Potential for carbon sequestration in European soils: pr scenarios using results from long-term experiments

Global Change Biology 3, 67-79 DOI: 10.1046/j.1365-2486.1997.00055.x

Citation Report

#	Article	IF	CITATIONS
1	Agricultural soils as a sink to mitigate CO2emissions. Soil Use and Management, 1997, 13, 230-244.	4.9	719
2	Mitigation of atmospheric CO 2 concentrations by increased carbon sequestration in the soil. Biology and Fertility of Soils, 1998, 27, 230-235.	4.3	163
3	Regional estimates of carbon sequestration potential: linking the Rothamsted Carbon Model to GIS databases. Biology and Fertility of Soils, 1998, 27, 236-241.	4.3	107
4	Preliminary estimates of the potential for carbon mitigation in European soils through noâ€ŧill farming. Clobal Change Biology, 1998, 4, 679-685.	9.5	213
5	A European network of long-term sites for studies on soil organic matter. Soil and Tillage Research, 1998, 47, 263-274.	5.6	70
6	20th Century Carbon Budget of Forest Soils in the Alps. Ecosystems, 1999, 2, 320-337.	3.4	56
7	CARBON AND AGRICULTURE:Carbon Sequestration in Soils. Science, 1999, 284, 2095-2095.	12.6	373
8	Transport carbon costs do not negate the benefits of agricultural carbon mitigation options. Ecology Letters, 2000, 3, 379-381.	6.4	18
9	Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 2000, 6, 525-539.	9.5	294
10	Article 3.3 and 3.4 of the Kyoto Protocol: consequences for industrialised countries' commitment, the monitoring needs, and possible side effects. Environmental Science and Policy, 2000, 3, 123-134.	4.9	24
11	Including trace gas fluxes in estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management, 2000, 16, 251-259.	4.9	33
12	Nitrogen leaching from conventional versus organic farming systems — a systems modelling approach. European Journal of Agronomy, 2000, 13, 65-82.	4.1	107
13	Carbon sequestration in soils: some cautions amidst optimism. Agriculture, Ecosystems and Environment, 2000, 82, 121-127.	5.3	267
14	Title is missing!. Biogeochemistry, 2000, 48, 115-146.	3.5	1,684
15	Soil respiration and the global carbon cycle. , 2000, 48, 7-20.		1,400
16	Contemporary carbon stocks of mineral forest soils in the Swiss Alps. Biogeochemistry, 2000, 50, 111-136.	3.5	47
17	AGRICULTURAL CARBON MITIGATION OPTIONS IN EUROPE: IMPROVED ESTIMATES AND THE GLOBAL PERSPECTIVE. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2000, 48, 209-216.	0.2	1
18	How important is inert organic matter for predictive soil carbon modelling using the Rothamsted carbon model?. Soil Biology and Biochemistry, 2000, 32, 433-436.	8.8	50

ATION RED

#	Article	IF	CITATIONS
19	A review of tillage effects on crop residue management, seedbed conditions and seedling establishment. Soil and Tillage Research, 2001, 61, 13-32.	5.6	128
20	Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7, 269-278.	9.5	843
21	Technical and policy aspects of strategies to decrease greenhouse gas emissions from agriculture. Nutrient Cycling in Agroecosystems, 2001, 60, 301-315.	2.2	64
22	Estimates of N2O and CH4 fluxes from agricultural lands in various regions in Europe. Nutrient Cycling in Agroecosystems, 2001, 60, 35-47.	2.2	75
23	Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutrient Cycling in Agroecosystems, 2001, 60, 49-55.	2.2	55
24	CO2 emissions and C sequestration by agriculture – perspectives and limitations. Nutrient Cycling in Agroecosystems, 2001, 60, 253-266.	2.2	133
25	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 60, 237-252.	2.2	156
26	Soil Carbon Sequestration and the CDM: Opportunities and Challenges for Africa. Climatic Change, 2002, 54, 471-495.	3.6	65
27	Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass and Bioenergy, 2003, 24, 97-116.	5.7	167
28	Carbon stock changes and carbon sequestration potential of Flemish cropland soils. Clobal Change Biology, 2003, 9, 1193-1203.	9.5	80
29	Crop Management for Soil Carbon Sequestration. Critical Reviews in Plant Sciences, 2003, 22, 471-502.	5.7	266
30	Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends in Plant Science, 2003, 8, 407-409.	8.8	296
31	Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect. Critical Reviews in Plant Sciences, 2003, 22, 151-184.	5.7	399
32	Influences of global change on carbon sequestration by agricultural and forest soils. Environmental Reviews, 2003, 11, 161-192.	4.5	14
33	Soil organic matter as influenced by straw management practices and inclusion of grass and clover seed crops in cereal rotations. Soil Research, 2003, 41, 95.	1.1	25
34	Spatioâ€Temporal Simulation of the Fieldâ€Scale Evolution of Organic Carbon over the Landscape. Soil Science Society of America Journal, 2003, 67, 1477-1486.	2.2	37
35	Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology, 2004, 10, 79-92.	9.5	431
36	Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology, 2004, 10, 509-518.	9.5	268

