Correlations for the prediction of boiling heat transfer i

Applied Thermal Engineering 17, 705-715 DOI: 10.1016/s1359-4311(96)00071-3

Citation Report

#	Article	IF	CITATIONS
1	Heat transfer — a review of 1997 literature. International Journal of Heat and Mass Transfer, 2000, 43, 2431-2528.	4.8	18
2	On mechanism of enhancement of two-phase flow heat transfer in a narrow channel. , 0, , .		1
3	Two-Phase Flow Resistance of Refrigerants R-22, R-410A and R-407C in Small Diameter Tubes. Chemical Engineering Research and Design, 2001, 79, 553-560.	5.6	21
4	Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels. Journal of Heat Transfer, 2002, 124, 1131-1136.	2.1	176
5	Heat transfer and pressure drop in narrow rectangular channels. Experimental Thermal and Fluid Science, 2002, 26, 53-64.	2.7	338
6	Flow boiling heat transfer in two-phase micro-channel heat sinks––I. Experimental investigation and assessment of correlation methods. International Journal of Heat and Mass Transfer, 2003, 46, 2755-2771.	4.8	532
7	Forced convective boiling heat transfer in microtubes at low mass and heat fluxes. International Journal of Multiphase Flow, 2003, 29, 1771-1792.	3.4	162
8	Review of saturated flow boiling in small passages of compact heat-exchangers. International Journal of Thermal Sciences, 2003, 42, 107-140.	4.9	105
9	Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube. International Journal of Heat and Mass Transfer, 2003, 46, 2353-2361.	4.8	77
10	An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels. Journal of Heat Transfer, 2004, 126, 518.	2.1	236
11	Boiling in microchannels: a review of experiment and theory. International Journal of Heat and Fluid Flow, 2004, 25, 128-139.	2.4	477
12	Evaporative heat transfer in vertical circular microchannels. Applied Thermal Engineering, 2004, 24, 1241-1253.	6.0	70
13	Flow boiling in small diameter channels. International Journal of Refrigeration, 2004, 27, 191-201.	3.4	34
14	Heat transfer model for evaporation in microchannels. Part II: comparison with the database. International Journal of Heat and Mass Transfer, 2004, 47, 3387-3401.	4.8	246
15	Correlation for flow boiling heat transfer in mini-channels. International Journal of Heat and Mass Transfer, 2004, 47, 5749-5763.	4.8	208
16	Heat transfer characteristics of cryogenic helium gas through a miniature tube with a large temperature difference. Cryogenics, 2004, 44, 859-866.	1.7	8
17	Evaporation in Microchannels: Influence of the Channel Diameter on Heat Transfer. , 2004, , 461.		7
18	Experimental Study of Flow Patterns, Pressure Drop and Flow Instabilities in Parallel Rectangular Minichannels. , 2004, , 475.		10

#	Article	IF	CITATIONS
19	Control of Liquid-Bubble Interface to Create a Two-Phase, Dielectrophoretic Mesopump. , 2005, , 369.		0
20	Flow boiling heat transfer of carbon dioxide in horizontal mini tubes. International Journal of Heat and Fluid Flow, 2005, 26, 801-809.	2.4	52
21	Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes. International Journal of Heat and Mass Transfer, 2005, 48, 4973-4984.	4.8	221
22	Saturated flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct. International Journal of Heat and Mass Transfer, 2005, 48, 5602-5615.	4.8	40
23	Heat transfer in the evaporator of an advanced two-phase thermosyphon loop. International Journal of Refrigeration, 2005, 28, 190-202.	3.4	86
24	Vertical flow boiling of refrigerant R134a in small channels. International Journal of Heat and Fluid Flow, 2005, 26, 296-306.	2.4	99
25	Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part Il—heat transfer characteristics. International Journal of Heat and Mass Transfer, 2005, 48, 941-955.	4.8	349
26	State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO2 in macro- and micro-channels. International Journal of Refrigeration, 2005, 28, 1149-1168.	3.4	96
27	Evaporation in microchannels: influence of the channel diameter on heat transfer. Microfluidics and Nanofluidics, 2005, 1, 119-127.	2.2	39
28	Effect on boiling heat transfer of horizontal smooth minichannel for R-410A and R-407C. Journal of Mechanical Science and Technology, 2005, 19, 156-163.	1.5	6
29	R134a flow patterns in small-diameter tubes. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2005, 219, 167-181.	2.5	7
30	Transient flow pattern based microscale boiling heat transfer mechanisms. Journal of Micromechanics and Microengineering, 2005, 15, 1344-1361.	2.6	82
31	Thermal analysis of microâ€channel heat exchangers with twoâ€phase flow using FEM. International Journal of Numerical Methods for Heat and Fluid Flow, 2005, 15, 43-60.	2.8	12
32	Experimental Study of Flow Patterns, Pressure Drop, and Flow Instabilities in Parallel Rectangular Minichannels. Heat Transfer Engineering, 2005, 26, 20-27.	1.9	121
33	Experimental Characterization of Flow Boiling Heat Dissipation in a Microchannel Heat Sink with Different Orientations. , 0, , .		9
34	TWO-PHASE FLOW AND HEAT TRANSFER. , 2006, , 853-949.		3
35	State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels. Heat Transfer Engineering, 2006, 27, 4-19.	1.9	178
36	Mesoscale and Microscale Phase-Change Heat Transfer. Advances in Heat Transfer, 2006, 39, 461-563.	0.9	97

#	Article	IF	CITATIONS
37	Condensation in minichannels and microchannels. , 2006, , 227-408.		6
38	Assessment of Flow Boiling Heat Transfer Correlations for Application to Mini-Channels. , 2006, , 213.		О
39	An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Experimental Thermal and Fluid Science, 2006, 31, 1-19.	2.7	166
40	An experimental investigation of flow boiling in an asymmetrically heated rectangular microchannel. Experimental Thermal and Fluid Science, 2006, 30, 775-784.	2.7	30
41	Characterization of diabatic two-phase flows in microchannels: Flow parameter results for R-134a in a 0.5mm channel. International Journal of Multiphase Flow, 2006, 32, 755-774.	3.4	247
42	Experimental study of evaporation heat transfer characteristics of refrigerants R-134a and R-407C in horizontal small tubes. International Journal of Heat and Mass Transfer, 2006, 49, 207-218.	4.8	47
43	The effect of tube diameter on vertical two-phase flow regimes in small tubes. International Journal of Heat and Mass Transfer, 2006, 49, 4220-4230.	4.8	170
44	The pressure drop in microtubes and the correlation development. International Journal of Heat and Mass Transfer, 2006, 49, 1804-1812.	4.8	168
45	New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes. International Journal of Heat and Mass Transfer, 2006, 49, 4082-4094.	4.8	134
46	Review of two-phase flow and flow boiling of mixtures in small and mini channels. International Journal of Multiphase Flow, 2006, 32, 183-207.	3.4	169
47	Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink. International Journal of Multiphase Flow, 2006, 32, 957-971.	3.4	162
48	Periodic boiling in parallel micro-channels at low vapor quality. International Journal of Multiphase Flow, 2006, 32, 1141-1159.	3.4	110
49	Boiling Heat Transfer for Freon R21 in Rectangular Minichannel. , 2006, , 75.		3
50	Flow boiling in minichannels and microchannels. , 2006, , 175-226.		88
51	A Roadmap for Implementing Minichannels in Refrigeration and Air-Conditioning Systems—Current Status and Future Directions. Heat Transfer Engineering, 2007, 28, 973-985.	1.9	45
52	Flow Boiling Heat Transfer to a Dielectric Coolant in a Microchannel Heat Sink. IEEE Transactions on Components and Packaging Technologies, 2007, 30, 24-31.	1.3	31
53	Uniform Mems Chip Temperatures in the Nucleate Boiling Heat Transfer Region by Selecting Suitable, Medium Boiling Number Range. Nanoscale and Microscale Thermophysical Engineering, 2007, 11, 273-300.	2.6	4
54	Boiling Heat Transfer for Freon R21 in Rectangular Minichannel. Heat Transfer Engineering, 2007, 28, 738-745.	1.9	38

#	Article	IF	CITATIONS
55	Modeling and Prediction of Two-Phase Refrigerant Flow Regimes and Heat Transfer Characteristics in Microgap Channels. , 2007, , 1141.		17
56	Microchannel Size Effects on Two-Phase Local Heat Transfer and Pressure Drop in Silicon Microchannel Heat Sinks With a Dielectric Fluid. , 2007, , 437.		3
57	Flow Boiling Heat Transfer in Microchannels. Journal of Heat Transfer, 2007, 129, 1321-1332.	2.1	125
58	Heat Transfer in Confined Forced-Flow Boiling. Heat Transfer Engineering, 2007, 28, 826-833.	1.9	16
59	Flow Boiling in a 1.1 mm Tube With R134A: Experimental Results and Comparison With Model. , 2007, , 19.		0
60	The Drift Flux Model and Void–Quality Relations. , 0, , 173-185.		0
61	Gas–Liquid Interfacial Phenomena. , 0, , 38-88.		0
62	Two-Phase Flow Regimes – I. , 0, , 121-136.		0
63	Countercurrent Flow Limitation. , 0, , 228-244.		0
64	Critical Heat Flux and Post-CHF Heat Transfer in Flow Boiling. , 0, , 371-404.		0
65	Internal-Flow Condensation and Condensation on Liquid Jets and Droplets. , 0, , 462-498.		0
66	Transport Properties of Saturated Water and Steam. , 0, , 531-532.		0
67	Thermodynamic Properties of Saturated Liquid and Vapor for Selected Refrigerants. , 0, , 533-542.		0
68	Properties of Selected Ideal Gases at 1 Atmosphere. , 0, , 543-548.		0
69	Binary Diffusion Coefficients of Selected Gases in Air at 1 Atmosphere. , 0, , 549-550.		0
70	Diffusion Coefficients of Selected Substances in Water at Infinite Dilution at 25°C. , 0, , 553-554.		0
71	Thermodynamic and Single-Phase Flow Fundamentals. , 0, , 3-37.		0
72	Two-Phase Mixtures, Fluid Dispersions, and Liquid Films. , 0, , 89-120.		0

#	Article	IF	Citations
73	Two-Phase Flow in Small Flow Passages. , 0, , 245-284.		0
74	Flow Boiling and CHF in Small Passages. , 0, , 405-435.		0
75	Choking in Two-Phase Flow. , 0, , 499-528.		0
76	Thermodynamic Properties of Saturated Water and Steam. , 0, , 529-530.		0
77	Experiments and Modeling of Two-Phase Heat Transfer in Single-Layer and Multilayer Minichannel Heat Sinks. , 2007, , 307.		1
78	Two Phase Boiling and Flow Instabilities in a Microchannel. , 2007, , 75.		1
79	A Flow Boiling Heat Transfer Investigation of FC-72 in a Microtube Using Liquid Crystal Thermography. Journal of Heat Transfer, 2007, 129, 977-987.	2.1	17
80	Pressure Drop, Boiling Heat Transfer and Flow Patterns during Flow Boiling in a Single Microchannel. Heat Transfer Engineering, 2007, 28, 730-737.	1.9	27
81	Dielectrophoretic Control of Bubble Transport in Mesochannels— Experimental Study. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 1131-1139.	1.5	4
82	Improved semi-empirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tubes. International Journal of Heat and Mass Transfer, 2007, 50, 3949-3956.	4.8	46
83	Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter. International Journal of Heat and Mass Transfer, 2007, 50, 5215-5225.	4.8	217
84	Examination of heat transfer correlations and a model for flow boiling of R134a in small diameter tubes. International Journal of Heat and Mass Transfer, 2007, 50, 5177-5193.	4.8	57
85	Flow boiling of liquid nitrogen in micro-tubes: Part II – Heat transfer characteristics and critical heat flux. International Journal of Heat and Mass Transfer, 2007, 50, 5017-5030.	4.8	135
86	Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study. Experimental Thermal and Fluid Science, 2007, 32, 67-76.	2.7	35
87	Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels. International Journal of Refrigeration, 2007, 30, 1336-1346.	3.4	84
88	Effect of surfactant concentration on saturated flow boiling in vertical narrow annular channels. International Journal of Multiphase Flow, 2007, 33, 1141-1152.	3.4	14
89	Forced convective boiling heat transfer of R-410A in horizontal minichannels. International Journal of Refrigeration, 2007, 30, 155-165.	3.4	30
90	Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels. International Journal of Refrigeration, 2007, 30, 767-777.	3.4	80

#	Article	IF	CITATIONS
91	Computational heat transfer and two-phase flow topology in miniature tubes. Microfluidics and Nanofluidics, 2008, 4, 261-271.	2.2	111
92	Saturated flow boiling heat transfer of R-407C and associated bubble characteristics in a narrow annular duct. International Journal of Heat and Mass Transfer, 2008, 51, 3763-3775.	4.8	13
93	High heat flux flow boiling in silicon multi-microchannels – Part III: Saturated critical heat flux of R236fa and two-phase pressure drops. International Journal of Heat and Mass Transfer, 2008, 51, 5426-5442.	4.8	108
94	Microchannel size effects on local flow boiling heat transfer to a dielectric fluid. International Journal of Heat and Mass Transfer, 2008, 51, 3724-3735.	4.8	236
95	Elongated bubbles in microchannels. Part I: Experimental study and modeling of elongated bubble velocity. International Journal of Multiphase Flow, 2008, 34, 590-601.	3.4	73
96	Two-Phase Flow Patterns and Flow-Pattern Maps: Fundamentals and Applications. Applied Mechanics Reviews, 2008, 61, .	10.1	232
97	Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 187-227.	2.6	113
98	Flow Boiling in Silicon Microchannel Heat Sinks. , 2008, , .		3
99	Numerical and experimental investigations of boiling enhancement in buoyancy-driven microchannels. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	2
100	Bubble Dynamics and Boiling Heat Transfer in Microsystems. , 2008, , .		0
101	Experimental Investigation of an Evaporator Enhanced With a Micro-Porous Structure in a Two-Phase Thermosyphon Loop. , 2008, , .		5
102	An investigation of flow boiling regimes in microchannels of different sizes by means of high-speed visualization. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .	0.0	7
103	High Speed Imaging and Two-Phase Flow Patterns During Flow Boiling in a Single Microchannel. , 2008, , .		0
104	Flow Boiling of Carbon Dioxide in Horizontal Mini-Channel and Pattern Dynamics Approach to Study Flow Pattern. , 2009, , .		2
105	Bubble-Induced Water Hammer and Cavitation in Microchannel Flow Boiling. Journal of Heat Transfer, 2009, 131, .	2.1	16
106	The Use of a Nano- and Microporous Surface Layer to Enhance Boiling in a Plate Heat Exchanger. Journal of Heat Transfer, 2009, 131, .	2.1	33
107	Status of prediction methods for critical heat fluxes in mini and microchannels. International Journal of Heat and Fluid Flow, 2009, 30, 983-992.	2.4	50
108	Heat transfer enhancement via liquid–liquid phase separation. International Journal of Heat and Mass Transfer, 2009, 52, 1385-1399.	4.8	20

