Animal models of kidney stone formation: an analysis

World Journal of Urology 15, 236-243 DOI: 10.1007/bf01367661

Citation Report

#	Article	IF	CITATIONS
1	Nanobacteria: An infectious cause for kidney stone formation. Kidney International, 1999, 56, 1893-1898.	2.6	177
2	Calcium oxalate nephrolithiasis: Effect of renal crystal deposition on the cellular composition of the renal interstitium. American Journal of Kidney Diseases, 1999, 33, 761-771.	2.1	128
3	Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithiasis in rats. BJU International, 2000, 85, 1143-1149.	1.3	26
4	The prothrombin gene is expressed in the rat kidney. FEBS Journal, 2000, 267, 61-67.	0.2	23
5	Circulating adhesion molecules and neutral endopeptidase enzymuria in patients with urolithiasis and hydronephrosis. Urology, 2000, 55, 961-965.	0.5	16
6	EXPRESSION OF INTER- $\hat{1}$ ± INHIBITOR RELATED PROTEINS IN KIDNEYS AND URINE OF HYPEROXALURIC RATS. Journal of Urology, 2001, 165, 1687-1692.	0.2	47
7	Effect of A. Lanata leaf extract and vediuppu chunnam on the urinary risk factors of calcium oxalate urolithiasis during experimental hyperoxaluria. Pharmacological Research, 2001, 43, 89-93.	3.1	91
8	Simple, sensitive and accurate method for the quantification of prothrombin mRNA by using competitive PCR. Biochemical Journal, 2001, 356, 111-120.	1.7	7
9	Effect of experimental hyperoxaluria on renal calcium oxalate monohydrate binding proteins in the rat. BJU International, 2001, 87, 110-116.	1.3	6
10	Inhibition of oxalate nephrolithiasis with Ammi visnaga (Al-Khillah). International Urology and Nephrology, 2001, 33, 605-608.	0.6	42
11	Studies on Calcium Oxalate Binding Proteins: Effect of Lipid Peroxidation. Nephron, 2001, 88, 163-167.	0.9	15
12	Induction of α-Catenin, Integrin α3, Integrin β6, and PDGF-B by 2,8-Dihydroxyadenine Crystals in Cultured Kidney Epithelial Cells. Nephron Experimental Nephrology, 2002, 10, 365-373.	2.4	8
13	Global analysis of differentially expressed genes during progression of calcium oxalate nephrolithiasis. Biochemical and Biophysical Research Communications, 2002, 296, 544-552.	1.0	50
14	Expression of Osteopontin in Rat Kidneys: Induction During Ethylene Glycol Induced Calcium Oxalate Nephrolithiasis. Journal of Urology, 2002, 168, 1173-1181.	0.2	116
15	Changes in the Oxidant-Antioxidant Balance in the Kidney of Rats With Nephrolithiasis Induced by Ethylene Glycol. Journal of Urology, 2002, 167, 2584-2593.	0.2	100
16	Presence of lipids in urine, crystals and stones: Implications for the formation of kidney stones. Kidney International, 2002, 62, 2062-2072.	2.6	114
17	An oxalate-binding protein with crystal growth promoter activity from human kidney stone matrix. BJU International, 2002, 90, 336-344.	1.3	23
18	Changes in renal hemodynamics and urodynamics in rats with chronic hyperoxaluria and after acute oxalate infusion: Role of free radicals. Neurourology and Urodynamics, 2003, 22, 176-182.	0.8	21

#	Article	IF	CITATIONS
19	Internalization of calcium oxalate crystals by renal tubular cells: A nephron segment–specific process?. Kidney International, 2003, 64, 493-500.	2.6	54
20	Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology, 2003, 62, 1123-1128.	0.5	108
21	Expression of Nuclear Pore Complex Oxalate Binding Protein p62 in Experimental Hyperoxaluria. Nephron Experimental Nephrology, 2004, 97, e106-e114.	2.4	1
22	Brewster Angle Microscopy of Calcium Oxalate Monohydrate Precipitation at Phospholipid Monolayer Phase Boundaries. Langmuir, 2004, 20, 8287-8293.	1.6	32
23	Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clinical and Experimental Nephrology, 2004, 8, 75-88.	0.7	219
24	A stone farm: development of a method for simultaneous production of multiple calcium oxalate stones in vitro. Urological Research, 2004, 32, 55-60.	1.5	14
