2011, 26, 662-670.	0.4	11
147	Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction, 2012, 143, 1-10.	1.1	34

#	Article	IF	CITATIONS
148	Prevention of mitochondrial disease inheritance by assisted reproductive technologies: Prospects and challenges. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 637-642.	1.1	23
149	Recurrent implantation failure: gamete and embryo factors. Fertility and Sterility, 2012, 97, 1021-1027.	0.5	90
150	The next (re)generation of ovarian biology and fertility in women: is current science tomorrow's practice?. Fertility and Sterility, 2012, 98, 3-10.	0.5	74
152	Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs. Reproductive Medicine and Biology, 2013, 12, 47-55.	1.0	13
153	Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mechanisms of Ageing and Development, 2013, 134, 43-52.	2.2	18
154	The ethics of creating children with three genetic parents. Reproductive BioMedicine Online, 2013, 26, 531-534.	1.1	114
155	The aging oocyte—can mitochondrial function be improved?. Fertility and Sterility, 2013, 99, 18-22.	0.5	117
156	Germline Energetics, Aging, and Female Infertility. Cell Metabolism, 2013, 17, 838-850.	7.2	166
157	Oogonial stem cells. Current Opinion in Obstetrics and Gynecology, 2013, 25, 223-228.	0.9	10
158	The Role of Mitochondria from Mature Oocyte to Viable Blastocyst. Obstetrics and Gynecology International, 2013, 2013, 1-10.	0.5	177
159	The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reproductive Biology and Endocrinology, 2014, 12, 111.	1.4	119
160	The root of reduced fertility in aged women and possible therapentic options: Current status and future perspects. Molecular Aspects of Medicine, 2014, 38, 54-85.	2.7	117
161	Internalization of isolated functional mitochondria: involvement of macropinocytosis. Journal of Cellular and Molecular Medicine, 2014, 18, 1694-1703.	1.6	148
162	Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reproductive BioMedicine Online, 2014, 28, 284-299.	1.1	100
163	Assisted Reproductive Technologies and Embryo Culture Methods for Farm Animals. , 2014, , 581-638.		8
164	Cytoplasmatic inheritance, epigenetics and reprogramming DNA as tools in animal breeding. Livestock Science, 2014, 166, 199-205.	0.6	7
165	Oocyte mitochondrial function and reproduction. Current Opinion in Obstetrics and Gynecology, 2015, 27, 175-181.	0.9	228
166	The AUGMENTSM Treatment: Physician Reported Outcomes of the Initial Global Patient Experience. Journal of Fertilization in Vitro IVF Worldwide Reproductive Medicine Genetics & Stem Cell Biology, 2015–03	0.2	57