#	Article	IF	CITATIONS
109	Confinement effects on nucleate boiling and critical heat flux in buoyancy-driven microchannels. International Journal of Heat and Mass Transfer, 2009, 52, 2427-2436.	4.8	39
110	An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels. International Journal of Heat and Mass Transfer, 2009, 52, 5323-5329.	4.8	187
111	On two-phase flow patterns and transition criteria in aqueous methanol and CO2 mixtures in adiabatic, rectangular microchannels. International Journal of Multiphase Flow, 2009, 35, 760-772.	3.4	21
112	Flow pattern and boiling heat transfer of CO2 in horizontal small-bore tubes. International Journal of Multiphase Flow, 2009, 35, 699-709.	3.4	27
113	Two-phase flow heat transfer of propane vaporization in horizontal minichannels. Journal of Mechanical Science and Technology, 2009, 23, 599-606.	1.5	12
114	Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels. International Journal of Multiphase Flow, 2009, 35, 349-362.	3.4	183
115	The critical role of channel cross-sectional area in microchannel flow boiling heat transfer. International Journal of Multiphase Flow, 2009, 35, 904-913.	3.4	84
116	Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel. International Journal of Multiphase Flow, 2009, 35, 987-1000.	3.4	77
117	Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows. International Journal of Multiphase Flow, 2009, 35, 1138-1148.	3.4	104
118	Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels. International Journal of Refrigeration, 2009, 32, 837-845.	3.4	64
119	Critical heat flux for subcooled flow boiling in micro-channel heat sinks. International Journal of Heat and Mass Transfer, 2009, 52, 3341-3352.	4.8	138
120	Subcooled flow boiling heat transfer of R-407C and associated bubble characteristics in a narrow annular duct. International Journal of Heat and Mass Transfer, 2009, 52, 3147-3158.	4.8	36
121	Enhanced boiling heat transfer in mesochannels. International Journal of Heat and Mass Transfer, 2009, 52, 5802-5813.	4.8	3
122	Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator. Solar Energy, 2009, 83, 1967-1976.	6.1	88
123	Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel. Applied Thermal Engineering, 2009, 29, 1299-1308.	6.0	61
124	Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030mm circular channel. Experimental Thermal and Fluid Science, 2009, 33, 651-663.	2.7	131
125	Flow Boiling Heat Transfer Characteristics of R134a in a Horizontal Mini Tube. Journal of Chemical & Engineering Data, 2009, 54, 2638-2645.	1.9	11
126	Modeling and Prediction of Two-Phase Microgap Channel Heat Transfer Characteristics. Heat Transfer Engineering, 2009, 30, 601-625.	1.9	101

# 127	ARTICLE A Systematic Investigation of the Effects of Microchannel Width, Depth, and Aspect Ratio on Convective Boiling Heat Transfer and Flow Regimes in Parallel Microchannels. , 2009, , .	IF	CITATIONS 3
128	Experimental Investigation and Theoretical Model for Subcooled Flow Boiling Pressure Drop in Microchannel Heat Sinks. Journal of Electronic Packaging, Transactions of the ASME, 2009, 131, .	1.8	9
129	Flow Boiling Heat Transfer Characteristics of a Minichannel Up to Dryout Condition. , 2009, , .		7
130	Correlations for Saturated Critical Heat Flux in Microchannels. , 2010, , .		0
131	Microchannels: Rapid Growth of a Nascent Technology. Journal of Heat Transfer, 2010, 132, .	2.1	8
132	Flow Pattern and Boiling Heat Transfer of CO2 at High Pressure in Horizontal Mini-Channels. , 2010, , .		1
133	Flow boiling heat transfer of refrigerant R21 in microchannel heat sink. Journal of Engineering Thermophysics, 2010, 19, 306-317.	1.4	3
134	Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube. Frontiers of Energy and Power Engineering in China, 2010, 4, 527-534.	0.4	13
135	Bubble confinement in flow boiling of FC-72 in a "rectangular―microchannel of high aspect ratio. Experimental Thermal and Fluid Science, 2010, 34, 1375-1388.	2.7	64
136	Simulation on nucleate boiling in micro-channel. International Journal of Heat and Mass Transfer, 2010, 53, 502-512.	4.8	54
137	Critical heat flux in multi-microchannel copper elements with low pressure refrigerants. International Journal of Heat and Mass Transfer, 2010, 53, 110-122.	4.8	103
138	A general criterion for evaporative heat transfer in micro/mini-channels. International Journal of Heat and Mass Transfer, 2010, 53, 1967-1976.	4.8	102
139	Compact heat exchangers modeling: Condensation. International Journal of Refrigeration, 2010, 33, 135-147.	3.4	38
140	Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective. International Journal of Thermal Sciences, 2010, 49, 1073-1085.	4.9	166
141	Void Fraction Prediction in Annular Two-Phase Flow Using an Algebraic Turbulence Model. Microgravity Science and Technology, 2010, 22, 425-431.	1.4	3
142	A comparison of flow boiling heat-transfer in in-line mini pin fin and plane channel flows. Applied Thermal Engineering, 2010, 30, 2412-2425.	6.0	49
143	Boiling heat transfer in small channel for development of ultrafine cryoprobe. International Journal of Heat and Fluid Flow, 2010, 31, 1012-1018.	2.4	8
144	Experimental study of R-134a evaporation heat transfer in a narrow annular duct. International Journal of Heat and Mass Transfer, 2010, 53, 2218-2228.	4.8	3

#	Article	IF	CITATIONS
145	A general correlation for evaporative heat transfer in micro/mini-channels. International Journal of Heat and Mass Transfer, 2010, 53, 1778-1787.	4.8	191
146	Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube. International Journal of Heat and Mass Transfer, 2010, 53, 2459-2468.	4.8	105
147	A general correlation for adiabatic two-phase pressure drop in micro/mini-channels. International Journal of Heat and Mass Transfer, 2010, 53, 2732-2739.	4.8	167
148	A comprehensive flow regime map for microchannel flow boiling with quantitative transition criteria. International Journal of Heat and Mass Transfer, 2010, 53, 2694-2702.	4.8	203
149	Flow pattern and heat transfer characteristics of R-134a refrigerant during flow boiling in a horizontal circular mini-channel. International Journal of Heat and Mass Transfer, 2010, 53, 4023-4038.	4.8	65
150	Bubble growth, departure and the following flow pattern evolution during flow boiling in a mini-tube. International Journal of Heat and Mass Transfer, 2010, 53, 4819-4831.	4.8	39
151	Experimental study on saturated flow boiling heat transfer of R170/R290 mixtures in a horizontal tube. International Journal of Refrigeration, 2010, 33, 371-380.	3.4	74
152	Instability, heat transfer and flow regime in a two-phase flow thermosyphon loop at different diameter evaporator channel. Applied Thermal Engineering, 2010, 30, 1107-1114.	6.0	78
153	Characteristics of Two-Phase Flow Boiling Heat Transfer and Pressure Drop of NH3, C3H8 and CO2 in Horizontal Circular Small Tubes. , 2010, , .		2
154	A New Method for Determination of Flow Boiling Heat Transfer Coefficient in Conventional-Diameter Channels and Minichannels. Heat Transfer Engineering, 2010, 31, 276-287.	1.9	33
155	Mechanisms of Boiling in Microchannels: Critical Assessment. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 83-105.	0.5	4
156	Air–Water Two-Phase Frictional Pressure Drop in Minichannels. Heat Transfer Engineering, 2010, 31, 321-330.	1.9	11
157	Experiment study on the heat transfer coefficient of evaporative flow in mini/microchannels. , 2010, , .		0
158	Heat and Mass Transfer With Phase Change and Chemical Reactions in Microscale. , 2010, , .		6
159	Flow Boiling Heat Transfer Characteristics of R-134a in Horizontal and Vertical Mini-Channels. , 2010, ,		0
160	Cooling Characteristics of Ultrafine Cryoprobe Utilizing Convective Boiling Heat Transfer in Microchannel. , 2010, , .		6
161	An Analysis of Saturated Critical Heat Flux in Micro/Mini-Channels. , 2010, , .		0
162	Flow Boiling of Water on Titanium and Diamond-Like Carbon Coated Surfaces in a Microchannel. , 2010, , .		Ο

#	Article	IF	CITATIONS
163	Some Aspects of Microchannel Heat Transfer. , 2010, , 431-477.		0
164	Flow Patterns and Heat Transfer for Flow Boiling in Small to Micro Diameter Tubes. Heat Transfer Engineering, 2010, 31, 257-275.	1.9	37
165	Flow patterns and flow pattern maps for microchannels. , 2010, , .		1
166	Mechanisms of Boiling in Micro-Channels: Critical Assessment. Heat Transfer Engineering, 2010, 31, 288-297.	1.9	43
167	Nano-Bio- Electronic, Photonic and MEMS Packaging. , 2010, , .		38
169	Similarities and Differences Between Flow Boiling in Microchannels and Pool Boiling. Heat Transfer Engineering, 2010, 31, 159-167.	1.9	73
170	Effect of tube diameter on elongated bubble length in mini channels. , 2010, , .		0
171	Comparison of the Three–Zone Evaporation Model with Boiling Heat Transfer in a Compact Tube Bundle. International Journal of Engineering Research in Africa, 2011, 5, 53-63.	0.7	0
172	Micro-Channels: Reality and Myth. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	1.5	13
173	A Review of High-Heat-Flux Heat Removal Technologies. Journal of Heat Transfer, 2011, 133, .	2.1	230
174	Thermofluid Dynamics of Boiling in Microchannels. Advances in Heat Transfer, 2011, 43, 77-226.	0.9	12
175	Boiling of R-134a in horizontal mini tube. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33, 220-226.	1.6	1
176	Optimization of convective heat transfer in micro-scale electronics cooling applications. Houille Blanche, 2011, 97, 70-78.	0.3	1
177	Increased Cooling Power with Nucleate Boiling Flow in Automotive Engine Applications. , 2011, , .		8
178	Flow Boiling in an Asymmetrically Heated Single Rectangular Microchannel. , 0, , .		0
179	Flow and Heat Transfer Characteristics of Liquid Nitrogen in Mini/Micro-Channels. , 2011, , .		0
180	Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels – A comparative study. International Journal of Thermal Sciences, 2011, 50, 2413-2421.	4.9	142
181	Saturated flow boiling heat transfer of R-410A and associated bubble characteristics in a narrow annular duct. International Journal of Heat and Mass Transfer, 2011, 54, 4988-5000.	4.8	13

#	Article	IF	CITATIONS
182	Gas–liquid flow in circular microchannel. Part I: Influence of liquid physical properties and channel diameter on flow patterns. Chemical Engineering Science, 2011, 66, 5791-5803.	3.8	49
183	Visualisation of flow boiling heat transfer in a microtube. Heat and Mass Transfer, 2011, 47, 941-949.	2.1	4
184	Influence of the aspect ratio on boiling flows in rectangular mini-channels. Experimental Thermal and Fluid Science, 2011, 35, 797-809.	2.7	55
185	Flow boiling heat transfer of R134a in the multiport minichannel heat exchangers. Experimental Thermal and Fluid Science, 2011, 35, 364-374.	2.7	64
186	Two-phase air–water flow in micro-channels: An investigation of the viscosity models for pressure drop prediction. International Communications in Heat and Mass Transfer, 2011, 38, 212-217.	5.6	9
187	Local heat transfer distribution and effect of instabilities during flow boiling in a silicon microchannel heat sink. International Journal of Heat and Mass Transfer, 2011, 54, 3179-3190.	4.8	52
188	Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3, and CO2. International Journal of Multiphase Flow, 2011, 37, 794-801.	3.4	49
189	Forced flow boiling of carbon dioxide in horizontal mini-channel. International Journal of Thermal Sciences, 2011, 50, 296-308.	4.9	12
190	Confined bubble growth during flow boiling in a mini/micro-channel of rectangular cross-section Part I: Experiments and 1-D modelling. International Journal of Thermal Sciences, 2011, 50, 250-266.	4.9	55
191	Carbon dioxide flow boiling in a single microchannel – Part II: Heat transfer. Experimental Thermal and Fluid Science, 2011, 35, 597-611.	2.7	80
192	Macro-to-microchannel transition in two-phase flow: Part 1 – Two-phase flow patterns and film thickness measurements. Experimental Thermal and Fluid Science, 2011, 35, 37-47.	2.7	297
193	Macro-to-microchannel transition in two-phase flow: Part 2 – Flow boiling heat transfer and critical heat flux. Experimental Thermal and Fluid Science, 2011, 35, 873-886.	2.7	167
194	Experimental study on the heat transfer coefficient of water flow boiling in mini/microchannels. Experimental Thermal and Fluid Science, 2011, 35, 1392-1397.	2.7	14
195	Flow boiling enhancement of FC-72 from microporous surfaces in minichannels. Experimental Thermal and Fluid Science, 2011, 35, 1418-1426.	2.7	48
196	Correlations for saturated critical heat flux in microchannels. International Journal of Heat and Mass Transfer, 2011, 54, 379-389.	4.8	52
197	Experimental investigation on two-phase flow boiling heat transfer of five refrigerants in horizontal small tubes of 0.5, 1.5 and 3.0 mm inner diameters. International Journal of Heat and Mass Transfer, 2011, 54, 2080-2088.	4.8	64
198	A new predictive tool for saturated critical heat flux in micro/mini-channels: Effect of the heated length-to-diameter ratio. International Journal of Heat and Mass Transfer, 2011, 54, 2880-2889.	4.8	33
199	Bubble dynamics and interactions with a pair of micro pillars in tandem. International Journal of Multiphase Flow, 2011, 37, 440-452.	3.4	10