25	Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clinical Science, 2004, 106, 549-561.	1.8	121
26	Sudden bladder distention in a female rat. Lab Animal, 2005, 34, 22-23.	0.2	4
27	Diagnosis Urolithiasis. Lab Animal, 2005, 34, 24-25.	0.2	4
28	Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: A potential therapy for primary hyperoxaluria. Kidney International, 2005, 67, 53-60.	2.6	26
29	Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU International, 2005, 96, 117-126.	1.3	101
30	Detection of endothelial nitric oxide synthase and NADPH-diaphorase in experimentally induced hyperoxaluric animals. Urological Research, 2005, 33, 301-308.	1.5	7
31	Cellular and Molecular Gateways to Urolithiasis: A New Insight. Urologia Internationalis, 2005, 74, 193-197.	0.6	16
32	Characterization of histone (H1B) oxalate binding protein in experimental urolithiasis and bioinformatics approach to study its oxalate interaction. Biochemical and Biophysical Research Communications, 2006, 345, 345-354.	1.0	7
33	Renal prothrombin mRNA is significantly decreased in a hyperoxaluric rat model of nephrolithiasis. Journal of Pathology, 2006, 210, 273-281.	2.1	12
34	Modeling of hyperoxaluric calcium oxalate nephrolithiasis: Experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney International, 2006, 70, 914-923.	2.6	120
35	Supersaturation and renal precipitation: the key to stone formation?. Urological Research, 2006, 34, 81-85.	1.5	27
36	Mild Tubular Damage Induces Calcium Oxalate Crystalluria in a Model of Subtle Hyperoxaluria: Evidence that a Second Hit Is Necessary for Renal Lithogenesis. Journal of the American Society of Nephrology: JASN, 2006, 17, 2213-2219.	3.0	17

#	Article	IF	CITATIONS
37	Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18249-18254.	3.3	107
38	Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. American Journal of Physiology - Renal Physiology, 2007, 293, F1935-F1943.	1.3	104
39	Pathogenesis of Renal Calculi. Urologic Clinics of North America, 2007, 34, 295-313.	0.8	71
40	Tubular and Interstitial Nephrocalcinosis. Journal of Urology, 2007, 178, 1097-1103.	0.2	9
41	Hyperoxaluria in Kidney Stone Formers Treated With Modern Bariatric Surgery. Journal of Urology, 2007, 177, 565-569.	0.2	161
42	Rapid Communication: Protective Effect of a Nuclear Factor κB Inhibitor, Pyrolidium Dithiocarbamate, in the Kidney of Rats with Nephrolithiasis Induced by Ethylene Glycol. Journal of Endourology, 2007, 21, 1097-1106.	1.1	6
43	A novel basic protein from human kidney which inhibits calcium oxalate crystal growth. BJU International, 2007, 86, 7-13.	1.3	20
44	Evaluation of Sesbania grandiflora for antiurolithiatic and antioxidant properties. Journal of Natural Medicines, 2008, 62, 300-307.	1.1	53
45	Mitochondrial dysfunction in an animal model of hyperoxaluria: A prophylactic approach with fucoidan. European Journal of Pharmacology, 2008, 579, 330-336.	1.7	40
46	Protective Effect of a Potent Antioxidant, Pomegranate Juice, in the Kidney of Rats with Nephrolithiasis Induced by Ethylene Glycol. Journal of Endourology, 2008, 22, 2723-2732.	1.1	44
47	Acidic polyanion poly(acrylic acid) prevents calcium oxalate crystal deposition. Kidney International, 2008, 74, 919-924.	2.6	16
48	Preliminary Study of Ethylene Glycol-Induced Alanine-Glyoxylate Aminotransferase 2 Expression in Rat Kidney. Current Urology, 2009, 3, 129-135.	0.4	1
49	Modulation of Calcium Oxalate Dihydrate Growth by Selective Crystal-face Binding of Phosphorylated Osteopontin and Polyaspartate Peptide Showing Occlusion by Sectoral (Compositional) Zoning. Journal of Biological Chemistry, 2009, 284, 23491-23501.	1.6	60
50	Herbal Medicines in the Management of Urolithiasis: Alternative or Complementary?. Planta Medica, 2009, 75, 1095-1103.	0.7	128
