Accretional Evolution of a Planetesimal Swarm

lcarus 128, 429-455 DOI: 10.1006/icar.1997.5747

Citation Report

#	Article	IF	CITATIONS
2	The Origin of Comets in the Solar Nebula: A Unified Model. Icarus, 1997, 127, 290-306.	1.1	371
3	Dynamical influence of a proto-Jupiter on a disc of colliding planetesimals. Planetary and Space Science, 1998, 47, 233-243.	0.9	24
4	CONTEMPLATION OF THINGS PAST. Annual Review of Earth and Planetary Sciences, 1998, 26, 1-21.	4.6	7
5	The Yarkovsky Seasonal Effect on Asteroidal Fragments: A Nonlinearized Theory for the Plane-parallel Case. Astronomical Journal, 1998, 116, 2032-2041.	1.9	45
6	Growth of a Migrating Protoplanet. Icarus, 1999, 139, 350-366.	1.1	159
7	On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation. Icarus, 1999, 142, 219-237.	1.1	375
8	The Leonard Award Address Presented 1998 July 27, Dublin, Ireland: On the difficulties of making Earthâ€like planets. Meteoritics and Planetary Science, 1999, 34, 317-329.	0.7	25
9	Astronomical constraints on nebular temperatures: Implications for planetesimal formation. Meteoritics and Planetary Science, 1999, 34, 897-907.	0.7	67
10	Accretion in the Early Kuiper Belt. II. Fragmentation. Astronomical Journal, 1999, 118, 1101-1119.	1.9	160
11	Forming the Dusty Ring in HR 4796A. Astrophysical Journal, 1999, 524, L119-L123.	1.6	26
12	Protoplanetary Formation. I. Neptune. Astrophysical Journal, 2000, 544, 481-495.	1.6	56
13	Formation of Protoplanets from Planetesimals in the Solar Nebula. Icarus, 2000, 143, 15-27.	1.1	373
14	Terrestrial Planet and Asteroid Formation in the Presence of Giant Planets I. Relative Velocities of Planetesimals Subject to Jupiter and Saturn Perturbations. Icarus, 2000, 143, 60-73.	1.1	51
15	Velocity Evolution of Planetesimals: Unified Analytical Formulas and Comparisons with N-Body Simulations. Icarus, 2000, 143, 28-44.	1.1	121
16	Evolution of a Circumterrestrial Disk and Formation of a Single Moon. Icarus, 2000, 148, 419-436.	1.1	116
17	Evaluation of collision and stirring rates in circumplanetary particle disks based on three-body orbital integrations. Planetary and Space Science, 2000, 48, 553-568.	0.9	2
18	Planetary Accumulation with a Continuous Supply of Planetesimals. Space Science Reviews, 2000, 92, 311-320.	3.7	13
19	Formation of Planetesimals and Accretion of the Terrestrial Planets. Space Science Reviews, 2000, 92, 295-310.	3.7	120

ATION REDO

#	Article	IF	CITATIONS
20	Orbital Migration of Neptune and Orbital Distribution of Transâ€Neptunian Objects. Astrophysical Journal, 2000, 534, 428-445.	1.6	127
21	Extra-solar planets. Reports on Progress in Physics, 2000, 63, 1209-1272.	8.1	135
22	A plausible cause of the late heavy bombardment. Meteoritics and Planetary Science, 2001, 36, 371-380.	0.7	64
23	Comparing Planetary Accretion in Two and Three Dimensions. Icarus, 2001, 149, 262-276.	1.1	5
24	High-Accuracy Statistical Simulation of Planetary Accretion: II. Comparison with N-Body Simulation. Icarus, 2001, 149, 235-250.	1.1	145
25	Making More Terrestrial Planets. Icarus, 2001, 152, 205-224.	1.1	566
26	Damping of Terrestrialâ€Planet Eccentricities by Densityâ€Wave Interactions with a Remnant Gas Disk. Astrophysical Journal, 2002, 567, 579-586.	1.6	50
27	Formation of Protoplanet Systems and Diversity of Planetary Systems. Astrophysical Journal, 2002, 581, 666-680.	1.6	329
28	Formation and early evolution of the atmosphere. Geological Society Special Publication, 2002, 199, 213-229.	0.8	9
29	Modern Integrations of Solar System Dynamics. Annual Review of Earth and Planetary Sciences, 2002, 30, 89-112.	4.6	41
30	Implications of Extrasolar Planets for Understanding Planet Formation. Annual Review of Earth and Planetary Sciences, 2002, 30, 113-148.	4.6	37
31	Thermal evolution of a growing Mars. Journal of Geophysical Research, 2002, 107, 1-1-1-13.	3.3	141
32	Survival of impact-induced thermal anomalies in the Martian mantle. Journal of Geophysical Research, 2002, 107, 12-1.	3.3	41
33	Planet Formation in the Outer Solar System. Publications of the Astronomical Society of the Pacific, 2002, 114, 265-283.	1.0	86
34	Formation of terrestrial planets in close binary systems: The case of α Centauri A. Astronomy and Astrophysics, 2002, 396, 219-224.	2.1	38
35	Evolution of Planetesimal Velocities Based on Three-Body Orbital Integrations and Growth of Protoplanets. Icarus, 2002, 155, 436-453.	1.1	136
36	The Effect of Tidal Interaction with a Gas Disk on Formation of Terrestrial Planets. Icarus, 2002, 157, 43-56.	1.1	131
37	Collisional processes in extrasolar planetesimal discs - dust clumps in Fomalhaut's debris disc. Monthly Notices of the Royal Astronomical Society, 2002, 334, 589-607.	1.6	236

