Application of Large Pore MCM-41 Molecular Sieves To Nitrogen Adsorption Measurements

Langmuir 13, 6267-6273 DOI: 10.1021/la970776m

Citation Report

#	Article	IF	CITATIONS
6	Adsorption in mesopores. Chemical Engineering Science, 1998, 53, 3143-3156.	1.9	66
7	Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16. Microporous and Mesoporous Materials, 1998, 21, 667-672.	2.2	95
8	Thickness control and defects in oriented mesoporous silica films. Journal of Materials Chemistry, 1998, 8, 1205-1211.	6.7	59
9	Zirconia-Stabilized 25-Ã TiO2Anatase Crystallites in a Mesoporous Structure. Chemistry of Materials, 1998, 10, 3140-3145.	3.2	65
10	Tailoring Surface and Structural Properties of MCM-41 Silicas by Bonding Organosilanes. Journal of Physical Chemistry B, 1998, 102, 5503-5510.	1.2	274
11	Adsorption methods for characterization of surface and structural properties of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 1998, 117, 325-332.	1.5	27
12	Ordered mesoporous materials. Microporous and Mesoporous Materials, 1999, 27, 131-149.	2.2	975
13	Influence of hydrothermal restructuring conditions on structural properties of mesoporous molecular sieves. Microporous and Mesoporous Materials, 1999, 27, 217-229.	2.2	79
14	Mesopore size and surface area calculations for hexagonal mesophases (types MCM-41, FSM-16, etc.) using low-angle XRD and adsorption data. Microporous and Mesoporous Materials, 1999, 28, 57-72.	2.2	125
15	Wetting stability of Si-MCM-41 mesoporous material in neutral, acidic and basic aqueous solutions. Microporous and Mesoporous Materials, 1999, 33, 149-163.	2.2	170
16	Title is missing!. Adsorption, 1999, 5, 313-317.	1.4	10
17	Modification of Surface and Structural Properties of Ordered Mesoporous Silicates. Adsorption, 1999, 5, 39-45.	1.4	19
18	Relations between Pore Structure Parameters and Their Implications for Characterization of MCM-41 Using Gas Adsorption and X-ray Diffraction. Chemistry of Materials, 1999, 11, 492-500.	3.2	194
19	Physicochemical features of the formation of siliceous porous mesophases. Russian Chemical Bulletin, 1999, 48, 1828-1832.	0.4	2
20	Synthesis and Properties of Lanthanide Incorporated Mesoporous Molecular Sieves. Journal of Colloid and Interface Science, 1999, 218, 462-467.	5.0	52
21	Simultaneous modification of mesopores and extraction of template molecules from MCM-41 with trialkylchlorosilanes. Chemical Communications, 1999, , 2373-2374.	2.2	88
22	A Pore-Size-Dependent Equation of State for Multilayer Adsorption in Cylindrical Mesopores. Langmuir, 1999, 15, 3632-3641.	1.6	44
23	New Approach to Evaluate Pore Size Distributions and Surface Areas for Hydrophobic Mesoporous Solids, Journal of Physical Chemistry B, 1999, 103, 10670-10678	1.2	135

TION RE

#	Article	IF	CITATIONS
24	Expanding the Pore Size of MCM-41 Silicas:  Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures. Journal of Physical Chemistry B, 1999, 103, 3651-3658.	1.2	234
25	Properties of Some Novel Adsorbents. , 1999, , 401-438.		3
26	Structural Characterization of MCM-41 over a Wide Range of Length Scales. Langmuir, 1999, 15, 2809-2816.	1.6	43
27	Postsynthesis Hydrothermal Restructuring of M41S Mesoporous Molecular Sieves in Water. Journal of Physical Chemistry B, 1999, 103, 1216-1222.	1.2	156
28	Improving the Stability of Mesoporous MCM-41 Silica via Thicker More Highly Condensed Pore Walls. Journal of Physical Chemistry B, 1999, 103, 10204-10208.	1.2	176
29	Adsorption, Thermogravimetric, and NMR Studies of FSM-16 Material Functionalized with Alkylmonochlorosilanes. Journal of Physical Chemistry B, 1999, 103, 6252-6261.	1.2	56
30	Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas. Langmuir, 1999, 15, 5410-5413.	1.6	512
31	Characterization of High-Quality MCM-48 and SBA-1 Mesoporous Silicas. Chemistry of Materials, 1999, 11, 2568-2572.	3.2	103
32	Evaluating Pore Sizes in Mesoporous Materials:Â A Simplified Standard Adsorption Method and a Simplified Broekhoffâ^'de Boer Method. Langmuir, 1999, 15, 5403-5409.	1.6	456
33	Phase separation in confined systems. Reports on Progress in Physics, 1999, 62, 1573-1659.	8.1	1,469
34	Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption. Langmuir, 1999, 15, 5279-5284.	1.6	150
35	Surface Heterogeneity Analysis of MCM-41 Metallosilicates by Using Nitrogen Adsorption Dataâ€. Langmuir, 1999, 15, 5683-5688.	1.6	31
36	A Unified Interpretation of High-Temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas. Journal of Physical Chemistry B, 1999, 103, 4590-4598.	1.2	110
37	Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1. Chemistry of Materials, 1999, 11, 487-491.	3.2	192
38	Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture. Chemical Communications, 1999, , 2067-2068.	2.2	57
39	Characterization and utilization of MFI zeolites and MCM-41 materials for gaseous pollutant adsorption. Studies in Surface Science and Catalysis, 1999, 125, 737-744.	1.5	4
40	Photoluminescence of Poly(P-Phenylene Vinylene) Encapsulated in Mesoporous Silica. Materials Research Society Symposia Proceedings, 1999, 558, 319.	0.1	2
41	Photoluminescence of Poly(P-Phenylene Vinylene) encapsulated In Mesoporous Silica. Materials Research Society Symposia Proceedings, 1999, 560, 291.	0.1	2