51	Effects of Pomegranate Juice on Hyperoxaluria-Induced Oxidative Stress in the Rat Kidneys. Renal Failure, 2009, 31, 522-531.	0.8	26
52	Strain differences in urinary factors that promote calcium oxalate crystal formation in the kidneys of ethylene glycol-treated rats. American Journal of Physiology - Renal Physiology, 2009, 296, F1080-F1087.	1.3	29
53	Physico-chemical alterations of urine in experimental hyperoxaluria: a biochemical approach with fucoidan. Journal of Pharmacy and Pharmacology, 2010, 59, 419-427.	1.2	12
54	Nephrocalcinosis in animal models with and without stones. Urological Research, 2010, 38, 429-438.	1.5	62

#	Article	IF	CITATIONS
55	Hyperoxaluria Is a Long-Term Consequence of Roux-en-Y Gastric Bypass: A 2-Year Prospective Longitudinal Study. Journal of the American College of Surgeons, 2010, 211, 8-15.	0.2	72
56	<i>Berberis vulgaris</i> root bark extract prevents hyperoxaluria induced urolithiasis in rats. Phytotherapy Research, 2010, 24, 1250-1255.	2.8	41
57	Inflammation and Organ Failure. , 2010, , 299-321.		0
58	Experimental Models of Clomerulonephritis. , 0, , 338-348.		Ο
59	Involvement of urinary proteins in the rat strain difference in sensitivity to ethylene glycol-induced renal toxicity. American Journal of Physiology - Renal Physiology, 2010, 299, F605-F615.	1.3	8
60	Experimental Induction of Calcium Oxalate Nephrolithiasis in Mice. Journal of Urology, 2010, 184, 1189-1196.	0.2	44
61	Zinc disc implantation model of urinary bladder calculi and humane endpoints. Laboratory Animals, 2010, 44, 226-230.	0.5	11
62	Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. Kidney International, 2011, 80, 369-377.	2.6	74
63	1,2,3,4,6-Penta-O-galloyl-beta-D-glucose reduces renal crystallization and oxidative stress in a hyperoxaluric rat model. Kidney International, 2011, 79, 538-545.	2.6	37
64	Prevention of renal crystal deposition by an extract of Ammi visnaga L. and its constituents khellin and visnagin in hyperoxaluric rats. Urological Research, 2011, 39, 189-195.	1.5	52
65	Experimentally induced hyperoxaluria in MCP-1 null mice. Urological Research, 2011, 39, 253-258.	1.5	5
66	Antiurolithic activity of Origanum vulgare is mediated through multiple pathways. BMC Complementary and Alternative Medicine, 2011, 11, 96.	3.7	45
67	Drosophila: a fruitful model for calcium oxalate nephrolithiasis?. Kidney International, 2011, 80, 327-329.	2.6	23
68	Studies on the in vitro and in vivo antiurolithic activity of Holarrhena antidysenterica. Urological Research, 2012, 40, 671-681.	1.5	44
69	Evaluation of antiurolithic effect and the possible mechanisms of Desmodium styracifolium and Pyrrosiae petiolosa in rats. Urological Research, 2012, 40, 151-161.	1.5	29
70	New Insights Into the Pathogenesis of Renal Calculi. Urologic Clinics of North America, 2013, 40, 1-12.	0.8	59
71	Animal Models of Calcium Oxalate Kidney Stone Formation. , 2013, , 483-498.		6
72	Effects of commercial citrateâ€containing juices on urolithiasis in a <i>Drosophila</i> model. Kaohsiung Journal of Medical Sciences, 2013, 29, 488-493.	0.8	13

#	Article	IF	CITATIONS
73	Ethylene glycol induced renal toxicity in female Wistar rats. Toxicology and Environmental Health Sciences, 2013, 5, 207-214.	1.1	2
74	Effect of the <i>Copaifera langsdorffii</i> Desf. Leaf Extract on the Ethylene Glycol-Induced Nephrolithiasis in Rats. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	0.5	18
75	Dietary Hydroxyproline Induced Calcium Oxalate Lithiasis and Associated Renal Injury in the Porcine Model. Journal of Endourology, 2013, 27, 1493-1498.	1.1	12
76	Use of a calcium tracer to detect stone increments in a rat calcium oxalate xenoplantation model. Experimental and Therapeutic Medicine, 2013, 6, 957-960.	0.8	0