	CITATION R	EPORT	
#	ARTICLE Charge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel	IF	CITATIONS
200	with constant heat flux conditions. International Journal of Refrigeration, 2011, 34, 827-833.	3.4	9
201	Flow boiling of water in a minichannel: The effects of surface wettability on two-phase pressure drop. Applied Thermal Engineering, 2011, 31, 1894-1905.	6.0	42
202	Distributed hydrogen production from ethanol in a microfuel processor: Issues and challenges. Renewable and Sustainable Energy Reviews, 2011, 15, 524-533.	16.4	40
203	Enhancement of flow boiling heat transfer in microchannels by nano- and micro-surface treatments. Mecanique Et Industries, 2011, 12, 151-155.	0.2	2
204	Experimental Adiabatic Two-Phase Pressure Drops of R134a, R236fa and R245fa in Small Horizontal Circular Channels. , 2011, , .		1
205	Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics. Journal of Heat Transfer, 2011, 133, .	2.1	23
206	Flow Boiling Heat Transfer Characteristics of a Minichannel up to Dryout Condition. Journal of Heat Transfer, 2011, 133, .	2.1	25
207	Experimental Investigation of Flow Boiling Pressure Drop of R134A in a Microscale Horizontal Smooth Tube. Journal of Thermal Science and Engineering Applications, 2011, 3, .	1.5	12
208	Two-Phase Frictional Pressure Drop and Flow Boiling Heat Transfer for R245fa in a 2.32-mm Tube. Heat Transfer Engineering, 2011, 32, 1139-1149.	1.9	30
209	Visual Study of Flow Pattern Evolution of Flow Boiling in a Microtube. Heat Transfer Engineering, 2011, 32, 1009-1018.	1.9	4
210	Flow Boiling of R245fa in a Single Circular Microchannel. Heat Transfer Engineering, 2011, 32, 1160-1172.	1.9	19
211	Experimental Investigation of M-Shape Heat Transfer Coefficient Distribution of R123 Flow Boiling in Small-Diameter Tubes. Heat Transfer Engineering, 2012, 33, 584-595.	1.9	10
212	Heat Transfer and Pressure Drop During Condensation of Ammonia in Microchannels. , 2012, , .		11
213	Flow Boiling of Water on Nanocoated Surfaces in a Microchannel. Journal of Heat Transfer, 2012, 134,	2.1	18
214	Vapor Bubble Condensation Characteristics of Subcooled Flow Boiling in Vertical Rectangular Channel. , 2012, , .		1
215	Hydrodynamics of oscillating slug flow inside mini channels: a state of art review. International Journal of Theoretical and Applied Multiscale Mechanics, 2012, 2, 225.	0.6	0
216	A new correlation of two-phase frictional pressure drop for evaporating flow in pipes. International Journal of Refrigeration, 2012, 35, 2039-2050.	3.4	71
217	Explosive nucleation in microgravity: The Constrained Vapor Bubble experiment. International Journal of Heat and Mass Transfer, 2012, 55, 6473-6484.	4.8	14

ARTICLE IF CITATIONS Experimental investigation on frictional pressure drop of water in vertical rectangular channel. 218 1.7 3 Nuclear Engineering and Design, 2012, 250, 567-572. Modeling of Gas Liquid Taylor Flow in Capillaries by Using a Two Fluid Model. Industrial & amp; Engineering Chemistry Research, 2012, 51, 13054-13061. 3.7 An experimental investigation on the confined and elongated bubbles in subcooled flow boiling in a 220 1.9 12 single microchannel. Journal of Thermal Science, 2012, 21, 549-556. HEAT TRANSFER ENHANCEMENT IN MINI CHANNELS WITH MICRO/NANO PARTICLES DEPOSITED ON A HEAT-LOADED WALL. Journal of Enhanced Heat Transfer, 2012, 19, 13-24. Two-Phase Flow., 0, , . 222 9 Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results. Microgravity Science and Technology, 2012, 24, 165-179. 1.4 Intensification of heat transfer during evaporation of a falling liquid film in vertical 224 3.8 11 microchannelsâ€"Experimental investigations. Chemical Engineering Science, 2012, 75, 152-166. A study of discrepancies in flow boiling results in small to microdiameter metallic tubes. 2.7 46 Experimental Thermal and Fluid Science, 2012, 36, 126-142. Boiling of R134a inside a glass minichannel. A new statistical approach of flow pattern 226 characterization based on flow visualization. International Journal of Heat and Mass Transfer, 2012, 4.8 5 55, 1048-1065. Boiling heat transfer and critical heat flux of ethanol–water mixtures flowing through a diverging microchannel with artificial cavities. International Journal of Heat and Mass Transfer, 2012, 55, 4.8 1807-1814. Boiling heat transfer and pressure drop of R-134a and R-1234yf in minichannels for low mass fluxes. 228 3.4 52 International Journal of Refrigeration, 2012, 35, 962-973. Boiling heat transfer of ammonia in vertical smooth mini channels: Experimental results and 229 predictions. International Journal of Thermal Sciences, 2012, 54, 13-21. Flow pattern analysis of flow boiling inside a 0.48Âmm microtube. International Journal of Thermal 230 4.9 21 Sciences, 2012, 58, 1-8. Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in 1.7 vertical rectangular channel. Nuclear Engineering and Design, 2012, 248, 126-136. Flow boiling heat transfer of water in microchannel heat sink. Journal of Engineering Thermophysics, 232 1.4 8 2012, 21, 28-35. Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vértical annulus. Experimental Thermal and Fluid Science, 2013, 50, 154-162. Evaporative Annular Flow in Micro/Minichannels: A Simple Heat Transfer Model. Journal of Thermal 234 1.512 Science and Engineering Applications, 2013, 5, .

CITATION REPORT

Experimental investigation of flow boiling heat transfer and instabilities in straight microchannels. 4.8 International Journal of Heat and Mass Transfer, 2013, 66, 655-671.

#

#	Article	IF	CITATIONS
236	Boiling local heat transfer enhancement in minichannels using nanofluids. Nanoscale Research Letters, 2013, 8, 130.	5.7	33
237	Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment). International Journal of Refrigeration, 2013, 36, 287-300.	3.4	51
238	A new correlation of flow boiling heat transfer coefficients for carbon dioxide. International Journal of Heat and Mass Transfer, 2013, 64, 802-807.	4.8	52
239	Investigation of two phase heat transfer and pressure drop of propane in a vertical circular minichannel. Experimental Thermal and Fluid Science, 2013, 46, 120-130.	2.7	51
240	Two-phase flow boiling in small channels: A brief review. Sadhana - Academy Proceedings in Engineering Sciences, 2013, 38, 1083-1126.	1.3	19
241	An experimental investigation of flow boiling heat transfer of R-134a in horizontal and vertical mini-channels. Experimental Thermal and Fluid Science, 2013, 46, 232-244.	2.7	32
242	The effect of aspect ratio on flow boiling heat transfer of HFE-7100 in a microchannel heat sink. International Journal of Heat and Mass Transfer, 2013, 58, 53-61.	4.8	78
243	Experimental study on flow boiling heat transfer ofÂmultiport tubes with R245fa and R1234ze(E). International Journal of Refrigeration, 2013, 36, 335-352.	3.4	79
244	Flow boiling in micro-scale channels – Synthesized literature review. International Journal of Refrigeration, 2013, 36, 301-324.	3.4	119
245	Flow boiling in microchannels and microgravity. Progress in Energy and Combustion Science, 2013, 39, 1-36.	31.2	107
245 246		31.2 4.8	107 81
	1-36. Heat transfer correlation for flow boiling in small to micro tubes. International Journal of Heat and		
246	 1-36. Heat transfer correlation for flow boiling in small to micro tubes. International Journal of Heat and Mass Transfer, 2013, 66, 553-574. Unified mechanistic multiscale mapping of two-phase flow patterns in microchannels. Experimental 	4.8	81
246 247	 1-36. Heat transfer correlation for flow boiling in small to micro tubes. International Journal of Heat and Mass Transfer, 2013, 66, 553-574. Unified mechanistic multiscale mapping of two-phase flow patterns in microchannels. Experimental Thermal and Fluid Science, 2013, 44, 1-22. Convective boiling inside a single circular microchannel. International Journal of Heat and Mass 	4.8 2.7	81 58
246 247 248	 1-36. Heat transfer correlation for flow boiling in small to micro tubes. International Journal of Heat and Mass Transfer, 2013, 66, 553-574. Unified mechanistic multiscale mapping of two-phase flow patterns in microchannels. Experimental Thermal and Fluid Science, 2013, 44, 1-22. Convective boiling inside a single circular microchannel. International Journal of Heat and Mass Transfer, 2013, 67, 1231-1245. Investigation of the two-phase convective boiling of HFO-1234yf in a 3.9mm diameter tube. 	4.8 2.7 4.8	81 58 28
246 247 248 249	 1-36. Heat transfer correlation for flow boiling in small to micro tubes. International Journal of Heat and Mass Transfer, 2013, 66, 553-574. Unified mechanistic multiscale mapping of two-phase flow patterns in microchannels. Experimental Thermal and Fluid Science, 2013, 44, 1-22. Convective boiling inside a single circular microchannel. International Journal of Heat and Mass Transfer, 2013, 67, 1231-1245. Investigation of the two-phase convective boiling of HFO-1234yf in a 3.9mm diameter tube. International Journal of Heat and Mass Transfer, 2013, 65, 545-551. Flow pattern characterization for R-245fa in minichannels: Optical measurement technique and 	4.82.74.84.8	81 58 28 50
246 247 248 249 250	 1-36. Heat transfer correlation for flow boiling in small to micro tubes. International Journal of Heat and Mass Transfer, 2013, 66, 553-574. Unified mechanistic multiscale mapping of two-phase flow patterns in microchannels. Experimental Thermal and Fluid Science, 2013, 44, 1-22. Convective boiling inside a single circular microchannel. International Journal of Heat and Mass Transfer, 2013, 67, 1231-1245. Investigation of the two-phase convective boiling of HFO-1234yf in a 3.9mm diameter tube. International Journal of Heat and Mass Transfer, 2013, 65, 545-551. Flow pattern characterization for R-245fa in minichannels: Optical measurement technique and experimental results. International Journal of Multiphase Flow, 2013, 57, 169-181. Flow boiling heat-transfer in micro to macro transition flows. International Journal of Heat and 	4.8 2.7 4.8 4.8 3.4	 81 58 28 50 46

ARTICLE IF CITATIONS # A new correlation of two-phase frictional pressure drop for condensing flow in pipes. Nuclear 254 1.7 28 Engineering and Design, 2013, 263, 87-96. Review of correlations of flow boiling heat transfer coefficients for carbon dioxide. International 3.4 Journal of Refrigeration, 2013, 36, 2017-2039. Flow and Heat Transfer Characteristics of Liquid Nitrogen in Mini-/Microchannels. Heat Transfer 256 1.9 10 Engineering, 2013, 34, 204-212. Two-Phase Operation of Microchannel Heat Sinks., 2013, , 59-81. Boiling Heat Transfer at Small Scales., 2013, , 83-135. 258 0 Measurement Techniques., 2013, , 193-215. Study of Flow Boiling Characteristics of a Microchannel Using High Speed Visualization. Journal of 260 2.1 7 Heat Transfer, 2013, 135, . A Critical Overview on the Recent Literature Concerning Flow Boiling and Two-Phase Flows Inside 261 3.2 48 Micro-Scale Channels. Experimental Heat Transfer, 2013, 26, 198-246. Single- and Multi-Constituent Condensation of Fluids and Mixtures with Varying Properties in 262 3.2 8 Micro-Channels. Experimental Heat Transfer, 2013, 26, 129-168. 264 Flow Boiling of R134a and R245fa in a 1.1 mm Diameter Tube., 2013,,. Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels. Scientific 265 2.1 6 World Journal, The, 2013, 2013, 1-14. Application of heat transfer correlations for FC-72 flow boiling heat transfer in minichannels with 0.2 various orientations. MATEC Web of Conferences, 2014, 18, 01009. Design of a non-intrusive electrical impedance-based void fraction sensor for microchannel 267 2.6 19 two-phase flows. Measurement Science and Technology, 2014, 25, 095301. Review of Correlations of Flow Boiling Heat Transfer Coefficients for Nitrogen., 2014,,. Jet impingement in a crossflow configuration: Convective boiling and local heat transfer 269 2.4 15 characteristics. International Journal of Heat and Fluid Flow, 2014, 50, 378-385. Condensation in Minichannels and Microchannels., 2014, , 295-494. 270 Numerical Simulation of Accident Spray Cooling System in FGD System Inlet. Applied Mechanics and 271 0.2 0 Materials, 2014, 703, 237-240. Prediction of flow boiling heat transfer data for R134a, R600a and R290 in minichannels. Archives of 272 Thermodynamics, 2014, 35, 97-114.