#	Article	IF	CITATIONS
42	Comprehensive Structural Characterization Of MCM-41: From Mesopores To Particles. Studies in Surface Science and Catalysis, 2000, 128, 197-205.	1.5	3
43	Silica-CTAB-Water Phase Diagram at 150 °C: Predicting Phase Structure by Artificial Neural Network. Studies in Surface Science and Catalysis, 2000, 129, 871-878.	1.5	1
44	Self-consistent determination of the lamellar phase content in MCM-41 using X-ray diffraction, nitrogen adsorption and thermogravimetry. Studies in Surface Science and Catalysis, 2000, 129, 577-586.	1.5	6
45	Porous Texture and Surface Character of Dehydroxylated and Rehydroxylated MCM-41 Mesoporous Silicas—Analysis of Adsorption Isotherms of Nitrogen Gas and Water Vapor. Journal of Colloid and Interface Science, 2000, 225, 411-420.	5.0	29
47	Unprecedented Expansion of the Pore Size and Volume of Periodic Mesoporous Silica. Angewandte Chemie - International Edition, 2000, 39, 2920-2922.	7.2	85
48	Template Synthesis of the First 1,4,7-Triphosphacyclononane Derivatives. Angewandte Chemie - International Edition, 2000, 39, 2922-2924.	7.2	38
49	Thermogravimetric monitoring of the MCM-41 synthesis. Thermochimica Acta, 2000, 363, 175-180.	1.2	55
50	Determination of the surface area and mesopore volume for lanthanide-incorporated MCM-41 materials by using high resolution thermogravimetry. Thermochimica Acta, 2000, 345, 173-177.	1.2	36
51	New insights into pore-size expansion of mesoporous silicates using long-chain amines. Microporous and Mesoporous Materials, 2000, 35-36, 545-553.	2.2	77
52	Nitrogen Adsorption Study of MCM-41 Molecular Sieves Synthesized Using Hydrothermal Restructuring. Adsorption, 2000, 6, 47-51.	1.4	49
53	Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica. Journal of Catalysis, 2000, 193, 283-294.	3.1	260
54	Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel–Crafts Alkylation. Journal of Catalysis, 2000, 195, 237-243.	3.1	112
55	Accurate Method for Calculating Mesopore Size Distributions from Argon Adsorption Data at 87 K Developed Using Model MCM-41 Materials. Chemistry of Materials, 2000, 12, 222-230.	3.2	162
56	Peculiarities of alkyl-modification of ordered mesoporous materials: A single-step treatment of uncalcined MCM-41 involving template removal and surface functionalization. Studies in Surface Science and Catalysis, 2000, , 265-274.	1.5	4
57	Determination of pore size distribution of mesoporous materials by regularization. Studies in Surface Science and Catalysis, 2000, 129, 607-615.	1.5	0
58	Thermogravimetric characterization of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2000, 129, 567-576.	1.5	13
59	Synthesis and adsorption properties of cerium modified MCM-41. Studies in Surface Science and Catalysis, 2000, 129, 187-194.	1.5	8
60	Recent advances in adsorption characterization of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2000, , 587-596.	1.5	18