77	Anti-Urolithiatic Effect of Cow Urine Ark on Ethylene Glycol-Induced Renal Calculi. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 2013, 39, 565-571.	0.7	5
78	Effect of Cymbopogon proximus (Mahareb) on ethylene glycol-induced nephrolithiasis in rats. African Journal of Pharmacy and Pharmacology, 2014, 8, 443-450.	0.2	3
79	Antilithiatic effects of crocin on ethylene glycol-induced lithiasis in rats. Urolithiasis, 2014, 42, 549-558.	1.2	22
81	Combined semirigid and flexible ureterorenoscopy via a large ureteral access sheath for kidney stones >2Âcm: a bicentric prospective assessment. World Journal of Urology, 2014, 32, 697-702.	1.2	29
82	NEPHROLITHIASIS IN FREE-RANGING NORTH AMERICAN RIVER OTTER (<i>LONTRA CANADENSIS</i>) IN NORTH CAROLINA, USA. Journal of Zoo and Wildlife Medicine, 2014, 45, 110-117.	0.3	5
83	Osteopontin knockdown in the kidneys of hyperoxaluric rats leads to reduction in renal calcium oxalate crystal deposition. Urolithiasis, 2014, 42, 195-202.	1.2	20
84	Osteopontin and Tamma-Horsefall proteins – Macromolecules of myriad values. Journal of Basic and Applied Zoology, 2014, 67, 158-163.	0.4	6
85	Antiurolithiatic Activity of Crashcal on Ethylene Glycol Induced Urolithiasis in Rats. Rajiv Gandhi University of Health Sciences Journal of Pharmaceutical Sciences, 2014, 4, 30-35.	0.1	1
86	Ureteral relaxation through calcitonin geneâ€related peptide release from sensory nerve terminals by hypotonic solution. International Journal of Urology, 2015, 22, 878-883.	0.5	2
87	Potential Mechanisms Responsible for the Antinephrolithic Effects of an Aqueous Extract of Fructus Aurantii. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-11.	0.5	12
88	Effects of Polyphenols from Grape Seeds on Renal Lithiasis. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-6.	1.9	23
89	Depletion of Glutathione during Oxidative Stress and Efficacy of N-Acetyl Cysteine: An Old Drug with New Approaches. , 2015, 05, .		3
90	Antilithic effects of extracts from different polarity fractions of Desmodium styracifolium on experimentally induced urolithiasis in rats. Urolithiasis, 2015, 43, 433-439.	1.2	27
91	What is nephrocalcinosis?. Kidney International, 2015, 88, 35-43.	2.6	67

#	Article	IF	CITATIONS
92	Osteogenic changes in kidneys of hyperoxaluric rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2000-2012.	1.8	39
93	An Explanation of the Underlying Mechanisms for the In Vitro and In Vivo Antiurolithic Activity of <i>Glechoma longituba</i> . Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	1.9	13
94	Metabolomics analysis for hydroxy-L-proline-induced calcium oxalate nephrolithiasis in rats based on ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Scientific Reports, 2016, 6, 30142.	1.6	21
95	Renal tubular injury induced by ischemia promotes the formation of calcium oxalate crystals in rats with hyperoxaluria. Urolithiasis, 2016, 44, 389-397.	1.2	7
96	Polyacrylic acid attenuates ethylene glycol induced hyperoxaluric damage and prevents crystal aggregation inÂvitro and inÂvivo. Chemico-Biological Interactions, 2016, 252, 36-46.	1.7	4
97	Translocation of mineralo-organic nanoparticles from blood to urine: a new mechanism for the formation of kidney stones?. Nanomedicine, 2016, 11, 2399-2404.	1.7	11
98	Alteration in Oxidative/nitrosative imbalance, histochemical expression of osteopontin and antiurolithiatic efficacy of Xanthium strumarium (L.) in ethylene glycol induced urolithiasis. Biomedicine and Pharmacotherapy, 2016, 84, 1524-1532.	2.5	12
99	Antilithiatic effect of Peucedanum grande C. B. Clarke in chemically induced urolithiasis in rats. Journal of Ethnopharmacology, 2016, 194, 1122-1129.	2.0	21
100	Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease?. Urolithiasis, 2016, 44, 45-50.	1.2	28