#	Article	IF	CITATIONS
167	Mitochondrial transfer: Ethical, legal and social implications in assisted reproduction. South African Journal of Bioethics and Law, 2015, 8, 32.	0.1	4
168	Cytoplasm replacement following germinal vesicle transfer restores meiotic maturation and spindle assembly in meiotically arrested oocytes. Reproductive BioMedicine Online, 2015, 31, 71-78.	1.1	20
169	Autologous Germline Mitochondrial Energy Transfer (AUGMENT) in Human Assisted Reproduction. Seminars in Reproductive Medicine, 2015, 33, 410-421.	0.5	98
170	Downregulation of gene expression and activity of GRIM-19 affects mouse oocyte viability, maturation, embryo development and implantation. Journal of Assisted Reproduction and Genetics, 2015, 32, 461-470.	1.2	5
171	Mitochondrial replacement therapy in reproductive medicine. Trends in Molecular Medicine, 2015, 21, 68-76.	3.5	133
172	Cytoplasmic, rather than nuclear-DNA, insufficiencies as the major cause of poor competence of vitrified oocytes. Reproductive BioMedicine Online, 2015, 30, 549-552.	1.1	7
173	Oocyte aging underlies female reproductive aging: biological mechanisms and therapeutic strategies. Reproductive Medicine and Biology, 2015, 14, 159-169.	1.0	72
174	<scp>mtDNA</scp> mutations variously impact <scp>mtDNA</scp> maintenance throughout the human embryofetal development. Clinical Genetics, 2015, 88, 416-424.	1.0	19
175	Polymerase subunit gamma 2 affects porcine oocyte maturation and subsequent embryonic development. Theriogenology, 2015, 83, 121-130.	0.9	19
176	From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare (Switzerland), 2016, 4, 51.	1.0	36
177	The role of Rad51 in safeguarding mitochondrial activity during the meiotic cell cycle in mammalian occytes. Scientific Reports, 2016, 6, 34110.	1.6	18
178	Setting the record straight. Reproductive BioMedicine Online, 2016, 33, 657-658.	1.1	3
180	Poor embryo development in post-ovulatory <i>in vivo</i> -aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation. Human Reproduction, 2016, 31, 2331-2338.	0.4	36
181	The first clinical nuclear transplantation in China: new information about a case reported to ASRM in 2003. Reproductive BioMedicine Online, 2016, 33, 433-435.	1.1	2
182	Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state. Molecular Reproduction and Development, 2016, 83, 94-107.	1.0	11
183	Pregnancy derived from human zygote pronuclear transfer in a patient who had arrested embryos after IVF. Reproductive BioMedicine Online, 2016, 33, 529-533.	1.1	99
184	Challenges Towards Establishing Germline Gene Therapy for Inherited Mitochondrial Diseases. Journal of Mammalian Ova Research, 2016, 33, 89-99.	0.1	1
185	Weigh and wait: the prospect of mitochondrial gene replacement. Human Fertility, 2016, 19, 222-229.	0.7	3

#	Article	IF	CITATIONS
186	A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre. Reproductive BioMedicine Online, 2016, 33, 737-744.	1.1	41
187	Aging and the environment affect gamete and embryo potential: can we intervene?. Fertility and Sterility, 2016, 105, 548-559.	0.5	120
188	Micromanipulation in assisted reproductive technology. Reproductive BioMedicine Online, 2016, 32, 339-347.	1.1	16
189	Polar body transfer restores the developmental potential of oocytes to blastocyst stage in a case of repeated embryo fragmentation. Journal of Assisted Reproduction and Genetics, 2017, 34, 563-571.	1.2	22
190	Novel reproductive technologies to prevent mitochondrial disease. Human Reproduction Update, 2017, 23, 501-519.	5.2	59
191	Prospects for therapeutic mitochondrial transplantation. Mitochondrion, 2017, 35, 70-79.	1.6	85
192	First birth following spindle transfer for mitochondrial replacement therapy: hope and trepidation. Reproductive BioMedicine Online, 2017, 34, 333-336.	1.1	49
193	Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Human Reproduction, 2017, 32, 1-8.	0.4	33
194	Advances in improving fertility in women through stem cell-based clinical platforms. Expert Opinion on Biological Therapy, 2017, 17, 585-593.	1.4	7
195	Mitochondrial replacement techniques or therapies (MRTs) to improve embryo development and to prevent mitochondrial disease transmission. Journal of Genetics and Genomics, 2017, 44, 371-374.	1.7	14
196	Oocyte spindle transfer for prevention of mitochodrial disease: the question of membrane fusion technique. Reproductive BioMedicine Online, 2017, 35, 432.	1.1	3
197	Inherited mitochondrial genomic instability and chemical exposures. Toxicology, 2017, 391, 75-83.	2.0	26
198	Purifying selection on mitochondrial DNA in maturing oocytes: implication for mitochondrial replacement therapy. Human Reproduction, 2017, 32, 1948-1950.	0.4	2
199	Recent advances in in vitro fertilization. F1000Research, 2017, 6, 1616.	0.8	23
200	Mitochondrial Modification Techniques and Ethical Issues. Journal of Clinical Medicine, 2017, 6, 25.	1.0	32
201	Ooplasmic transfer in human oocytes: efficacy and concerns in assisted reproduction. Reproductive Biology and Endocrinology, 2017, 15, 77.	1.4	28
202	Mitochondrial manipulation in fertility clinics: Regulation and responsibility. Reproductive Biomedicine and Society Online, 2018, 5, 93-109.	0.9	29
203	The role of mitochondria in the female germline: Implications to fertility and inheritance of mitochondrial diseases. Cell Biology International, 2018, 42, 711-724.	1.4	31

