New Method for Retrospective Detection of Exposure to Anticholinesterases: Application to Alleged Sarin Victin

Toxicology and Applied Pharmacology 146, 156-161 DOI: 10.1006/taap.1997.8243

Citation Report

#	Article	IF	CITATIONS
1	ORGANOPHOSPHORUS INSECTICIDE POISONING. British Journal of Anaesthesia, 1989, 63, 736-750.	3.4	127
2	Chromatography and mass spectrometry of chemical warfare agents, toxins and related compounds: state of the art and future prospects. Journal of Chromatography A, 1998, 814, 1-23.	3.7	202
3	Low Level Nose-Only Exposure to the Nerve Agent Soman: Toxicokinetics of Soman Stereoisomers and Cholinesterase Inhibition in Atropinized Guinea Pigs. Toxicology and Applied Pharmacology, 1998, 153, 179-185.	2.8	30
4	Quantitative analysis of O-isopropyl methylphosphonic acid in serum samples of Japanese citizens allegedly exposed to sarin: estimation of internal dosage. Archives of Toxicology, 1998, 72, 671-675.	4.2	118
5	Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 1998, 120, 12359-12360.	13.7	79
6	Epidemiological association in US veterans between Gulf War illness and exposures to anticholinesterases. Toxicology Letters, 1998, 102-103, 523-526.	0.8	27
7	Management of victims of urban chemical attack: the French approach. Resuscitation, 1999, 42, 141-149.	3.0	37
8	Organophosphorus poisoning and anaesthesia. Anaesthesia, 1999, 54, 1073-1088.	3.8	107
9	Oxime Reactivation of RBC Acetylcholinesterases for Biomonitoring. Archives of Environmental Contamination and Toxicology, 1999, 37, 283-289.	4.1	15
10	The interaction of sarin and soman with plasma proteins: the identification of a novel phosphonylation site. Archives of Toxicology, 1999, 73, 123-126.	4.2	98
11	Alkylation of Human Serum Albumin by Sulfur Mustard in Vitro and in Vivo:  Mass Spectrometric Analysis of a Cysteine Adduct as a Sensitive Biomarker of Exposure. Chemical Research in Toxicology, 1999, 12, 715-721.	3.3	135
15	Evaluation of antidotes for poisoning by organophosphorus pesticides. EMA - Emergency Medicine Australasia, 2000, 12, 22-37.	1.1	167
16	The influence of anticholinergic drug selection on the efficacy of antidotal treatment of soman-poisoned rats. Toxicology, 2000, 154, 67-73.	4.2	25
17	Determination of the DNA sequences of acetylcholinesterase and butyrylcholinesterase from cat and demonstration of the existence of both in cat plasma. Biochemical Pharmacology, 2000, 60, 479-487.	4.4	33
18	Intravenous and Inhalation Toxicokinetics of Sarin Stereoisomers in Atropinized Guinea Pigs. Toxicology and Applied Pharmacology, 2000, 169, 249-254.	2.8	42
19	Biomonitoring of exposure to lewisite based on adducts to haemoglobin. Archives of Toxicology, 2000, 74, 207-214.	4.2	40
22	Blood Cholinesterases as Human Biomarkers of Organophosphorus Pesticide Exposure. Reviews of Environmental Contamination and Toxicology, 2000, 163, 29-111.	1.3	94
24	Monitoring of fluorine in urine samples of patients involved in the Tokyo sarin disaster, in connection with the detection of other decomposition products of sarin and the by-products generated during sarin synthesis. Clinica Chimica Acta, 2000, 302, 171-188.	1.1	20