101	Inhibitory effect of an aqueous extract of Radix Paeoniae Alba on calcium oxalate nephrolithiasis in a rat model. Renal Failure, 2017, 39, 120-129.	0.8	13
102	Animal Models of Kidney Disease. , 2017, , 379-417.		14
103	Changes of Klotho protein and Klotho mRNA expression in a hydroxy-L-proline induced hyperoxaluric rat model. Journal of Veterinary Medical Science, 2017, 79, 1861-1869.	0.3	6
104	EVALUATION OF ANTIUROLITHIATIC PROPERTY OF ETHANOLIC EXTRACT OF FENNEL SEEDS IN MALE WISTAR ALBINO RATS. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 313.	0.3	4
105	Inhibition of Autophagy Attenuated Ethylene Glycol Induced Crystals Deposition and Renal Injury in a Rat Model of Nephrolithiasis. Kidney and Blood Pressure Research, 2018, 43, 246-255.	0.9	20
106	<i>In vitro</i> and <i>in vivo</i> models for the study of urolithiasis. Urologia, 2018, 85, 145-149.	0.3	3
107	Metabolic syndrome contributes to renal injury mediated by hyperoxaluria in a murine model of nephrolithiasis. Urolithiasis, 2018, 46, 179-186.	1.2	9
108	Evaluation of anti-urolithiatic and diuretic activities of watermelon (Citrullus lanatus) using in vivo and in vitro experiments. Biomedicine and Pharmacotherapy, 2018, 97, 1212-1221.	2.5	29
109	Protective potential of <i>Angelica sinensis</i> polysaccharide extract against ethylene glycol-induced calcium oxalate urolithiasis. Renal Failure, 2018, 40, 618-627.	0.8	6

#	Article	IF	CITATIONS
110	Downregulated Expression of Solute Carrier Family 26 Member 6 in NRK-52E Cells Attenuates Oxalate-Induced Intracellular Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	1.9	8
111	Effect of Piper cubeba L. fruit on ethylene glycol and ammonium chloride induced urolithiasis in male Sprague Dawley rats. Integrative Medicine Research, 2018, 7, 358-365.	0.7	10
112	Crystal growth, a research-driven laboratory course. Journal of Applied Crystallography, 2018, 51, 1474-1480.	1.9	3
113	Drosophila melanogaster as a function-based high-throughput screening model for anti-nephrolithiasis agents in kidney stone patients. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	15
114	Growth inhibition study of urinary type brushite crystal using potassium dihydrogen citrate solution. AIP Conference Proceedings, 2019, , .	0.3	3
115	Anticalcifying effect of Daucus carota in experimental urolithiasis in Wistar rats. Journal of Ayurveda and Integrative Medicine, 2020, 11, 308-315.	0.9	14
116	Effect of endoplasmic reticulum stress-mediated excessive autophagy on apoptosis and formation of kidney stones. Life Sciences, 2020, 244, 117232.	2.0	25
117	Nephroprotective Effect of Pleurotus ostreatus and Agaricus bisporus Extracts and Carvedilol on Ethylene Glycol-Induced Urolithiasis: Roles of NF-κB, p53, Bcl-2, Bax and Bak. Biomolecules, 2020, 10, 1317.	1.8	19
118	The preventive and therapeutic effects of $\hat{1}\pm$ -lipoic acid on ethylene glycol-induced calcium oxalate deposition in rats. International Urology and Nephrology, 2020, 52, 1227-1234.	0.6	6
119	Effect of Macrotyloma uniflorum in ethylene glycol induced urolithiasis in rats. Heliyon, 2020, 6, e04253.	1.4	15
120	EFFECTS OF COCONUT WATER (COCOS NUCIFERA SP.) ADMINISTRATION AS PREVENTION OF UROLITHIASIS IN CALCIUM OXALATE INDUCED - WHITE RAT WISTAR STRAINS. Jurnal Urologi Indonesia, 2021, 28, 79-90.	0.0	0
121	Antiurolithiatic Evaluation of α- Mangostin Fraction Isolated from Garcinia mangostana Pericarp through Computational, in vitro and in vivo Approach. Journal of Pharmaceutical Research International, 0, , 63-78.	1.0	2
122	Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis—a systematic review. Urolithiasis, 2021, 49, 95-122.	1.2	14
123	Effects of high-sodium diet on lithogenesis in a rat experimental model of calcium oxalate stones. Translational Andrology and Urology, 2021, 10, 636-642.	0.6	3