#	Article	IF	CITATIONS
204	The futile case of the aging ovary: is it mission impossible? A focused review. Climacteric, 2018, 21, 22-28.	1.1	2
205	The role of mitochondrial activity in female fertility and assisted reproductive technologies: overview and current insights. Reproductive BioMedicine Online, 2018, 36, 686-697.	1.1	75
206	Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reproductive Medicine and Biology, 2018, 17, 421-433.	1.0	41
207	Influence of Maternal Aging on Mitochondrial Heterogeneity, Inheritance, and Function in Oocytes and Preimplantation Embryos. Genes, 2018, 9, 265.	1.0	40
208	Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Scientific Reports, 2018, 8, 7246.	1.6	20
209	Mitochondrial replacement therapy. Current Opinion in Obstetrics and Gynecology, 2018, 30, 217-222.	0.9	2
210	New Frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reproductive Biology and Endocrinology, 2019, 17, 55.	1.4	33
211	Regulation of theÂART Laboratory. , 2019, , 787-800.		0
213	Mitochondria and reproduction: possibilities for testing and treatment. Panminerva Medica, 2019, 61, 82-96.	0.2	9
214	Can cytoplasmic donation rescue aged oocytes?. Reproductive Medicine and Biology, 2019, 18, 128-139.	1.0	11
216	Mitochondrial Transfer Technology for Improving Older Eggs. , 2019, , 191-204.		0
217	Advanced Maternal Age in IVF: Still a Challenge? The Present and the Future of Its Treatment. Frontiers in Endocrinology, 2019, 10, 94.	1.5	103
218	Plasticizer Bis(2-ethylhexyl) Phthalate Causes Meiosis Defects and Decreases Fertilization Ability of Mouse Oocytes <i>in Vivo</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 3459-3468.	2.4	56
219	Mitochondria: the panacea to improve oocyte quality?. Annals of Translational Medicine, 2019, 7, 789-789.	0.7	19
220	Mitochondria as a tool for oocyte rejuvenation. Fertility and Sterility, 2019, 111, 219-226.	0.5	88
221	Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization—a randomized pilot study. Fertility and Sterility, 2019, 111, 86-96.	0.5	69
222	The Role of Mitochondria in Reproductive Function and Assisted Reproduction. , 2019, , 337-342.		0
223	Effects of Brain-Derived Mitochondria on the Function of Neuron and Vascular Endothelial Cell After Traumatic Brain Injury. World Neurosurgery, 2020, 138, e1-e9.	0.7	11

