Comparison of the Water Transporting Properties of MI

Journal of Membrane Biology 159, 29-39 DOI: 10.1007/s002329900266

Citation Report

#	Article	IF	CITATIONS
1	Aquaporin water channels in mammals. Clinical and Experimental Nephrology, 1997, 1, 247-253.	0.7	19
2	Finger-like projections of plasma membrane in the most senescent fiber cells of human lenses. Current Eye Research, 1998, 17, 1118-1123.	0.7	5
3	Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. Journal of Molecular Biology, 1998, 279, 855-864.	2.0	84
4	Structural analysis of cloned plasma membrane proteins by freeze-fracture electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11235-11240.	3.3	172
5	Functional and Morphological Correlates of Connexin50 Expressed in Xenopus laevis Oocytes. Journal of General Physiology, 1999, 113, 507-524.	0.9	101
6	The Role of MIP in Lens Fiber Cell Membrane Transport. Journal of Membrane Biology, 1999, 170, 191-203.	1.0	131
7	Cellular and Molecular Biology of the Aquaporin Water Channels. Annual Review of Biochemistry, 1999, 68, 425-458.	5.0	756
8	Purification and Functional Reconstitution of Soybean Nodulin 26. An Aquaporin with Water and Glycerol Transport Propertiesâ€. Biochemistry, 1999, 38, 347-353.	1.2	195
9	Hyperbaric Oxygen in vivo Accelerates the Loss of Cytoskeletal Proteins and MIP26 in Guinea Pig Lens Nucleus. Experimental Eye Research, 1999, 68, 493-505.	1.2	47
10	Functional impairment of lens aquaporin in two families with dominantly inherited cataracts. Human Molecular Genetics, 2000, 9, 2329-2334.	1.4	123
11	Structure and function of aquaporin water channels. American Journal of Physiology - Renal Physiology, 2000, 278, F13-F28.	1.3	558
12	Structure and biochemistry of gap junctions. Advances in Molecular and Cell Biology, 2000, , 31-98.	0.1	20
13	Pentameric assembly of a neuronal glutamate transporter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8641-8646.	3.3	113
14	pH and Calcium Regulate the Water Permeability of Aquaporin 0. Journal of Biological Chemistry, 2000, 275, 6777-6782.	1.6	232
15	Plasma Membrane Intrinsic Proteins from Maize Cluster in Two Sequence Subgroups with Differential Aquaporin Activity. Plant Physiology, 2000, 122, 1025-1034.	2.3	306
16	Epithelial Organization of the Mammalian Lens. Experimental Eye Research, 2000, 71, 415-435.	1.2	112
17	The aquaporin sidedness revisited. Journal of Molecular Biology, 2000, 299, 1271-1278.	2.0	20
18	Surface Tongue-and-groove Contours on Lens MIP Facilitate Cell-to-cell Adherence. Journal of Molecular Biology, 2000, 300, 779-789.	2.0	149