#	Article	IF	CITATIONS
273	Flow regime transitions during condensation in microchannels. International Journal of Refrigeration, 2014, 40, 227-240.	3.4	110
274	CFD based mini- vs. micro-system delineation in elongated bubble flow regime. International Journal of Multiphase Flow, 2014, 59, 73-83.	3.4	11
275	Application of thermodynamic models to estimating the convective flow boiling heat transfer coefficient of mixtures. Experimental Thermal and Fluid Science, 2014, 53, 70-85.	2.7	31
276	Thermodynamic analysis of a low-temperature waste heat recovery system based on the concept of solar chimney. Energy Conversion and Management, 2014, 80, 78-86.	9.2	33
277	Experimental investigation of R-245fa flow boiling in minichannels at high saturation temperatures: Flow patterns and flow pattern maps. International Journal of Heat and Fluid Flow, 2014, 46, 1-16.	2.4	34
278	Visualization and measurement of periodic reverse flow and boiling fluctuations in a microchannel evaporator of an air-conditioning system. International Journal of Heat and Mass Transfer, 2014, 71, 639-652.	4.8	45
280	Experimental studies on the effect of water contaminants in convective boiling heat transfer. Ain Shams Engineering Journal, 2014, 5, 553-568.	6.1	8
281	Effect of venting the periodic reverse vapor flow on the performance of a microchannel evaporator in air-conditioning systems. International Journal of Heat and Mass Transfer, 2014, 69, 66-76.	4.8	16
282	Flow Boiling in Minichannels and Microchannels. , 2014, , 221-293.		34
283	Heat transfer coefficient calculated using a linear pressure gradient assumption and measurement for flow boiling in microchannels. International Journal of Heat and Mass Transfer, 2014, 79, 269-278.	4.8	24
284	The Analysis of Two-Phase Flow Type in the Micro-Channel Flow Boiling. Advanced Materials Research, 2014, 971-973, 768-771.	0.3	0
285	An overview of liquid–vapor phase change, flow and heat transfer in mini- and micro-channels. International Journal of Thermal Sciences, 2014, 86, 227-245.	4.9	40
286	On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels. Renewable and Sustainable Energy Reviews, 2014, 40, 11-27.	16.4	109
287	A review of heat transfer and pressure drop characteristics of single and two-phase microchannels. International Journal of Heat and Mass Transfer, 2014, 79, 34-53.	4.8	167
288	Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat and Mass Transfer, 2014, 50, 1237-1249.	2.1	75
289	Evaporating momentum force and shear force on meniscuses of elongated bubble in microchannel flow boiling. Journal of Thermal Science, 2014, 23, 160-168.	1.9	16
290	Experimental investigation on bubble confinement and elongation in microchannel flow boiling. Experimental Thermal and Fluid Science, 2014, 54, 290-296.	2.7	32
291	Flow boiling heat transfer and dryout characteristics of R152a in a vertical mini-channel. Experimental Thermal and Fluid Science, 2014, 53, 207-217.	2.7	33

ARTICLE IF CITATIONS Comparison of heat transfer coefficient during evaporation of natural refrigerants and R-1234yf in 292 3.4 41 horizontal small tube. International Journal of Refrigeration, 2014, 41, 210-218. Flow boiling of R245fa in 1.1 mm diameter stainless steel, brass and copper tubes. Experimental Thermal 2.7 and Fluid Science, 2014, 59, 166-183. Experimental study of saturated boiling heat transfer and pressure drop in vertical rectangular 294 1.7 8 channel. Nuclear Engineering and Design, 2014, 273, 631-643. Evaporative heat transfer of R134a and R407C inside a smooth tube with different inclinations. 4.8 International Journal of Heat and Mass Transfer, 2014, 76, 523-533. Comparative experimental study on flow boiling heat transfer characteristics of pure and mixed 296 3.4 18 refrigerants. International Journal of Refrigeration, 2014, 45, 136-147. An investigation of flow orientation on air–water two-phase flow in circular minichannel. Heat and 2.1 Mass Transfer, 2014, 50, 1353-1364. Flow Boiling Pressure Drop of R134a in Microdiameter Tubes: Experimental Results and Assessment of 298 1.9 8 Correlations. Heat Transfer Engineering, 2014, 35, 178-192. Flow boiling heat transfer characteristics of methane in a horizontal tube., 2014, , . 299 301 Bubble behavior in microchannel with saturated and subcooled boiling., 2015, , . 0 Experimental investigation of flow boiling heat transfer and pressure drops characteristic of R1234ze(E), R600a, and a mixture of R1234ze(E)/R32 in a horizontal smooth tube. Advances in Mechanical 1.6 Engineering, 2015, 7, 168781401560631. Pressure Drop and Heat Transfer during a Two-phase Flow Vaporization of Propane in Horizontal 303 1 Smooth Minichannels., 2015, , . Flow boiling heat transfer in minichannels at high saturation temperatures: Part II – Assessment of predictive methods and impact of flow regimes. International Journal of Heat and Mass Transfer, 2015, 4.8 87, 653-672. Experimental study of the heat transfer coefficient deterioration during Density Wave Oscillations. 305 3.8 24 Chemical Engineering Science, 2015, 132, 178-185. Review: General Issues and Correlations for Predicting Flow Boiling Heat Transfer Coefficients in 306 Micro-Scale Channels. International Journal of Air-Conditioning and Refrigeration, 2015, 23, 1530003. Heat transfer correlation for saturated flow boiling of water. Applied Thermal Engineering, 2015, 76, 307 39 6.0 147-156. Analysis of air–water flow pattern in parallel microchannels: A visualization study. Experimental 308 Thermal and Fluid Science, 2015, 63, 1-8. Frictional pressure drop and void fraction analysis in air–water two-phase flow in a microchannel. 309 3.4 20 International Journal of Multiphase Flow, 2015, 72, 1-10. Experimental investigation on bubble sliding during subcooled flow boiling in microchannel. Experimental Thermal and Fluid Science, 2015, 68, 435-441.

#	Article	IF	CITATIONS
311	Forced convective boiling heat transfer of water in vertical rectangular narrow channel. Nuclear Engineering and Design, 2015, 291, 133-144.	1.7	9
312	Pressure drop during condensation of R-134a inside parallel microchannels. International Journal of Refrigeration, 2015, 56, 114-125.	3.4	19
313	Impact of two-phase distribution systems on the performance of a microchannel evaporator. Science and Technology for the Built Environment, 2015, 21, 1047-1058.	1.7	8
314	Critical Heat Flux. SpringerBriefs in Applied Sciences and Technology, 2015, , 13-51.	0.4	0
315	Flow boiling heat transfer, pressure drop and dryout characteristics of R1234yf: Experimental results and predictions. Experimental Thermal and Fluid Science, 2015, 66, 137-149.	2.7	71
316	Hydrodynamics and heat transfer prior to onset of nucleate boiling in a rectangular microchannel heat sink. International Communications in Heat and Mass Transfer, 2015, 64, 34-41.	5.6	3
317	An experimental study of R134a flow boiling heat transfer in a 4.07 mm tube under Earth's gravity and hypergravity. International Journal of Heat and Mass Transfer, 2015, 87, 399-408.	4.8	15
319	Flow condensation heat transfer correlations in horizontal channels. International Journal of Refrigeration, 2015, 59, 102-114.	3.4	19
320	A general correlation to predict the flow boiling heat transfer of R410A in macro-/mini-channels. Science and Technology for the Built Environment, 2015, 21, 526-534.	1.7	11
321	Mini- and Microchannel Condensation. , 2015, , 231-284.		2
322	Dynamic Modeling of Compact Two-Phase Electronic Cooling Systems with Microchannel Evaporators. , 2015, , 261-308.		0
323	Flow Boiling under Reduced Gravity Conditions. , 2015, , 253-273.		1
324	Flow Boiling Heat Transfer in Multiport Tubes. , 2015, , 395-444.		0
325	CFD Simulation of Two-Phase Flows with Eulerian Approach Part 2 — Results of Selected Computational Studies. , 2015, , 41-74.		0
326	Influence of O° helix angle micro fins on flow and heat transfer of R32 evaporating in a horizontal mini multichannel flat tube. Experimental Thermal and Fluid Science, 2015, 68, 669-680.	2.7	19
327	The characteristics of premature and stable critical heat flux for downward flow boiling at low		
027	pressure in a narrow rectangular channel. Experimental Thermal and Fluid Science, 2015, 69, 86-98.	2.7	8
328		2.7	8

#	Article	IF	Citations
	Correlations for flow boiling heat transfer in minichannels with various orientations. International	IF	CHATIONS
330	Journal of Heat and Mass Transfer, 2015, 81, 114-121.	4.8	48
331	Experimental Investigation of Subcooled Flow Boiling in a Minichannel. Heat Transfer Engineering, 2015, 36, 408-417.	1.9	4
332	Flow Patterns and Bubble Growth in Microchannels. , 2016, , 91-140.		10
333	Flow Boiling Heat Transfer with Models in Microchannels. , 2016, , 141-191.		11
334	Flow Boiling in a Heat Sink Embedded With Hexagonally Linked Minichannels. Journal of Heat Transfer, 2016, 138, .	2.1	4
335	Physical understanding of gas-liquid annular flow and its transition to dispersed droplets. Physics of Fluids, 2016, 28, .	4.0	28
336	State of the art of efficient pumped two-phase flow cooling technologies. Applied Thermal Engineering, 2016, 104, 333-343.	6.0	31
337	Empirical correlations for the determination of R134a's convective heat transfer coefficient in horizontal and vertical evaporators having smooth and corrugated tubes. International Communications in Heat and Mass Transfer, 2016, 76, 85-97.	5.6	10
338	Boiling heat transfer in small rectangular channels at low Reynolds number and mass flux. Experimental Thermal and Fluid Science, 2016, 77, 234-245.	2.7	8
339	Reflooding with internal boiling of a heating model porous medium with mm-scale pores. International Journal of Heat and Mass Transfer, 2016, 99, 512-520.	4.8	11
340	An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations. International Journal of Heat and Mass Transfer, 2016, 98, 150-163.	4.8	27
341	Saturated Flow Boiling Heat Transfer Correlation for Small Channels Based on R134a Experimental Data. Arabian Journal for Science and Engineering, 2016, 41, 1921-1939.	1.1	5
342	Measured and predicted frictional pressure drop for boiling zeotropic mixed refrigerants in horizontal tubes. International Journal of Heat and Mass Transfer, 2016, 98, 285-298.	4.8	16
343	Study of transient heat transfer and synchronized flow visualizations during sub-cooled flow boiling in a small aspect ratio microchannel. International Journal of Multiphase Flow, 2016, 83, 254-266.	3.4	13
344	Experimental flow boiling heat transfer in a small polyimide channel. Applied Thermal Engineering, 2016, 103, 1324-1338.	6.0	6
345	Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels. Archives of Thermodynamics, 2016, 37, 89-106.	1.0	6
346	Transient characteristics of flow boiling in large micro-channel heat exchangers. International Journal of Heat and Mass Transfer, 2016, 103, 186-202.	4.8	29
347	Electrohydrodynamic augmentation of a reflux thermosyphon. Experimental Thermal and Fluid Science, 2016, 79, 175-186.	2.7	9

#	Article	IF	CITATIONS
348	An experimental investigation on flow boiling heat transfer of R-600a in a horizontal small tube. International Journal of Refrigeration, 2016, 72, 97-110.	3.4	25
349	Bubble characteristics in time periodic saturated flow boiling of R-134a in a narrow annular pipe due to heat flux oscillation. International Journal of Heat and Mass Transfer, 2016, 102, 1150-1158.	4.8	15
350	Pressure drop during flow boiling inside parallel microchannels. International Journal of Refrigeration, 2016, 72, 111-123.	3.4	9
351	Critical Heat Flux for Boiling inÂMicrochannels. , 2016, , 217-255.		3
352	Effect of gravity vector on flow boiling heat transfer, flow pattern map, and pressure drop of R245fa refrigerant in mini tubes. International Journal of Multiphase Flow, 2016, 83, 202-216.	3.4	23
353	Condensation of carbon dioxide in microchannels. International Journal of Heat and Mass Transfer, 2016, 100, 150-164.	4.8	25
354	Confined characteristics of bubble during boiling in microchannel. Experimental Thermal and Fluid Science, 2016, 74, 247-256.	2.7	19
355	Flow-Pattern Based Heat Transfer Correlations for Stable Flow Boiling in Micro/Minichannels. Journal of Heat Transfer, 2016, 138, .	2.1	7
356	Numerical investigation on saturated boiling and heat transfer correlations in a vertical rectangular minichannel. International Journal of Thermal Sciences, 2016, 102, 285-299.	4.9	22
357	Operation limitation of an oscillating heat pipe. International Journal of Heat and Mass Transfer, 2016, 94, 366-372.	4.8	29
358	A Review of Prediction Methods for Two-Phase Pressure Loss in Mini/Micro-Channels. International Journal of Air-Conditioning and Refrigeration, 2016, 24, 1630002.	0.7	22
359	Predicting Methods for Flow Boiling Heat Transfer of a Non-Azeotropic Mixture Inside a Single Microchannel. Heat Transfer Engineering, 2016, 37, 1136-1147.	1.9	18
360	Investigation of flow boiling in large micro-channel heat exchangers in a refrigeration loop for space applications. International Journal of Heat and Mass Transfer, 2016, 97, 110-129.	4.8	55
361	Saturated flow boiling of FC-72 in 1 mm diameter tube. International Communications in Heat and Mass Transfer, 2016, 75, 115-123.	5.6	5
362	Bubble confinement and deformation during flow boiling in microchannel. International Communications in Heat and Mass Transfer, 2016, 70, 47-52.	5.6	14
363	Numerical investigation of heat transfer in extended surface microchannels. International Journal of Heat and Mass Transfer, 2016, 93, 612-622.	4.8	106
364	Heat transfer during convective boiling inside microchannels. International Journal of Heat and Mass Transfer, 2016, 93, 566-583.	4.8	70
365	Flow boiling and frictional pressure gradients in plate heat exchangers. Part 2: Comparison of literature methods to database and new prediction methods. International Journal of Refrigeration, 2016, 61, 185-203.	3.4	93