#	ARTICLE	IF	CITATIONS
25	PRELIMINARY STUDIES IN THE FORMATION OF ETHYL METHYLPHOSPHONOFLUORIDATE FROM RAT AND HUMAN SERUM EXPOSED TO VX AND TREATED WITH FLUORIDE ION. Analytical Letters, 2001, 34, 727-737.	1.8	26
27	Cholinesterases. , 2001, , 967-985.		17
28	The Pathophysiology of Acetylcholinesterase Inhibiting Pesticides. Journal of Agromedicine, 2001, 7, 5-19.	1.5	5
29	Clinical Toxicology of Anticholinesterase Agents in Humans. , 2001, , 1043-1085.		46
30	Bioanalysis of the Enantiomers of (±)-Sarin using Automated Thermal Cold-Trap Injection Combined with Two-Dimensional Gas Chromatography. Journal of Analytical Toxicology, 2001, 25, 57-61.	2.8	26
31	Quantitation of Organophosphorus Nerve Agent Metabolites in Human Urine Using Isotope Dilution Gas Chromatography-Tandem Mass Spectrometry. Journal of Analytical Toxicology, 2002, 26, 6-10.	2.8	75
32	Immunochemical Detection of Sulfur Mustard Adducts with Keratins in the Stratum Corneum of Human Skin. Chemical Research in Toxicology, 2002, 15, 21-25.	3.3	61
33	Retrospective Detection of Exposure to Organophosphorus Anti-Cholinesterases:Â Mass Spectrometric Analysis of Phosphylated Human Butyrylcholinesterase. Chemical Research in Toxicology, 2002, 15, 582-590.	3.3	204
34	Analysis of organophosphorus compound adducts of serine proteases by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 776, 79-88.	2.3	13
35	Biomonitoring of Exposure to Chemical Warfare Agents: A Review. Toxicology and Applied Pharmacology, 2002, 184, 116-126.	2.8	257
36	Long-term, low-level exposure of guinea pigs and marmosets to sarin vapor in air: lowest observable effect level. Toxicology and Applied Pharmacology, 2003, 189, 170-179.	2.8	28
37	Toxicokinetics of the nerve agent (±)-VX in anesthetized and atropinized hairless guinea pigs and marmosets after intravenous and percutaneous administration. Toxicology and Applied Pharmacology, 2003, 191, 48-62.	2.8	131
38	Derivatisation reactions in the chromatographic analysis of chemical warfare agents and their degradation products. Journal of Chromatography A, 2003, 1000, 253-281.	3.7	230
39	Discriminative determination of alkyl methylphosphonates and methylphosphonate in blood plasma and urine by gas chromatography–mass spectrometry after tertbutyldimethylsilylation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 795, 123-132.	2.3	42
40	Chemical Warfare and the Gulf War: A Review of the Impact on Gulf Veterans' Health. Military Medicine, 2003, 168, 606-613.	0.8	38
41	Quantitation of Metabolites of the Nerve Agents Sarin, Soman, Cyclohexylsarin, VX, and Russian VX in Human Urine Using Isotope-Dilution Gas Chromatography-Tandem Mass Spectrometry. Journal of Analytical Toxicology, 2004, 28, 372-378.	2.8	65
42	Nerve Agents: A Comprehensive Review. Journal of Intensive Care Medicine, 2004, 19, 22-37.	2.8	210
43	Quantitation of Fluoride Ion Released Sarin in Red Blood Cell Samples by Gas Chromatography-Chemical Ionization Mass Spectrometry Using Isotope Dilution and Large-Volume	2.8	52

Injection. Journal of Analytical Toxicology, 2004, 28, 357-363.