τατιών Ρερώ

#	Article	IF	CITATIONS
19	Chapter 1 discovery of the aquaporins and their impact on basic and clinical physiology. Current Topics in Membranes, 2001, 51, 1-38.	0.5	8
20	Glycation decreases calmodulin binding to lens transmembrane protein, MIP. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2001, 1536, 64-72.	1.8	21
21	Cloning and functional expression of an MIP (AQPO) homolog from killifish (Fundulus heteroclitus) lens. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R1994-R2003.	0.9	45
22	Cloning and Functional Characterization of a Novel Aquaporin fromXenopus laevis Oocytes. Journal of Biological Chemistry, 2002, 277, 40610-40616.	1.6	44
23	Aquaglyceroporins: Channel proteins with a conserved core, multiple functions, and variable surfaces. International Review of Cytology, 2002, 215, 75-104.	6.2	74
24	Passive water transport in biological pores. International Review of Cytology, 2002, 215, 203-230.	6.2	19
25	Construction of a 3D model of human lens fiber major intrinsic protein (MIP or AQPO) from human aquaporin-1 (AQP1). , 0, , .		0
26	Micro-domains of AQPO in Lens Equatorial Fibers. Experimental Eye Research, 2002, 75, 505-519.	1.2	77
27	Heterologous expression and topography of the main intrinsic protein (MIP) from rat lens. FEBS Letters, 2002, 512, 191-198.	1.3	7
28	pH-Dependent channel activity of heterologously-expressed main intrinsic protein (MIP) from rat lens. FEBS Letters, 2002, 512, 199-204.	1.3	13
29	A fascinating tail: cGMP activation of aquaporin-1 ion channels. Trends in Pharmacological Sciences, 2002, 23, 558-562.	4.0	44
30	Regulation of cloned, Ca2+-activated K+ channels by cell volume changes. Pflugers Archiv European Journal of Physiology, 2002, 444, 167-177.	1.3	45
31	Passive water and urea permeability of a human Na + –glutamate cotransporter expressed in Xenopus oocytes. Journal of Physiology, 2002, 542, 817-828.	1.3	47
32	The ocular lens fiber membrane specific protein MIP/Aquaporin 0. The Journal of Experimental Zoology, 2003, 300A, 41-46.	1.4	23
33	Lens structure in MIP-deficient mice. The Anatomical Record, 2003, 273A, 714-730.	2.3	79
34	The molecular basis of water transport in the brain. Nature Reviews Neuroscience, 2003, 4, 991-1001.	4.9	685
35	Structure of Functional Single AQP0 Channels in Phospholipid Membranes. Journal of Molecular Biology, 2003, 325, 201-210.	2.0	22
36	Water Permeability of C-Terminally Truncated Aquaporin 0 (AQPO 1-243) Observed in the Aging Human Lens. , 2003, 44, 4820.		64

#	Article	IF	Citations
38	Role of Matrix and Cell Adhesion Molecules in Lens Differentiation. , 2004, , 245-260.		5
39	Lens Crystallins. , 2004, , 119-150.		10
41	The Lens: Historical and Comparative Perspectives. , 2004, , 3-26.		4
42	Lens Induction and Determination. , 2004, , 27-47.		7
43	Lens Cell Membranes. , 2004, , 151-172.		2
44	Lens Cell Proliferation: The Cell Cycle. , 2004, , 191-213.		5
45	Lens Fiber Differentiation. , 2004, , 214-244.		7
46	Growth Factors in Lens Development. , 2004, , 261-289.		10
47	Lens Regeneration. , 2004, , 290-312.		3
48	The Structure of the Vertebrate Lens. , 2004, , 71-118.		14
49	Lens Cell Cytoskeleton. , 2004, , 173-188.		4
50	Transcription Factors in Early Lens Development. , 2004, , 48-68.		4
51	Molecular Basis of pH and Ca2+ Regulation of Aquaporin Water Permeability. Journal of General Physiology, 2004, 123, 573-580.	0.9	140
52	Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development. Journal of Cell Science, 2004, 117, 871-880.	1.2	54
53	Combined transport of water and ions through membrane channels. Biological Chemistry, 2004, 385, 921-6.	1.2	30
54	The channel architecture of aquaporin 0 at a 2.2-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14045-14050.	3.3	248
55	Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature, 2004, 429, 193-197.	13.7	347
56	Post-translational Modifications of Aquaporin 0 (AQP0) in the Normal Human Lens:Â Spatial and Temporal Occurrenceâ€. Biochemistry, 2004, 43, 9856-9865.	1.2	104