ARTICLE IF CITATIONS An experimental study of flow boiling heat transfer of R134a and evaluation of existing correlations. 366 4.8 45 International Journal of Heat and Mass Transfer, 2016, 92, 1143-1157. Experimental study on the mixed refrigerant heat transfer performance in a plate-fin heat exchanger 367 6.0 during a single-stage cryogenic cycle. Applied Thermal Engineering, 2016, 93, 1074-1090. Local pressure measurements and heat transfer coefficients of flow boiling in a rectangular 368 2.1 12 microchannel. Heat and Mass Transfer, 2016, 52, 73-83. Heat Transfer Correlations for Elongated Bubbly Flow in Flow Boiling Micro/Minichannels. Heat Transfer Engineering, 2016, 37, 985-993. Evaluation Analysis of Correlations of Flow Boiling Heat Transfer Coefficients Applied to Ammonia. 370 1.9 13 Heat Transfer Engineering, 2016, 37, 32-44. A diagnostic tool for detection of flow-regimes in a microchannel using transient wall temperature signal. Applied Energy, 2017, 185, 2232-2244. 371 10.1 An experimental investigation on effect of channel configuration in ultra-shallow micro multi-channels flow boiling: Heat transfer enhancement and visualized presentation. Experimental Thermal and Fluid Science, 2017, 83, 239-247. 372 2.7 14 Multiphase fluid flow and heat transfer characteristics in microchannels. Chemical Engineering 3.8 37 Science, 2017, 169, 34-66. Characteristics of heat transfer for CO2 flow boiling at low temperature in mini-channel. 374 4.8 16 International Journal of Heat and Mass Transfer, 2017, 108, 2120-2129. Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel. 4.8 International Journal of Heat and Mass Transfer, 2017, 108, 2417-2432. Visualization and measurement of reverse flow in an actual channel of a microchannel evaporator. 376 12 4.8 International Journal of Heat and Mass Transfer, 2017, 108, 2346-2354. An experimental study of flow boiling in minichannels at high reduced pressure. International Journal 4.8 of Heat and Mass Transfer, 2017, 110, 360-373. Flow boiling heat transfer of R134a in multi microchannels. International Journal of Heat and Mass 378 4.8 61 Transfer, 2017, 110, 422-436. Experimental study on saturated flow boiling heat transfer of nitrogen in a small-diameter 379 2.7 horizontal heated tube. Experimental Thermal and Fluid Science, 2017, 86, 257-271. Performance Limits of Oscillating Heat Pipes: Theory and Validation. Journal of Thermophysics and 380 1.6 22 Heat Transfer, 2017, 31, 920-936. Void fraction and pressure drop in gas-liquid downflow through narrow vertical conduits-experiments and analysis. Chemical Engineering Science, 2017, 171, 117-130. Evaluation of a condenser based on mini-channels technology working with R410A and R32. 382 10.1 29 Experimental data and performance estimate. Applied Energy, 2017, 202, 112-124. Subcooled flow boiling of water in a large aspect ratio microchannel. International Journal of Heat 4.8 34 and Mass Transfer, 2017, 112, 1081-1089.

#	Article	IF	CITATIONS
384	Flow boiling heat transfer and pressure drop analysis of R134a in a brazed heat exchanger with offset strip fins. Heat and Mass Transfer, 2017, 53, 3167-3180.	2.1	14
385	Experimental assessment of the replacement of a conventional fin-and-tube condenser by a minichannel heat exchanger in an air/water chiller for residential air conditioning. Energy and Buildings, 2017, 144, 104-116.	6.7	22
386	Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels. International Journal of Heat and Mass Transfer, 2017, 108, 97-127.	4.8	136
387	Unified correlation for heat transfer during boiling in plain mini/micro and conventional channels. International Journal of Refrigeration, 2017, 74, 606-626.	3.4	60
388	Frictional pressure drop during steam stratified condensation flow in vacuum horizontal tube. International Journal of Heat and Mass Transfer, 2017, 115, 979-990.	4.8	13
389	Flow Boiling in Microchannels. Advances in Heat Transfer, 2017, 49, 157-224.	0.9	6
390	Comparison of 30 Boiling and Condensation Correlations for Two-Phase Flows in Compact Plate-Fin Heat Exchangers. , 2017, , .		5
391	Multi-objective optimization of fin-and-tube evaporator for a diesel engine-organic Rankine cycle (ORC) combined system using particle swarm optimization algorithm. Energy Conversion and Management, 2017, 151, 147-157.	9.2	44
392	Two-phase flow regimes of condensing R-134a at low mass flux in rectangular microchannels. International Journal of Refrigeration, 2017, 84, 92-103.	3.4	16
393	A complete set of simple and optimized correlations for microchannel flow boiling and two-phase flow applications. Applied Thermal Engineering, 2017, 126, 774-795.	6.0	36
394	Measurement of heat transfer coefficient and pressure drop during evaporation of R134a in new type facility with one pass flow through microchannel tube. International Journal of Heat and Mass Transfer, 2017, 115, 502-512.	4.8	18
395	The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels. Experimental Thermal and Fluid Science, 2017, 89, 98-109.	2.7	18
396	Thermal-Hydraulic Performance of R-134a Boiling at Low Mass Fluxes in a Small Vertical Brazed Plate Heat Exchanger. , 2017, , .		2
397	Investigation on CHF of saturated liquid nitrogen flow boiling in a horizontal small channel. Applied Thermal Engineering, 2017, 125, 1025-1036.	6.0	28
398	A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces. Applied Thermal Engineering, 2017, 112, 999-1019.	6.0	111
399	A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions. International Journal of Heat and Mass Transfer, 2017, 107, 972-981.	4.8	66
400	Experimental investigation on flow boiling heat transfer in conventional and mini vertical channels. International Journal of Heat and Mass Transfer, 2017, 107, 225-243.	4.8	23
401	Prediction of Heat Transfer Coefficient in Saturated Flow Boiling Heat Transfer in Parallel Rectangular Microchannel Heat Sinks: An Experimental Study. Heat Transfer Engineering, 2017, 38, 1415-1428.	1.9	29

#	ARTICLE Experimental study on flow boiling characteristics of pure refrigerant (R134a) and zeotropic mixture	IF	Citations
402	(R407C) in a rectangular micro-channel. International Journal of Heat and Mass Transfer, 2017, 104, 351-361.	4.8	39
403	Enhanced condensation heat transfer for dielectric fluid within microchannel heat sink. International Journal of Heat and Mass Transfer, 2017, 106, 518-525.	4.8	8
404	Calculation Method for Flow Boiling and Flow Condensation of R134a and R1234yf in Conventional and Small Diameter Channels. Polish Maritime Research, 2017, 24, 141-148.	1.9	5
405	Flow boiling heat transfer in wettability patterned microchannels. , 2017, , .		2
412	Two-Phase Flow Modeling. , 2017, , 162-198.		3
424	Choking in Two-Phase Flow. , 2017, , 643-677.		1
437	Pressure Drop and Boiling Heat Transfer Characteristics of R410A in Macro-Scale and Mini-Scale Channels. , 0, , .		0
438	Gravity effects in microgap flow boiling. , 2017, , .		5
439	Present Situation and Future Development for the Experiments of Boiling and Two-Phase Flow under Microgravity Conditions. Japanese Journal of Multiphase Flow, 2017, 31, 382-391.	0.3	0
440	Evaporation heat transfer and pressure drop for geothermal heat pumps working with refrigerants R134a and R407C. International Communications in Heat and Mass Transfer, 2018, 93, 1-10.	5.6	11
441	An experimental study on the heat transfer and pressure drop characteristics of electronics cooling heat sinks with FC-72 flow boiling. Journal of Mechanical Science and Technology, 2018, 32, 1449-1462.	1.5	12
442	Convective Boiling of R-134a Near the Micro-Macroscale Transition Inside a Vertical Brazed Plate Heat Exchanger. Journal of Heat Transfer, 2018, 140, .	2.1	6
443	Effects of electric field on flow boiling heat transfer in a vertical minichannel heat sink. International Journal of Heat and Mass Transfer, 2018, 124, 726-741.	4.8	39
444	Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel. IOP Conference Series: Earth and Environmental Science, 2018, 105, 012005.	0.3	2
445	Experimental investigation of a confined flat two-phase thermosyphon for electronics cooling. Experimental Thermal and Fluid Science, 2018, 96, 516-529.	2.7	43
446	Numerical Simulation of Forced Convective Boiling in a Microchannel. Journal of Thermal Science and Engineering Applications, 2018, 10, .	1.5	2
447	The difference in flow pattern, heat transfer and pressure drop characteristics of mini-channel flow boiling in horizontal and vertical orientations. International Journal of Multiphase Flow, 2018, 101, 97-112.	3.4	40
448	Experimental investigations on pressure loss and heat transfer of two-phase carbon dioxide flow in a horizontal circular pipe of 0.4â€īmm diameter. International Journal of Heat and Mass Transfer, 2018, 119, 828-840.	4.8	9

#	Article	IF	CITATIONS
449	Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part B: Heat transfer. International Journal of Heat and Mass Transfer, 2018, 120, 1241-1254.	4.8	29
450	Experimental investigation on the flow boiling of R134a in a multi-microchannel heat sink. International Communications in Heat and Mass Transfer, 2018, 91, 125-137.	5.6	26
451	Heatâ€ŧransfer characteristics of polymer hollow fiber heat exchanger for vaporization application. AICHE Journal, 2018, 64, 1783-1792.	3.6	6
452	Experimental investigation and development of new correlation for flow boiling heat transfer in mini-channel. International Journal of Thermal Sciences, 2018, 129, 209-217.	4.9	26
453	Measured and predicted upward flow boiling heat transfer coefficients for hydrocarbon mixtures inside a cryogenic plate fin heat exchanger. International Journal of Heat and Mass Transfer, 2018, 123, 75-88.	4.8	15
454	Flow boiling heat transfer of propane in 1.0â€ [−] mm tube. Experimental Thermal and Fluid Science, 2018, 96, 243-256.	2.7	28
455	Comparative experimental procedures for measuring the local heat transfer coefficient during flow boiling in a microchannel. Experimental Thermal and Fluid Science, 2018, 90, 231-245.	2.7	10
456	Experimental study on flow boiling heat transfer and pressure drop in a horizontal tube for R1234ze(E) versus R600a. International Journal of Refrigeration, 2018, 85, 334-352.	3.4	25
457	A new heat transfer coefficient correlation for pure refrigerants and near-azeotropic refrigerant mixtures flow boiling within horizontal microfin tubes. International Journal of Refrigeration, 2018, 86, 292-311.	3.4	30
458	An experimental investigation of flow boiling instability in a natural circulation loop. International Journal of Heat and Mass Transfer, 2018, 117, 1125-1134.	4.8	38
459	Comparison of predictive methods for flow boiling heat transfer in conventional channels and minichannels – the effect of reduced pressure. MATEC Web of Conferences, 2018, 240, 01028.	0.2	1
460	Impact of different thickness of the smooth heated surface on flow boiling heat transfer. EPJ Web of Conferences, 2018, 180, 02098.	0.3	4
461	The effect of reduced pressure on carbon dioxide flow boiling heat transfer in minichannels. E3S Web of Conferences, 2018, 70, 02012.	0.5	1
462	COMPARATIVE ANALYSES OF THE THERMAL PERFORMANCE OF REFRIGERANTS R134A, R245fa, R407C AND R600a DURING FLOW BOILING IN A MICROCHANNELS HEAT SINK. Revista De Engenharia Térmica, 2018, 17, 5	7. ^{0.2}	0
463	Two-phase Frictional Pressure Drop of Propane with Prediction Methods of Viscosity and Density in 500 1¼m Diameter Tube. IOP Conference Series: Materials Science and Engineering, 2018, 316, 012058.	0.6	4
464	Pulsating Heat Pipes: Experimental Analysis, Design and Applications. , 2018, , 1-62.		26
465	Flow boiling heat transfer and pressure drop of pure ethanol (99.8%) in a horizontal stainless steel tube at low reduced pressures. Applied Thermal Engineering, 2018, 145, 251-263.	6.0	19
466	Flow condensation in a mini channel with serrated fins with jet impingement cooling: Experimental study and development of new correlation. International Journal of Heat and Mass Transfer, 2018, 127, 1025-1040.	4.8	20

#	Article	IF	CITATIONS
467	Experimental study on flow boiling characteristics in a high aspect ratio vertical rectangular mini-channel under low heat and mass flux. Experimental Thermal and Fluid Science, 2018, 98, 146-157.	2.7	23
468	Review on flow boiling of refrigerants R236fa and R245fa in mini and micro channels. International Journal of Heat and Mass Transfer, 2018, 126, 591-617.	4.8	23
469	Understanding of bubble growth at nucleation site using energy based non-dimensional numbers and their impact on critical heat flux condition in microchannel. Thermal Science and Engineering Progress, 2018, 7, 70-75.	2.7	1
470	Flow boiling of water and emulsions with a low-boiling disperse phase in minichannels. International Journal of Heat and Mass Transfer, 2018, 126, 9-14.	4.8	3
471	Investigation on critical heat flux of flow boiling in parallel microchannels with large aspect ratio: Experimental and theoretical analysis. International Journal of Heat and Mass Transfer, 2018, 127, 55-66.	4.8	15
472	An experimental investigation of flow boiling heat transfer coefficient and pressure drop of R410A in various minichannel multiport tubes. International Journal of Heat and Mass Transfer, 2018, 127, 675-686.	4.8	21
473	Challenges and opportunities in Gen3 embedded cooling with high-quality microgap flow. , 2018, , .		7
474	Comments on "Pressure drop of HFE7000 and HFE7100 during flow condensation in minichannels― International Journal of Refrigeration, 2018, 95, 189-190.	3.4	0
475	Flow boiling heat transfer of R123/R134a mixture in a microchannel. Experimental Thermal and Fluid Science, 2018, 99, 474-486.	2.7	16
476	Flow Pattern, Heat Transfer and Pressure Drop Behaviors of Micro-Channel Flow Boiling. , 2018, , .		2
477	Condensation heat transfer and pressure drop characteristics of R-134a in horizontal smooth tubes and enhanced tubes fabricated by selective laser melting. International Journal of Heat and Mass Transfer, 2018, 126, 949-962.	4.8	23
478	Saturated flow boiling heat transfer: review and assessment of prediction methods. Heat and Mass Transfer, 2019, 55, 197-222.	2.1	30
479	Nucleate pool boiling heat transfer in wickless heat pipes (two-phase closed thermosyphons): A critical review of correlations. Thermal Science and Engineering Progress, 2019, 13, 100384.	2.7	36
480	Analyses of the effects of channel inclination and rotation on two-phase flow characteristics and pressure drop in a rectangular channel. Experimental Thermal and Fluid Science, 2019, 109, 109850.	2.7	9
481	Experimental study and comparison with predictive methods for flow boiling heat transfer coefficient of HFE7000. International Journal of Heat and Mass Transfer, 2019, 142, 118307.	4.8	16
482	Subcooled flow boiling heat transfer in a microchannel with chemically patterned surfaces. International Journal of Heat and Mass Transfer, 2019, 140, 587-597.	4.8	29
483	Modeling of pressure drop and heat transfer for flow boiling in a mini/micro-channel of rectangular cross-section. International Journal of Heat and Mass Transfer, 2019, 140, 1029-1054.	4.8	19
484	Flow boiling of carbon dioxide: Heat transfer for smooth and enhanced geometries and effect of oil. state of the art review. International Journal of Refrigeration, 2019, 108, 311-335.	3.4	14