		CITATION REPORT		
#	Article		IF	CITATIONS
224	Mitochondria in Ovarian Aging and Reproductive Longevity. Ageing Research Reviews, 20	020, 63, 101168.	5.0	83
225	Donor egg is the best second choice for many infertile couples: real progress in overcomi age-related fertility is not here yet. Journal of Assisted Reproduction and Genetics, 2020,	ng 37, 1589-1591.	1.2	2
226	Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet?. Cell Tr 2020, 29, 096368972092615.	ansplantation,	1.2	15
227	The Conundrum of Poor Ovarian Response: From Diagnosis to Treatment. Diagnostics, 20	020, 10, 687.	1.3	12
228	Mitochondrial genetics. , 2020, , 143-157.			72
229	The obligate need for accuracy in reporting preclinical studies relevant to clinical trials: au germline mitochondrial supplementation for assisted human reproduction as a case study. Therapeutic Advances in Reproductive Health, 2020, 14, 263349412091735.	itologous y.	1.3	3
230	Between innovation and precaution: how did offspring safety considerations play a role ir of introducing new reproductive techniques?. Human Reproduction Open, 2020, 2020, h	1 strategies oaa003.	2.3	6
231	Ethics in embryo research: a position statement by the ASRM Ethics in Embryo Research T ForceÂandÂthe ASRM Ethics Committee. Fertility and Sterility, 2020, 113, 270-294.	Fask	0.5	18
232	Cytoplasmic Transfer Improves Human Egg Fertilization and Embryo Quality: an Evaluatio Oocytes in Women with Low Oocyte Quality. Reproductive Sciences, 2021, 28, 1362-130	n of Sibling 69.	1.1	8
233	Mitochondria replacement as an innovative treatment to tackle impaired bioenergetics in medicine. , 2021, , 365-384.	clinical		0
234	<i>In vitro</i> rescue immature oocytes – a literature review. Human Fertility, 2022, 25	i, 640-650.	0.7	12
235	Mitochondrial enrichment in infertile patients: a review of different mitochondrial replace therapies. Therapeutic Advances in Reproductive Health, 2021, 15, 263349412110235.	ment	1.3	9
236	Ovarian Aging: Molecular Mechanisms and Medical Management. International Journal of Sciences, 2021, 22, 1371.	Molecular	1.8	37
237	Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproduc Antioxidants, 2021, 10, 337.	tive Cells.	2.2	70
238	Donation and Surrogacy. , 2021, , 182-193.			0
239	Mitochondria: emerging therapeutic strategies for oocyte rescue. Reproductive Sciences, 711-722.	2022, 29,	1.1	18
240	Is It Possible to Treat Infertility with Stem Cells?. Reproductive Sciences, 2021, 28, 1733-	1745.	1.1	5
241	Maternal spindle transfer for mitochondrial disease: lessons to be learnt before extending method to other conditions?. Human Fertility, 2022, 25, 838-847.	; the	0.7	4

	CITATION	CITATION REPORT	
# 243	ARTICLE Potential roles of experimental reproductive technologies in infertile women with diminished ovarian reserve. Journal of Assisted Reproduction and Genetics, 2021, 38, 2507-2517.	IF 1.2	CITATIONS
244	Exploration of the Cytoplasmic Function of Abnormally Fertilized Embryos via Novel Pronuclear-Stage Cytoplasmic Transfer. International Journal of Molecular Sciences, 2021, 22, 8765.	1.8	1
245	The making of †old eggs': the science of reproductive ageing between fertility and anti-ageing technologies. Reproductive Biomedicine and Society Online, 2022, 14, 169-181.	0.9	4
246	The Molecular Regulation in the Pathophysiology in Ovarian Aging. , 2021, 12, 934.		29
247	Mitochondria of the Oocyte. , 2017, , 75-91.		3
249	From fibroblasts and stem cells: implications for cell therapies and somatic cloning. Reproduction, Fertility and Development, 2005, 17, 125.	0.1	17
250	Telomere Maintenance as Therapeutic Target in Embryonal Tumours. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 196-212.	0.9	16
251	Genetics of Mitochondrial Myopathies. Journal of Genetic Medicine, 2013, 10, 20-26.	0.1	3
252	Maternal spindle transfer overcomes embryo developmental arrest caused by ooplasmic defects in mice. ELife, 2020, 9, .	2.8	23
253	The Role of Ca2 + in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low-Calcium Model. Frontiers in Cell and Developmental Biology, 2021, 9, 746237.	1.8	10
254	Intracytoplasmic Sperm Injection or Conventional Fertilization to Maximize the Number of Viable Embryos. , 2001, , 123-135.		0
255	Procreative Technology. , 2002, , 105-125.		0
256	Maternal Age and Oocyte Competence. , 2004, , 201-230.		0
257	Nonhuman Primates as Models for Reproductive Aging and Human Infertility. , 2006, , 469-484.		1
258	Micromanipulation as a Clinical Tool. , 2006, , 283-312.		0
259	Is DNA Revolutionizing Medicine?. , 2007, , 137-150.		0
260	New Approaches to Infertility Treatment Challenges. Juntendol̀,, Igaku, 2009, 55, 281-288.	0.1	0
261	Ovarian Function and Failure: The Role of the Oocyte and Its Molecules. , 2009, , 281-290.		0

