Evaluation of intrinsic chemical kinetics and transient p time-resolved spectroscopic data

Biophysical Chemistry 67, 1-25 DOI: 10.1016/s0301-4622(96)02268-5

Citation Report

#	Article	IF	CITATIONS
2	Nano―and Microsecond Timeâ€Resolved FTIR Spectroscopy of the Halorhodopsin Photocycle. Photochemistry and Photobiology, 1997, 66, 755-763.	1.3	25
3	Existence of a Proton Transfer Chain in Bacteriorhodopsin:Â Participation of Glu-194 in the Release of Protons to the Extracellular Surfaceâ€. Biochemistry, 1998, 37, 2496-2506.	1.2	173
4	Kinetic and Thermodynamic Study of the Bacteriorhodopsin Photocycle over a Wide pH Range. Biophysical Journal, 1998, 75, 3110-3119.	0.2	89
5	Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: Analysis of simulated data. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4408-4413.	3.3	34
6	Multivariate extension of the continuous variation and mole-ratio methods for the study of the interaction of intercalators with polynucleotides. Analytica Chimica Acta, 2000, 424, 105-114.	2.6	47
7	Analysis of drug-DNA binding data. Methods in Enzymology, 2000, 321, 353-369.	0.4	60
8	Halide Dependence of the Halorhodopsin Photocycle as Measured by Time-Resolved Infrared Spectra. Biophysical Journal, 2001, 80, 1452-1465.	0.2	16
9	Study of the interaction of cis-dichloro-(1,2 diethyl-3-aminopyrrolidine)Pt(II) complex with poly(I), poly(C) and poly(I)·poly(C). Journal of Inorganic Biochemistry, 2001, 85, 279-290.	1.5	13
10	Photochemical Reaction Cycle and Proton Transfers inNeurospora Rhodopsin. Journal of Biological Chemistry, 2001, 276, 32495-32505.	1.6	60
11	Proton Transfers in the Photochemical Reaction Cycle of Proteorhodopsin. Biochemistry, 2002, 41, 5348-5358.	1.2	203
12	Target Analysis of the Bacteriorhodopsin Photocycle Using a Spectrotemporal Model. Journal of Physical Chemistry B, 2002, 106, 3477-3485.	1.2	41
13	Efficient Integration of Kinetic Differential Equation Sets Using Matrix Exponentiation. Methods in Enzymology, 2004, 384, 18-39.	0.4	6
14	Application of multivariate resolution methods to the study of biochemical and biophysical processes. Analytical Biochemistry, 2004, 327, 1-13.	1.1	50
15	Mechanism of Nitrosylmyoglobin Autoxidation: Temperature and Oxygen Pressure Effects on the Two Consecutive Reactions. Chemistry - A European Journal, 2004, 10, 2291-2300.	1.7	52
16	Analysis of the Bacteriorhodopsin Photocycle by Singular Value Decomposition with Self-Modeling:  A Critical Evaluation Using Realistic Simulated Data. Journal of Physical Chemistry B, 2004, 108, 4199-4209.	1.2	22
17	Role of Arginine-82 in Fast Proton Release during the Bacteriorhodopsin Photocycle:  A Time-Resolved FT-IR Study of Purple Membranes Containing 15N-Labeled Arginine. Biochemistry, 2004, 43, 12809-12818.	1.2	44
18	Global and target analysis of time-resolved spectra. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1657, 82-104.	0.5	1,354
19	Time-Resolved FTIR Spectroscopy of the Photointermediates Involved in Fast Transient H+Release by Proteorhodopsin. Journal of Physical Chemistry B, 2005, 109, 634-641.	1.2	27