#	Article	IF	CITATIONS
44	Improvements of the Fluoride Reactivation Method for the Verification of Nerve Agent Exposure. Journal of Analytical Toxicology, 2004, 28, 364-371.	2.8	67
45	Mid-infrared in vivo depth-profiling of topical chemicals on skin. Skin Research and Technology, 2004, 10, 113-121.	1.6	35
46	Retrospective detection of exposure to nerve agents: analysis of phosphofluoridates originating from fluoride-induced reactivation of phosphylated BuChE. Archives of Toxicology, 2004, 78, 508-524.	4.2	71
47	Low levels of sarin affect the eeg in marmoset monkeys: a pilot study. Journal of Applied Toxicology, 2004, 24, 475-483.	2.8	23
48	Low-level exposure of guinea pigs and marmosets to sarin vapour in air: lowest-observable-adverse-effect level(LOAEL) for miosis. Journal of Applied Toxicology, 2004, 24, 59-68.	2.8	24
49	Protective Effect of Equine Butyrylcholinesterase in Inhalation Intoxication of Rats with Sarin: Determination of Blood and Brain Cholinesterase Activities. Inhalation Toxicology, 2004, 16, 531-536.	1.6	21
50	Albumin, a New Biomarker of Organophosphorus Toxicant Exposure, Identified by Mass Spectrometry. Toxicological Sciences, 2004, 83, 303-312.	3.1	149
51	Organophosphatesâ§,Nerve Agent Poisoning: Mechanism of Action, Diagnosis, Prophylaxis, And Treatment. Advances in Clinical Chemistry, 2004, 38, 151-216.	3.7	616
52	The trace analysis of alkyl alkylphosphonic acids in urine using gas chromatography–ion trap negative ion tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 816, 251-258.	2.3	91
53	Diagnostic aspects of organophosphate poisoning. Toxicology, 2005, 214, 182-189.	4.2	136
55	The Application of the Fluoride Reactivation Process to the Detection of Sarin and Soman Nerve Agent Exposures in Biological Samples. Drug and Chemical Toxicology, 2005, 27, 77-91.	2.3	56
56	Analysis of chemical warfare agents and their related compounds. , 2005, , 69-90.		3
58	Gas Chromatography/Mass Spectrometry in Analysis of Chemicals Related to the Chemical Weapons Convention. , 2006, , 249-281.		14
59	Methods for Retrospective Detection of Exposure to Toxic Scheduled Chemicals. Part B: Mass Spectrometric and Immunochemical Analysis of Covalent Adducts to Proteins and DNA. , 2006, , 433-451.		6
60	BIOMONITORING OF EXPOSURE TO CHEMICAL WARFARE AGENTS. , 2006, , 21-26.		1
62	Methods for the Retrospective Detection of Exposure to Toxic Scheduled Chemicals. Part A: Analysis of Free Metabolites. , 2006, , 403-431.		5
63	Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography–mass spectrometric analysis after in gel chymotryptic digestion. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 838, 21-30.	2.3	57
64	Analysis of Organophosphate and Carbamate Pesticides and Anticholinesterase Therapeutic Agents. , 2006, , 681-701.		3

ARTICLE IF CITATIONS # Detection of sarin in plasma of rats after inhalation intoxication. Journal of Enzyme Inhibition and 5.2 0 65 Medicinal Chemistry, 2006, 21, 509-514. ENVIRONMENTAL AND BIOMEDICAL SAMPLE ANALYSIS IN SUPPORT OF ALLEGATIONS OF USE OF CHEMICAL 3.4 WARFARE AGENTS. Toxin Reviews, 2007, 26, 275-298. 67 Biological Markers of Exposure to Chemical Warfare Agents., 0, , 127-156. 15 Mechanism of Aging of Mipafox-Inhibited Butyrylcholinesterase. Chemical Research in Toxicology, 2007, 20, 504-510. Development of a MALDI-TOF-MS method to identify and quantify butyrylcholinesterase inhibition 69 resulting from exposure to organophosphate and carbamate pesticides. Journal of the American 2.8 35 Society for Mass Spectrometry, 2007, 18, 698-706. Isotope dilution LC/MS/MS for the detection of nerve agent exposure in urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 846, 42-50. 2.3 Determination of hydrolytic degradation products of nerve agents by injection port fluorination in gas chromatography/mass spectrometry for the verification of the Chemical Weapons Convention. Rapid Communications in Mass Spectrometry, 2007, 21, 3109-3114. 71 1.5 21 Phosphylated tyrosine in albumin as a biomarker of exposure to organophosphorus nerve agents. 4.2 147 Archives of Toxicology, 2007, 81, 627-639. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable 73 instrument and an electrochemical biosensor. Analytical and Bioanalytical Chemistry, 2007, 388, 3.7 87 1049-1057. Gas Chromatography-Mass Spectrometric Determination of Sarin Exposures in Human Serum by 74 1.7 Fluoride Reactivation Method. Chinese Journal of Analytical Chemistry, 2008, 36, 1269-1272. Nanoparticleâ€Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase: An Exposure Biomarker of Organophosphate Pesticides and Nerve Agents. 75 3.3 138 Chemistry - A European Journal, 2008, 14, 9951-9959. Magnetic Electrochemical Immunoassays with Quantum Dot Labels for Detection of Phosphorylated 6.5 128 Acetylcholinesterase in Plasma. Analytical Chemistry, 2008, 80, 8477-8484. Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus 77 1.9 63 pesticides. Biomarkers, 2008, 13, 343-363. A Rapid and Sensitive Technique for Assessing Exposure VX via GC-MS-MS Analysis. Journal of Analytical Toxicology, 2008, 32, 63-67. 2.8 Quantification of Nerve Agent VX-Butyrylcholinesterase Adduct Biomarker from an Accidental 79 2.8 34 Exposure. Journal of Analytical Toxicology, 2008, 32, 68-72. Determination of VX-G Analogue in Red Blood Cells via Gas Chromatography-Tandem Mass Spectrometry Following an Accidental Exposure to VX. Journal of Analytical Toxicology, 2008, 32, 73-77. An Overview of Biological Markers of Exposure to Chemical Warfare Agents. Journal of Analytical 81 2.8 70 Toxicology, 2008, 32, 2-9. Modifications to the Organophosphorus Nerve Agent-Protein Adduct Refluoridation Method for 2.8 Retrospective Analysis of Nerve Agent Exposures. Journal of Analytical Toxicology, 2008, 32, 116-124.