#	Article	IF	CITATIONS
37	Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO 2. New Phytologist, 2004, 164, 423-439.	7.3	403
38	Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy, 2004, 20, 229-236.	4.1	443
39	Belgium's CO2 mitigation potential under improved cropland management. Agriculture, Ecosystems and Environment, 2004, 103, 101-116.	5.3	54
40	Carbon sequestration potential of organic agriculture in northern Europe – a modelling approach. Nutrient Cycling in Agroecosystems, 2004, 68, 13-24.	2.2	67
41	Fractions of organic carbon in soils under different crop rotations, cover crops and fertilization practices. Nutrient Cycling in Agroecosystems, 2004, 70, 161-166.	2.2	35
42	Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an inceptisol in southeastern Norway. Nutrient Cycling in Agroecosystems, 2004, 70, 167-177.	2.2	71
43	Modelling the impact of microbial grazers on soluble rhizodeposit turnover. Plant and Soil, 2004, 267, 329-342.	3.7	8
44	Effects of level and quality of organic matter input on carbon storage and biological activity in soil: Synthesis of a long-term experiment. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	61
45	Carbon sequestration in the agricultural soils of Europe. Geoderma, 2004, 122, 1-23.	5.1	732
46	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22.	5.1	2,635
46 47	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540.	5.1 1.2	2,635 37
46 47 48	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540. Carbon stock changes in a peaty gley soil profile after afforestation with Sitka spruce (Picea) Tj ETQq1 1 0.7843	5.1 1.2 14 <u>rg</u> BT /C	2,635 37 Overlock 10 Tf
46 47 48 49	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540. Carbon stock changes in a peaty gley soil profile after afforestation with Sitka spruce (Picea) Tj ETQq1 1 0.7843 Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment, 2005, 105, 255-266.	5.1 1.2 14 rgBT /C 5.3	2,635 37 Dve <u>rlock 10</u> Tf 247
46 47 48 49 50	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540. Carbon stock changes in a peaty gley soil profile after afforestation with Sitka spruce (Picea) Tj ETQq1 1 0.7843 Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment, 2005, 105, 255-266. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Clobal Change Biology, 2005, 11, 2141-2152.	5.1 1.2 14 rgBT /C 5.3 9.5	2,635 37 Dverlock 10 T 247 298
46 47 48 49 50 51	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540. Carbon stock changes in a peaty gley soil profile after afforestation with Sitka spruce (Picea) Tj ETQq1 1 0.7843 Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment, 2005, 105, 255-266. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Clobal Change Biology, 2005, 11, 2141-2152. Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biology and Biochemistry, 2005, 37, 1387-1395.	5.1 1.2 14 rgBT /C 5.3 9.5 8.8	2,635 37 Dve <u>r</u> lock 10 [f 247 298 49
 46 47 48 49 50 51 52 	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540. Carbon stock changes in a peaty gley soil profile after afforestation with Sitka spruce (Picea) Tj ETQq1 1 0.7843 Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment, 2005, 105, 255-266. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology, 2005, 11, 2141-2152. Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biology and Biochemistry, 2005, 37, 1387-1395. The Potential of Soil Carbon Sequestration Through Improved Management Practices in Norway. Environment, Development and Sustainability, 2005, 7, 161-184.	5.1 1.2 14 rgBT /C 5.3 9.5 8.8 5.0	2,635 37 Overlock 10 T 247 298 49
 46 47 48 49 50 51 52 53 	Soil carbon sequestration to mitigate climate change. Geoderma, 2004, 123, 1-22. Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 2005, 85, 531-540. Carbon stock changes in a peaty gley soil profile after afforestation with Sitka spruce (Picea) TJ ETQq1 1 0.7843 Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agriculture, Ecosystems and Environment, 2005, 105, 255-266. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology, 2005, 11, 2141-2152. Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biology and Biochemistry, 2005, 37, 1387-1395. The Potential of Soil Carbon Sequestration Through Improved Management Practices in Norway. Environment, Development and Sustainability, 2005, 7, 161-184. Limited Increase of Agricultural Soil Carbon and Nitrogen Stocks Due to Increased Atmospheric CO2Concentrations. Journal of Crop Improvement, 2005, 13, 393-399.	5.1 1.2 14 <u>rg</u> BT /C 5.3 9.5 8.8 5.0 1.7	2,635 37 Overlock 10 T 247 298 49 43 5

#	Article	IF	CITATIONS
55	CARBON EMISSIONS AND SEQUESTRATION. , 2005, , 175-180.		0
56	A comparative study of analytical methodologies to determine the soil organic matter content of Lithuanian Eutric Albeluvisols. Geoderma, 2006, 136, 763-773.	5.1	33
57	Changes in soil carbon and total nitrogen following reforestation of previously cultivated land in the highlands of Ethiopia. Sinet, 2006, 28, 99.	0.3	5
58	Projected changes in mineral soil carbon of European forests, 1990–2100. Canadian Journal of Soil Science, 2006, 86, 159-169.	1.2	94
59	After the Kyoto Protocol: Can soil scientists make a useful contribution?*. Soil Use and Management, 1999, 15, 71-75.	4.9	33
60	Meeting the UK's climate change commitments: options for carbon mitigation on agricultural land. Soil Use and Management, 2000, 16, 1-11.	4.9	55
61	Estimates of carbon stock changes in Belgian cropland. Soil Use and Management, 2003, 19, 166-171.	4.9	21
62	Soil organic and inorganic carbon contents of landscape units in Belgium derived using data from 1950 to 1970. Soil Use and Management, 2004, 20, 40-47.	4.9	19
63	Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. Soil Use and Management, 2004, 20, 264-270.	4.9	11
64	Carbon sequestration and saving potential associated with changes to the management of agricultural soils in England. Soil Use and Management, 2004, 20, 394-402.	4.9	8
65	Yields of wheat and soil carbon and nitrogen contents following longâ€ŧerm incorporation of barley straw and ryegrass catch crops. Soil Use and Management, 2004, 20, 432-438.	4.9	15
66	Long-term effects of recommended management practices on soil carbon changes and sequestration in north-eastern Italy. Soil Use and Management, 2006, 22, 71-81.	4.9	76
67	Regional simulation of longâ€ŧerm organic carbon stock changes in cropland soils using the DNDC model: 1. Largeâ€₅cale model validation against a spatially explicit data set. Soil Use and Management, 2006, 22, 342-351.	4.9	25
68	Regional simulation of longâ€ŧerm organic carbon stock changes in cropland soils using the DNDC model: 2. Scenario analysis of management options. Soil Use and Management, 2006, 22, 352-361.	4.9	7
69	Grass ley set-aside and soil organic matter dynamics on sandy soils in Shropshire, UK. Earth Surface Processes and Landforms, 2006, 31, 570-578.	2.5	12
70	International Comparison of Analytical Methods of Determining the Soil Organic Matter Content of Lithuanian Eutric Albeluvisols. Communications in Soil Science and Plant Analysis, 2006, 37, 707-720.	1.4	24
71	Nitrogen Management Affects Carbon Sequestration in North American Cropland Soils. Critical Reviews in Plant Sciences, 2007, 26, 45-64.	5.7	136
72	Regional assessment of soil organic carbon changes under agriculture in Southern Belgium (1955–2005). Geoderma, 2007, 141, 341-354.	5.1	141