124	Excavating the antiurolithiatic potential of wild himalayan cherry through in vitro and preclinical investigations. South African Journal of Botany, 2021, , .	1.2	2
125	6-Shogaol attenuated ethylene glycol and aluminium chloride induced urolithiasis and renal injuries in rodents. Saudi Journal of Biological Sciences, 2021, 28, 3418-3423.	1.8	7
126	Prediction of the occurrence of calcium oxalate kidney stones based on clinical and gut microbiota characteristics. World Journal of Urology, 2022, 40, 221-227.	1.2	9
127	Hexametaphosphate as a potential therapy for the dissolution and prevention of kidney stones. Journal of Materials Chemistry B, 2020, 8, 5215-5224.	2.9	12

#	Article	IF	CITATIONS
128	Simple, sensitive and accurate method for the quantification of prothrombin mRNA by using competitive PCR. Biochemical Journal, 2001, 356, 111.	1.7	7
129	EXPRESSION OF INTER-?? INHIBITOR RELATED PROTEINS IN KIDNEYS AND URINE OF HYPEROXALURIC RATS. Journal of Urology, 2001, , 1687-1692.	0.2	3
130	Changes in the Oxidant-Antioxidant Balance in the Kidney of Rats With Nephrolithiasis Induced by Ethylene Glycol. Journal of Urology, 2002, , 2584-2593.	0.2	6
131	Expression of Osteopontin in Rat Kidneys: Induction During Ethylene Glycol Induced Calcium Oxalate Nephrolithiasis. Journal of Urology, 2002, , 1173-1181.	0.2	7
132	Apocynin-Treatment Reverses Hyperoxaluria Induced Changes in NADPH Oxidase System Expression in Rat Kidneys: A Transcriptional Study. PLoS ONE, 2012, 7, e47738.	1.1	32
133	Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. PLoS ONE, 2017, 12, e0185009.	1.1	21
134	Oxalate induces type II epithelial to mesenchymal transition (EMT) in inner medullary collecting duct cells (IMCD) <i>in vitro</i> and stimulate the expression of osteogenic and fibrotic markers in kidney medulla <i>in vivo</i> . Oncotarget, 2019, 10, 1102-1118.	0.8	12
135	Effect of Polygonum Aviculare L. on Nephrolithiasis Induced by Ethylene Glycol and Ammonium Chloride in Rats. Urology Journal, 2018, 15, 79-82.	0.3	4
136	Anti-Urolithiatic Evaluation of Siddha formulation Seenakara Parpam against Zinc Disc Implantation induced Urolithiasis in Wistar Albino Rats. , 2016, 3, 7-13.		6
137	Antiurolithiatic activity of ethanolic root extract of Saccharum spontaneum on glycolic acid induced urolithiasis in rats. Journal of Drug Delivery and Therapeutics, 2012, 2, .	0.2	1
138	Evaluation of anti-urolithiatic activity of Pashanabhedadi Ghrita against experimentally induced renal calculi in rats. AYU: an International Quarterly Journal of Research in Ayurveda, 2012, 33, 429.	0.3	10
139	Antiurolithiatic activity of Abelmoschus moschatus seed extracts against zinc disc implantation-induced urolithiasis in rats. Journal of Basic and Clinical Pharmacy, 2016, 7, 32.	9.3	11
140	Anti-urolithiatic activity of standardized extract of Biophytum sensitivum against zinc disc implantation induced urolithiasis in rats. Journal of Advanced Pharmaceutical Technology and Research, 2015, 6, 176.	0.4	7
141	Experimental models of renal calcium stones in rodents. World Journal of Nephrology, 2016, 5, 189.	0.8	16
143	Experimental Models for Investigation of Stone Disease. , 2010, , 383-390.		0
144	Renal Cellular Dysfunction/Damage and the Formation of Kidney Stones. , 2010, , 61-86.		1
145	Isolation of Nanobacteria from Egyptian Patients with Urolithiasis. Insight Nanotechnology, 2011, 1, 9-14.	0.7	2
146	Nanobacteria: An Infectious Cause for Various Human Diseases. Insight Nanotechnology, 2011, 1, 15-22.	0.7	1

#	Article	IF	CITATIONS
147	Lifestyle Changes, CAM, and Kidney Stones: Heart Health = Kidney Health. , 2014, , 201-229.		1
149	Dietary hydroxyproline induced calcium oxalate lithiasis and associated renal injury in the porcine model. Journal of Endourology, 0, , 150127063130004.	1.1	0
