Inheritance of parental genomes in progenies of Poa pragenotypes as assessed by RAPD markers and flow cytor

Theoretical and Applied Genetics 95, 516-524 DOI: 10.1007/s001220050592

Citation Report

#	Article	IF	CITATIONS
1	Inheritance of parthenogenesis in Poa pratensis L.: auxin test and AFLP linkage analyses support monogenic control. Theoretical and Applied Genetics, 1998, 97, 74-82.	3.6	57
2	Molecular characterization of the mutableflakedallele for flower variegation in the common morning glory. Plant Journal, 1998, 16, 371-376.	5.7	78
3	Development of Arm Specific RAPD Markers for Rye Chromosome 2R in Wheat. Crop Science, 1999, 39, 1702-1706.	1.8	26
4	Temperate Forage Seed Production. Journal of New Seeds, 1999, 1, 37-66.	0.3	18
5	Floricultural Traits and Transposable Elements in the Japanese and Common Morning Gloriesaa. Annals of the New York Academy of Sciences, 1999, 870, 265-274.	3.8	45
6	Flow cytometry of plant cells with applications in large-scale bioprocessing. Biotechnology Advances, 1999, 17, 3-27.	11.7	51
7	Characterization of the Chalcone Synthase Genes Expressed in flowers of the Common and Japanese Morning Glories Genes and Genetic Systems, 1999, 74, 141-147.	0.7	30
8	An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant Journal, 2000, 21, 97-108.	5.7	330
9	Inheritance of Apomictic Seed Production in Kentucky Bluegrass (Poa pratensisL.). Journal of New Seeds, 2001, 2, 43-58.	0.3	8
10	IDENTIFICATION OF APOMICTIC PLANTS IN ROSA HYBRIDA L. BY AFLPs. Acta Horticulturae, 2001, , 51-55.	0.2	3
11	Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sexual Plant Reproduction, 2001, 14, 213-217.	2.2	78
12	Title is missing!. Molecular Breeding, 2001, 7, 293-300.	2.1	28
13	Development and Implementation of Molecular Markers for Forage Crop Improvement. Developments in Plant Breeding, 2001, , 101-133.	0.2	20
14	Effect of Pollination Timing on the Rate of Apomictic Reproduction Revealed by RAPD Markers in Paspalum notatum. Annals of Botany, 2002, 89, 165-170.	2.9	61
15	Cultivar Composition and Spatial Patterns in Kentucky Bluegrass Blends. Crop Science, 2002, 42, 842-847.	1.8	9
16	Genomic DNA fingerprints as a tool for identifying cultivated types of radicchio (Cichorium intybus) Tj ETQq1 1 0	.784314 rg	gBT /Overloc
17	Residue Management, Seed Production, Crop Development, and Turf Quality in Diverse Kentucky Bluegrass Germplasm. Crop Science, 2003, 43, 1091-1099.	1.8	7
18	Nitrate Uptake of Seedling and Mature Kentucky Bluegrass Plants. Crop Science, 2004, 44, 567-574.	1.8	6