#	Article	IF	CITATIONS
73	Induced effects of hedgerow networks on soil organic carbon storage within an agricultural landscape. Geoderma, 2007, 142, 80-95.	5.1	52
74	An Assessment of the Environmental Impacts at the Farm Scale of Three Organic Dairy Systems. Biological Agriculture and Horticulture, 2007, 24, 317-339.	1.0	2
75	Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils. Soil and Tillage Research, 2007, 95, 161-171.	5.6	56
76	Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990?2070. Clobal Change Biology, 2007, 13, 342-356.	9.5	67
77	Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13, 1989-2007.	9.5	324
78	Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins. Ecological Modelling, 2007, 206, 93-109.	2.5	15
79	Carbon losses from soil and its consequences for land-use management. Science of the Total Environment, 2007, 382, 165-190.	8.0	257
80	Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment, 2007, 118, 273-284.	5.3	551
81	Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 2007, 118, 6-28.	5.3	459
82	Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture, Ecosystems and Environment, 2007, 121, 325-335.	5.3	110
83	Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 2007, 80, 25-41.	3.6	267
84	Sectoral approaches to improve regional carbon budgets. Climatic Change, 2008, 88, 209-249.	3.6	19
85	Carbon sequestration in soils of cool temperate regions (introductory and editorial). Nutrient Cycling in Agroecosystems, 2008, 81, 107-112.	2.2	5
86	Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 2008, 81, 169-178.	2.2	367
87	Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutrient Cycling in Agroecosystems, 2008, 81, 113-127.	2.2	118
88	Carbon sequestration in European soils through straw incorporation: Limitations and alternatives. Waste Management, 2008, 28, 741-746.	7.4	111
89	Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics. Environmental Modelling and Software, 2008, 23, 125-138.	4.5	63
90	Spatially explicit historical land use land cover and soil organic carbon transformations in Southern Illinois. Agriculture, Ecosystems and Environment, 2008, 123, 280-292.	5.3	27

#	Article	IF	CITATIONS
91	Carbon balance in maize fields under cattle manure application and no-tillage cultivation in Northeast Thailand. Soil Science and Plant Nutrition, 2008, 54, 277-288.	1.9	21
92	Assessing scale effects on modelled soil organic carbon contents as a result of land use change in Belgium. Soil Use and Management, 2008, 24, 8-18.	4.9	16
93	Response of soil surface CO ₂ flux in a boreal forest to ecosystem warming. Global Change Biology, 2008, 14, 856-867.	9.5	124
94	Can mineral and organic fertilization help sequestrate carbon dioxide in cropland?. European Journal of Agronomy, 2008, 29, 13-20.	4.1	156
95	Mid-Infrared Diffuse Reflectance Spectroscopic Examination of Charred Pine Wood, Bark, Cellulose, and Lignin: Implications for the Quantitative Determination of Charcoal in Soils. Applied Spectroscopy, 2008, 62, 182-189.	2.2	23
96	Evaluating the Effect of Tillage on Carbon Sequestration Using the Minimum Detectable Difference Concept. Pedosphere, 2008, 18, 421-430.	4.0	50
97	Long-term development of above- and below-ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park. Canadian Journal of Forest Research, 2008, 38, 1590-1602.	1.7	36
98	Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 815-830.	4.0	977
99	The potential role of compost in reducing greenhouse gases. Waste Management and Research, 2008, 26, 61-69.	3.9	144
100	Forest management and soil respiration: Implications for carbon sequestration. Environmental Reviews, 2008, 16, 93-111.	4.5	103
101	Estimating Soil Organic Carbon at Equilibrium Using a Logistic Model. Communications in Soil Science and Plant Analysis, 2008, 39, 627-640.	1.4	0
102	Soil carbon storage and yields of spring barley following grass leys of different age. European Journal of Agronomy, 2009, 31, 29-35.	4.1	53
104	Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives. Energy Policy, 2009, 37, 992-1003.	8.8	31
105	Global estimates of soil carbon sequestration via livestock waste: a STELLA simulation. Environment, Development and Sustainability, 2009, 11, 871-885.	5.0	6
106	Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province. Global Change Biology, 2009, 15, 861-875.	9.5	86
107	Soil organic carbon and nitrogen stocks in Nepal long-term soil fertility experiments. Soil and Tillage Research, 2009, 106, 95-103.	5.6	61
108	Assessment of the optimal time interval for repeated soil surveys at intensively monitored forest plots. Journal of Environmental Monitoring, 2009, 11, 2009.	2.1	3
109	Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model. Ecological Applications, 2010, 20, 634-647.	3.8	53