#	Article	IF	CITATIONS
38	The Formation of Uranus and Neptune among Jupiter and Saturn. Astronomical Journal, 2002, 123, 2862-2883.	1.9	115
39	Large Grains in our and External Galaxies. Astrophysics and Space Science, 2002, 281, 233-242.	0.5	4
40	Formation of gas giant planets: core accretion models with fragmentation and planetary envelope. Icarus, 2003, 166, 46-62.	1.1	153
41	Computational design of swarms. International Journal for Numerical Methods in Engineering, 2003, 57, 2205-2219.	1.5	50
42	Radial diffusion rate of planetesimals due to gravitational encounters. Icarus, 2003, 162, 47-58.	1.1	8
43	Large-scale statistical inverse computation of inelastic accretion in transient granular flows. International Journal of Non-Linear Mechanics, 2003, 38, 1205-1219.	1.4	6
44	Importance of the accretion process in asteroid thermal evolution: 6 Hebe as an example. Meteoritics and Planetary Science, 2003, 38, 711-724.	0.7	50
45	The Role of Giant Planets in Terrestrial Planet Formation. Astronomical Journal, 2003, 125, 2692-2713.	1.9	92
46	Survival of Terrestrial Planets in the Presence of Giant Planet Migration. Astrophysical Journal, 2003, 599, L111-L114.	1.6	55
47	The Growth of Planetary Embryos: Orderly, Runaway, or Oligarchic?. Astronomical Journal, 2003, 125, 942-961.	1.9	84
48	Pumping of a planetesimal disc by a rapidly migrating planet. Monthly Notices of the Royal Astronomical Society, 2004, 354, 769-772.	1.6	19
49	Formation of terrestrial planets in a dissipating gas disk with Jupiter and Saturn. Icarus, 2004, 167, 231-243.	1.1	59
50	Simulations of a late lunar-forming impact. Icarus, 2004, 168, 433-456.	1.1	568
51	Co-accretion of the Earth–Moon system after the giant impact: reduction of the total angular momentum by lunar impact ejecta. Icarus, 2004, 168, 60-79.	1.1	4
52	Magmatic evolution of impact-induced Martian mantle plumes and the origin of Tharsis. Journal of Geophysical Research, 2004, 109, .	3.3	35
53	Dynamics of Lunar Formation. Annual Review of Astronomy and Astrophysics, 2004, 42, 441-475.	8.1	256
54	A computational framework for agglomeration in thermochemically reacting granular flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 3421-3445.	1.0	49
55	Planet Formation by Coagulation: A Focus on Uranus and Neptune. Annual Review of Astronomy and Astrophysics, 2004, 42, 549-601.	8.1	251