CITATION REPORT

#	Article	IF	CITATIONS
19	Molecular Genetics and Modification of Flowering and Reproductive Development. Developments in Plant Breeding, 2004, , 105-126.	0.2	4
20	Interspecific Hybrids ofPoa arachnifera×Poa secunda. Journal of New Seeds, 2004, 6, 1-26.	0.3	9
21	Isolation of candidate genes for apomixis in Poa pratensis L Plant Molecular Biology, 2004, 56, 879-894.	3.9	101
22	Determination of the Level of Variation in Polyploidy among Kentucky Bluegrass Cultivars by Means of Flow Cytometry. Crop Science, 2004, 44, 2168-2174.	1.8	28
23	Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L Heredity, 2006, 96, 322-334.	2.6	71
24	Plants regenerated from embryo cultures of an apomictic clone of Kentucky bluegrass (Poa pratensis) Tj ETQq1	1 0,78431 1.2	4 rgBT /Overl
25	Genetic characterization ofSalix albaL. andSalix fragilisL. by means of different PCR-derived marker systems. Plant Biosystems, 2007, 141, 283-291.	1.6	19
26	A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biology and Fertility of Soils, 2009, 45, 669-674.	4.3	76
27	No evidence of apomixis in matroclinal progeny from experimental crosses in the genus Fragaria (strawberry) based on RAPDs. Euphytica, 2010, 171, 193-202.	1.2	14
28	Variation in 2C Nuclear DNA Content of <i>Zoysia</i> spp. as Determined by Flow Cytometry. Crop Science, 2010, 50, 1519-1525.	1.8	16
29	DNA Markers and FCSS Analyses Shed Light on the Genetic Diversity and Reproductive Strategy of Jatropha curcas L Diversity, 2010, 2, 810-836.	1.7	56
30	Apomixis in the Era of Biotechnology. , 2010, , 405-436.		24
32	DNA content, morphometric and molecular marker analyses of Citrus limonimedica, C. limon and C. medica for the determination of their variability and genetic relationships within the genus Citrus. Scientia Horticulturae, 2011, 129, 663-673.	3.6	21
33	The molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea. Journal of Plant Research, 2011, 124, 299-304.	2.4	9
34	Modes of inheritance of two apomixis components, diplospory and parthenogenesis, in Chinese chive (<i>Allium ramosum</i>) revealed by analysis of the segregating population generated by back-crossing between amphimictic and apomictic diploids. Breeding Science, 2012, 62, 160-169.	1.9	14
35	Analysis of genetic diversity in female, male and half sibs willow genotypes through RAPD and SSR markers. African Journal of Biotechnology, 2013, 12, 4578-4587.	0.6	3
36	Molecular Markers Highlight Variation within and among Kentucky Bluegrass Varieties and Accessions. Crop Science, 2013, 53, 2245-2254.	1.8	10
37	Congruence of random amplification of polymorphic deoxyribonucleic acid (RAPD) and simple sequence repeats (SSR) markers in genetic characterization of willow (Salix spp.). African Journal of Biotechnology, 2014, 13, 3217-3229.	0.6	0

#	Article	IF	CITATIONS
38	Characterization of morphological traits and RAPD polymorphism in selected forms of Kentucky bluegrass (Poa pratensis L.). Biodiversity Research and Conservation, 2015, 37, 1-10.	0.3	2
39	The application of flow cytometry and a thioredoxinâ€like nuclear gene for breeding <i><scp>Parachnifera</scp></i> x <i><scp>P</scp>oa pratensis</i> hybrids. Plant Breeding, 2015, 134, 612-622.	rp>oa 1.9	2

ITATION REPOR

There Is No Evidence of Geographical Patterning among Invasive Kentucky Bluegrass (<i>Poa) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662

41	Marker-assisted screening of breeding populations of an apomictic grass Cenchrus ciliaris L. segregating for the mode of reproduction. Crop Breeding and Applied Biotechnology, 2017, 17, 10-17.	0.4	11
42	Molecular Markers Improve Breeding Efficiency in Apomictic Poa Pratensis L Agronomy, 2018, 8, 17.	3.0	6
43	Forage and Turf-Grass Biotechnology: Principles, Methods, and Prospects. , 1999, , 191-237.		17
44	Molecular evaluations of thirty one clones of poplar based on RAPD and SSR molecular markers. Genetika, 2014, 46, 985-1001.	0.4	2
45	Preliminary DNA fingerprinting of the turf grass <i>Cynodon dactylon</i> (Poaceae: Chloridoideae). Bothalia, 2002, 32, 117-122.	0.3	28
46	Genetic diversity of <i>Poa pratensis</i> L. depending on geographical origin and compared with genetic markers. PeerJ, 2016, 4, e2489.	2.0	6
47	Molecular Markers. Monographs on Theoretical and Applied Genetics, 1998, , 147-168.	0.2	0

48 Molecular Relationships and Genetic Diversity Analysis of Venetian Radicchio (Leaf Chicory,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 342 T

50	The Female Gametophyte Characteristics and Gene Expression Analysis Involved in Apomixis of Wild Germplasm Materials of Kentucky Bluegrass in Gansu Province of China. Journal of Plant Growth Regulation, 0, , .	5.1	4
51	A happy accident: a novel turfgrass reference genome. G3: Genes, Genomes, Genetics, 2023, 13, .	1.8	0
52	Is apomixis occurring in walnut (Juglans regia L.)? New data from progeny molecular tests and cytological investigations shed light on its reproductive system. Frontiers in Plant Science, 0, 14, .	3.6	0