#	Article	IF	CITATIONS
262	Advances in Embryo Transfer. , 2012, , .		1
263	Stem Cell Therapy in Premature Ovarian Failure. , 2014, , 265-271.		Ο
264	Modern methods of mitochondrial DNA mutations transmission preventing. Russian Journal of Human Reproduction, 2015, 21, 77.	0.1	1
266	ICSI: Yesterday, Today, and Tomorrow. , 2020, , 787-794.		Ο
267	Ooplast transfer of triploid pronucleus zygote improve reconstructed human-goat embryonic development. International Journal of Clinical and Experimental Medicine, 2014, 7, 3678-86.	1.3	2
268	Effects of intracytoplasmic sperm injection timing and fertilization methods on the development of bovine spindle transferred embryos. Theriogenology, 2022, 180, 63-71.	0.9	4
269	Oocyte mitochondria—key regulators of oocyte function and potential therapeutic targets for improving fertility. Biology of Reproduction, 2022, 106, 366-377.	1.2	27
271	The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA?. Cells, 2022, 11, 797.	1.8	20
272	Mesenchymal stem cells (MSCs) in Leber's hereditary optic neuropathy (LHON): a potential therapeutic approach for future. International Ophthalmology, 2022, 42, 2949-2964.	0.6	6
273	When is the right time to stop autologous inÂvitro fertilization treatment in poor responders?. Fertility and Sterility, 2022, 117, 682-687.	0.5	2
274	Preimplantation genetic diagnosis for infertility (PGS). , 0, , 203-229.		1
275	The â€~good' of extending fertility: ontology and moral reasoning in a biotemporal regime of reproduction. History and Philosophy of the Life Sciences, 2022, 44, 21.	0.6	1
278	Role of Mitochondria Transfer in Infertility: A Commentary. Cells, 2022, 11, 1867.	1.8	7
279	Noninvasive autologous mitochondria transport improves the quality and developmental potential of oocytes from aged mice. F&S Science, 2022, , .	0.5	1
280	Is It Likely That Reproductive Aging Could Be Delayed or Reversed Using Advanced Technologies in the Future?. , 2022, , 163-172.		0
281	Kunling Wan improves oocyte quality by regulating the PKC/Keap1/Nrf2 pathway to inhibit oxidative damage caused by repeated controlled ovarian hyperstimulation. Journal of Ethnopharmacology, 2023, 301, 115777.	2.0	2
282	Evolución de las tecnologÃas de reproducción asistida. Una mirada desde la biomedicina. INTERdisciplina, 2022, 10, 355.	0.0	0
283	Recent Advancements in In Vitro Fertilisation. Cureus, 2022, , .	0.2	1

	CITATIO	LITATION REPORT		
#	Article	IF	Citations	
Ŧ	ARTICLE		CHAHONS	
284	The mitochondrial challenge: Disorders and prevention strategies. BioSystems, 2023, 223, 104819.	0.9	1	
285	Ovarian aging: mechanisms and intervention strategies. Medical Review, 2023, 2, 590-610.	0.3	5	
286	Reproductive Medicine Involving Mitochondrial DNA Modification: Evolution, Legality, and Ethics. European Medical Journal Reproductive Health, 0, , 88-99.	1.0	11	
287	Repeated implantation failure. , 2023, , 345-355.		0	
288	A shared pattern of altered gene expression in human embryos affected by mitochondrial diseases. Human Reproduction, 2023, 38, 992-1002.	0.4	2	

TION RE