#	Article	IF	CITATIONS
83	Gas Chromatography-Tandem Mass Spectrometry Analysis of Red Blood Cells from Göttingen Minipig® following Whole-Body Vapor Exposure to VX. Journal of Analytical Toxicology, 2008, 32, 57-52.	2.8	11
84	Physiologically Based Pharmacokinetic Modeling of Chemical Warfare Agents. , 2009, , 791-798.		1
85	Assessment of nerve agent exposure: existing and emerging methods. Bioanalysis, 2009, 1, 729-739.	1.5	10
86	Monitoring of Blood Cholinesterase Activity in Workers Exposed to Nerve Agents. , 2009, , 877-886.		8
87	Biomarkers of Exposure to Organophosphorus Poisons. , 2009, , 847-858.		5
88	EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 2009, 24, 2377-2383.	10.1	65
89	Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 1-18.	3.9	60
90	Development of a LC/MS/MS method to analyze butyrylcholinesterase inhibition resulting from multiple pesticide exposure. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3681-3685.	2.3	8
91	Biomarkers of Nerve Agents Exposure. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 155-165.	0.5	0
92	Diagnosis of Exposure to Chemical Warfare Agents: An Essential Tool to Counteract Chemical Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 195-201.	0.5	3
93	Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection. Analytical Chemistry, 2009, 81, 9314-9320.	6.5	81
94	Activity-Based Protein Profiling Reveals Broad Reactivity of the Nerve Agent Sarin. Chemical Research in Toxicology, 2009, 22, 683-689.	3.3	28
95	Mass Spectrometric Identification of Chemical Warfare Agent Adducts with Biological Macromolecule for Verification of Their Exposure. Journal of Health Science, 2009, 55, 879-886.	0.9	9
96	Biomarkers of organophosphorus nerve agent exposure: comparison of phosphylated butyrylcholinesterase and phosphylated albumin after oxime therapy. Archives of Toxicology, 2010, 84, 25-36.	4.2	75
97	Development and validation of a sensitive gas chromatography–ammonia chemical ionization mass spectrometry method for the determination of tabun enantiomers in hemolysed blood and plasma of different species. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1290-1296.	2.3	20
98	History and perspectives of bioanalytical methods for chemical warfare agent detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1207-1215.	2.3	79
99	Use of NMR techniques for toxic organophosphorus compound profiling. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1365-1381.	2.3	34
100	GC–MS and LC–MS analysis of nerve agents in body fluids: Intra-laboratory verification test using spiked plasma and urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1226-1233.	2.3	33

#	Article	IF	CITATIONS
101	Comprehensive gas chromatography with Time of Flight MS and large volume introduction for the detection of fluoride-induced regenerated nerve agent in biological samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1320-1325.	2.3	36
102	Paraoxonases in Inflammation, Infection, and Toxicology. Advances in Experimental Medicine and Biology, 2010, , .	1.6	3
103	Clinical Toxicology of Anticholinesterase Agents in Humans. , 2010, , 1543-1589.		34
104	Cholinesterases. , 2010, , 1457-1478.		16
105	Identification and Characterization of Biomarkers of Organophosphorus Exposures in Humans. Advances in Experimental Medicine and Biology, 2010, 660, 61-71.	1.6	40
106	Immunomagnetic Separation and Quantification of Butyrylcholinesterase Nerve Agent Adducts in Human Serum. Analytical Chemistry, 2010, 82, 6593-6600.	6.5	118
107	Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior. Archives of Biochemistry and Biophysics, 2010, 494, 107-120.	3.0	192