#	Article	IF	CITATIONS
61	Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction. Journal of Physical Chemistry B, 2000, 104, 292-301.	1.2	342
62	Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms. Journal of Physical Chemistry B, 2000, 104, 9099-9110.	1.2	91
63	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968.	3.2	1,280
64	Adsorption hysteresis in nanopores. Physical Review E, 2000, 62, R1493-R1496.	0.8	227
65	Functionalized MCM-41 and CeMCM-41 Materials Synthesized via Interfacial Reactions. Journal of Physical Chemistry B, 2000, 104, 9713-9719.	1.2	33
66	Extensive Void Defects in Mesoporous Aluminosilicate MCM-41. Journal of Physical Chemistry B, 2000, 104, 8967-8975.	1.2	167
67	Al-MCM-41 modified with carbonaceous deposits: characterisation by nitrogen adsorption measurements. Physical Chemistry Chemical Physics, 2000, 2, 5510-5516.	1.3	11
68	Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water. Chemical Communications, 2000, , 2489-2490.	2.2	27
69	On the applicability of the Horwath-Kawazoe method for pore size analysis of MCM-41 and related mesoporous materials. Studies in Surface Science and Catalysis, 2000, 128, 225-234.	1.5	7
70	Block-Copolymer-Templated Ordered Mesoporous Silica:Â Array of Uniform Mesopores or Mesoporeâ^Micropore Network?. Journal of Physical Chemistry B, 2000, 104, 11465-11471.	1.2	631
71	Molecular Assembly in Ordered Mesoporosity:  A New Class of Highly Functional Nanoscale Materials. Journal of Physical Chemistry A, 2000, 104, 8328-8339.	1.1	135
72	Sizing of Cylindrical Pores by Nitrogen and Benzene Vapor Adsorption. Journal of Physical Chemistry B, 2000, 104, 11435-11439.	1.2	13
73	Density Functional Theory of Adsorption Hysteresis and Nanopore Characterization. Studies in Surface Science and Catalysis, 2000, , 51-60.	1.5	24
74	Characterization of MCM-48 Silicas with Tailored Pore Sizes Synthesized via a Highly Efficient Procedure. Chemistry of Materials, 2000, 12, 1414-1421.	3.2	125
75	Characterization of MCM-48 Materials. Langmuir, 2000, 16, 4648-4654.	1.6	271
76	Functionalized Mesoporous Materials Obtained via Interfacial Reactions in Self-Assembled Silicaâ~ Surfactant Systems. Chemistry of Materials, 2000, 12, 2496-2501.	3.2	128
77	Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates. Journal of Physical Chemistry B, 2000, 104, 7960-7968.	1.2	333
78	Determination of the Lamellar Phase Content in MCM-41 Using X-ray Diffraction, Nitrogen Adsorption, and Thermogravimetry, Journal of Physical Chemistry B, 2000, 104, 1581-1589	1.2	42

#	Article	IF	CITATIONS
79	Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41. Journal of Physical Chemistry B, 2000, 104, 8279-8286.	1.2	115
80	Highly Ordered MCM-41 Silica Prepared in the Presence of Decyltrimethylammonium Bromide. Journal of Physical Chemistry B, 2000, 104, 4835-4839.	1.2	62
81	Calculations of pore size distributions in nanoporous materials from adsorption and desorption isotherms. Studies in Surface Science and Catalysis, 2000, 129, 597-606.	1.5	45
82	Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society, 2000, 122, 10712-10713.	6.6	2,331
83	A new method for the accurate pore size analysis of MCM-41 and other silica based mesoporous materials. Studies in Surface Science and Catalysis, 2000, , 71-80.	1.5	46
84	New Insights into the Synthesis, Morphology, and Growth of Periodic Mesoporous Organosilicas. Chemistry of Materials, 2000, 12, 3857-3863.	3.2	200
85	Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave–hydrothermal process. Chemical Communications, 2000, , 2389-2390.	2.2	104
86	Microwave-Hydrothermal Synthesis and Characterization of Zirconium Substituted SBA-15 Mesoporous Silica. Journal of Physical Chemistry B, 2001, 105, 8356-8360.	1.2	144
87	A Monte Carlo test of the Fisher–Nakanishi–Scaling theory for the capillary condensation critical point. Journal of Chemical Physics, 2001, 114, 5853-5862.	1.2	32
88	Direct Synthesis of Titanium-Substituted Mesoporous SBA-15 Molecular Sieve under Microwaveâ^'Hydrothermal Conditions. Chemistry of Materials, 2001, 13, 552-557.	3.2	262
89	Density functional theories and molecular simulations of adsorption and phase transitions in nanopores. Physical Review E, 2001, 64, 011602.	0.8	275
90	Polyfunctionalised surfactant-templated adsorbents with high specific surface areas. Mendeleev Communications, 2001, 11, 208-210.	0.6	4
91	Characterization of porous materials using molecular theory and simulation. Advances in Chemical Engineering, 2001, 28, 203-250.	0.5	25
92	Gas Adsorption Characterization of Ordered Organicâ^'Inorganic Nanocomposite Materials. Chemistry of Materials, 2001, 13, 3169-3183.	3.2	3,036
93	Adsorption and Thermogravimetric Characterization of Mesoporous Materials with Uniform Organicâ''Inorganic Frameworks. Journal of Physical Chemistry B, 2001, 105, 681-689.	1.2	99
94	Synthesis and characterization of europium-doped ordered mesoporous silicas. Journal of Materials Chemistry, 2001, 11, 2580-2586.	6.7	17
95	Control over Microporosity of Ordered Microporousâ^'Mesoporous Silica SBA-15 Framework under Microwave-Hydrothermal Conditions:Â Effect of Salt Addition. Chemistry of Materials, 2001, 13, 4573-4579.	3.2	133