	Сітаті	ion Report	
#	Article	IF	CITATIONS
57	The lens: local transport and global transparency. Experimental Eye Research, 2004, 78, 689-698.	1.2	62
58	Aquaporins: water channel proteins of the cell membrane. Progress in Histochemistry and Cytochemistry, 2004, 39, 1-83.	5.1	342
59	Water transport in the brain: Role of cotransporters. Neuroscience, 2004, 129, 1029-1042.	1.1	105
60	Aquaporin-0 Membrane Junctions Form Upon Proteolytic Cleavage. Journal of Molecular Biology, 2004, 342, 1337-1345.	2.0	119
61	Novel roles for aquaporins as gated ion channels. Advances in Molecular and Cell Biology, 2004, , 351-379.	0.1	6
62	The Lens. Advances in Organ Biology, 2005, 10, 149-179.	0.1	0
63	The Possible Role of Aquaporin 0 in Lens Physiology. , 2005, , 11-19.		0
64	Noninvasive measurement of cell volume changes by negative staining. Journal of Biomedical Optics, 2005, 10, 064017.	1.4	13
65	Structure-Function Relationships in Aquaporins. Seminars in Nephrology, 2006, 26, 189-199.	0.6	4
66	Crystal Structure of AqpZ Tetramer Reveals Two Distinct Arg-189 Conformations Associated with Water Permeation through the Narrowest Constriction of the Water-conducting Channel. Journal of Biological Chemistry, 2006, 281, 454-460.	1.6	101
67	Co-axial Association of Recombinant Eye Lens Aquaporin-0 Observed in Loosely Packed 3D Crystals. Journal of Molecular Biology, 2006, 355, 605-611.	2.0	37
68	Water Transport in AQP0 Aquaporin: Molecular Dynamics Studies. Journal of Molecular Biology, 2006, 360, 285-296.	2.0	44
69	Aquaporin gating. Current Opinion in Structural Biology, 2006, 16, 447-456.	2.6	117
70	The structure of aquaporins. Quarterly Reviews of Biophysics, 2006, 39, 361-396.	2.4	291
71	Zinc Modulation of Water Permeability Reveals that Aquaporin 0 Functions as a Cooperative Tetramer. Journal of General Physiology, 2007, 130, 457-464.	0.9	41
72	The structural basis of water permeation and proton exclusion in aquaporins (Review). Molecular Membrane Biology, 2007, 24, 366-374.	2.0	90
73	Functional expression of aquaporins in embryonic, postnatal, and adult mouse lenses. Developmental Dynamics, 2007, 236, 1319-1328.	0.8	45
74	The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Reports, 2007, 8, 51-55.	2.0	100

#	Article	IF	CITATIONS
75	Interactions of connexins with other membrane channels and transporters. Progress in Biophysics and Molecular Biology, 2007, 94, 233-244.	1.4	42
76	The Lens Circulation. Journal of Membrane Biology, 2007, 216, 1-16.	1.0	225
77	Turnover Rate of the Î ³ -Aminobutyric Acid Transporter GAT1. Journal of Membrane Biology, 2007, 220, 33-51.	1.0	29
78	Invertebrate aquaporins: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 935-955.	0.7	150
79	Functions of aquaporins in the eye. Progress in Retinal and Eye Research, 2008, 27, 420-433.	7.3	165
80	Polymorphic Assemblies and Crystalline Arrays of Lens Tetraspanin MP20. Journal of Molecular Biology, 2008, 376, 380-392.	2.0	8
81	Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Experimental Eye Research, 2008, 87, 9-21.	1.2	53
82	Ultrastructural analysis of damage to nuclear fiber cell membranes in advanced age-related cataracts from India. Experimental Eye Research, 2008, 87, 147-158.	1.2	21
83	Aquaporin 0â^'Calmodulin Interaction and the Effect of Aquaporin O Phosphorylation. Biochemistry, 2008, 47, 339-347.	1.2	63
84	Dynamic control of slow water transport by aquaporin 0: Implications for hydration and junction stability in the eye lens. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14430-14435.	3.3	74
85	Chapter 2 Ocular Aquaporins and Aqueous Humor Dynamics. Current Topics in Membranes, 2008, 62, 47-70.	0.5	6
86	Chapter 3 The Role of Gap Junction Channels in the Ciliary Body Secretory Epithelium. Current Topics in Membranes, 2008, 62, 71-96.	0.5	4
87	Relative CO ₂ /NH ₃ selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5406-5411.	3.3	235
88	Crystal Structure of a Yeast Aquaporin at 1.15 Ã Reveals a Novel Gating Mechanism. PLoS Biology, 2009, 7, e1000130.	2.6	150
89	Permeation of water through the KcsA K ⁺ channel. Proteins: Structure, Function and Bioinformatics, 2009, 74, 437-448.	1.5	28
90	Differentiation-dependent modification and subcellular distribution of aquaporin-0 suggests multiple functional roles in the rat lens. Differentiation, 2009, 77, 70-83.	1.0	37
91	Intact AQP0 performs cell-to-cell adhesion. Biochemical and Biophysical Research Communications, 2009, 390, 1034-1039.	1.0	85
92	Structural Function of MIP/Aquaporin 0 in the Eye Lens; Genetic Defects Lead to Congenital Inherited Cataracts. Handbook of Experimental Pharmacology, 2009, , 265-297.	0.9	72