ARTICLE IF CITATIONS # Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets. Earth and Planetary Science Letters, 2004, 222, 1.8 80 56 625-643. Planetary accretion in the inner Solar System. Earth and Planetary Science Letters, 2004, 223, 241-252. 1.8 308 Models of Chemistry, Thermal Balance, and Infrared Spectra from Intermediateâ€Aged Disks around G 58 1.6 112 and K Stars. Astrophysical Journal, 2004, 613, 424-447. Collisional Cascades in Planetesimal Disks. II. Embedded Planets. Astronomical Journal, 2004, 127, 1.9 59 513-530. Evidence of Planetesimal Infall onto the Very Young Herbig Be Star LkH 234. Astrophysical Journal, 60 1.6 6 2004, 606, L69-L72. The Size Distribution of Kuiper Belt Objects. Astronomical Journal, 2004, 128, 1916-1926. 62 Accretion Efficiency during Planetary Collisions. Astrophysical Journal, 2004, 613, L157-L160. 1.6 165 Detecting the Dusty Debris of Terrestrial Planet Formation. Astrophysical Journal, 2004, 602, L133-L136. 1.6 Planetary formation in thel³Cephei system. Astronomy and Astrophysics, 2004, 427, 1097-1104. 65 2.1 68 Prospects for Detection of Catastrophic Collisions in Debris Disks. Astronomical Journal, 2005, 130, 269-279. Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in HD 105. Astrophysical 67 1.6 34 Journal, 2005, 631, 1180-1190. Evolution of a Keplerian disk of colliding and fragmenting particles: a kinetic model with application 1.1 64 to the Edgeworth–Kuiper belt. Icarus, 2005, 174, 105-134. The fossilized size distribution of the main asteroid belt. Icarus, 2005, 175, 111-140. 69 1.1 479 Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. 1.1 394 Icarus, 2005, 179, 63-94. Charge-induced clustering in multifield particulate flows. International Journal for Numerical 71 1.5 47 Methods in Engineering, 2005, 62, 870-898. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. Icarus, 2005, 178, 540-552. Accretion of the gaseous envelope of Jupiter around a 5â€"10 Earth-mass core. Icarus, 2005, 179, 415-431. 73 1.1 384 74 Formation of the Cores of the Outer Planets. Space Science Reviews, 2005, 116, 53-66.

#	Article	IF	Citations
75	Surface-Exosphere-Magnetosphere System Of Mercury. Space Science Reviews, 2005, 117, 397-443.	3.7	76
76	Agglomeration and refragmentation in microscale granular flows. International Journal of Fracture, 2005, 131, L37-L44.	1.1	1
77	Thermal Evolution of the Earth During the First Billion Years. Advances in Astrobiology and Biogeophysics, 2005, , 165-193.	0.6	1
78	Ceres: Evolution and current state. Journal of Geophysical Research, 2005, 110, .	3.3	238
79	Unraveling the evolution of chondrite parent asteroids by precise U-Pb dating and thermal modeling. Geochimica Et Cosmochimica Acta, 2005, 69, 505-518.	1.6	63
80	Accretion of the Earth and segregation of its core. Nature, 2006, 441, 825-833.	13.7	393
81	Terrestrial Planet Formation. I. The Transition from Oligarchic Growth to Chaotic Growth. Astronomical Journal, 2006, 131, 1837-1850.	1.9	160
82	Isotopic outcomes of N-body accretion simulations: Constraints on equilibration processes during large impacts from Hf/W observations. Earth and Planetary Science Letters, 2006, 243, 26-43.	1.8	66
83	18. Water in the Early Earth. , 2006, , 421-450.		4
84	A HybridN-Body-Coagulation Code for Planet Formation. Astronomical Journal, 2006, 131, 2737-2748.	1.9	89
85	Hit-and-run planetary collisions. Nature, 2006, 439, 155-160.	13.7	285
86	High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus, 2006, 183, 265-282.	1.1	323
87	Terrestrial planet formation with strong dynamical friction. Icarus, 2006, 184, 39-58.	1.1	372
88	Fluid dynamics of local martian magma oceans. Icarus, 2006, 184, 102-120.	1.1	94
89	Water in the Early Earth. Reviews in Mineralogy and Geochemistry, 2006, 62, 421-450.	2.2	75
90	A semi-analytic model for oligarchic growth. Icarus, 2006, 180, 496-513.	1.1	167
91	Brownian particle having a fluctuating mass. Physical Review E, 2006, 73, 011105.	0.8	46
92	Formation of Earth's Core. , 2007, , 51-90.		39