108	Nanostructured Biosensing for Detection of Insecticides. Biological and Medical Physics Series, 2011, , 365-391.	0.4	1
109	NanoBiosensing. Biological and Medical Physics Series, 2011, , .	0.4	29
110	Application of biological monitoring for exposure assessment following chemical incidents: A procedure for decision making. Journal of Exposure Science and Environmental Epidemiology, 2011, 21, 247-261.	3.9	37
111	Mass Spectrometry Applications for the Identification and Quantitation of Biomarkers Resulting from Human Exposure to Chemical Warfare Agents. NATO Science for Peace and Security Series A: Chemistry and Biology, 2011, , 181-199.	0.5	0
113	Enzyme-linked immunosorbent assay for detection of organophosphorylated butyrylcholinesterase: A biomarker of exposure to organophosphate agents. Analytica Chimica Acta, 2011, 693, 1-6.	5.4	43
114	A High-Throughput Diagnostic Method for Measuring Human Exposure to Organophosphorus Nerve Agents. Analytical Chemistry, 2012, 84, 9470-9477.	6.5	34
115	Why Does the G117H Mutation Considerably Improve the Activity of Human Butyrylcholinesterase against Sarin? Insights from Quantum Mechanical/Molecular Mechanical Free Energy Calculations. Biochemistry, 2012, 51, 8980-8992.	2.5	30
116	Advances in toxicology and medical treatment of chemical warfare nerve agents. DARU, Journal of Pharmaceutical Sciences, 2012, 20, 81.	2.0	96
117	Disposable Electrochemical Biosensor Based on Cholinesterase Inhibition with Improved Shelf-Life and Working Stability for Nerve Agent Detection. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 261-278.	0.5	8
118	Portable Chemical Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , .	0.5	4
119	Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents. Analytical Chemistry, 2012, 84, 1380-1385	6.5	122

#	Article	IF	Citations
121	Analytical approaches for monitoring exposure to organophosphorus and carbamate agents through analysis of protein adducts. Drug Testing and Analysis, 2012, 4, 246-261.	2.6	22
122	Biological markers of exposure to organophosphorus nerve agents. Archives of Toxicology, 2013, 87, 421-437.	4.2	77
123	Novel Dual-Mode Immunomagnetic Method for Studying Reactivation of Nerve Agent-Inhibited Butyrylcholinesterase. Chemical Research in Toxicology, 2013, 26, 775-782.	3.3	8
124	Nanoparticle-based immunochromatographic test strip with fluorescent detector for quantification of phosphorylated acetylcholinesterase: an exposure biomarker of organophosphorus agents. Analyst, The, 2013, 138, 5431.	3.5	31
125	Graphene oxide as carboelectrocatalyst for in situ electrochemical oxidation and sensing of chemical warfare agent simulant. Sensors and Actuators B: Chemical, 2013, 188, 1218-1224.	7.8	15
126	Electrochemical Detection of Dual Exposure Biomarkers of Organophosphorus Agents Based on Reactivation of Inhibited Cholinesterase. Analytical Chemistry, 2013, 85, 9686-9691.	6.5	36
127	New tools in diagnosis and biomonitoring of intoxications with organophosphorothioates: Case studies with chlorpyrifos and diazinon. Chemico-Biological Interactions, 2013, 203, 96-102.	4.0	32
128	Protein adducts as biomarkers of exposure to organophosphorus compounds. Toxicology, 2013, 307, 46-54.	4.2	60
129	Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of titanium oxide-enriched peptides for detection of aged organophosphorus adducts on human butyrylcholinesterase. Analytical Biochemistry, 2013, 439, 132-141.	2.4	21
130	Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosensors and Bioelectronics, 2013, 41, 669-674.	10.1	58
131	Performance of a Novel High Throughput Method for the Determination of VX in Drinking Water Samples. Analytical Chemistry, 2013, 85, 2611-2616.	6.5	8