#	ARTICLE	IF	Citations
97	Reproducible synthesis of high quality MCM-48 by extraction and recuperation of the gemini	1.3	42
98	Hydrothermally stable restructured mesoporous silica. Chemical Communications, 2001, , 933-934.	2.2	50
99	Influence of pore wall thickness on the steam stability of Al-grafted MCM-41. Chemical Communications, 2001, , 633-634.	2.2	46
100	Observation of some pore wall ordering in mesoporous silica. Chemical Communications, 2001, , 1092-1093.	2.2	15
101	Synthesis and Characterization of Moâ^'SBA-1 Cubic Mesoporous Molecular Sieves. Journal of Physical Chemistry B, 2001, 105, 10565-10572.	1.2	32
102	SANS Investigation of Nitrogen Sorption in Porous Silica. Journal of Physical Chemistry B, 2001, 105, 831-840.	1.2	137
103	A Fractal Approach To Adsorption on Heterogeneous Solids Surfaces. 2. Thermodynamic Analysis of Experimental Adsorption Data. Journal of Physical Chemistry B, 2001, 105, 10857-10866.	1.2	26
104	Synthesis and Characterization of Ordered, Very Large Pore MSU-H Silicas Assembled from Water-Soluble Silicates. Journal of Physical Chemistry B, 2001, 105, 7663-7670.	1.2	147
105	Surface Area and Microporosity of a Pillared Interlayered Clay (PILC) from a Hybrid Density Functional Theory (DFT) Method. Journal of Physical Chemistry B, 2001, 105, 623-629.	1.2	53
106	Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues. Chemistry of Materials, 2001, 13, 1726-1731.	3.2	78
107	Synthesis of Porous Organosilicates in the Presence of Alkytrimethylammonium Chlorides:  Effect of the Alkyl Chain Length. Journal of Physical Chemistry B, 2001, 105, 9118-9123.	1.2	77
108	Comparative textural study of highly ordered silicate and aluminosilicate mesoporous mesophase materials having different pore sizes. Microporous and Mesoporous Materials, 2001, 44-45, 33-40.	2.2	49
109	Synthesis of large pore silica with a narrow pore size distribution. Microporous and Mesoporous Materials, 2001, 44-45, 89-94.	2.2	43
110	Hydrothermally-induced morphological transformation of mesoporous MCM-41 silica. Microporous and Mesoporous Materials, 2001, 44-45, 119-127.	2.2	30
111	Capillary condensation in MMS and pore structure characterization. Microporous and Mesoporous Materials, 2001, 44-45, 697-707.	2.2	368
112	Characterization of modified mesoporous silicas using argon and nitrogen adsorption. Microporous and Mesoporous Materials, 2001, 44-45, 725-732.	2.2	33
113	Comprehensive characterization of highly ordered MCM-41 silicas using nitrogen adsorption, thermogravimetry, X-ray diffraction and transmission electron microscopy. Microporous and Mesoporous Materials, 2001, 48, 127-134.	2.2	74
114	Reversible coordination change of chromium in Cr-MCM-41 and Cr-MCM-48 studied by X-ray absorption near edge structure. Microporous and Mesoporous Materials, 2001, 48, 165-170.	2.2	40