# 93	ARTICLE Magma Oceans and Primordial Mantle Differentiation. , 2007, , 91-119.	IF	Citations
94	P-wave induced energy and damage distribution in agglomerated granules. Modelling and Simulation in Materials Science and Engineering, 2007, 15, S435-S448.	0.8	6
95	Formation of Earthâ€like Planets During and After Giant Planet Migration. Astrophysical Journal, 2007, 660, 823-844.	1.6	131
96	The Effect of Semicollisional Accretion on Planetary Spins. Astrophysical Journal, 2007, 658, 593-597.	1.6	46
97	Terrestrial planet formation in extra-solar planetary systems. Proceedings of the International Astronomical Union, 2007, 3, 233-250.	0.0	4
99	Equilibration in the aftermath of the lunar-forming giant impact. Earth and Planetary Science Letters, 2007, 262, 438-449.	1.8	339
100	High-Resolution Simulations of The Final Assembly of Earth-Like Planets. 2. Water Delivery And Planetary Habitability. Astrobiology, 2007, 7, 66-84.	1.5	153
101	Planet Formation. , 2007, , 1-17.		4
102	Computation of strongly coupled multifield interaction in particle–fluid systems. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 3927-3950.	3.4	69
103	Crater clusters on Mars: Shedding light on martian ejecta launch conditions. Icarus, 2007, 190, 50-73.	1.1	28
104	Collisional velocities and rates in resonant planetesimal belts. Celestial Mechanics and Dynamical Astronomy, 2007, 99, 169-196.	0.5	8
105	Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment?. Icarus, 2007, 190, 203-223.	1.1	119
106	Accretion of the Earth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4061-4075.	1.6	61
107	Planet formation in α Centauri A revisited: not so accretion friendly after all. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1528-1536.	1.6	91
108	The major differentiation of the Earth at â^1⁄44.45ÂGa. Earth and Planetary Science Letters, 2008, 267, 386-398.	1.8	107
109	An Interpretation of the Anomalously Low Mass of Mars. Astrophysical Journal, 2008, 674, L105-L108.	1.6	44
110	Formation and Accretion History of Terrestrial Planets from Runaway Growth through to Late Time: Implications for Orbital Eccentricity. Astrophysical Journal, 2008, 685, 1247-1261.	1.6	64
111	Variations on Debris Disks: Icy Planet Formation at 30–150 AU for 1–3 <i>M</i> _⊙ Main‣equence Stars. Astrophysical Journal, Supplement Series, 2008, 179, 451-483.	3.0	186

	Сітаті	on Report	
#	Article	IF	CITATIONS
112	Confirmation of a Gapped Primordial Disk around LkCa 15. Astrophysical Journal, 2008, 682, L125-L128.	1.6	95
113	Longâ€Wavelength Excesses of FU Orionis Objects: Flared Outer Disks or Infalling Envelopes?. Astrophysical Journal, 2008, 684, 1281-1290.	1.6	47
114	Accretion of planetary embryos in the inner and outer solar system. Physica Scripta, 2008, T130, 014021.	1.2	29
115	AN ANALYTIC MODEL FOR THE EVOLUTION OF A VISCOUS, IRRADIATED DISK. Astrophysical Journal, 2009 705, 1206-1214.	, 1.6	95
116	Extrasolar planet population synthesis. Astronomy and Astrophysics, 2009, 501, 1139-1160.	2.1	406
117	Phyllosilicate Emission from Protoplanetary Disks: Is the Indirect Detection of Extrasolar Water Possible?. Astrobiology, 2009, 9, 965-978.	1.5	8
118	PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. Astrophysical Journal, 2009, 700, 1502-1523.	1.6	542
119	N-Body simulations of growth from 1km planetesimals at 0.4AU. Icarus, 2009, 203, 626-643.	1.1	40
120	Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 2009, 203, 644-662.	1.1	356
121	Asteroids were born big. Icarus, 2009, 204, 558-573.	1.1	424
122	Formation and detection of Earth mass planets around low mass stars. Icarus, 2009, 202, 1-11.	1.1	27
123	Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica Et Cosmochimica Acta, 2009, 73, 5150-5188.	1.6	521
124	A NEW CONDITION FOR THE TRANSITION FROM RUNAWAY TO OLIGARCHIC GROWTH. Astrophysical Journal Letters, 2010, 714, L103-L107.	3.0	62
125	COLLISIONAL AND LUMINOSITY EVOLUTION OF A DEBRIS DISK: THE CASE OF HD 12039. Astrophysical Journal, 2010, 722, 1716-1726.	1.6	17
126	Accretion among preplanetary bodies: The many faces of runaway growth. Icarus, 2010, 210, 507-538.	1.1	59
129	Early martian dynamo generation due to giant impacts. Icarus, 2010, 207, 82-97.	1.1	33
130	Planetary growth with collisional fragmentation and gas drag. Icarus, 2010, 209, 836-847.	1.1	82
131	Formation of Jupiter using opacities based on detailed grain physics. Icarus, 2010, 209, 616-624.	1.1	190