132	Kinetic characterization of high-activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine. Biochemical Journal, 2014, 457, 197-206.	3.7	39
133	Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomedical Microdevices, 2014, 16, 269-275.	2.8	24
134	Acute organophosphorus poisoning. Clinica Chimica Acta, 2014, 431, 66-76.	1.1	79
135	Basic and Clinical Toxicology of Organophosphorus Compounds. , 2014, , .		19
136	Rapid screening and determination of nerve agent metabolites in human urine by LC-MS/MS. Journal of Analytical Chemistry, 2014, 69, 909-916.	0.9	13
137	A phosphorylation-sensitive tyrosine-tailored magnetic particle for electrochemically probing free organophosphates in blood. Analyst, The, 2014, 139, 5466-5471.	3.5	10
138	Kinetic characterization of human butyrylcholinesterase mutants for the hydrolysis of cocaethylene. Biochemical Journal, 2014, 460, 447-457.	3.7	29

# 139	ARTICLE Monitoring of Blood Cholinesterase Activity in Workers Exposed to Nerve Agents. , 2015, , 967-976.	IF	Citations 3
140	Catalytic Bioscavengers. , 2015, , 1107-1123.		5
141	Applications of Supramolecular Anion Recognition. Chemical Reviews, 2015, 115, 8038-8155.	47.7	1,025
142	Biomarkers of Exposure to Organophosphorus Poisons. , 2015, , 953-965.		1
143	Global Impact of Chemical Warfare Agents Used Before and After 1945. , 2015, , 17-25.		2
144	Physiologically Based Pharmacokinetic Modeling of Chemical Warfare Agents. , 2015, , 875-882.		3
145	Laboratory Analysis of Chemical Warfare Agents, Adducts, and Metabolites in Biomedical Samples. , 2015, , 915-923.		2
146	Screening of antidote sensitivity using an acetylcholinesterase biosensor based on a graphene–Au nanocomposite. RSC Advances, 2015, 5, 4894-4897.	3.6	4
147	Chromatography–mass spectrometry determination of alkyl methylphosphonic acids in urine. Journal of Analytical Chemistry, 2016, 71, 1309-1318.	0.9	7
148	Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure. Analytical Chemistry, 2016, 88, 6523-6530.	6.5	11
149	Analysis of nerve agent metabolites from nail clippings by liquid chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1031, 116-122.	2.3	10
150	Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors. Chemical Research in Toxicology, 2016, 29, 1381-1392.	3.3	71
151	Metabolic Enzymes of Cocaine Metabolite Benzoylecgonine. ACS Chemical Biology, 2016, 11, 2186-2194.	3.4	27
152	A liquid chromatography tandem mass spectrometric method on in vitro nerve agents poisoning characterization and reactivator efficacy evaluation by determination of specific peptide adducts in acetylcholinesterase. Journal of Chromatography A, 2016, 1450, 86-93.	3.7	3
153	Is it possible to reverse aged acetylcholinesterase inhibited by organophosphorus compounds? Insight from the theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 9838-9846.	2.8	5
154	High-Confidence Qualitative Identification of Organophosphorus Nerve Agent Adducts to Human Butyrylcholinesterase. Analytical Chemistry, 2017, 89, 1955-1964.	6.5	31
155	Target analysis of tert -butyldimethylsilyl derivatives of nerve agent hydrolysis products by selectable one-dimensional or two-dimensional gas chromatography–mass spectrometry. Journal of Chromatography A, 2017, 1501, 99-106.	3.7	12
156	Solidâ€Phase Synthesis of the Agedâ€Nonapeptideâ€Nerveâ€Agent Adduct of Butyrylcholinesterase as Reference Materials for Analytical Verification. Helvetica Chimica Acta, 2017, 100, e1700198.	1.6	2

#	Article	IF	CITATIONS
157	From Dual to Discriminatory Sensing of CN…Fâ€Using Isomeric Molecules and Ascertained by Spectroscopic and DFT Methods. ChemistrySelect, 2018, 3, 3225-3233.	1.5	3