#	Article	IF	CITATIONS
110	Toward Landscapeâ€Scale Modeling of Soil Organic Matter Dynamics in Agroecosystems. Soil Science Society of America Journal, 2010, 74, 1847-1860.	2.2	59
111	Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agriculture, Ecosystems and Environment, 2010, 135, 42-51.	5.3	150
112	An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems and Environment, 2010, 136, 133-138.	5.3	152
113	Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems and Environment, 2010, 139, 302-315.	5.3	221
114	CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Science China Earth Sciences, 2010, 53, 1351-1357.	5.2	38
115	Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain. Soil Use and Management, 2010, 26, 381-398.	4.9	31
116	Modeling the greenhouse gas budget of straw returning in China. Annals of the New York Academy of Sciences, 2010, 1195, E107-30.	3.8	16
117	Decomposition of straw from herbage seed production: Effects of species, nutrient amendment and straw placement on C and N net mineralization. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2010, 60, 57-68.	0.6	5
118	Poplar. RSC Energy and Environment Series, 2010, , 275-300.	0.5	6
119	Soil Carbon Sequestration for Mitigating Climate Change: Distinguishing the Genuine from the Imaginary. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 393-402.	0.4	2
120	Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: a critical review of mitigation options. Agronomy for Sustainable Development, 2010, 30, 215-236.	5.3	58
121	Effects of Long-Term Fertilization on the Distribution of Carbon, Nitrogen and Phosphorus in Water-Stable Aggregates in Paddy Soil. Agricultural Sciences in China, 2011, 10, 1932-1940.	0.6	46
122	UK land-use change and its impact on SOC: 1925-2007. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	15
123	Application of Î' ¹³ C and Î' ¹⁵ N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms_Biogeosciences_2011_8_2895-2906	3.3	38
124	Effects of irrigation and plowing on soil carbon dioxide efflux in a poplar plantation chronosequence in northwest China. Soil Science and Plant Nutrition, 2011, 57, 466-474.	1.9	6
125	Greenhouse Gas Emissions from Cattle Feedlot Manure Composting and Anaerobic Digestion as a Potential Mitigation Strategy. ACS Symposium Series, 2011, , 419-441.	0.5	3
126	Implications for Soil Properties of Removing Cereal Straw: Results from Longâ€Term Studies ¹ . Agronomy Journal, 2011, 103, 279-287.	1.8	155
127	Soil carbon sequestration to mitigate climate change: a critical reâ€examination to identify the true and the false. European Journal of Soil Science, 2011, 62, 42-55.	3.9	585

#	Article	IF	CITATIONS
128	Greenhouse Gases and Ammonia Emissions from Organic Mixed Crop-Dairy Systems: A Critical Review of Mitigation Options. , 2011, , 529-556.		1
129	Litter carbon inputs to the mineral soil of Japanese Brown forest soils: comparing estimates from the RothC model with estimates from MODIS. Journal of Forest Research, 2011, 16, 16-25.	1.4	13
130	Cool Farm Tool â \in Potato: Model Description and Performance of Four Production Systems. Potato Research, 2011, 54, 355-369.	2.7	37
131	A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling and Software, 2011, 26, 1070-1078.	4.5	179
132	Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil and Tillage Research, 2011, 114, 165-174.	5.6	256
133	Bioenergy from "surplus―land: environmental and socio-economic implications. BioRisk, 0, 7, 5-50.	0.2	165
134	Emissions of carbon dioxide, methane, and nitrous oxide from short- and long-term organic farming Andosols in central Japan. Soil Science and Plant Nutrition, 2012, 58, 793-801.	1.9	11
135	Impacts of organic amendments on carbon stocks of an agricultural soil — Comparison of model-simulations to measurements. Geoderma, 2012, 189-190, 606-616.	5.1	46
136	Soil quality under different land uses in a subarctic environment in Alaska. Journal of Land Use Science, 2012, 7, 109-121.	2.2	2
137	Strategies for carbon sequestration in agricultural soils in northern Europe. Acta Agriculturae Scandinavica - Section A: Animal Science, 2012, 62, 181-198.	0.2	47
138	Setting priorities for land management to mitigate climate change. Carbon Balance and Management, 2012, 7, 5.	3.2	14
139	Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soilâ€specific predictions from integrated empirical models. Global Change Biology, 2012, 18, 1880-1894.	9.5	44
140	Soils and climate change. Current Opinion in Environmental Sustainability, 2012, 4, 539-544.	6.3	172
141	Belowground carbon allocation and net primary and ecosystem productivities in apple trees (Malus) Tj ETQq1 1	0.7 <u>8</u> 4314	rgBT /Overloo
142	Modeling the productivity of energy crops in different agro-ecological environments. Biomass and Bioenergy, 2012, 46, 618-633.	5.7	22
143	Microbes in Agrowaste Management for Sustainable Agriculture. , 2012, , 127-151.		5
144	Soil carbon sequestration: an innovative strategy for reducing atmospheric carbon dioxide concentration. Biodiversity and Conservation, 2012, 21, 1343-1358.	2.6	37
145	The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agriculture, Ecosystems and Environment, 2012, 146, 23-33.	5.3	244

#	Article	IF	CITATIONS
146	Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation. Agriculture, Ecosystems and Environment, 2012, 153, 33-39.	5.3	63
147	Potential carbon stock in Japanese forest soils – simulated impact of forest management and climate change using the CENTURY model. Soil Use and Management, 2012, 28, 45-53.	4.9	15
148	Agricultural greenhouse gas mitigation potential globally, in <scp>E</scp> urope and in the <scp>UK</scp> : what have we learnt in the last 20Âyears?. Global Change Biology, 2012, 18, 35-43.	9.5	79
149	Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic Plains of India. Field Crops Research, 2012, 127, 129-139.	5.1	162
150	Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon. Science of the Total Environment, 2012, 431, 166-175.	8.0	101
151	Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry, 2012, 47, 78-92.	8.8	173
152	RothC simulation of carbon accumulation in soil after repeated application ofÂwidely different organic amendments. Soil Biology and Biochemistry, 2012, 52, 49-60.	8.8	86
153	Soil carbon pools in Swiss forests show legacy effects from historic forest litter raking. Landscape Ecology, 2013, 28, 835-846.	4.2	50
154	Multiâ€nutrient vs. nitrogenâ€only effects on carbon sequestration in grassland soils. Global Change Biology, 2013, 19, 3848-3857.	9.5	84
155	Enzyme Activity in Water-Stable Soil Aggregates as Affected by Long-Term Application of Organic Manure and Chemical Fertiliser. Pedosphere, 2013, 23, 111-119.	4.0	48
156	The Potential of Latin American Coffee Production Systems to Mitigate Climate Change. Climate Change Change Management, 2013, , 655-679.	0.8	0
157	Soil organic carbon sequestration potential of cropland in China. Global Biogeochemical Cycles, 2013, 27, 711-722.	4.9	83
158	Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soils and Sediments, 2013, 13, 265-277.	3.0	143
159	Fifty years of contrasted residue management of an agricultural crop: Impacts on the soil carbon budget and on soil heterotrophic respiration. Agriculture, Ecosystems and Environment, 2013, 167, 52-59.	5.3	52
160	Fifty years of crop residue management have a limited impact on soil heterotrophic respiration. Agricultural and Forest Meteorology, 2013, 180, 102-111.	4.8	13
161	Selecting land-based mitigation practices to reduce GHG emissions from the rural land use sector: A case study of North East Scotland. Journal of Environmental Management, 2013, 120, 93-104.	7.8	18
162	A spatially explicit scheme for tracking and validating annual landscape scale changes in soil carbon. Applied Geography, 2013, 37, 101-113.	3.7	4
163	Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agriculture, Ecosystems and Environment, 2013, 171, 9-18.	5.3	87