#	Article	IF	CITATIONS
132	FROM DUST TO PLANETESIMAL: THE SNOWBALL PHASE?. Astrophysical Journal, 2010, 724, 1153-1164.	1.6	46
133	Numerical simulations of highly porous dust aggregates in the low-velocity collision regime. Astronomy and Astrophysics, 2010, 513, A58.	2.1	24
134	THE IRREGULAR SATELLITES: THE MOST COLLISIONALLY EVOLVED POPULATIONS IN THE SOLAR SYSTEM. Astronomical Journal, 2010, 139, 994-1014.	1.9	103
135	VARIATIONS ON DEBRIS DISKS. II. ICY PLANET FORMATION AS A FUNCTION OF THE BULK PROPERTIES AND INITIAL SIZES OF PLANETESIMALS. Astrophysical Journal, Supplement Series, 2010, 188, 242-279.	3.0	67
136	Super-Earths: a new class of planetary bodies. Contemporary Physics, 2011, 52, 403-438.	0.8	21
137	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
138	Formation and evolution. , 0, , 217-254.		3
139	PLANETESIMALS IN DEBRIS DISKS OF SUN-LIKE STARS. Astrophysical Journal, 2011, 739, 36.	1.6	47
140	A NEW HYBRID <i>N</i> -BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS. Astrophysical Journal, 2011, 731, 101.	1.6	83
141	The diversity of planetary system architectures: contrasting theory with observations. Monthly Notices of the Royal Astronomical Society, 2011, 417, 314-332.	1.6	53
142	Initial sizes of planetesimals and accretion of the asteroids. Icarus, 2011, 214, 671-684.	1.1	142
143	Origin, Internal Structure and Evolution of 4 Vesta. Space Science Reviews, 2011, 163, 77-93.	3.7	54
144	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. Space Science Reviews, 2011, 163, 41-61.	3.7	65
145	Cratering erosion of planetary embryos. Icarus, 2011, 214, 316-326.	1.1	32
146	PLANETARY CORE FORMATION WITH COLLISIONAL FRAGMENTATION AND ATMOSPHERE TO FORM GAS GIANT PLANETS. Astrophysical Journal, 2011, 738, 35.	1.6	58
147	OBSERVED BINARY FRACTION SETS LIMITS ON THE EXTENT OF COLLISIONAL GRINDING IN THE KUIPER BELT. Astronomical Journal, 2011, 141, 159.	1.9	50
148	COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15-150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS. Astronomical Journal, 2012, 143, 63.	1.9	56
149	THE LAST STAGES OF TERRESTRIAL PLANET FORMATION: DYNAMICAL FRICTION AND THE LATE VENEER. Astrophysical Journal, 2012, 752, 8.	1.6	85

#	Article	IF	CITATIONS
150	A LAGRANGIAN INTEGRATOR FOR PLANETARY ACCRETION AND DYNAMICS (LIPAD). Astronomical Journal, 2012, 144, 119.	1.9	44
151	CHONDRULE FORMATION IN BOW SHOCKS AROUND ECCENTRIC PLANETARY EMBRYOS. Astrophysical Journal, 2012, 752, 27.	1.6	86
152	ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS. Astrophysical Journal, 2012, 747, 103.	1.6	102
153	The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. , 2012, , .		29
154	Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack― Meteoritics and Planetary Science, 2012, 47, 1941-1947.	0.7	118
155	Oscillator with random trichotomous mass. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 5343-5348.	1.2	30
156	ON THE EFFECT OF GIANT PLANETS ON THE SCATTERING OF PARENT BODIES OF IRON METEORITE FROM THE TERRESTRIAL PLANET REGION INTO THE ASTEROID BELT: A CONCEPT STUDY. Astrophysical Journal, 2012, 749, 113.	1.6	27
157	Circumstellar disks and planets. Astronomy and Astrophysics Review, 2012, 20, 1.	9.1	19
158	Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 2012, 217, 339-354.	1.1	84
159	Mean-square displacement of a stochastic oscillator: Linear vs quadratic noise. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3033-3042.	1.2	18
160	New Type of Brownian Motion. Journal of Statistical Physics, 2012, 146, 239-243.	0.5	24
161	Small planetesimals in a massive disk formed Mars. Icarus, 2013, 225, 122-130.	1.1	36
162	Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus, 2013, 224, 43-56.	1.1	154
163	Mass dependence of instabilities of an oscillator with multiplicative and additive noise. Physical Review E, 2013, 87, 022137.	0.8	12
164	The Formation and Dynamics of Super-Earth Planets. Annual Review of Earth and Planetary Sciences, 2013, 41, 469-495.	4.6	48
165	Impact disruption of primordial planetesimals. Planetary and Space Science, 2013, 75, 96-104.	0.9	4
166	MAMA: an algebraic map for the secular dynamics of planetesimals in tight binary systems. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3772-3781.	1.6	6
167	THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. II. LIMITS ON THE VIABILITY OF RUNAWAY ACCRETION. Astrophysical Journal, 2013, 771, 44.	1.6	70