158	Comparison of Efficiency of Purification (from Human Plasma) of a Nerve Agent Adduct of Butyrylcholinesterase Between the Affinity Gel Method and Immunomagnetic Separation. Journal of Chromatographic Science, 2018, 56, 248-253.	1.4	3
159	Advice on chemical weapons sample stability and storage provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons to increase investigative capabilities worldwide. Talanta, 2018, 188, 808-832.	5.5	17
160	An OPAA enzyme mutant with increased catalytic efficiency on the nerve agents sarin, soman, and GP. Enzyme and Microbial Technology, 2018, 112, 65-71.	3.2	19
161	Simultaneous Time-concentration Analysis of Soman and VX Adducts to Butyrylcholinesterase and Albumin by LC–MS-MS. Journal of Analytical Toxicology, 2018, 42, 293-299.	2.8	14
163	Adductomics: a promising tool for the verification of chemical warfare agents' exposures in biological samples. Archives of Toxicology, 2019, 93, 1473-1484.	4.2	22
164	Fluoride reactivation-enabled sensitive quantification of tabun adducts on human serum albumin by GC–MS/MS via isotope dilution. Bioanalysis, 2019, 11, 2145-2159.	1.5	4
165	Gas chromatography-mass spectrometry with spiral large-volume injection for determination of fluoridated phosphonates produced by fluoride-mediated regeneration of nerve agent adduct in human serum. Journal of Chromatography A, 2019, 1583, 108-116.	3.7	10
166	Retrospective determination of regenerated nerve agent sarin in human blood by liquid chromatography–mass spectrometry and in vivo implementation in rabbit. Archives of Toxicology, 2020, 94, 103-111.	4.2	10
167	Laboratory analysis of chemical warfare agents, adducts, and metabolites in biomedical samples. , 2020, , 969-981.		1
168	Monitoring of blood cholinesterase activity in workers exposed to nerve agents. , 2020, , 1035-1045.		0
169	Verification of exposure to sarin nerve agent through the chemical analysis of red blood cell samples. Microchemical Journal, 2020, 158, 105174.	4.5	3
170	Global impact of chemical warfare agents used before and after 1945. , 2020, , 27-36.		1
171	Physiologically based pharmacokinetic modeling of chemical warfare agents. , 2020, , 945-952.		0
172	Catalytic bioscavengers: the second generation of bioscavenger-based medical countermeasures. , 2020, , 1199-1229.		0
173	Poisoning by organophosphorus nerve agents and pesticides: An overview of the principle strategies and current progress of mass spectrometry-based procedures for verification. Journal of Mass Spectrometry and Advances in the Clinical Lab, 2021, 19, 20-31.	2.4	27
174	Extended retrospective detection of regenerated sarin (GB) in rabbit blood and the IMPA metabolite in urine: a pharmacokinetics study. Archives of Toxicology, 2021, 95, 2403-2412.	4.2	2
175	Effects of memantine and its metabolite Mrz 2/373 on soman-induced inhibition of acetylcholinesterase in vitro. Chemico-Biological Interactions, 2021, 342, 109463.	4.0	1

#	Article	IF	CITATIONS
176	Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist's Toolbox. Molecules, 2021, 26, 4631.	3.8	21
177	Release of protein-bound nerve agents by excess fluoride from whole blood: GC-MS/MS method development, validation, and application to a real-life denatured blood sample. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1179, 122693.	2.3	2
179	Clinical Management of Organophosphorus Nerve Agents' Poisonings. , 2014, , 177-212.		5
180	Nerve Agents. , 2016, , 1-28.		1
181	Retrospective Detection of Exposure to Organophosphates: Analyses in Blood of Human Beings and Rhesus Monkeys. , 1999, , 513-521.		4
182	Laboratory Analysis of Chemical Warfare Agents and Metabolites in Biomedical Samples. , 2009, , 827-835.		2
