Automated process parameter resetting for injection m

Journal of Intelligent Manufacturing 9, 17-27 DOI: 10.1023/a:1008843207417

Citation Report

#	Article	IF	CITATIONS
1	Incorporation of Phenomenological Models in a Hybrid Neural Network for Quality Control of Injection Molding. Polymer-Plastics Technology and Engineering, 1999, 38, 1-18.	1.9	13
2	Review of research in the determination of process parameters for plastic injection molding. Advances in Polymer Technology, 1999, 18, 225-236.	1.7	39
3	Fuzzy Neural Network Approach to Classifying Dyeing Defects. Textile Reseach Journal, 2001, 71, 100-104.	2.2	27
4	Linear direct current sensing system for flow monitoring in Liquid Composite Moulding. Composites Part A: Applied Science and Manufacturing, 2002, 33, 385-397.	7.6	32
5	Title is missing!. Journal of Intelligent Manufacturing, 2002, 13, 165-176.	7.3	50
6	A computer-aided system for an optimal moulding conditions design using a simulation-based approach. International Journal of Advanced Manufacturing Technology, 2003, 22, 574-586.	3.0	22
7	Shrinkage and warpage prediction of injection-molded thin-wall parts using artificial neural networks. Polymer Engineering and Science, 2004, 44, 2029-2040.	3.1	30
8	A review of current developments in process and quality control for injection molding. Advances in Polymer Technology, 2005, 24, 165-182.	1.7	152
9	Minimizing manufacturing costs for thin injection molded plastic components. International Journal of Advanced Manufacturing Technology, 2005, 26, 517-526.	3.0	7
10	Development of an in-process, gap-caused flash monitoring system in injection molding processes. International Journal of Advanced Manufacturing Technology, 2005, 26, 1237-1245.	3.0	2
11	The Construction and Analysis of a Prediction Model for Combining the Taguchi Method and General Regression Neural Network for Injection Moulding. Polymers and Polymer Composites, 2005, 13, 823-829.	1.9	1
12	IMPOS: A Method and System for Injection Molding Optimization. , 2006, , .		1
13	An assessment of the level of informatization in the Korea mold industry as a prerequisite for e-collaboration: an exploratory empirical investigation. International Journal of Advanced Manufacturing Technology, 2006, 29, 897-911.	3.0	6
14	A template approach to manage mould-testing stage in a plastic injection mould project. International Journal of Production Research, 2007, 45, 4685-4714.	7.5	0
15	An integrated intelligent system for injection molding process determination. Advances in Polymer Technology, 2007, 26, 191-205.	1.7	18
16	Optimization of injection mold based on fuzzy moldability evaluation. Journal of Materials Processing Technology, 2008, 208, 222-228.	6.3	30
17	Mould data management in plastic injection mould industries. International Journal of Production Research, 2008, 46, 6269-6304.	7.5	8
18	A realâ€ŧime process optimization system for injection molding. Polymer Engineering and Science, 2009, 49, 2031-2040.	3.1	19

#	Article	IF	CITATIONS
19	A fuzzy quality control-decision support system for improving operational reliability of liquid transfer operations in laboratory automation. Expert Systems With Applications, 2009, 36, 8064-8070.	7.6	6
20	Product quality prognosis in plastic injection moulding. Production Engineering, 2011, 5, 59-71.	2.3	3
23	An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm. Journal of Intelligent Manufacturing, 2017, 28, 473-487.	7.3	61
25	Optimization of injection molding process based on fuzzy quality evaluation and Taguchi experimental design. CIRP Journal of Manufacturing Science and Technology, 2018, 21, 150-160.	4.5	33
26	Intelligent methods for the process parameter determination of plastic injection molding. Frontiers of Mechanical Engineering, 2018, 13, 85-95.	4.3	32
27	Process parameters optimization using a novel classification model for plastic injection molding. International Journal of Advanced Manufacturing Technology, 2018, 94, 357-370.	3.0	14
28	FIS-SMED: a fuzzy inference system application for plastic injection mold changeover. International Journal of Advanced Manufacturing Technology, 2018, 94, 545-559.	3.0	11
29	Optimization of strain measurement procedure based on fuzzy quality evaluation and Taguchi experimental design. SN Applied Sciences, 2019, 1, 1.	2.9	4
30	Multi-Objective Optimization of Injection Molding Process for Determination of Feasible Moldability Index. Procedia CIRP, 2019, 84, 769-773.	1.9	14
31	Modelling of transverse shrinkage of injection-moulded parts using experimental methods and fuzzy logic theory. IOP Conference Series: Materials Science and Engineering, 2019, 710, 012010.	0.6	0
32	Literature Review and Research Objectives. Springer Theses, 2019, , 13-44.	0.1	0
34	Expert System Development Using Fuzzy If–Then Rules for Ergonomic Compatibility of AMT for Lean Environments. , 2014, , 347-369.		3
35	Hybrid Intelligent Recommending System for Process Parameters in Differential Pressure Vacuum Casting. Journal of Software, 2014, 9, .	0.6	0
36	Knowledge Based Deriven Manufacturing System KDMS for Injection Molding. , 2015, , .		Ο
37	Injection Molding Process Optimization Based on Fuzzy Quality Evaluation. Springer Theses, 2019, , 111-137.	0.1	1
38	A Review on Machine Learning Models in Injection Molding Machines. Advances in Materials Science and Engineering, 2022, 2022, 1-28.	1.8	27
40	Optimized injection-molding process for thin-walled polypropylene part using genetic programming and interior point solver. International Journal of Advanced Manufacturing Technology, 2023, 124, 297-313.	3.0	5

CITATION REPORT