#	Article	IF	CITATIONS
115	Adsorption of nitrogen, neopentane, n-hexane, benzene and methanol for the evaluation of pore sizes in silica grades of MCM-41. Microporous and Mesoporous Materials, 2001, 47, 323-337.	2.2	108
116	Mesoporous alumina catalytic material prepared by grafting wide-pore MCM-41 with an alumina multilayer. Microporous and Mesoporous Materials, 2001, 49, 65-81.	2.2	72
117	A New Method of Calculating Pore Size Distribution: Analysis of Adsorption Isotherms of N2 and CCl4 for a Series of MCM-41 Mesoporous Silicas. Journal of Colloid and Interface Science, 2001, 241, 127-141.	5.0	23
118	Porosity of Ordered Silica Materials by Nitrogen Adsorption and Positronium Annihilation Lifetime Spectroscopy. Journal of Colloid and Interface Science, 2001, 243, 427-432.	5.0	10
119	A High-Yield Reproducible Synthesis of MCM-48 Starting from Fumed Silica. Journal of Physical Chemistry B, 2001, 105, 12771-12777.	1.2	58
120	Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves. Industrial & Engineering Chemistry Research, 2001, 40, 3237-3261.	1.8	462
121	Periodic Mesoporous Silica-Based Organicâ `Inorganic Nanocomposite Materials. Chemistry of Materials, 2001, 13, 3151-3168.	3.2	814
122	Stabilized MCM-48/VOx catalysts: synthesis, characterization and catalytic activity. Catalysis Today, 2001, 68, 119-128.	2.2	37
123	Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412, 169-172.	13.7	2,439
124	The dating of shallow faults in the Earth's crust. Nature, 2001, 412, 172-175.	13.7	224
125	Structural properties of Cu-MCM-41 and Cu-Al-MCM-41(Si/Al=30) catalysts. Studies in Surface Science and Catalysis, 2002, 144, 577-584.	1.5	2
126	The lower closure point of the adsorption hysteresis loop of fluids in mesoporous silica materials. Studies in Surface Science and Catalysis, 2002, 144, 177-184.	1.5	18
127	The use of ordered mesoporous materials for improving the mesopore size analysis: Current state and future. Studies in Surface Science and Catalysis, 2002, , 437-444.	1.5	6
128	Synthesis and characterization of methyl- and vinyl-functionalized ordered mesoporous silicas with high organic content. Studies in Surface Science and Catalysis, 2002, 141, 197-204.	1.5	17
129	Polyfunctionalized silica adsorbents obtained by using dodecylamine as template. Studies in Surface Science and Catalysis, 2002, 141, 205-212.	1.5	4
130	About the exclusive mesoporous character of MCM-41. Studies in Surface Science and Catalysis, 2002, 144, 83-90.	1.5	19
131	Improved Pore-Size Analysis of Carbonaceous Adsorbents. Adsorption Science and Technology, 2002, 20, 307-315.	1.5	34
132	Incorporation of appropriate contact angles in textural characterization by mercury porosimetry. Studies in Surface Science and Catalysis, 2002, 144, 91-98.	1.5	18

#	Article	IF	CITATIONS
133	Catalytic reduction of nitric oxide on Al-containing mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2002, , 503-510.	1.5	4
134	Physisorption in nanopores of various sizes and shapes : A Grand Canonical Monte Carlo simulation study. Studies in Surface Science and Catalysis, 2002, 144, 35-42.	1.5	17
135	Synthesis and characterization of polymer-templated ordered silica with cage-like mesostructure. Studies in Surface Science and Catalysis, 2002, 141, 61-68.	1.5	0
136	Improving the Hydro-stability of MCM-41 by Post-Synthesis Treatment and Hexamethyldisilazane Coating. Studies in Surface Science and Catalysis, 2002, , 221-228.	1.5	6
137	Synthesis and adsorption properties of novel carbons of tailored porosity. Studies in Surface Science and Catalysis, 2002, , 345-352.	1.5	1
138	X-ray absorption fine structure investigation of MCM-41 materials containing Pt and PtSn nanoparticles prepared via direct hydrothermal synthesis. Studies in Surface Science and Catalysis, 2002, , 1261-1266.	1.5	Ο
139	Restructured V-MCM-41 with non-leaching vanadium and improved hydrothermal stability prepared by secondary synthesis. Studies in Surface Science and Catalysis, 2002, , 1307-1314.	1.5	2
140	Al-MCM-48: synthesis and adsorption properties for water, benzene, and nitrogen. Studies in Surface Science and Catalysis, 2002, , 1631-1638.	1.5	5
141	Sorption properties and hydrothermal stability of MCM-41 prepared by pH adjustment and salt addition. Studies in Surface Science and Catalysis, 2002, , 445-452.	1.5	3
142	Exploring the Potential of Mesoporous Silica, SBA-15, as an Adsorbent for Light Hydrocarbon Separation. Chemistry of Materials, 2002, 14, 304-309.	3.2	116
143	Probing Pore Size Distribution by Cryogenic- and Relaxation2H-NMR. Journal of Physical Chemistry B, 2002, 106, 12396-12406.	1.2	16
144	Internal Surface Area Evaluation of Carbon Nanotube with GCMC Simulation-Assisted N2 Adsorption. Journal of Physical Chemistry B, 2002, 106, 7171-7176.	1.2	101
145	Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates. Journal of Physical Chemistry B, 2002, 106, 4640-4646.	1.2	208
146	Direct Synthesis of Mesostructured Lamellar Molybdenum Disulfides Using a Molten Neutraln-Alkylamine as the Solvent and Template. Journal of the American Chemical Society, 2002, 124, 12090-12091.	6.6	37
147	Synthesis and Characterization of Mesostructured Titania-Based Materials through Evaporation-Induced Self-Assembly. Chemistry of Materials, 2002, 14, 750-759.	3.2	438
148	Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 2002, 12, 369-373.	6.7	50
149	A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas. Chemistry of Materials, 2002, 14, 2317-2324.	3.2	325
150	Simplified synthesis of micropore-free mesoporous silica, SBA-15, under microwave-hydrothermal conditionsElectronic supplementary information (ESI) available: transmission electron microraphs of Pt-nanowires produced from micropore-free SBA-15 framework. See http://www.rsc.org/suppdata/cc/b2/b202152b/. Chemical Communications. 2002. 1774-1775.	2.2	42