#	Article	IF	Citations
168	A quantification of hydrodynamical effects on protoplanetary dust growth. Astronomy and Astrophysics, 2013, 560, A96.	2.1	7
169	Hybrid methods in planetesimal dynamics: formation of protoplanetary systems and the mill condition. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3755-3769.	1.6	23
170	AFTER RUNAWAY: THE TRANS-HILL STAGE OF PLANETESIMAL GROWTH. Astrophysical Journal, 2014, 780, 22.	1.6	6
171	THE FORMATION OF PLUTO'S LOW-MASS SATELLITES. Astronomical Journal, 2014, 147, 8.	1.9	40
172	Stochastic oscillator with random mass: New type of Brownian motion. Physica A: Statistical Mechanics and Its Applications, 2014, 395, 11-21.	1.2	35
173	Hybrid methods in planetesimal dynamics: description of a new composite algorithm. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3620-3649.	1.6	28
174	Growth of Jupiter: Enhancement of core accretion by a voluminous low-mass envelope. Icarus, 2014, 241, 298-312.	1.1	24
175	Planet Formation. , 2014, , 55-72.		7
176	Water delivery and giant impacts in the â€~Grand Tack' scenario. Icarus, 2014, 239, 74-84.	1.1	209
177	Planetesimal-driven migration of terrestrial planet embryos. Icarus, 2014, 232, 118-132.	1.1	26
178	A particle-based hybrid code for planet formation. Icarus, 2015, 260, 368-395.	1.1	9
179	The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores. Icarus, 2015, 258, 418-429.	1.1	191
180	Thermodynamics of the MgOâ€FeOâ€5iO ₂ system up to 140ÂGPa: Application to the crystallization of Earth's magma ocean. Journal of Geophysical Research: Solid Earth, 2015, 120, 6085-6101.	1.4	75
181	Internal sources of water on Earth. Proceedings of the International Astronomical Union, 2015, 11, 407-410.	0.0	0
182	Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3620-3635.	1.6	94
183	Global models of planet formation and evolution. International Journal of Astrobiology, 2015, 14, 201-232.	0.9	135
184	In search of late-stage planetary building blocks. Chemical Geology, 2015, 411, 125-142.	1.4	61
185	Formation of the Earth's Core. , 2015, , 43-79.		40

#	Article	IF	CITATIONS
186	Magma Oceans and Primordial Mantle Differentiation. , 2015, , 81-104.		59
187	The role of impact and radiogenic heating in the early thermal evolution of Mars. Journal of Earth System Science, 2015, 124, 241-260.	0.6	12
188	EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY. Astrophysical Journal, 2015, 809, 88.	1.6	11
189	FORMATION OF SUPER-EARTH MASS PLANETS AT 125–250 AU FROM A SOLAR-TYPE STAR. Astrophysical Journal, 2015, 806, 42.	1.6	39
191	Atmospheric mass loss during planet formation: The importance of planetesimal impacts. Icarus, 2015, 247, 81-94.	1.1	163
192	FROM PLANETESIMALS TO PLANETS IN TURBULENT PROTOPLANETARY DISKS. I. ONSET OF RUNAWAY GROWTH. Astrophysical Journal, 2016, 817, 105.	1.6	38
193	Astrophysics with Extraterrestrial Materials. Annual Review of Astronomy and Astrophysics, 2016, 54, 53-93.	8.1	133
194	The early thermal evolution of Mars. Meteoritics and Planetary Science, 2016, 51, 138-154.	0.7	13
195	Noisy oscillator: Random mass and random damping. Physical Review E, 2016, 94, 052144.	0.8	23
196	HIDING IN THE SHADOWS. II. COLLISIONAL DUST AS EXOPLANET MARKERS. Astrophysical Journal, 2016, 820, 29.	1.6	25
197	A CAREFULLY CHARACTERIZED AND TRACKED TRANS-NEPTUNIAN SURVEY: THE SIZE DISTRIBUTION OF THE PLUTINOS AND THE NUMBER OF NEPTUNIAN TROJANS. Astronomical Journal, 2016, 152, 111.	1.9	55
198	ROCKY PLANET FORMATION: QUICK AND NEAT. Astrophysical Journal, 2016, 831, 8.	1.6	27
199	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159
200	FORMING THE COLD CLASSICAL KUIPER BELT IN A LIGHT DISK. Astrophysical Journal, 2016, 818, 175.	1.6	40
201	Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars. Astronomical Journal, 2017, 153, 216.	1.9	49
202	Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets. Icarus, 2017, 293, 199-205.	1.1	14
203	Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during the Depletion of the Solar Nebula. Astrophysical Journal, 2017, 836, 207.	1.6	24
204	Using the Main Asteroid Belt to Constrain Planetesimal and Planet Formation. , 0, , 38-68.		0