#	Article	IF	CITATIONS
485	Evaporation heat transfer coefficient and pressure drop of n-pentane inside parallel multiport mini channel. International Communications in Heat and Mass Transfer, 2019, 109, 104364.	5.6	2
486	R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis. International Journal of Refrigeration, 2019, 108, 336-346.	3.4	40
487	Heat transfer of single phase flow with natural refrigerant (R-290) in microchannel. AIP Conference Proceedings, 2019, , .	0.4	1
488	Condensation heat transfer characteristics of R1234ze(E) and R32 in a minihorizontal smooth tube. Science and Technology for the Built Environment, 2019, 25, 889-904.	1.7	4
489	Effects of pin and wire electrodes on flow boiling heat transfer enhancement in a vertical minichannel heat sink. International Journal of Heat and Mass Transfer, 2019, 136, 740-754.	4.8	18
490	Vaporization Heat Transfer in a Small Diameter Closed Two-Phase Thermosyphon. Journal of Heat Transfer, 2019, 141, .	2.1	5
491	Visual investigation on the boiling crisis post the flow instability in the channel with bypass. Annals of Nuclear Energy, 2019, 131, 171-184.	1.8	7
492	Start-Up and Operation of a 3D Hybrid Pulsating Heat Pipe on Board a Sounding Rocket. Microgravity Science and Technology, 2019, 31, 249-259.	1.4	11
493	Study on the flow and heat transfer in a thermal shielding radiator. IOP Conference Series: Materials Science and Engineering, 2019, 556, 012010.	0.6	0
494	An Experimental Comparison on the Evaporation Process of Pure Water and Distilled Water in Microchannel Heat Sinks. , 2019, , .		0
495	Research of water boiling in microchannel. Journal of Physics: Conference Series, 2019, 1370, 012058.	0.4	0
496	Literature survey and a universal evaporation correlation for plate type heat exchangers. International Journal of Refrigeration, 2019, 99, 408-418.	3.4	25
497	Influence of heating surface characteristics on flow boiling in a copper microchannel: Experimental investigation and assessment of correlations. International Journal of Heat and Mass Transfer, 2019, 128, 290-318.	4.8	29
498	Computational examination of two-phase microchannel heat transfer correlations with conjugate heat spreading. International Journal of Heat and Mass Transfer, 2019, 132, 68-79.	4.8	17
499	Local wall temperature mapping during flow boiling in a transparent microchannel. International Journal of Thermal Sciences, 2019, 135, 344-361.	4.9	13
500	General heat transfer correlations for flow boiling of zeotropic mixtures in horizontal plain tubes. Applied Thermal Engineering, 2019, 150, 824-839.	6.0	21
501	A modified heat transfer correlation for flow boiling in small channels based on the boundary layer theory. International Journal of Heat and Mass Transfer, 2019, 132, 107-117.	4.8	8
502	Flow condensation heat transfer characteristics of R134a in multiport mini-channel by jet impingement cooling. Applied Thermal Engineering, 2019, 147, 399-409.	6.0	18

#	Article	IF	Citations
503	Subcooled flow boiling on hydrophilic and super-hydrophilic surfaces in microchannel under different orientations. International Journal of Heat and Mass Transfer, 2019, 129, 635-649.	4.8	42
504	Flow boiling of R32 in a horizontal stainless steel tube with 6.00Âmm ID. Experiments, assessment of correlations and comparison with refrigerant R410A. International Journal of Refrigeration, 2019, 97, 143-156.	3.4	33
505	Enhanced flow boiling in silicon nanowire-coated manifold microchannels. Applied Thermal Engineering, 2019, 148, 1043-1057.	6.0	53
506	Flow boiling heat transfer in mini channel with serrated fins: Experimental investigation and development of new correlation. International Journal of Heat and Mass Transfer, 2019, 128, 1081-1094.	4.8	35
507	Fundamental Issues Related to Flow Boiling and Two-Phase Flow Patterns in Microchannels – Experimental Challenges and Opportunities. Heat Transfer Engineering, 2019, 40, 711-724.	1.9	18
508	Influence of the Surface Enhancement on the Flow Boiling Heat Transfer in a Minichannel. Heat Transfer Engineering, 2019, 40, 1162-1175.	1.9	33
509	Prediction of Pressure Drop for Flow Boiling in Rectangular Multi-Microchannel Heat Sinks. Heat Transfer Engineering, 2019, 40, 26-38.	1.9	6
510	Flow Boiling Heat Transfer Characteristics in Minitubes With and Without Hydrophobicity Coating. Heat Transfer Engineering, 2020, 41, 288-301.	1.9	3
511	Boiling Heat Transfer Characteristics for Methane, Ethane and Their Binary Mixtures. Heat Transfer Engineering, 2020, 41, 1-16.	1.9	18
512	A study on thermohydraulic characteristics of fluid flow through microchannels. Journal of Thermal Analysis and Calorimetry, 2020, 140, 1-32.	3.6	24
513	Investigation of flow boiling heat transfer and pressure drop of R134a in a rectangular channel with wavy fin. International Journal of Thermal Sciences, 2020, 147, 106055.	4.9	6
514	Review of channel flow boiling enhancement by surface modification, and instability suppression schemes. International Journal of Heat and Mass Transfer, 2020, 146, 118864.	4.8	101
515	Numerical investigation of surface wettability on gas – Liquid flow hydrodynamics in microchannel: Application to trickle bed reactors. Journal of Petroleum Science and Engineering, 2020, 184, 106576.	4.2	12
517	Developing flow pattern maps for accelerated two-phase capillary flows. Experimental Thermal and Fluid Science, 2020, 112, 109981.	2.7	24
518	A semi-analytical model of heat transfer and pressure drop in annular flow regime for flow boiling in a horizontal microtube at uniform heat flux. Transactions of the Canadian Society for Mechanical Engineering, 2020, 44, 362-384.	0.8	0
519	An experimental investigation on the effect of gravitational orientation on flow boiling performance in different channel sizes ranges from minichannels to microchannels. Heat and Mass Transfer, 2020, 56, 1391-1420.	2.1	6
520	Flow-pattern based prediction of flow boiling heat transfer in horizontal tubes with circumferentially varying heat flux. International Journal of Heat and Mass Transfer, 2020, 148, 119018.	4.8	6
521	A critical review of analytical and numerical models of condensation in microchannels. International Journal of Refrigeration, 2020, 120, 314-330.	3.4	12

#	ARTICLE	IF	CITATIONS
522	Pore-scale investigation on flow boiling heat transfer mechanisms in gradient open-cell metal foams by LBM. International Communications in Heat and Mass Transfer, 2020, 119, 104974.	5.6	14
523	Measurement and theoretical analysis of transient liquid film during micro-channel flow boiling. International Journal of Multiphase Flow, 2020, 130, 103365.	3.4	12
524	Numerical analysis on flow pattern and heat transfer characteristics of flow boiling in the mini-channels. Numerical Heat Transfer, Part B: Fundamentals, 2020, 78, 221-247.	0.9	11
525	Effects of saturation temperature on the boiling properties of carbon dioxide in small diameter pipes at low vapour quality: Pressure drop. International Journal of Heat and Mass Transfer, 2020, 163, 120209.	4.8	5
526	Model of R134a Liquid–Vapor Two-Phase Heat Transfer Coefficient for Pulsating Flow Boiling in an Evaporator Using Response Surface Methodology. Energies, 2020, 13, 3540.	3.1	2
527	Effect of saturation temperature and vapor quality on the boiling heat transfer and critical heat flux in a microchannel. International Communications in Heat and Mass Transfer, 2020, 117, 104768.	5.6	8
528	On flow boiling of R-1270 in a small horizontal tube: Flow patterns and heat transfer. Applied Thermal Engineering, 2020, 178, 115403.	6.0	14
529	The applicability of heat transfer correlations to flows in minichannels and new correlation for subcooled flow boiling. International Journal of Heat and Mass Transfer, 2020, 158, 119933.	4.8	19
530	Experimental and Numerical Investigation of Micro/Mini Channel Flow-Boiling Heat Transfer with Non-Uniform Circumferential Heat Fluxes at Different Rotational Orientations. International Journal of Heat and Mass Transfer, 2020, 158, 119948.	4.8	14
531	A pulsating heat pipe embedded radiator: Thermal-vacuum characterisation in the pre-cryogenic temperature range for space applications. Thermal Science and Engineering Progress, 2020, 19, 100622.	2.7	9
532	Experimental Study of Flow Boiling Heat Transfer of R30 in Microchannels. Journal of Thermophysics and Heat Transfer, 2020, 34, 488-497.	1.6	0
533	Experimental Study on Flow Boiling Heat Transfer Characteristics of Ammonia in Microchannels. Microgravity Science and Technology, 2020, 32, 477-492.	1.4	8
534	A new experimental method for characterizing boiling regimes of water in vertical milli-channels. Chemical Engineering and Processing: Process Intensification, 2021, 159, 107889.	3.6	0
535	Flow boiling and convective condensation of hydrocarbons: A state-of-the-art literature review. Applied Thermal Engineering, 2021, 182, 116129.	6.0	24
536	Characterization of polypropylene pulsating heat stripes: Effects of orientation, heat transfer fluid, and loop geometry. Applied Thermal Engineering, 2021, 184, 116304.	6.0	17
537	Review on effect of two-phase interface morphology evolution on flow and heat transfer characteristics in confined channel. Heat and Mass Transfer, 2021, 57, 13-39.	2.1	3
538	Some Aspects of Microchannel Heat Transfer. , 2021, , 205-233.		0
539	Flow boiling pressure drop characteristics in a multi-microchannel heat sink. Physics of Fluids, 2021, 33, .	4.0	17

#	Article	IF	CITATIONS
541	Impact of Pressure Drop Oscillations on Surface Temperature and Critical Heat Flux During Flow Boiling in a Microchannel. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1634-1644.	2.5	10
542	An experimental study of adiabatic two-phase gas-liquid flow in helical micro-tube. AIP Conference Proceedings, 2021, , .	0.4	0
543	Effect of conjugate heat transfer in single-phase laminar flow through partially heated microtubes. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	1.3	4
544	Analysis of heat transfer enhancement in microchannel by varying the height of pin fins at upstream and downstream region. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235, 758-767.	2.5	8
547	CO ₂ Evaporation Process Modeling: Fundamentals and Engineering Applications. Heat Transfer Engineering, 2022, 43, 658-678.	1.9	9
548	Experimental Research on Flow and Heat Transfer in Microchannel with Refrigerant HFO1234yf. Journal of Thermophysics and Heat Transfer, 2021, 35, 225-233.	1.6	2
549	Capacitance sensor for measuring void fraction in small channels. Measurement: Journal of the International Measurement Confederation, 2021, 175, 109046.	5.0	14
550	A New Saturated Two-Phase Flow Boiling Correlation Based on Propane (R290) Data. Arabian Journal for Science and Engineering, 2021, 46, 7851.	3.0	1
551	Assessing advantages and disadvantages of macro- and micro-channel flow boiling for high-heat-flux thermal management using computational and theoretical/empirical methods. International Journal of Heat and Mass Transfer, 2021, 169, 120787.	4.8	26
552	Liquid film thickness of twoâ€phase slug flows in capillary microchannels: A review paper. Canadian Journal of Chemical Engineering, 2022, 100, 325-348.	1.7	23
553	Novel Saturated Flow Boiling Heat Transfer Correlation for R32 Refrigerant. Journal of Thermophysics and Heat Transfer, 0, , 1-6.	1.6	0
554	A Review on the Hydrodynamics of Taylor Flow in Microchannels: Experimental and Computational Studies. Processes, 2021, 9, 870.	2.8	29
555	Scalable and Resilient Etched Metallic Micro- and Nanostructured Surfaces for Enhanced Flow Boiling. ACS Applied Nano Materials, 2021, 4, 6648-6658.	5.0	23
556	Effects of saturation temperature on the boiling properties of carbon dioxide in small diameter pipes at low vapour quality: Heat transfer coefficient. International Journal of Heat and Mass Transfer, 2021, 172, 121094.	4.8	8
557	Two-phase R1234yf flow inside horizontal smooth circular tubes: Heat transfer, pressure drop, and flow pattern. International Journal of Multiphase Flow, 2021, 140, 103668.	3.4	11
558	Experimental study on saturated flow boiling heat transfer of R1234yf in a horizontal 2.01Âmm tube under hypergravity. International Journal of Refrigeration, 2021, 127, 12-20.	3.4	6
559	Forced Convection Heat Transfer Outside Enhanced Tubes with Different Surface Structures. Heat Transfer Engineering, 2022, 43, 1222-1240.	1.9	2
560	Effective Parameters on Increasing Efficiency of Microscale Heat Sinks and Application of Liquid Cooling in Real Life. , 0, , .		3