#	Article	IF	CITATIONS
164	Conservation Practices for Climate Change Adaptation. Advances in Agronomy, 2013, 121, 47-115.	5.2	54
165	Long-term fertilization effects on crop yields, soil fertility and sustainability in the Static Fertilization Experiment Bad LauchstA d t under climatic conditions 2001–2010. Archives of Agronomy and Soil Science, 2013, 59, 1041-1057.	2.6	44
166	Metaâ€modeling soil organic carbon sequestration potential and its application at regional scale. Ecological Applications, 2013, 23, 408-420.	3.8	45
167	Systematic Modeling of Impacts of Land Use and Land Cover Changes on Regional Climate: A Review. Advances in Meteorology, 2013, 2013, 1-11.	1.6	84
168	Soil organic carbon sequestration under different fertilizer regimes in north and northeast <scp>C</scp> hina: <scp>R</scp> oth <scp>C</scp> simulation. Soil Use and Management, 2013, 29, 182-190.	4.9	19
169	EFFECTS OF LONG-TERM FERTILIZATION ON SOIL CARBON, NITROGEN, PHOSPHORUS AND RICE YIELD. Journal of Plant Nutrition, 2013, 36, 551-561.	1.9	24
172	The Role of Simulation Models in Monitoring Soil Organic Carbon Storage and Greenhouse Gas Mitigation Potential in Bioenergy Cropping Systems. , 2014, , .		3
173	Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Sequestration. Soil Biology, 2014, , 287-296.	0.8	12
174	Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global Change Biology, 2014, 20, 3557-3567.	9.5	181
175	Impact of long-term application of manure, crop residue, and mineral fertilizer on organic carbon pools and crop yields in a Mollisol. Journal of Soils and Sediments, 2014, 14, 854-859.	3.0	33
176	Financial costs and benefits of a program of measures to implement a National Strategy on Biological Diversity in Germany. Land Use Policy, 2014, 36, 307-318.	5.6	15
177	Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China. Journal of Soils and Sediments, 2014, 14, 1041-1049.	3.0	45
178	Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agriculture, Ecosystems and Environment, 2014, 192, 1-7.	5.3	64
179	Yield Gaps and Ecological Footprints of Potato Production Systems in Chile. Potato Research, 2014, 57, 13-31.	2.7	44
180	Animal manure application and soil organic carbon stocks: a metaâ€analysis. Global Change Biology, 2014, 20, 666-679.	9.5	373
181	Soil Carbon Sequestration Potential as Affected by Management Practices in Northern China: A Simulation Study. Pedosphere, 2014, 24, 529-543.	4.0	15
182	Carbon sequestration in the soils of aquaculture ponds, crop land, and forest land in southern Ohio, USA. Environmental Monitoring and Assessment, 2014, 186, 1569-1574.	2.7	4
183	Towards mitigation of greenhouse gases by small changes in farming practices: understanding local barriers in Spain. Mitigation and Adaptation Strategies for Global Change, 2014, 21, 995.	2.1	16

#	ARTICLE Precision nutrient management in conservation agriculture based wheat production of Northwest	IF	Citations
184	India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Research, 2014, 155, 233-244.	5.1	159
185	ON-FARM ECONOMIC AND ENVIRONMENTAL IMPACT OF ZERO-TILLAGE WHEAT: A CASE OF NORTH-WEST INDIA. Experimental Agriculture, 2015, 51, 1-16.	0.9	93
186	Carbon mitigation potential of different forest ecosystems under climate change and various managements in italy. Ecosystem Health and Sustainability, 2015, 1, 1-9.	3.1	33
187	Carbon sequestration and soil microbes in purple paddy soil as affected by long-term fertilization. Toxicological and Environmental Chemistry, 2015, 97, 464-476.	1.2	8
188	Carbon Burial and Enhanced Soil Carbon Trapping. , 2015, , 303-338.		0
189	Modeling trade-offs among ecosystem services in agricultural production systems. Environmental Modelling and Software, 2015, 72, 314-326.	4.5	64
190	Carbon stock and its responses to climate change in <scp>C</scp> entral <scp>A</scp> sia. Global Change Biology, 2015, 21, 1951-1967.	9.5	150
191	Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20Âyears. Journal of Soils and Sediments, 2015, 15, 292-301.	3.0	72
192	Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain. Agriculture, Ecosystems and Environment, 2015, 206, 33-45.	5.3	80
193	Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agriculture, Ecosystems and Environment, 2015, 200, 33-41.	5.3	878
194	Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma, 2015, 237-238, 49-59.	5.1	171
195	How can straw incorporation management impact on soil carbon storage? A meta-analysis. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1545-1568.	2.1	70
196	Changes and controlling factors of cropland soil organic carbon in North China Plain over a 30-year period. Plant and Soil, 2016, 403, 437-453.	3.7	5
197	Greater accumulation of soil organic carbon after liquid dairy manure application under cereal-forage rotation than cereal monoculture. Agriculture, Ecosystems and Environment, 2016, 233, 171-178.	5.3	33
198	Revealing the scale-specific controls of soil organic matter at large scale in Northeast and North China Plain. Geoderma, 2016, 271, 71-79.	5.1	57
199	Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity. Science of the Total Environment, 2016, 554-555, 293-302.	8.0	9
200	A grassland strategy for farming systems in Europe to mitigate GHG emissions—An integrated spatially differentiated modelling approach. Land Use Policy, 2016, 58, 318-334.	5.6	11
201	Magnitude, form and bioavailability of fluvial carbon exports from Irish organic soils under pasture. Aquatic Sciences, 2016, 78, 541-560.	1.5	9