150	In Vitro Models for Studying Renal Stone Formation: A Clear Alternative. ATLA Alternatives To Laboratory Animals, 1998, 26, 481-503.	0.7	3
151	Is hyperoxaluria in a porcine model of Roux-en-Y gastric bypass (RYGB) associated with exocrine pancreatic insufficiency?. Postępy Nauk Medycznych, 2015, 28, 317-324.	0.0	0
152	PHOSPHATE TYPE KIDNEY STONE (BRUSHITE) FORMATION IN GEL: A MORPHOLOGICAL STUDY ON GROWTH PATTERNS. Journal of Pharmaceutical and Scientific Innovation, 2017, 6, 64-68.	0.1	0
153	Models for development of calcium-oxalate and calcium-phosphate urolithiasis in experimental conditions. Nauchno-prakticheskii Zhurnal «Patogenez», 2018, , 11-16.	0.2	0
154	Effect of Macrotyloma uniflorum seeds in ethylene glycol induced urolithiasis in rats. International Journal of Pharmtech Research, 2019, 12, 43-53.	0.1	0
155	Does Sciaena umbra (Linnaeus 1758) otolith protect tissues against nephropathy, oxidative stress and inflammation induced by ethylene glycol?. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20191279.	0.3	1
156	The role of lithium carbonate and lithium citrate in regulating urinary citrate level and preventing nephrolithiasis. International Journal of Biomedical Science, 2009, 5, 215-22.	0.5	4
157	Evaluation of anti-urolithiatic effect of aqueous extract of Bryophyllum pinnatum (Lam.) leaves using ethylene glycol-induced renal calculi. Avicenna Journal of Phytomedicine, 2014, 4, 151-9.	0.1	7
158	Protective effects of the aqueous extract of Crocus sativus against ethylene glycol induced nephrolithiasis in rats. EXCLI Journal, 2015, 14, 411-22.	0.5	15
159	Antiurolithiatic activity of Didymocarpous pedicellata R. Br South African Journal of Botany, 2022, 150, 1031-1037.	1.2	1
160	Pharmacological Evaluation of <i>Mentha piperita</i> Against Urolithiasis: An <i>In Vitro</i> and <i>In Vivo</i> Study. Dose-Response, 2022, 20, 155932582110730.	0.7	9
161	Exploring Banana phytosterols (Beta-sitosterol) on tight junction protein (claudin) as anti-urolithiasis contributor in Drosophila: A phyto-lithomic approach. Informatics in Medicine Unlocked, 2022, 29, 100905.	1.9	1
163	Relationship Between Serum Testosterone Levels and Kidney Stones Prevalence in Men. Frontiers in Endocrinology, 2022, 13, 863675.	1.5	3
164	Hyperoxaluria Induces Endothelial Dysfunction in Preglomerular Arteries, Involvement of Oxidative Stress. Cells, 2022, 11, 2306.	1.8	2
165	Renal Macrophages and Multinucleated Giant Cells: Ferrymen of the River Styx?. Kidney360, 0, 3, 10.34067/KID.0003992022.	0.9	0
166	Comparison of cat and human calcium oxalate monohydrate kidney stone matrix proteomes. Urolithiasis, 0, , .	1.2	1

#	Article	IF	CITATIONS
167	Urinary exosomes: Diagnostic impact with a bioinformatic approach. Advances in Clinical Chemistry, 2022, , 69-99.	1.8	6
168	Nephrolithiasis: Insights into Biomimics, Pathogenesis, and Pharmacology. Clinical Complementary Medicine and Pharmacology, 2022, , 100077.	0.9	0
169	Cucumis callosus (Rottl.) Cogn. fruit extract ameliorates calcium oxalate urolithiasis in ethylene glycol induced hyperoxaluric Rat model. Heliyon, 2023, 9, e14043.	1.4	2
170	An insight investigation to the antiurolithic activity of Trachyspermum ammi using the in vitro and in vivo experiments. Urolithiasis, 2023, 51, .	1.2	0
171	Anti-urolithiatic effect of Cucumis melo L. var inodorous in male rats with kidney stones. Urolithiasis, 2023, 51, .	1.2	0
172	Hyperoside Ameliorates Renal Tubular Oxidative Damage and Calcium Oxalate Deposition in Rats through AMPK/Nrf2 Signaling Axis. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2023, 2023, .	1.0	0
173	Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian Journal of Urology, 2023, 10, 246-257.	0.5	1