#	Article	IF	CITATIONS
93	Lens Gap Junctions in Growth, Differentiation, and Homeostasis. Physiological Reviews, 2010, 90, 179-206.	13.1	205
94	Crystal structures of all-alpha type membrane proteins. European Biophysics Journal, 2010, 39, 723-755.	1.2	27
95	Structural insights into eukaryotic aquaporin regulation. FEBS Letters, 2010, 584, 2580-2588.	1.3	137
96	Mutations at key poreâ€lining positions differentiate the water permeability of fish lens aquaporin from other vertebrates. FEBS Letters, 2010, 584, 4797-4801.	1.3	6
97	Two Distinct Aquaporin 0s Required for Development and Transparency of the Zebrafish Lens. , 2010, 51, 6582.		39
98	Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1163-R1174.	0.9	38
99	Exploring Transmembrane Diffusion Pathways With Molecular Dynamics. Physiology, 2010, 25, 142-154.	1.6	42
100	Novel Fatty Acid Acylation of Lens Integral Membrane Protein Aquaporin-O. Biochemistry, 2010, 49, 9858-9865.	1.2	53
101	Dynamic and energetic mechanisms for the distinct permeation rate in AQP1 and AQP0. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 318-326.	1.4	24
102	Transgenic expression of AQP1 in the fiber cells of AQP0 knockout mouse: Effects on lens transparency. Experimental Eye Research, 2010, 91, 393-404.	1.2	38
103	Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1089-1097.	1.8	33
104	Functional analysis of novel aquaporins from Fasciola gigantica. Molecular and Biochemical Parasitology, 2011, 175, 144-153.	0.5	14
105	Water flux through human aquaporin 1: inhibition by intracellular furosemide and maximal response with high osmotic gradients. European Biophysics Journal, 2011, 40, 737-746.	1.2	28
106	Aquaporin-0 Interacts with the FERM Domain of Ezrin/Radixin/Moesin Proteins in the Ocular Lens. , 2011, 52, 5079.		39
107	A counterpoint between computer simulations and biological experiments to train new members of a laboratory of physiological sciences. American Journal of Physiology - Advances in Physiology Education, 2012, 36, 345-351.	0.8	4
108	Structure, function and translational relevance of aquaporin dual water and ion channels. Molecular Aspects of Medicine, 2012, 33, 553-561.	2.7	70
109	Human AQP1 Is a Constitutively Open Channel that Closes by a Membrane-Tension-Mediated Mechanism. Biophysical Journal, 2013, 104, 85-95.	0.2	42
110	Functional characterization of an AQPO missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion. Experimental Eye Research, 2013, 116, 371-385.	1.2	46