#	Article	IF	CITATIONS
561	Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: Fundamentals, applications and engineering design. Applied Thermal Engineering, 2021, 195, 117070.	6.0	26
562	Boiling Heat Transfer and Visualization for R717 in a Horizontal Smooth Mini-tube. International Journal of Refrigeration, 2021, 131, 275-285.	3.4	5
563	Review of interdisciplinary heat transfer enhancement technology for nuclear reactor. Annals of Nuclear Energy, 2021, 159, 108302.	1.8	9
564	Numerical Study of Boiling Heat Transfer Around Horizontal and Inclined Cylinders. Journal of Heat Transfer, 2021, 143, .	2.1	2
565	A review on experimental investigations of refrigerant/oil mixture flow boiling in horizontal channels. Applied Thermal Engineering, 2021, 196, 117270.	6.0	8
566	Experimental investigation on two-phase flow pattern of ammonia inside 4 mm and 8 mm horizontal smooth tubes. International Journal of Refrigeration, 2021, 130, 253-260.	3.4	2
567	Experimental study on the thermal and flow characteristics of ZnO/water nanofluid in mini-channels integrated with GA-optimized ANN prediction and CFD simulation. International Journal of Heat and Mass Transfer, 2021, 178, 121617.	4.8	20
568	Heat transfer analysis of submerged combustion vaporizer under subcritical pressure and comparison with supercritical pressure. Cryogenics, 2021, 120, 103372.	1.7	4
569	Recent advances in condensation heat transfer in mini and micro channels: A comprehensive review. Applied Thermal Engineering, 2021, 197, 117412.	6.0	25
570	Vapor stem bubbles dominate heat transfer enhancement in extremely confined boiling. International Journal of Heat and Mass Transfer, 2021, 177, 121520.	4.8	4
571	Thermal study of a passive cooling device operating through a bubble lifting CLTPT of NOVEC 7000 with a two-fluid condenser. International Journal of Heat and Mass Transfer, 2021, 177, 121530.	4.8	5
572	Review of Databases and Correlations for Saturated Flow Boiling Heat Transfer Coefficient for Cryogens in Uniformly Heated Tubes, and Development of New Consolidated Database and Universal Correlations. International Journal of Heat and Mass Transfer, 2021, 179, 121656.	4.8	23
573	Flow boiling heat transfer and dryout characteristics of ammonia in a horizontal smooth mini-tube. International Journal of Thermal Sciences, 2022, 171, 107224.	4.9	9
574	Pressure Drop. Mechanical Engineering Series, 2021, , 125-160.	0.2	0
577	Flow Boiling in Minichannels. , 2005, , 217-230.		2
578	Two-Phase Heat Transfer Modeling in Subsea Pipelines. , 2015, , 243-256.		2
579	Saturated flow boiling heat transfer correlation for carbon dioxide for horizontal smooth tubes. Heat and Mass Transfer, 2017, 53, 2165-2185.	2.1	5
580	Review of two-phase flow instabilities in macro- and micro-channel systems. International Journal of Heat and Mass Transfer, 2020, 157, 119738.	4.8	86

#	Article	IF	CITATIONS
581	Numerical Simulation of Phase–change Heat Transfer Problems Using Heat Fluxes on Phase Interface Reconstructed by Contour-Based Reconstruction Algorithm. International Journal of Heat and Mass Transfer, 2020, 156, 119894.	4.8	9
584	Dynamics of long gas bubbles rising in a vertical tube in a cocurrent liquid flow. Physical Review Fluids, 2019, 4, .	2.5	18
585	A Modified Correlation for Flow Boiling Heat Transfer in Plate Heat Exchangers. Journal of Thermal Science and Engineering Applications, 2020, 12, .	1.5	6
586	Flow Boiling of Water on Nanocoated Surfaces in a Microchannel. , 2010, , .		1
587	- Fundamental Questions of Closed Two-Phase Thermosyphons. , 2013, , 338-375.		11
588	Computational Study on Scaling of Co-Current Downward Taylor Flow in Small Square Channels of Three Different Sizes. Journal of Chemical Engineering of Japan, 2013, 46, 335-341.	0.6	4
589	Boiling Heat Transfer: An Overview of Longstanding and New Challenges. Journal of ASTM International, 2012, 9, 103387.	0.2	4
590	A COMPARISON WITH THE THREE-ZONE MODEL FOR FLOW BOILING HEAT TRANSFER IN SMALL DIAMETER TUBES. , 2006, , .		7
591	A SINGLE LOOP PULSATING HEAT PIPE IN VARYING GRAVITY CONDITIONS: EXPERIMENTAL RESULTS AND NUMERICAL SIMULATIONS. , 2018, , .		3
592	BOILING HEAT TRANSFER IN A VERTICAL MICROCHANNEL: LOCAL ESTIMATION DURING FLOW BOILING WITH A NON INTRUSIVE METHOD. Multiphase Science and Technology, 2009, 21, 297-328.	0.5	31
593	A REVIEW OF FLOW BOILING IN MINI AND MICROCHANNEL FOR ENHANCED GEOMETRIES. Journal of Thermal Engineering, 2018, 4, 2037-2074.	1.6	17
594	Refrigerant Charge Reduction in a Small Commercial Refrigeration Systems. Journal of Applied Sciences, 2003, 4, 64-71.	0.3	3
596	LOCAL HYDRODYNAMICS OF FLOW IN A PULSATING HEAT PIPE: A REVIEW. Frontiers in Heat Pipes, 2010, 1, .	0.9	67
597	A CRITICAL REVIEW OF RECENT INVESTIGATIONS ON FLOW PATTERN AND HEAT TRANSFER DURING FLOW BOILING IN MICRO-CHANNELS. Frontiers in Heat and Mass Transfer, 2012, 3, .	0.2	3
598	A CRITICAL REVIEW OF RECENT INVESTIGATIONS ON TWO-PHASE PRESSURE DROP IN FLOW BOILING MICRO-CHANNELS. Frontiers in Heat and Mass Transfer, 2012, 3, .	0.2	4
599	CRITICAL HEAT FLUX DURING FLOW BOILING IN MINI AND MICROCHANNEL-A STATE OF THE ART REVIEW. Frontiers in Heat and Mass Transfer, 2012, 3, .	0.2	9
600	EXPERIMENTS ON DOMINANT FORCE REGIMES IN FLOW BOILING USING MINI-TUBES. Frontiers in Heat and Mass Transfer, 2013, 3, .	0.2	7
601	Local Measurements in Heat Exchangers: A Systematic Review and Regression Analysis. Heat Transfer Engineering, 2022, 43, 1529-1565.	1.9	4

		CITATION REPORT	
#	ARTICLE Flow pattern observations and flow pattern map for adiabatic two-phase flow of carbon dioxide in	IF	CITATIONS
602	vertical upward and downward direction. Experimental Thermal and Fluid Science, 2022, 131, 110526.	2.7	12
603	Effect on Boiling Bleat Transfer of Horizontal Micro-channel Diameters for R-22 and R-407C. Transactions of the Korean Society of Mechanical Engineers, B, 2003, 27, 163-172.	0.1	0
604	CO2 Flow Boiling Heat Transfer and Flow Pattern at Low Temperatures in Horizontal Smooth Tubes. , 2006, , .		0
605	BOILING HEAT TRANSFER AND PRESSURE DROP IN SINGLE RECTANGULAR MICROCHANNEL. , 2006, , .		0
606	Two-phase Pressure Drop in a Horizontal Rectangular Microchannel. Transactions of the Korean Society of Mechanical Engineers, B, 2006, 30, 1035-1042.	0.1	1
607	Flow Boiling Heat Transfer in a Horizontal Rectangular Microchannel. Transactions of the Korean Society of Mechanical Engineers, B, 2006, 30, 1043-1050.	0.1	0
608	Boiling Heat Transfer and Flow Patterns in Narrow Channels. , 2008, , .		0
609	Two Phase Flow Experimental Study Inside a Microchannel: Influence of Gravity Level on Local Boiling Heat Transfer. , 0, , .		1
610	Boiling Heat Transfer: An Overview of Longstanding and New Challenges. , 2012, , 229-284.		2
611	Boiling Heat Transfer: An Overview of Longstanding and New Challenges. , 2012, , 229-284.		1
612	OSCILLATING MENISCUS AND SLUGS IN A SQUARE CAPILLARY: A HYDRODYNAMIC STUDY. Multiphase Science and Technology, 2012, 24, 67-87.	0.5	0
613	Boiling Heat Transfer of Ammonia inside Horizontal Smooth Small Tube. Korean Journal of Air-Conditioning and Refrigeration Engineering, 2013, 25, 101-108.	0.1	2
614	Selected Aspects of Thermal-Hydraulics Modelling in Two-Phase Flows with Phase Change in Minichannels. , 2014, , 1-54.		0
615	Boiling heat transfer characteristics of FC-72 in parallel micro-channels. Journal of Advanced Marine Engineering and Technology, 2014, 38, 1032-1038.	0.4	3
618	The Effect of Heating Conditions on Convective Boiling Characteristics of Methanol/Water Mixtures in Microchannels at Low Reynolds Number. International Journal of Automation and Smart Technology, 2016, 6, 69-80.	0.4	0
619	A COMPARATIVE ANALYSIS OF THE THERMAL PERFORMANCE OF THE REFRIGERANTS R134a, R245fa, R407C AND R600a DURING FLOW BOILING IN A MICROCHANNELS HEAT SINK. , 2017, , .		1
620	On the Phenomenal Mechanisms and Prediction Methods of Flow Boiling Heat Transfer in Microchannels. , 0, , .		0
621	Comparative Study of Conjugate Heat Transfer in Uniform and Diverging Cross-Section Microchannels. Advances in Mechatronics and Mechanical Engineering, 2018, , 76-95.	1.0	Ο

#	Article	IF	CITATIONS
622	Experimental and Numerical Analyses of a Micro-Heat Exchanger for Ethanol Excess Recovery From Biodiesel. Advances in Chemical and Materials Engineering Book Series, 2019, , 167-194.	0.3	1
623	Flow Boiling Enhancement Techniques. SpringerBriefs in Applied Sciences and Technology, 2020, , 43-77.	0.4	0
624	Two-Phase Flow and Heat Transfer. , 2020, , 535-621.		1
625	Numerical Simulation of Annular Flow boiling in Millimeter-scale Channels and Investigation of Design Parameters Using Taguchi Method. Bilge International Journal of Science and Technology Research, 0, , .	0.5	0
626	Optimization of Heat Transfer Behavior of Industrial Refrigerants Through Different Cross-Section Microchannels. Lecture Notes in Mechanical Engineering, 2021, , 127-137.	0.4	0
627	Robust and general predictive models for condensation heat transfer inside conventional and mini/micro channel heat exchangers. Applied Thermal Engineering, 2022, 201, 117737.	6.0	35
628	An investigation of horizontal and vertical flow boiling in a single channel with a confinement number beyond the threshold of micro-scale flow. Physics of Fluids, 2021, 33, .	4.0	10
629	Impact of different thickness of the smooth heated surface on flow boiling heat transfer. EPJ Web of Conferences, 2018, 180, 02098.	0.3	0
630	Effects of Experimental Parameters on Condensation Heat Transfer in Plate Fin Heat Exchanger. Energies, 2021, 14, 7681.	3.1	2
631	Performance of a hybrid thermosyphon condenser for cooling a typical data center under various climatic constraints. Applied Thermal Engineering, 2022, 202, 117786.	6.0	6
632	Novel Saturated Flow Boiling Correlations for R600a and R717 Refrigerants. Heat Transfer Engineering, 2022, 43, 1579-1609.	1.9	2
633	Evaporation heat transfer and pressure drop of low GWP R-404A alternative refrigerants in a multiport tube. International Journal of Heat and Mass Transfer, 2022, 184, 122386.	4.8	8
634	Experimental Study of Onset of Nucleate Boiling in Vertical Rectangular Channels with Different Flow Path Heights. Science and Technology of Nuclear Installations, 2022, 2022, 1-10.	0.8	0
635	Robust and General Model to Forecast the Heat Transfer Coefficient for Flow Condensation in Multi Port Mini/Micro-Channels. Processes, 2022, 10, 243.	2.8	6
636	Heat transfer characteristics of flow boiling in a micro channel array with various inlet geometries. International Journal of Heat and Mass Transfer, 2022, 187, 122549.	4.8	12
637	Experimental heat transfer results and flow visualization of vertical upflow boiling in Earth gravity with subcooled inlet conditions – In preparation for experiments onboard the International Space Station. International Journal of Heat and Mass Transfer, 2022, 188, 122603.	4.8	19
638	PREDICTION OF BOILING HEAT TRANSFER COEFFICIENTS FOR MINI-CHANNELS. Multiphase Science and Technology, 2022, 34, 43-65.	0.5	1
639	Numerical investigation of a plate-type steam generator for a small modular nuclear reactor. Nuclear Engineering and Technology, 2022, 54, 3140-3153.	2.3	2