#	Article	IF	CITATIONS
202	Soil properties and corn (Zea mays L.) production under manure application combined with deep tillage management in solonetzic soils of Songnen Plain, Northeast China. Journal of Integrative Agriculture, 2016, 15, 879-890.	3.5	22
203	Effect of different agricultural practices on carbon emission and carbon stock in organic and conventional olive systems. Soil Research, 2016, 54, 173.	1.1	23
204	Can the sequestered carbon in agricultural soil be maintained with changes in management, temperature and rainfall? A sensitivity assessment. Geoderma, 2016, 268, 22-28.	5.1	7
205	Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration and soil fertility. European Journal of Agronomy, 2016, 74, 47-55.	4.1	87
206	Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agroforestry Systems, 2016, 90, 371-383.	2.0	31
207	Environmental costs and benefits of growing <i>Miscanthus</i> for bioenergy in the <scp>UK</scp> . GCB Bioenergy, 2017, 9, 489-507.	5.6	183
208	Soil carbon and belowground carbon balance of a shortâ€rotation coppice: assessments from three different approaches. GCB Bioenergy, 2017, 9, 299-313.	5.6	36
209	Environmental life cycle assessment of producing willow, alfalfa and straw from spring barley as feedstocks for bioenergy or biorefinery systems. Science of the Total Environment, 2017, 586, 226-240.	8.0	52
210	Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Global Change Biology, 2017, 23, 4544-4555.	9.5	91
211	Determining the carbon footprint of indigenous and introduced grape varieties through Life Cycle Assessment using the island of Cyprus as a case study. Journal of Cleaner Production, 2017, 156, 418-425.	9.3	56
212	CCAFS-MOT - A tool for farmers, extension services and policy-advisors to identify mitigation options for agriculture. Agricultural Systems, 2017, 154, 100-111.	6.1	35
213	Traditional agriculture: a climate-smart approach for sustainable food production. Energy, Ecology and Environment, 2017, 2, 296-316.	3.9	169
214	Farm-scale greenhouse gas balances, hotspots and uncertainties in smallholder crop-livestock systems in Central Kenya. Agriculture, Ecosystems and Environment, 2017, 248, 58-70.	5.3	29
215	A farm level approach to explore farm gross margin effects of soil organic carbon management. Agricultural Systems, 2017, 151, 33-46.	6.1	16
216	Evaluation of crop residues and manure production and their geographical distribution in China. Journal of Cleaner Production, 2018, 188, 954-965.	9.3	139
217	Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena, 2018, 166, 171-180.	5.0	62
218	A Bayesian belief network framework to predict SOC dynamics of alternative management scenarios. Soil and Tillage Research, 2018, 179, 114-124.	5.6	10
219	Carbon storage in a wolfberry plantation chronosequence established on a secondary saline land in an arid irrigated area of Gansu Province, China. Journal of Arid Land, 2018, 10, 202- <u>216.</u>	2.3	4

#	Article	IF	Citations
220	Crop rotation, tillage system, and precipitation regime effects on soil carbon stocks over 1 to 30 years in Saskatchewan, Canada. Soil and Tillage Research, 2018, 177, 97-104.	5.6	44
221	Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agricultural Water Management, 2018, 202, 122-133.	5.6	48
222	Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Science of the Total Environment, 2018, 630, 1544-1552.	8.0	42
223	Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions?. Agriculture, Ecosystems and Environment, 2018, 254, 117-129.	5.3	166
224	Identifying high-yield low-emission pathways for the cereal production in South Asia. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 621-641.	2.1	35
225	Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutrient Cycling in Agroecosystems, 2018, 112, 369-385.	2.2	27
226	Carbon saturation and translocation in a no-till soil under organic amendments. Agriculture, Ecosystems and Environment, 2018, 264, 73-84.	5.3	36
227	Upscaling the Impacts of Climate Change in Different Sectors and Adaptation Strategies. , 2018, , 173-243.		3
228	A synthetic analysis of livestock manure substitution effects on organic carbon changes in China's arable topsoil. Catena, 2018, 171, 1-10.	5.0	28
229	Soil carbon sequestration potential as affected by soil physical and climatic factors under different land uses in a semiarid region. Catena, 2018, 171, 62-71.	5.0	52
230	Projecting Soil C Under Future Climate and Land-Use Scenarios (Modeling). , 2018, , 281-309.		7
231	Environmental and economic implications of recovering resources from food waste in a circular economy. Science of the Total Environment, 2019, 693, 133516.	8.0	161
232	Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biology, 2019, 25, 3753-3766.	9.5	142
233	Soil Organic Carbon Sequestration by Long-Term Application of Manures Prepared fromTrianthema portulacastrurmLinn. Communications in Soil Science and Plant Analysis, 2019, 50, 2579-2592.	1.4	6
234	Carbon fluxes and budgets of intensive crop rotations in two regional climates of southwest Germany. Agriculture, Ecosystems and Environment, 2019, 276, 31-46.	5.3	23
235	Combining reference trials, farm surveys and mathematical models to assess carbon footprint and mitigation measures in tropical agriculture. Annals of Agricultural Sciences, 2019, 64, 188-195.	2.9	2
236	Long-term forest soils research: lessons learned from the US experience. Developments in Soil Science, 2019, , 473-504.	0.5	2
237	Effects of Substituting Manure for Fertilizer on Aggregation and Aggregate Associated Carbon and Nitrogen in a Vertisol. Agronomy Journal, 2019, 111, 368-377.	1.8	6