#	Article	IF	CITATIONS
111	Allosteric mechanism of water-channel gating by Ca2+–calmodulin. Nature Structural and Molecular Biology, 2013, 20, 1085-1092.	3.6	102
112	The water permeability of lens aquaporin-0 depends on its lipid bilayer environment. Experimental Eye Research, 2013, 113, 32-40.	1.2	53
113	Verification and spatial localization of aquaporin-5 in the ocular lens. Experimental Eye Research, 2013, 108, 94-102.	1.2	40
114	Relative CO ₂ /NH ₃ selectivities of mammalian aquaporins 0–9. American Journal of Physiology - Cell Physiology, 2013, 304, C985-C994.	2.1	95
115	Movement of NH ₃ through the human urea transporter B: a new gas channel. American Journal of Physiology - Renal Physiology, 2013, 304, F1447-F1457.	1.3	27
116	Regulation of AQPO water permeability is enhanced by cooperativity. Journal of General Physiology, 2013, 141, 287-295.	0.9	31
117	SILICON MULTIMODE PHOTONIC INTEGRATED DEVICES FOR ON-CHIP MODE-DIVISION-MULTIPLEXED OPTICAL INTERCONNECTS. Progress in Electromagnetics Research, 2013, 143, 773-819.	1.6	109
118	In Vivo Analysis of Aquaporin 0 Function in Zebrafish: Permeability Regulation Is Required for Lens Transparency. , 2013, 54, 5136.		32
119	Aquaporin-0 Targets Interlocking Domains to Control the Integrity and Transparency of the Eye Lens. , 2014, 55, 1202.		46
120	A junction of transparency. Focus on "Functional effects of Cx50 mutations associated with congenital cataracts― American Journal of Physiology - Cell Physiology, 2014, 306, C200-C201.	2.1	2
121	The Physiology and Pathobiology of the Lens. , 2014, , 2072-2083.		3
122	Intact and N- or C-terminal end truncated AQPO function as open water channels and cell-to-cell adhesion proteins: End truncation could be a prelude for adjusting the refractive index of the lens to prevent spherical aberration. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2862-2877.	1.1	26
123	Insights into structural mechanisms of gating induced regulation of aquaporins. Progress in Biophysics and Molecular Biology, 2014, 114, 69-79.	1.4	29
124	Water channel structures analysed by electron crystallography. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1605-1613.	1.1	28
125	Identification of 3-chloro-1,2-propandiol using molecularly imprinted composite solid-phase extraction materials. Analytical and Bioanalytical Chemistry, 2014, 406, 6319-6327.	1.9	12
126	Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses. Journal of Membrane Biology, 2014, 247, 107-125.	1.0	58
127	Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration. Biochemical and Biophysical Research Communications, 2014, 452, 986-991.	1.0	35
128	Aquaporins in the eye: Expression, function, and roles in ocular disease. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1513-1523.	1.1	100

#	Article	IF	CITATIONS
129	Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. Membranes, 2015, 5, 307-351.	1.4	54
130	The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Science Advances, 2015, 1, e1400083.	4.7	135
131	Auto-Adhesion Potential of Extraocular Aqp0 during Teleost Development. PLoS ONE, 2016, 11, e0154592.	1.1	5
132	Spatial distributions of phosphorylated membrane proteins aquaporin 0 and MP20 across young and aged human lenses. Experimental Eye Research, 2016, 149, 59-65.	1.2	8
133	Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins. Soft Matter, 2016, 12, 1601-1609.	1.2	14
134	Molecular Biology of Aquaporins. Advances in Experimental Medicine and Biology, 2017, 969, 1-34.	0.8	77
135	Identification of a direct Aquaporin-0 binding site in the lens-specific cytoskeletal protein filensin. Experimental Eye Research, 2017, 159, 23-29.	1.2	17
136	Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0. Biophysical Journal, 2017, 112, 953-965.	0.2	14
137	Interactions between Aquaporin Proteins and Block Copolymer Matrixes. , 2017, , .		0
138	Aquaporin Protein-Protein Interactions. International Journal of Molecular Sciences, 2017, 18, 2255.	1.8	58
139	The Role of Aquaporins in Ocular Lens Homeostasis. International Journal of Molecular Sciences, 2017, 18, 2693.	1.8	36
140	Aquaporin 0 Modulates Lens Gap Junctions in the Presence of Lens-Specific Beaded Filament Proteins. , 2017, 58, 6006.		19
141	Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 401-409.	0.9	35
142	Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells. American Journal of Physiology - Cell Physiology, 2018, 314, C191-C201.	2.1	27
143	Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Cells, 2018, 7, 209.	1.8	33
144	Lithobates catesbeianus (American Bullfrog) oocytes: a novel heterologous expression system for aquaporins. Biology Open, 2018, 7, .	0.6	3
145	A novel MIP mutation in a Chinese family with congenital cataract. Ophthalmic Genetics, 2018, 39, 473-476.	0.5	3
146	Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges. Polymer Science - Series A, 2018, 60, 429-450.	0.4	13