183	Catalytic Bioscavengers. , 2009, , 1053-1065.		11
184	Medical Devices for Low- and Middle-Income Countries: A Review and Directions for Development. Journal of Medical Devices, Transactions of the ASME, 2020, 14, 010803.	0.7	13
185	Toxicokinetics of Nerve Agents. , 2019, , 39-58.		9
186	LABORATORY EXAMINATION IN NERVE AGENT INTOXICATION. Acta Medica (Hradec Kralove), 2013, 56, 89-96.	0.5	4
187	Complex View on Poisoning with Nerve Agents and Organophosphates. Acta Medica (Hradec Kralove), 2005, 48, 3-21.	0.5	54
188	The Influence of the Time of Antidotal Treatment Administration on Its Effectiveness Against Tabun-Induced Poisoning in Mice. Acta Medica (Hradec Kralove), 2004, 47, 111-114.	0.5	3
189	The Influence of Anticholinergic Drug and Oxime Selection on the Effectiveness of Antidotal Treatment Against Tabun-Induced Poisoning in Mice. Acta Medica (Hradec Kralove), 2002, 45, 75-78.	0.5	8
190	The Influence of Anticholinergic Drug Selection on the Effectiveness of Oximes Against Soman-Induced Supralethal Poisoning in Mice. Acta Medica (Hradec Kralove), 2001, 44, 77-79.	0.5	3
191	Improvements to the Fluoride Reactivation Method by Simple Organic Extraction for Retrospective Detection of Exposure to the Organophosphorus Nerve Agents in Human Plasma. International Journal of Analytical Mass Spectrometry and Chromatography, 2014, 02, 65-76.	0.7	4
192	Mass Spectrometric Technologies for Countering Chemical and Biological Terrorism Incidents. Journal of the Mass Spectrometry Society of Japan, 2008, 56, 91-115.	0.1	14
193	Emergency Response to a Chemical Warfare Agent Incident: Domestic Preparedness, First Response, and Public Health Considerations. , 2000, , 417-443.		1
194	Emergency Response to a Chemical Warfare Agent Incident. , 2000, , .		0

#	Article	IF	CITATIONS
195	Toxicokinetics of Nerve Agents. , 2000, , .		2
196	Biomonitoring of Exposure to Chemical Warfare Agents. , 2002, , 21-29.		0
199	Assessment of the Therapeutic and Anticonvulsive Efficacy of a Drug Combination Consisting of Trihexyphenidyle and HI-6 in Soman-Poisoned Rats. Acta Medica (Hradec Kralove), 2004, 47, 171-175.	0.5	1
200	Ingénierie d'enzymes pour la protection, la décontamination et le traitement des agressions par les composés organophosphorés. Bulletin De L'Academie Nationale De Medecine, 2007, 191, 95-112.	0.0	2
201	Clinical Detection of Exposure to Chemical Warfare Agents. , 2007, , .		0
202	Toxicokinetics of Nerve Agents. , 2007, , .		0
203	Armes chimiques. , 2012, , 613-651.		0
204	Retrospective Detection of Exposure to Nerve Agents in the Rhesus Monkey and in Man. , 1998, , 261-267.		0
205	Nerve Agents. , 2017, , 2655-2682.		1
206	PECULIARITIES OF METABOLITES TOXICOKINETICS OF G-TYPE ORGANOPHOSPHORUS NERVE AGENTS IN BIO FLUIDS OF RATS SUBECTED TO ANTIDOTE THERAPY. Toxicological Review, 2017, , 8-16.	0.2	0
208	A Method for Diagnosing Organophosphate Pesticide Exposure in Humans Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. Journal of Analytical Toxicology, 2022, 46, 176-186.	2.8	0
209	Recent advances in the treatment of organophosphorous poisonings. Iranian Journal of Medical Sciences, 2012, 37, 74-91.	0.4	62
210	Organophosphorus Insecticide Poisoning. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 1999, 11, 30-35.	0.7	1
211	Current Progress for Retrospective Identification of Nerve Agent Biomarkers in Biological Samples after Exposure. Toxics, 2022, 10, 439.	3.7	3
212	Organophosphate Level Evaluation for the Poisoning Treatment by Enzyme Activation Regeneration Strategy with Oxime-Functionalized ZIF-8 Nanoparticles. Analytical Chemistry, 2023, 95, 10376-10383.	6.5	0