#	Article	IF	CITATIONS
20	An Apparent General Solution for the Kinetic Models of the Bacteriorhodopsin Photocycles. Journal of Physical Chemistry B, 2005, 109, 16515-16528.	1.2	14
21	Combined Genetic Algorithm and Multiple Linear Regression (GA-MLR) Optimizer:Â Application to Multi-exponential Fluorescence Decay Surface. Journal of Physical Chemistry A, 2006, 110, 12977-12985.	1.1	14
22	Transformation of Time-Resolved Spectra to Lifetime-Resolved Spectra by Maximum Entropy Inversion of the Laplace Transform. Applied Spectroscopy, 2006, 60, 407-417.	1.2	28
23	pH-Dependent Transitions in Xanthorhodopsin. Photochemistry and Photobiology, 2006, 82, 1406-1413.	1.3	28
24	A Problem Solving Environment for interactive modelling of multiway data. Concurrency Computation Practice and Experience, 2006, 18, 263-269.	1.4	8
25	Practical Aspects of the Maximum Entropy Inversion of the Laplace Transform for the Quantitative Analysis of Multi-Exponential Data. Applied Spectroscopy, 2007, 61, 74-84.	1.2	14
26	Bayesian Maximum Entropy (Two-Dimensional) Lifetime Distribution Reconstruction from Time-Resolved Spectroscopic Data. Applied Spectroscopy, 2007, 61, 428-443.	1.2	30
27	Investigation of the Hydrophobization Efficiency of Terbium-Exchanged BEA Zeolites by Means of FT-IR, TGA, Physical Adsorption, and Time-Resolved Photoluminescence. Langmuir, 2007, 23, 6781-6787.	1.6	16
28	Algorithms for separable nonlinear least squares with application to modelling time-resolved spectra. Journal of Global Optimization, 2007, 38, 201-213.	1.1	30
29	Interaction of anionic dyes and cationic surfactants with ionic liquid character. Journal of Colloid and Interface Science, 2008, 322, 274-280.	5.0	35
30	Chromophore Interaction in Xanthorhodopsin—Retinal Dependence of Salinixanthin Binding ^{â€} . Photochemistry and Photobiology, 2008, 84, 977-984.	1.3	26
31	Switch from Conventional to Distributed Kinetics in the Bacteriorhodopsin Photocycle. Biochemistry, 2008, 47, 11125-11133.	1.2	8
32	Understanding Oxotransferase Reactivity in a Model System Using Singular Value Decomposition Analysis. ACS Symposium Series, 2009, , 199-217.	0.5	4
33	Infrared Monitoring of Interlayer Water in Stacks of Purple Membranes ^{â€} . Photochemistry and Photobiology, 2009, 85, 598-608.	1.3	6
34	Dynamics of Carbon Monoxide Photodissociation in <i>Bradyrhizobium japonicum</i> FixL Probed by Picosecond Midinfrared Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 3292-3297.	1.2	10
35	Two Bathointermediates of the Bacteriorhodopsin Photocycle, from Time-Resolved Nanosecond Spectra in the Visible. Journal of Physical Chemistry B, 2009, 113, 16643-16653.	1.2	6
36	Spectroscopic and Kinetic Evidence on How Bacteriorhodopsin Accomplishes Vectorial Proton Transport under Functional Conditions. Journal of the American Chemical Society, 2009, 131, 5891-5901.	6.6	58
37	The Photocycle and Proton Translocation Pathway in a Cyanobacterial Ion-Pumping Rhodopsin. Biophysical Journal, 2009, 96, 1471-1481.	0.2	100