#	Article	IF	CITATIONS
205	Mapping the composition of chondritic meteorite Northwest Africa 3118 with micro-Raman spectroscopy. Spectroscopy Letters, 2017, 50, 417-425.	0.5	4
206	Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population. Icarus, 2017, 291, 268-287.	1.1	18
207	Stochasticity and predictability in terrestrial planet formation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2170-2188.	1.6	39
208	Did ²⁶ Al and impactâ€induced heating differentiate Mercury?. Meteoritics and Planetary Science, 2017, 52, 295-319.	0.7	11
209	PENTACLE: Parallelized particle–particle particle-tree code for planet formation. Publication of the Astronomical Society of Japan, 2017, 69, .	1.0	31
210	Effects of disc midplane evolution on CO snowline location. Monthly Notices of the Royal Astronomical Society, 0, , stx114.	1.6	7
211	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76
212	Planetary Rings and Other Astrophysical Disks. , 0, , 549-576.		3
213	Impact splash chondrule formation during planetesimal recycling. Icarus, 2018, 302, 27-43.	1.1	79
214	Ornstein–Uhlenbeck process with fluctuating damping. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 790-803.	1.2	4
215	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
216	Bi-lobed Shape of Comet 67P from a Collapsed Binary. Astronomical Journal, 2018, 155, 246.	1.9	17
218	Radial velocities. , 0, , 17-80.		0
219	Astrometry. , 0, , 81-102.		0
220	Timing. , 0, , 103-118.		0
221	Microlensing. , 0, , 119-152.		0
223	Host stars. , 0, , 373-428.		0
224	Brown dwarfs and free-floating planets. , 0, , 429-448.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
225	Formation and evolution. , 0, , 449-558.			0
226	Interiors and atmospheres. , 0, , 559-648.			0
227	The solar system. , 0, , 649-700.			0
235	Formation of Terrestrial Planets. , 2018, , 1-59.			0
236	Atmosphere Impact Losses. Space Science Reviews, 2018, 214, 1.		3.7	62
237	Transits. , 0, , 153-328.			0
238	N-body simulations of terrestrial planet growth with resonant dynamical friction. Mont of the Royal Astronomical Society, 2019, 489, 2159-2176.	hly Notices	1.6	7
239	Probabilities of Collisions of Planetesimals from Different Regions of the Feeding Zone Terrestrial Planets with the Forming Planets and the Moon. Solar System Research, 20	of the 19, 53, 332-361.	0.3	7
240	Binary survival in the outer solar system. Icarus, 2019, 331, 49-61.		1.1	39
241	Accretion of the asteroids: Implications for their thermal evolution. Meteoritics and Pla Science, 2019, 54, 1115-1132.	netary	0.7	37
242	Planetesimals to terrestrial planets: Collisional evolution amidst a dissipating gas disk. 329, 88-100.	Icarus, 2019,	1.1	44
243	Planet Formation and Disk-Planet Interactions. Saas-Fee Advanced Course, 2019, , 151	-260.	1.1	4
244	A Multifrequency ALMA Characterization of Substructures in the GM Aur Protoplaneta Astrophysical Journal, 2020, 891, 48.	ry Disk.	1.6	54
245	Development of a Numerical Simulation Method for Rocky Body Impacts and Theoretic Asteroidal Shapes. Springer Theses, 2020, , .	cal Analysis of	0.0	0
246	Growth of Jupiter: Formation in disks of gas and solids and evolution to the present ep 2021, 355, 114087.	och. Icarus,	1.1	17
247	A Pluto–Charon Concerto. II. Formation of a Circumbinary Disk of Debris after the Gi Astronomical Journal, 2021, 161, 211.	ant Impact.	1.9	5
248	Dynamical Avenues for Mercury's Origin. II. In Situ Formation in the Inner Terrestria Astronomical Journal, 2021, 162, 3.	al Disk.	1.9	10
249	Seeking Echoes of Circumstellar Disks in Kepler Light Curves. Astronomical Journal, 20	21, 162, 98.	1.9	1

#	Article	IF	Citations
251	Migration processes in the Solar System and their role in the evolution of the Earth and planets. Physics-Uspekhi, 2023, 66, 2-31.	0.8	8
252	Dynamical Evolution of Viscous Discs. Astrophysical Applications to the Formation of Planetary Systems and to the Confinement of Planetary Rings and Arcs. Lecture Notes in Physics, 2001, , 281-329.	0.3	36
253	Dynamics of Saturn's Dense Rings. , 2009, , 413-458.		34
254	Extrasolar planets. , 2000, , 391-419.		7
255	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. , 2011, , 41-61.		1
256	Formation and Evolution of Terrestrial Planets in Protoplanetary and Debris Disks. , 2008, , 89-113.		1
257	Towards a Dynamical Model of Mars' Evolution. , 2010, , 485-510.		1
258	Dynamics and Planet Formation in/Around Binaries. Astrophysics and Space Science Library, 2010, , 165-193.	1.0	4
259	From Disks to Planets. , 2013, , 1-62.		26
260	Dynamical Evolution of Planetary Systems. , 2013, , 63-109.		30
261	Formation of Planetesimals and Accretion of the Terrestrial Planets. Space Sciences Series of ISSI, 2000, , 295-310.	0.0	19
262	The Formation of Planets. , 1999, , 643-680.		25
264	Planet formation in highly inclined binaries. Astronomy and Astrophysics, 2009, 507, 505-511.	2.1	25
265	Dust distributions in debris disks: effects of gravity, radiation pressure and collisions. Astronomy and Astrophysics, 2006, 455, 509-519.	2.1	146
266	Accretion in the Early Outer Solar System. Astrophysical Journal, 1999, 526, 465-470.	1.6	72
267	Gravitational Stirring in Planetary Debris Disks. Astronomical Journal, 2001, 121, 538-551.	1.9	85
268	Termination of Planetary Accretion Due to Gap Formation. Astronomical Journal, 2001, 122, 2713-2722.	1.9	31
269	Collisional Cascades in Planetesimal Disks. I. Stellar Flybys. Astronomical Journal, 2002, 123, 1757-1775.	1.9	79