#	Article	IF	CITATIONS
147	Plant and Mammal Aquaporins: Same but Different. International Journal of Molecular Sciences, 2018, 19, 521.	1.8	55
148	Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Frontiers in Chemistry, 2018, 6, 135.	1.8	87
149	Temperature-dependent viscosity dominated transport control through AQP1 water channel. Journal of Theoretical Biology, 2019, 480, 92-98.	0.8	1
150	Positively charged amino acid residues in the extracellular loops A and C of lens aquaporin 0 interact with the negative charges in the plasma membrane to facilitate cell-to-cell adhesion. Experimental Eye Research, 2019, 185, 107682.	1.2	5
151	Experimental and Simulation Studies of Aquaporin 0 Water Permeability and Regulation. Chemical Reviews, 2019, 119, 6015-6039.	23.0	25
152	Deletion of Seventeen Amino Acids at the C-Terminal End of Aquaporin 0 Causes Distortion Aberration and Cataract in the Lenses of AQPOΔCʃî"CMice. , 2019, 60, 858.		11
153	Cooperativity and allostery in aquaporin 0 regulation by Ca2+. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 988-996.	1.4	16
154	Molecular aspects of aquaporins. Vitamins and Hormones, 2020, 113, 129-181.	0.7	13
155	Aquaporins and male (in)fertility: Expression and role throughout the male reproductive tract. Archives of Biochemistry and Biophysics, 2020, 679, 108222.	1.4	20
156	Micropipette Aspirationâ€Based Assessment of Single Channel Water Permeability. Biotechnology Journal, 2020, 15, e1900450.	1.8	15
157	Response of the PI3Kâ€AKT signalling pathway to low salinity and the effect of its inhibition mediated by wortmannin on ion channels in turbot <i>Scophthalmus maximus</i> . Aquaculture Research, 2020, 51, 2676-2686.	0.9	11
158	Aquaporin water channels as regulators of cell-cell adhesion proteins. American Journal of Physiology - Cell Physiology, 2021, 320, C771-C777.	2.1	20
159	Adaptable and Multifunctional Ion-Conducting Aquaporins. Annual Review of Plant Biology, 2021, 72, 703-736.	8.6	60
160	The Lens. , 2011, , 131-163.		10
162	Calmodulin Bound Aquaporin-0 Reveals Two Distinct Energy Profiles. Computational Molecular Bioscience, 2016, 06, 66-79.	0.6	0
163	PKC putative phosphorylation site Ser235 is required for MIP/AQP0 translocation to the plasma membrane. Molecular Vision, 2008, 14, 1006-14.	1.1	22
164	The effect of the interaction between aquaporin 0 (AQPO) and the filensin tail region on AQPO water permeability. Molecular Vision, 2011, 17, 3191-9.	1.1	19
165	Spatial expression of aquaporin 5 in mammalian cornea and lens, and regulation of its localization by phosphokinase A. Molecular Vision, 2012, 18, 957-67.	1.1	43

#	Article	IF	CITATIONS
166	Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophysical Reviews, 2022, 14, 181-198.	1.5	8
167	Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. International Journal of Molecular Sciences, 2022, 23, 1388.	1.8	50
168	Beyond the Channels: Adhesion Functions of Aquaporin 0 and Connexin 50 in Lens Development. Frontiers in Cell and Developmental Biology, 2022, 10, 866980.	1.8	5
169	Lens Aquaporins in Health and Disease: Location is Everything!. Frontiers in Physiology, 2022, 13, 882550.	1.3	7
170	Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. Journal of Membrane Science, 2022, , 121308.	4.1	2
171	Classification and Gene Structure of Aquaporins. Advances in Experimental Medicine and Biology, 2023, , 1-13.	0.8	1
172	Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers, 2023, 15, 849.	1.7	2