#	Article	IF	CITATIONS
151	Coupling X-ray Scattering and Nitrogen Adsorption:Â An Interesting Approach for the Characterization of Ordered Mesoporous Materials. Application to Hexagonal Silica. Chemistry of Materials, 2002, 14, 3391-3397.	3.2	66
152	Determination of Mesopore Size Distributions from Argon Adsorption Data at 77 K. Journal of Physical Chemistry B, 2002, 106, 4732-4739.	1.2	101
153	Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters. Journal of the American Chemical Society, 2002, 124, 1156-1157.	6.6	349
154	1-Allyl-3-propylthiourea modified mesoporous silica for mercury removal. Chemical Communications, 2002, , 258-259.	2.2	129
155	Surface Area, Pore Volume Distribution, and Acidity in Mesoporous Expanded Clay Catalysts from Hybrid Density Functional Theory (DFT) and Adsorption Microcalorimetry Methods. Langmuir, 2002, 18, 9816-9823.	1.6	57
156	Adsorption of Methane, Ethane, and Their Binary Mixtures on MCM-41:Â Experimental Evaluation of Methods for the Prediction of Adsorption Equilibrium. Langmuir, 2002, 18, 2693-2701.	1.6	141
157	Templated Growth of Alumina-Based Fibers through the Use of Anthracenic Organogelators. Chemistry of Materials, 2002, 14, 5124-5133.	3.2	38
158	Synthesis of Large-Pore Silica with Cage-Like Structure Using Sodium Silicate and Triblock Copolymer Template. Langmuir, 2002, 18, 884-890.	1.6	102
159	Mesoporous materials for heavy metal ion adsorption synthesized by displacement of polymeric template. Studies in Surface Science and Catalysis, 2002, , 607-614.	1.5	11
160	Studies on the structural stability of mesoporous molecular sieves organically functionalized by a direct method. Journal of Materials Chemistry, 2002, 12, 3631-3636.	6.7	35
161	Dimethylamino- and trimethylammonium-tipped oxyethylene–oxybutylene diblock copolymers and their use as structure-directing agents in the preparation of mesoporous silica. Journal of Materials Chemistry, 2002, 12, 2286-2291.	6.7	23
162	Synthesis and characterization of ordered mesoporous silicas with high loadings of methyl groups. Journal of Materials Chemistry, 2002, 12, 3452-3457.	6.7	40
163	On the extended recrystallisation of mesoporous silica: characterisation of restructured pure silica MCM-41. Journal of Materials Chemistry, 2002, 12, 3027-3033.	6.7	21
164	The ins and outs of capillary condensation in cylindrical pores. Molecular Physics, 2002, 100, 2049-2057.	0.8	92
165	Periodic Mesoporous Organosilica with Large Cagelike Pores. Chemistry of Materials, 2002, 14, 1903-1905.	3.2	158
166	Determination of Phase Composition of MCM-48/Lamellar Phase Mixtures Using Nitrogen Adsorption and Thermogravimetry. Chemistry of Materials, 2002, 14, 4434-4442.	3.2	26
167	Flexibility of the MCM-41 structure: pore expansion and wall-thickening in MCM-41 derivatives. Applied Catalysis A: General, 2002, 232, 67-76.	2.2	7
168	Comparison of adsorption properties of MCM-41 materials obtained using cationic surfactants with octyl chain. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203, 97-103.	2.3	9