#	Article	IF	CITATIONS
238	Cost-effective opportunities for climate change mitigation in Indian agriculture. Science of the Total Environment, 2019, 655, 1342-1354.	8.0	89
239	Effect of tillage method on carbon-dioxide emission andsoil properties under two soil surface levels. Acta Ecologica Sinica, 2020, 40, 210-213.	1.9	3
240	Barriers to and opportunities for the uptake of soil carbon management practices in European sustainable agricultural production. Agroecology and Sustainable Food Systems, 2020, 44, 1185-1211.	1.9	17
241	Stabilization of Functional Soil Organic Matter Fractions in Response to Long-Term Fertilization in Tropical Rice–Rice Cropping System. Communications in Soil Science and Plant Analysis, 2020, 51, 136-148.	1.4	3
243	Towards a global-scale soil climate mitigation strategy. Nature Communications, 2020, 11, 5427.	12.8	302
244	Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1-49.	12.8	46
245	Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains. Scientific Reports, 2020, 10, 19267.	3.3	26
246	Portfolios of Climate Smart Agriculture Practices in Smallholder Rice-Wheat System of Eastern Indo-Gangetic Plains—Crop Productivity, Resource Use Efficiency and Environmental Foot Prints. Agronomy, 2020, 10, 1561.	3.0	16
247	Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena, 2020, 194, 104739.	5.0	80
248	The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews. Mitigation and Adaptation Strategies for Clobal Change, 2020, 25, 929-952.	2.1	103
249	Effect of compost and inorganic fertilizer on organic carbon and activities of carbon cycle enzymes in aggregates of an intensively cultivated Vertisol. PLoS ONE, 2020, 15, e0229644.	2.5	18
250	Carbon Footprint of Mediterranean Pasture-Based Native Beef: Effects of Agronomic Practices and Pasture Management under Different Climate Change Scenarios. Animals, 2020, 10, 415.	2.3	7
251	Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global metaâ€analysis. Global Ecology and Biogeography, 2020, 29, 1817-1828.	5.8	52
252	Legacy effects of liquid dairy manure in grain production systems. Agricultural Systems, 2020, 181, 102825.	6.1	9
253	Multitemporal Analysis of Soil Sealing and Land Use Changes Linked to Urban Expansion of Salamanca (Spain) Using Landsat Images and Soil Carbon Management as a Mitigating Tool for Climate Change. Remote Sensing, 2020, 12, 1131.	4.0	10
254	Using fallâ€seeded cover crop mixtures to enhance agroecosystem services: A review. , 2021, 4, e20161.		6
255	Clay Mineralogy: Soil Carbon Stabilization and Organic Matter Interaction. , 2021, , 83-123.		2
256	Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using highâ€resolution modeling. Global Change Biology, 2021, 27, 1645-1661.	9.5	41

#	Article	IF	Citations
258	Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India. Agriculture (Switzerland), 2021, 11, 348.	3.1	13
259	The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy, 2021, 11, 779.	3.0	50
260	Impact of wood-derived biochar on the hydraulic characteristics of compacted soils: Its influence on simulated farmland carbon sequestration. International Agrophysics, 2021, 35, 167-177.	1.7	2
261	Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 2021, 28, 41576-41595.	5.3	78
262	Modeling long-term attainable soil organic carbon sequestration across the highlands of Ethiopia. Environment, Development and Sustainability, 0, , 1.	5.0	3
263	Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments. Biogeosciences, 2021, 18, 3981-4004.	3.3	24
264	Adaptive Land Management for Climate-Smart Agriculture. , 2021, , .		2
265	Simulating soil organic carbon in maize-based systems under improved agronomic management in Western Kenya. Soil and Tillage Research, 2021, 211, 105000.	5.6	7
266	The role of soils in provision of energy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200180.	4.0	8
267	Achievable agricultural soil carbon sequestration across Europe from countryâ€specific estimates. Global Change Biology, 2021, 27, 6363-6380.	9.5	27
268	Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation. Integrated Environmental Assessment and Management, 2022, 18, 599-621.	2.9	5
269	Changes in Soil Organic Carbon Concentration and Stock after Forest Regeneration of Agricultural Fields in Taiwan. Forests, 2021, 12, 1222.	2.1	5
270	Full Inversion Tillage (FIT) during pasture renewal as a potential management strategy for enhanced carbon sequestration and storage in Irish grassland soils. Science of the Total Environment, 2022, 805, 150342.	8.0	18
271	Sustainability of Soil Management Practices - a Global Perspective. , 2007, , 241-254.		5
272	Soil Organic Carbon Dynamics and Land-Use Change. , 2008, , 9-22.		9
273	Soil Organic Carbon Stocks, Changes and CO2 Mitigation Potential by Alteration of Residue Amendment Pattern in China. , 2014, , 457-466.		1
274	Soil and Crop Management for Sustainable Agriculture. Sustainable Agriculture Reviews, 2015, , 63-84.	1.1	3
275	Systematic Modeling of Land Use Impacts on Surface Climate. Springer Geography, 2014, , 1-17.	0.4	5