	CHATION R	PORT	
#	Article	IF	CITATIONS
270	Dusty Rings: Signposts of Recent Planet Formation. Astrophysical Journal, 2002, 577, L35-L38.	1.6	72
271	Planetesimal Disk Evolution Driven by Embryo-Planetesimal Gravitational Scattering. Astronomical Journal, 2003, 125, 922-941.	1.9	18
272	A SPATIALLY RESOLVED INNER HOLE IN THE DISK AROUND GM AURIGAE. Astrophysical Journal, 2009, 698, 131-142.	1.6	163
273	Debris disks: seeing dust, thinking of planetesimals and planets. Research in Astronomy and Astrophysics, 2010, 10, 383-414.	0.7	133
274	Fluid Dynamics of a Terrestrial Magma Ocean. , 2000, , 323-338.		139
275	VARIATIONS ON DEBRIS DISKS. III. COLLISIONAL CASCADES AND GIANT IMPACTS IN THE TERRESTRIAL ZONES OF SOLAR-TYPE STARS. Astrophysical Journal, 2016, 817, 51.	1.6	32
276	On the Estimation of Circumbinary Orbital Properties. Astronomical Journal, 2021, 161, 25.	1.9	9
277	Oscillator with Random Mass. World Journal of Mechanics, 2012, 02, 113-124.	0.1	5
278	Planetary Accumulation with a Continuous Supply of Planetesimals. Space Sciences Series of ISSI, 2000, , 311-320.	0.0	2
279	Accretion of the Terrestrial Planets and the Earth-Moon System. , 2000, , 113-130.		36
280	Primordial Excitation and Depletion of the Main Belt. , 2002, , 711-724.		34
281	Thermal Evolution Models of Asteroids. , 2002, , 559-572.		84
282	Meteorites and the Timing, Mechanisms, and Conditions of Terrestrial Planet Accretion and Early Differentiation. , 2006, , 775-802.		29
283	Die Entstehung unseres Sonnensystems. Springer-Lehrbuch, 2010, , 581-590.	0.1	0
284	Origin, Internal Structure and Evolution of 4 Vesta. , 2011, , 77-93.		0
285	Die Entstehung unseres Sonnensystems. Springer-Lehrbuch, 2014, , 629-638.	0.1	0
286	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0
287	Atmosphere Impact Losses. Space Sciences Series of ISSI, 2018, , 397-427.	0.0	0

IF ARTICLE CITATIONS # The Genesis of Our Solar System. Springer Textbooks in Earth Sciences, Geography and Environment, 289 0.1 0 2020, , 667-676. Formation of the Cores of the Outer Planets., 2005, , 53-66. Extrasolar planets., 2005,, 493-539. 291 0 From Pebbles and Planetesimals to Planets and Dust: The Protoplanetary Disk–Debris Disk Connection. Astrophysical Journal, 2022, 925, 45. The Mass Loss of the Main Asteroid Belt and Mars' Zone Caused by the Impact of Solar Radiation and Jupiter: I: Numerical Calculations of the Dust Evolution. Solar System Research, 2022, 56, 183-190. 294 0.3 3 On the Analytical Models of Protoplanetary Formation in Extrasolar Systems. Space: Science & Technology, 2022, 2022, . 1.0 The accretion of planet Earth. Nature Reviews Earth & Environment, 2023, 4, 19-35. 296 12.2 4 Early bombardment of the moon: Connecting the lunar crater record to the terrestrial planet 1.1 formation. Icarus, 2023, 399, 115545. Takeout and Delivery: Erasing the Dusty Signature of Late-stage Terrestrial Planet Formation. Astrophysical Journal, 2023, 944, 125. 298 1.6 2

CITATION REPORT