#	Article	IF	CITATIONS
169	Thermal stability and hydrophobicity of mesoporous silica FSM-16. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203, 185-193.	2.3	39
170	Oxidation of octane and cyclohexane using a new porous substrate, Ti-MMM-1. Microporous and Mesoporous Materials, 2002, 52, 11-18.	2.2	46
171	Critical appraisal of classical methods for determination of mesopore size distributions of MCM-41 materials. Applied Surface Science, 2002, 196, 216-223.	3.1	77
172	Analysis of the pore structure of the MCM-41 materials. Applied Surface Science, 2002, 191, 368-374.	3.1	19
173	Sorption properties of porous melamine–formaldehyde resins. Applied Surface Science, 2002, 195, 117-125.	3.1	12
174	EPR studies of carbonaceous compounds deposited on Al-MCM-41. Applied Surface Science, 2002, 201, 182-190.	3.1	5
175	Thermogravimetric estimation of adsorption properties of europium-incorporated MCM-41 materials. Thermochimica Acta, 2002, 383, 79-85.	1.2	10
176	Size-exclusion chromatography of low-molecular-mass polymers using mesoporous silica. Journal of Chromatography A, 2002, 973, 97-101.	1.8	64
177	Cerium Containing MCM-41-Type Mesoporous Materials and their Acidic and Redox Catalytic Properties. Journal of Catalysis, 2002, 207, 213-223.	3.1	211
178	Vapor-phase silylation of MCM-41 and Ti-MCM-41. Microporous and Mesoporous Materials, 2003, 66, 53-67.	2.2	76
179	An improved methodology for adsorption characterization of unmodified and modified silica gels. Journal of Colloid and Interface Science, 2003, 266, 168-174.	5.0	25
180	Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. Microporous and Mesoporous Materials, 2003, 65, 287-298.	2.2	69
181	Synthesis, characterization and catalytic application of cerium-modified MCM-41. Journal of Solid State Chemistry, 2003, 171, 371-374.	1.4	26
182	MCM-41-supported Co-Mo catalysts for deep hydrodesulfurization of light cycle oil. Catalysis Today, 2003, 86, 129-140.	2.2	94
183	Surface area and microporosity of pillared rectorite catalysts from a hybrid density functional theory method. Microporous and Mesoporous Materials, 2003, 57, 291-296.	2.2	37
184	Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves. Microporous and Mesoporous Materials, 2003, 59, 43-52.	2.2	77
185	H2O2-based selective oxidations over titaniumsilicates of SBA-15 type. Microporous and Mesoporous Materials, 2003, 59, 73-84.	2.2	59
186	Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 2003, 60, 1-17.	2.2	1,773

#	Article	IF	CITATIONS
187	Mesoporous silica with short-range MFI structure. Microporous and Mesoporous Materials, 2003, 60, 213-224.	2.2	52
188	Control of mesoporous structure of carbons synthesised using a mesostructured silica as template. Microporous and Mesoporous Materials, 2003, 62, 177-190.	2.2	124
189	Assessment of reliability of the Horvath–Kawazoe pore size analysis method using argon adsorption isotherms on ordered mesoporous silicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 263-269.	2.3	23
190	Comparative Study of Silylation Methods to Improve the Stability of Silicate MCM-41 in Aqueous Solutions. Chemistry of Materials, 2003, 15, 619-624.	3.2	55
191	Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes. Chemistry of Materials, 2003, 15, 2815-2823.	3.2	250
192	Pore Size Engineering and Mechanical Stability of the Cubic Mesoporous Molecular Sieve SBA-1. Chemistry of Materials, 2003, 15, 1385-1393.	3.2	123
193	Template synthesis of mesoporous carbons with a controlled particle size. Journal of Materials Chemistry, 2003, 13, 3085.	6.7	119
194	Benzoylthiourea-Modified Mesoporous Silica for Mercury(II) Removal. Langmuir, 2003, 19, 3031-3034.	1.6	165
195	Argon Adsorption at 77 K as a Useful Tool for the Elucidation of Pore Connectivity in Ordered Materials with Large Cagelike Mesopores. Chemistry of Materials, 2003, 15, 2942-2949.	3.2	148
196	Optical gas sensing by semiconductor nanoparticles or organic dye molecules hosted in the pores of mesoporous siliceous MCM-41. Physical Chemistry Chemical Physics, 2003, 5, 5188-5194.	1.3	37
197	Synthesis of Periodic Mesoporous Phenylenesilica under Acidic Conditions with Novel Molecular Order in the Pore Walls. Chemistry of Materials, 2003, 15, 4886-4889.	3.2	72
198	Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. Journal of Physical Chemistry B, 2003, 107, 2205-2213.	1.2	184
199	Potential Adsorbent for Light Hydrocarbon Separation:Â Role of SBA-15 Framework Porosity. Chemistry of Materials, 2003, 15, 1474-1479.	3.2	80
200	Surface Modifications of Cage-like and Channel-like Mesopores and Their Implications for Evaluation of Sizes of Entrances to Cage-like Mesopores. Journal of Physical Chemistry B, 2003, 107, 11900-11906.	1.2	41
201	Structural Confinement Effects of Ternary Chalcogenide in Mesoporous AlMCM-41 of Different Pore Diameters. Journal of Physical Chemistry B, 2003, 107, 1585-1591.	1.2	15
202	On comparing BJH and NLDFT pore-size distributions determined from N2 sorption on SBA-15 substrata. Physical Chemistry Chemical Physics, 2003, 5, 1859.	1.3	107
203	Blue–green photoluminescence in MCM-41 mesoporous nanotubes. Journal of Physics Condensed Matter, 2003, 15, L297-L304.	0.7	15
204	Synthesis and Adsorption Properties of Colloid-Imprinted Carbons with Surface and Volume Mesoporosity. Chemistry of Materials, 2003, 15, 1327-1333.	3.2	80