CITATION REPORT

#	Article	IF	CITATIONS
38	Revisiting the Generalization of Entropy for Non-positive Distribution: Application for Exponent Spectra Analysis. , 2009, , .		0
39	Low-Temperature FTIR Study of Multiple K Intermediates in the Photocycles of Bacteriorhodopsin and Xanthorhodopsin. Journal of Physical Chemistry B, 2010, 114, 2920-2931.	1.2	11
40	Probing Specific Molecular Processes and Intermediates by Time-Resolved Fourier Transform Infrared Spectroscopy: Application to the Bacteriorhodopsin Photocycle. Journal of Physical Chemistry B, 2011, 115, 7972-7985.	1.2	20
41	Removal and Reconstitution of the Carotenoid Antenna of Xanthorhodopsin. Journal of Membrane Biology, 2011, 239, 95-104.	1.0	18
42	Transient absorption spectroscopy of a heteroaromatic donor–acceptor-π-conjugated 2,2′-bipyridine dye. Journal of Molecular Structure, 2011, 993, 464-469.	1.8	0
43	Transient infrared spectroscopy: a new approach to investigate valence tautomerism. Physical Chemistry Chemical Physics, 2012, 14, 1038-1047.	1.3	46
44	Carbon Monoxide Recombination Dynamics in Truncated Hemoglobins Studied with Visible-Pump MidIR-Probe Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 8753-8761.	1.2	10
45	Aspartate–Histidine Interaction in the Retinal Schiff Base Counterion of the Light-Driven Proton Pump of <i>Exiguobacterium sibiricum</i> . Biochemistry, 2012, 51, 5748-5762.	1.2	47
46	Comprehensive data analysis of femtosecond transient absorption spectra: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 1-27.	5.6	268
47	Breaking the Carboxyl Rule. Journal of Biological Chemistry, 2013, 288, 21254-21265.	1.6	36
48	Photocycle of <i>Exiguobacterium sibiricum</i> Rhodopsin Characterized by Low-Temperature Trapping in the IR and Time-Resolved Studies in the Visible. Journal of Physical Chemistry B, 2013, 117, 7235-7253.	1.2	26
49	Light-Driven Na ⁺ Pump from <i>Gillisia limnaea</i> : A High-Affinity Na ⁺ Binding Site Is Formed Transiently in the Photocycle. Biochemistry, 2014, 53, 7549-7561.	1.2	80
50	The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs. Physical Chemistry Chemical Physics, 2014, 16, 21310-21320.	1.3	37
51	Role of Local Structure and Dynamics of Small Ligand Migration in Proteins: A Study of a Mutated Truncated Hemoprotein from <i>Thermobifida fusca</i> by Time Resolved MIR Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 9209-9217.	1.2	6
52	"Frozen―Block Copolymer Nanomembranes with Light-Driven Proton Pumping Performance. ACS Nano, 2014, 8, 537-545.	7.3	40
53	On the interpretation of decay associated spectra in the presence of time dependent spectral shifts. Chemical Physics Letters, 2014, 609, 184-188.	1.2	33
54	A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1518-1529.	0.5	35
55	Two-dimensional electronic spectroscopy can fully characterize the population transfer in molecular systems. Journal of Chemical Physics, 2016, 145, 124312.	1.2	24

#	Article	IF	CITATIONS
56	Identification of the coupling step in Na + -translocating NADH:quinone oxidoreductase from real-time kinetics of electron transfer. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 141-149.	0.5	16
57	Photochemical reaction cycle transitions during anion channelrhodopsin gating. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1993-2000.	3.3	49
58	Bacteriorhodopsin-like channelrhodopsins: Alternative mechanism for control of cation conductance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9512-E9519.	3.3	44
59	Exciton Transport in Molecular Aggregates – From Natural Antennas to Synthetic Chromophore Systems. Advanced Energy Materials, 2017, 7, 1700236.	10.2	249
60	The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 335-350.	1.2	69
61	Molecular details of the unique mechanism of chloride transport by a cyanobacterial rhodopsin. Physical Chemistry Chemical Physics, 2018, 20, 3184-3199.	1.3	21
62	Phonon-induced plasmon-exciton coupling changes probed via oscillation-associated spectra. Applied Physics Letters, 2019, 115, .	1.5	3
63	Infrared Difference Spectroscopy of Proteins: From Bands to Bonds. Chemical Reviews, 2020, 120, 3466-3576.	23.0	126
64	Unravelling the Kinetic Model of Photochemical Reactions via Deep Learning. Journal of Physical Chemistry B, 2020, 124, 6358-6368.	1.2	14
65	pH-Dependent Transitions in Xanthorhodopsinâ€. Photochemistry and Photobiology, 2006, 82, 1406.	1.3	36
66	Proton transfer reactions in donor site mutants of ESR, a retinal protein from Exiguobacterium sibiricum. Journal of Photochemistry and Photobiology B: Biology, 2022, 234, 112529.	1.7	2