#	Article	IF	CITATIONS
640	Investigation of Heat Transfer and Pressure Drop for R744 in a Horizontal Smooth Tube of R744/R404A Hybrid Cascade Refrigeration System—Part 1: Intermediate Temperature Region. Energies, 2022, 15, 2285.	3.1	1
641	NEW GENERAL CORRELATION FOR HEAT TRANSFER DURING SATURATED BOILING IN MINI AND MACRO CHANNELS. International Journal of Refrigeration, 2022, , .	3.4	4
642	Operational regimes in a confined pulsatory two-phase thermosyphon. Thermal Science and Engineering Progress, 2022, 30, 101233.	2.7	2
643	A relatively wide-ranged correlation of saturated flow boiling heat transfer within narrow rectangular channel for water. Applied Thermal Engineering, 2022, 210, 118345.	6.0	5
644	Adiabatic two-phase pressure drop of carbon dioxide in different channel orientations. International Journal of Heat and Fluid Flow, 2022, 95, 108966.	2.4	4
645	FLOW BOILING BEHAVIORS OF VARIOUS REFRIGERANTS INSIDE HORIZONTAL TUBES: A COMPARATIVE RESEARCH STUDY. EskiÅŸehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 0, , .	0.8	0
646	Bubble coalescence and break-up in confined oscillating two-phase flows under microgravity conditions. International Journal of Heat and Mass Transfer, 2022, 192, 122905.	4.8	3
647	Experimental investigation of R600a as a low GWP substitute to R134a in the closed-loop two-phase thermosyphon of the mini thermoelectric refrigerator. Applied Thermal Engineering, 2022, 211, 118501.	6.0	4
648	Flower Shaped Oscillating Heat Pipe at the thermosyphon condition: Performance at different rotational speeds, filling ratios, and heat supplies. Applied Thermal Engineering, 2022, 212, 118540.	6.0	7
649	A state-of-the-art review on flow boiling at high reduced pressures. International Journal of Heat and Mass Transfer, 2022, 193, 122951.	4.8	11
650	Hydrodynamics of vertical upward and downward flow boiling in a millimetric tube. International Journal of Multiphase Flow, 2022, 153, 104120.	3.4	4
651	Experimental Study on Visualized Flow Boiling in a Narrow Rectangular Channel. SSRN Electronic Journal, O, , .	0.4	Ο
652	Effect of asymmetric fluid flow distribution on flow boiling in a microchannel heat sink – An experimental investigation. Applied Thermal Engineering, 2022, 213, 118710.	6.0	11
653	Heat transfer augmentation in microchannel heat sink using secondary flows: A review. International Journal of Heat and Mass Transfer, 2022, 194, 123063.	4.8	46
654	Performance of flat-plate, flexible polymeric pulsating heat pipes at different bending angles. Applied Thermal Engineering, 2022, 216, 118948.	6.0	9
655	A thermal network model for hydrocarbon heat pump systems: A coupling analysis of configuration, working condition, and refrigeration distribution. Energy Conversion and Management, 2022, 267, 115908.	9.2	3
656	Condensation heat transfer of pure refrigerants R1234yf and R32 inside multiple circular minichannels. International Journal of Heat and Mass Transfer, 2022, 195, 123146.	4.8	12
657	Combined effect of electric field and nanofluid on bubble behaviors and heat transfer in flow boiling of minichannels. Powder Technology, 2022, 408, 117743.	4.2	16

#	Article	IF	CITATIONS
658	Heat transfer of flow boiling carbon dioxide in vertical upward direction. International Journal of Heat and Mass Transfer, 2022, 196, 123246.	4.8	1
659	Mechanistic model of combined pressure drop and heat transfer for the entire growth stage of an elongated bubble in a rectangular microchannel. International Journal of Heat and Mass Transfer, 2022, 197, 123334.	4.8	1
660	Experimental study on visualized flow boiling in a narrow rectangular channel. International Communications in Heat and Mass Transfer, 2022, 138, 106383.	5.6	2
661	Pressure and Thermal Characterisation of Dynamic instabilities during Flow Boiling in Micro/Mini-Channels at Different Azimuth Orientations. Applied Thermal Engineering, 2022, , 119292.	6.0	5
662	High Heat Flux Cooling Technologies Using Microchannel Evaporators: Fundamentals and Challenges. Heat Transfer Engineering, 2023, 44, 1470-1497.	1.9	5
663	Experimental investigation and model prediction of sliding bubble dynamics in vertical subcooled boiling flow. International Journal of Heat and Mass Transfer, 2023, 200, 123520.	4.8	3
664	A discretization method for the characterization of a plate heat exchanger working as evaporator during transient conditions. International Journal of Thermal Sciences, 2023, 184, 107998.	4.9	3
665	Measurement of transient liquid film and its effect on flow boiling heat transfer in non-circular microchannels. International Journal of Thermal Sciences, 2023, 184, 108004.	4.9	6
666	Experimental study of flow boiling characteristics in minigap channels over a wide heat flux range. International Journal of Heat and Mass Transfer, 2023, 201, 123567.	4.8	3
667	Simulation and Experimental Study of CO2 Transcritical Heat Pump System with Thermoelectric Subcooling. Designs, 2022, 6, 115.	2.4	3
668	CFD-Based Optimization of a Diesel Engine Waste Heat Recycle System. Fluid Dynamics and Materials Processing, 2023, 19, 1479-1493.	0.7	0
669	Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review. Nanoscale Advances, 2023, 5, 1232-1270.	4.6	18
670	Heat transfer coefficient of boiling flows in minichannels with a semicircular cross-section. Applied Thermal Engineering, 2023, 220, 119697.	6.0	0
671	The experimental research on subcooled flow boiling in vertical narrow rectangular channels with relatively Wide-Ranged parameters. Applied Thermal Engineering, 2023, 220, 119681.	6.0	3
672	Fundamentals of Force Balance in Liquid Films and Transition from Macro- to Microchannels in Flow Boiling. International Journal of Heat and Mass Transfer, 2023, 202, 123758.	4.8	1
673	Experimental investigation on heat transfer of subcooled flow boiling of water in mini channels under high heat fluxes. Experimental Thermal and Fluid Science, 2023, 142, 110831.	2.7	3
674	Flow boiling heat transfer and pressure drop of R245fa inside horizontal 1.62Âmm and 2.43Âmm tubes under hypergravity. International Journal of Refrigeration, 2023, 148, 96-107.	3.4	0
675	A New Method for Determining Interfacial Tension: Verification and Validation. Energies, 2023, 16, 613.	3.1	1

#	Article	IF	Citations
676	Experimental investigations of gas–liquid two-phase flow in a horizontal mini pipe: Flow regime, void friction, and frictional pressure drops. Physics of Fluids, 2023, 35, 013333.	4.0	1
677	Condensation heat transfer of binary and ternary mixtures inside multiport tubes. International Journal of Heat and Mass Transfer, 2023, 207, 123981.	4.8	3
678	Heat transfer and interfacial flow physics of microgravity flow boiling in single-side-heated rectangular channel with subcooled inlet conditions – Experiments onboard the International Space Station. International Journal of Heat and Mass Transfer, 2023, 207, 123998.	4.8	12
679	A Comprehensive Assessment of Two-Phase Flow Boiling Heat Transfer in Micro-Fin Tubes Using Pure and Blended Eco-Friendly Refrigerants. Energies, 2023, 16, 1951.	3.1	1
680	Experimental investigation of bubble dynamics and flow patterns during flow boiling in high aspect ratio microchannels with the effect of flow orientation. International Journal of Thermal Sciences, 2023, 189, 108238.	4.9	8
681	Comprehensive Experimental and Numerical Optimization of Diesel Engine Thermal Management Strategy for Emission Clarification and Carbon Dioxide Control. Processes, 2023, 11, 1252.	2.8	0
682	Boiling heat transfer of binary and ternary mixtures in multiple rectangular microchannels. Applied Thermal Engineering, 2023, 229, 120613.	6.0	3
683	The research on the interfacial area transport equation in rectangular channels: Interfacial characteristics distribution and bubbles interaction mechanism. Progress in Nuclear Energy, 2023, 160, 104698.	2.9	2
684	Numerical analysis of pumped two-phase loop: Characterization of steady-state performance. Applied Thermal Engineering, 2023, 229, 120630.	6.0	1
685	Experimental and numerical study on two-phase minichannel cold plate for high-power device. Applied Thermal Engineering, 2023, 230, 120704.	6.0	1
686	A review on microchannel heat exchanger and the effects of various parameters. AIP Conference Proceedings, 2023, , .	0.4	0
687	Pulsating heat pipes: Critical review on different experimental techniques. Experimental Thermal and Fluid Science, 2023, 148, 110980.	2.7	9
688	Flow patterns and flow pattern maps for adiabatic and diabatic gas liquid two phase flow in microchannels: fundamentals, mechanisms and applications. Experimental Thermal and Fluid Science, 2023, 148, 110988.	2.7	5
689	Advances in vapor-liquid phase change for thermal management. Advances in Heat Transfer, 2023, , .	0.9	0
690	Parametric Evaluation of the Flow Boiling Heat Transfer Properties of R22 and R407c inside Horizontal Microfin Tube. International Journal of Energy Research, 2023, 2023, 1-14.	4.5	1
691	Effect of flow direction on evaporation flow regime of R32/R1234ze(E) mixture inside multiple rectangular minichannels. International Journal of Refrigeration, 2023, 153, 337-344.	3.4	2
692	CO2 Evaporation Process Modeling and Evaporator Design. Lecture Notes in Energy, 2023, , 119-183.	0.3	0
693	Flow boiling of R1233zd(E) in a 3Âmm vertical tube at moderate and high reduced pressures. Experimental Thermal and Fluid Science, 2023, 147, 110964.	2.7	4

#	Article	IF	CITATIONS
694	Characteristic of heat transfer degradation during flow boiling of low GWP refrigerant R1336mzz(Z) in an enhanced channel. International Journal of Thermal Sciences, 2023, 194, 108558.	4.9	2
695	A review on design alteration in microchannel heat sink for augmented thermohydraulic performance. Ain Shams Engineering Journal, 2024, 15, 102417.	6.1	2
696	A Comparative Analysis of Two-Phase Flow Boiling Heat Transfer Coefficient and Correlations for Hydrocarbons and Ethanol. Energies, 2023, 16, 5931.	3.1	0
697	Further Study and Development of Correlations for Heat Transfer during Subcooled Boiling in Plain Channels. Fluids, 2023, 8, 245.	1.7	0
698	Pressure drop for subcooled water boiling in microchannels under high heat fluxes: Experiments and predictions from artificial neural networks. Applied Thermal Engineering, 2024, 236, 121498.	6.0	0
699	A Review of the Complex Flow and Heat Transfer Characteristics in Microchannels. Micromachines, 2023, 14, 1451.	2.9	2
700	Experimental investigation on heat transfer characteristics of upward flow boiling in a vertical narrow rectangular channel. Experimental Heat Transfer, 0, , 1-30.	3.2	0
701	Numerical simulation of boiling behavior in vertical microchannels. Physics of Fluids, 2023, 35, .	4.0	1
702	A novel neural network and sensitivity analysis method for predicting the thermal resistance of heat pipes with nanofluids. Applied Thermal Engineering, 2024, 236, 121677.	6.0	0
703	Effect of nucleation frequency and compressible buffer volume on the thermofluidic characteristics for flow boiling through a microchannel heat sink. Applied Thermal Engineering, 2024, 236, 121508.	6.0	0
705	Simulación de un micro-evaporador para un micro-tubo horizontal circular de 1-mm. Revista De Ciencias TecnolÓgicas, 2023, 6, e250.	0.1	0
706	Investigation of the kinetics of spontaneous boiling-up of superheated n-pentane in a glass tube with defects of the inner surface. II. Evaporation front. International Journal of Heat and Mass Transfer, 2024, 218, 124811.	4.8	0
707	Experimental study on turbulent characteristics of dispersed bubbly flow in a narrow rectangular channel by two-phase PIV. International Journal of Heat and Mass Transfer, 2024, 219, 124887.	4.8	0
709	Analysis and experimental validation of a pumped two-phase loop for multi-component electronics cooling. Heat and Mass Transfer, 2024, 60, 305-327.	2.1	0
710	Study of flow pattern transition criterion and heat transfer characteristics in vertical rectangular narrow channel for steam heating. International Journal of Heat and Mass Transfer, 2024, 220, 124877.	4.8	0
711	An experimental investigation on R245fa and R1233zd(E) flow boiling at high saturation temperatures in a horizontal small diameter channel. International Journal of Heat and Mass Transfer, 2024, 220, 124986.	4.8	0
712	HEAT TRANSFER PERFORMANCES OF R449A DURING FLOW BOILING IN A HORIZONTAL SMOOTH TUBE. , 2023, , .		0
713	EXPERIMENTAL STUDY OF R1233ZD(E) FLOW BOILING HEAT TRANSFER AT QUASI-CRITICAL TEMPERATURE IN A HORIZONTAL MICRO-SCALE CHANNEL. , 2023, , .		0

#	Article	IF	CITATIONS
715	A Review on Flow Boiling of the Fluid with Lower Boiling Point in Micro-Channels. Journal of Thermal Science, 0, , .	1.9	0
716	Critical heat flux, heat transfer and pressure drop at high mass fluxes for R123 in a single microchannel. International Journal of Heat and Mass Transfer, 2024, 222, 125143.	4.8	0
717	Experimental Advancements in the Development of a Regenerative Cooling System for Hybrid Rocket Applications. , 2024, , .		0
718	Experimental investigation of regenerative cooling performance in hybrid rocket engines. Thermal Science and Engineering Progress, 2024, 49, 102481.	2.7	0
719	Effect of pin electrodes on flow boiling heat transfer and bubble dynamic behaviors in vertical minichannels. International Journal of Thermal Sciences, 2024, 200, 108964.	4.9	0
720	Experimental study on boiling heat transfer characteristics of RDR-1, R134a, and R1234yf over a wide temperature range and comparative analysis of their system performance. Applied Thermal Engineering, 2024, 245, 122809.	6.0	0
721	Flow boiling pressure drop correlation in small to micro passages. International Journal of Heat and Mass Transfer, 2024, 224, 125376.	4.8	0
722	Research on mechanism of gas leakage in microchannels of steel containment vessels for nuclear power plants. Nuclear Engineering and Technology, 2024, , .	2.3	0
723	Evaporation in the sugar industry. , 2024, , 183-207.		0
724	A Systematic Review on Heat Transfer and Pressure Drop Correlations for Natural Refrigerants. Energies, 2024, 17, 1478.	3.1	0