#	Article	IF	CITATIONS
276	Sustainable Land Use and Agricultural Soil. , 2011, , 107-192.		5
277	Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agriculture, Ecosystems and Environment, 2020, 300, 106967.	5.3	29
278	Modelling soil organic matter dynamics - global challenges , 2001, , 43-95.		4
279	Herbaceous crops with potential for biofuel production in the USA CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-23.	1.0	23
280	Considering Manure and Carbon Sequestration. Science, 2000, 287, 427e-427.	12.6	27
281	Comparing Estimates of Regional Carbon Sequestration Potential Using Geographical Information Systems, Dynamic Soil Organic Matter Models, and Simple Relationships. , 2002, , .		1
282	Management Strategies for Maximizing Root Systems. , 2012, , 369-442.		1
283	Restoration Changes in Organic Carbon Stocks of the Vegetation and Soil Ecosystems in the Reversion Process of Desertification in Arid Areas. Advances in Geosciences, 2018, 08, 48-59.	0.1	2
284	Implications of large-scale iron fertilization of the oceans. Marine Ecology - Progress Series, 2008, 364, 213-218.	1.9	47
285	Building relationships between scientists and business in ocean iron fertilization. Marine Ecology - Progress Series, 2008, 364, 251-256.	1.9	21
286	Do Coffee Agroforestry Systems Always Improve Soil Carbon Stocks Deeper in the Soil?—A Case Study from Turrialba, Costa Rica. Forests, 2020, 11, 49.	2.1	11
287	Effects of Long-Term Fertilization on Organic Carbon and Nitrogen Dynamics in a Vertisol in Eastern China. Open Journal of Soil Science, 2018, 08, 99-117.	0.8	5
288	KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept. PeerJ, 2020, 8, e9750.	2.0	21
289	Soil Carbon Sequestration Under Bioenergy Crops in Poland. , 0, , .		1
292	Can Regenerative Agriculture Increase National Soil Carbon Stocks? Simulated Country-Scale Adoption of Reduced Tillage, Cover Cropping, and Ley-Arable Integration Using Rothc-26.3. SSRN Electronic Journal, 0, , .	0.4	0
293	Mapping Regulation Ecosystem Services Specialization in Italy. Journal of the Urban Planning and Development Division, ASCE, 2022, 148, .	1.7	22
294	Evaluation of the DNDCv.CAN model for simulating greenhouse gas emissions under crop rotations that include winter cover crops. Soil Research, 2022, 60, 534-546.	1.1	8
295	Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Climate Policy, 2022, 22, 427-444.	5.1	20

#	Article	IF	Citations
296	Climate smart agricultural practices improve soil quality through organic carbon enrichment and lower greenhouse gas emissions in farms of bread bowl of India. Soil Research, 2022, 60, 455-469.	1.1	8
297	Defining Quantitative Targets for Topsoil Organic Carbon Stock Increase in European Croplands: Case Studies With Exogenous Organic Matter Inputs. Frontiers in Environmental Science, 2022, 10, .	3.3	6
298	Modeling Soil Carbon Under Diverse Cropping Systems and Farming Management in Contrasting Climatic Regions in Europe. Frontiers in Environmental Science, 2022, 10, .	3.3	6
299	Mechanisms controlling the stabilization of soil organic matter in agricultural soils as amended with contrasting organic amendments: Insights based on physical fractionation coupled with 13C NMR spectroscopy. Science of the Total Environment, 2022, 825, 153853.	8.0	13
300	Can Regenerative Agriculture increase national soil carbon stocks? Simulated country-scale adoption of reduced tillage, cover cropping, and ley-arable integration using RothC. Science of the Total Environment, 2022, 825, 153955.	8.0	22
301	Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India. Agriculture (Switzerland), 2021, 11, 1269.	3.1	10
302	A Composite Index-Based Approach for Mapping Ecosystem Service Production Hotspots and Coldspots for Priority Setting in Integrated Watershed Management Programs. Journal of Geoscience and Environment Protection, 2022, 10, 49-63.	0.5	1
303	Conservation agriculture influences crop yield, soil carbon content and nutrient availability in the rice–wheat system of north-west India. Soil Research, 2022, 60, 624-635.	1.1	5
304	The QBS-ar Index: a Sensitive Tool to Assess the Effectiveness of an Agroecological Practice in the Italian Alpine Region. Journal of Soil Science and Plant Nutrition, 2022, 22, 3740-3744.	3.4	3
305	Adapted Conservation Agriculture Practices Can Increase Energy Productivity and Lower Yield-Scaled Greenhouse Gas Emissions in Coastal Bangladesh. Frontiers in Agronomy, 0, 4, .	3.3	3
306	Agrotechnological Potential of Organic Carbon Management in Grain-Fallow Crop Rotation on Ordinary Chernozems. Russian Agricultural Sciences, 2022, 48, 276-282.	0.2	1
307	Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?. Agriculture (Switzerland), 2022, 12, 1383.	3.1	37
308	Enhancing Soil Organic Carbon Sequestration in Agriculture: Plans and Policies. , 2022, , 95-121.		1
309	Trade-offs between grain yields and ecological efficiencies in a wheat–maize cropping system using optimized tillage and fertilization management on the North China Plain. Environmental Science and Pollution Research, 2023, 30, 24479-24493.	5.3	4
310	Soil organic carbon sequestration in croplands can make remarkable contributions to China's carbon neutrality. Journal of Cleaner Production, 2023, 382, 135268.	9.3	15
311	Evaluation of Different Potassium Management Options under Prevailing Dry and Wet Seasons in Puddled, Transplanted Rice. Sustainability, 2023, 15, 5819.	3.2	0
312	Remote Sensing Grassland Productivity Attributes: A Systematic Review. Remote Sensing, 2023, 15, 2043.	4.0	0
313	Modelling the soil C impacts of cover crops in temperate regions. Agricultural Systems, 2023, 209, 103663.	6.1	1

#	Article	IF	CITATIONS
314	Novel cropping-system strategies in China can increase plant protein with higher economic value but lower greenhouse gas emissions and water use. One Earth, 2023, 6, 560-572.	6.8	4
316	Stabilization mechanisms of organic matter in Andosols under long-term fertilization as revealed from structural, molecular, and stable isotopic signatures. Journal of Soils and Sediments, 0, , .	3.0	0
317	Research on Carbon Emission Structure and Model in Low-Carbon Rural Areas: Bibliometric Analysis. Sustainability, 2023, 15, 12353.	3.2	2
318	Samsun İlinde Manda Sütü Üretiminin Ekonomik ve Çevresel Açıdan Değerlendirilmesi. Turkish Jourr Agricultural and Natural Sciences, 2024, 11, 168-179.	nal of 0.6	0
319	The Fate of Soil Organic Carbon from Compost: A Pot Test Study Using Labile Carbon and 13c Natural Abundance. Journal of Soil Science and Plant Nutrition, 0, , .	3.4	0
320	Organic Carbon Management and the Relations with Climate Change. , 2024, , 109-133.		0