#	Article	IF	CITATIONS
205	A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbonElectronic supplementary information (ESI) available: experimental procedure and Figs. S1–S4. See http://www.rsc.org/suppdata/cc/b3/b301535a/. Chemical Communications, 2003, , 1138-1139.	2.2	100
206	Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable $\hat{a} \in NH2$ groups. Chemical Communications, 2003, , 1146-1147.	2.2	71
207	Adsorption of lysozyme and trypsin onto mesoporous silica materials. Studies in Surface Science and Catalysis, 2003, , 775-778.	1.5	13
208	Synthesis of Zeolitic Mesoporous Materials by Dry Gel Conversion under Controlled Humidity. Journal of Physical Chemistry B, 2003, 107, 7006-7014.	1.2	104
209	Hexagonal Mesostructure in Powders Produced by Evaporation-Induced Self-Assembly of Aerosols from Aqueous Tetraethoxysilane Solutions. Langmuir, 2003, 19, 256-264.	1.6	105
210	Template synthesis of mesoporous carbons from mesostructured silica by vapor deposition polymerisation. Journal of Materials Chemistry, 2003, 13, 1843.	6.7	49
211	Strategies for the Design and Synthesis of Hybrid Multifunctional Nanoporous Materials. , 2005, , 297-310.		3
212	Argon and nitrogen adsorption on ordered silicas with channel-like and cage-like mesopores: implications for characterization of porous solids. Studies in Surface Science and Catalysis, 2003, 146, 343-346.	1.5	2
213	Synthesis of mesoporous carbons with various pore diameters via control of pore wall thickness of mesoporous silicas. Studies in Surface Science and Catalysis, 2003, , 33-36.	1.5	4
214	MESOPOROUS MATERIALS. , 2003, , 39-68.		4
215	THE TRANSITION FROM MESOSTRUCTURE TO MICROSTRUCTURE IN A DOUBLE-TEMPLATED ALUMINOSILICATE SYSTEM. , 2003, , .		0
216	Gas adsorption: A valuable tool for the pore size analysis and pore structure elucidation of ordered mesoporous materials. Studies in Surface Science and Catalysis, 2003, 146, 263-269.	1.5	9
217	Surface coating of MCM-48 via a gas phase reaction with hexamethyldisilazane (HMDS). Studies in Surface Science and Catalysis, 2003, , 493-496.	1.5	0
218	Fluorinated Surfactant Templating of Ordered Nanoporous Silica. Materials Research Society Symposia Proceedings, 2003, 775, 3181.	0.1	2
219	Mesoporous Silica and Silica–Organic Hybrids. , 2004, , 852-860.		3
220	Ordered Mesoporous Materials: Preparation and Application in Catalysis. Springer Series in Chemical Physics, 2004, , 281-319.	0.2	2
221	Synthetic Self-Assembled Materials: Principles and Practice. , 2004, , 7-52.		1
222	FTIR study of FE-doped MCM-41 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2004, 154, 1490-1497.	1.5	3

#	Article	IF	CITATIONS
224	Catalytic behavior of niobium-containing SBA-15 molecular sieves in the oxidation of cyclohexene. Studies in Surface Science and Catalysis, 2004, , 2936-2944.	1.5	11
225	Synthesis of tailored porous alumina with a bimodal pore size distribution. Materials Research Bulletin, 2004, 39, 2103-2112.	2.7	47
226	Dehydrocondensation of alcohols to form ethers over mesoporous SBA-15 catalyst. Journal of Catalysis, 2004, 228, 347-361.	3.1	18
227	Benzene Adsorption Isotherms on MCM-41 and their Use for Pore Size Analysis. Adsorption, 2004, 10, 195-203.	1.4	12
228	Synthesis of ordered microporous silica by the solvent evaporation method. Journal of Materials Science, 2004, 39, 1117-1119.	1.7	10
229	Application of density functional theory to capillary phenomena in cylindrical mesopores with radial and longitudinal density distributions. Journal of Chemical Physics, 2004, 120, 9769-9781.	1.2	22
230	The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 2004, 14, 3370.	6.7	673
231	Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. Journal of Colloid and Interface Science, 2004, 277, 35-42.	5.0	60
232	Graphitic mesoporous carbons synthesised through mesostructured silica templates. Carbon, 2004, 42, 3049-3055.	5.4	174
233	A new mesoporous titanium-silicate Ti-MMM-2: a highly active and hydrothermally stable catalyst for H2O2-based selective oxidations. Catalysis Today, 2004, 91-92, 205-209.	2.2	69
234	Template synthesis and characterisation of MCM-41 mesoporous molecular sieves containing various transition metal elements—TME (Cu, Fe, Nb, V, Mo). Journal of Physics and Chemistry of Solids, 2004, 65, 571-581.	1.9	54
235	Porosity, structural and fractal study of sol–gel TiO2–CeO2 mixed oxides. Journal of Solid State Chemistry, 2004, 177, 1873-1885.	1.4	123
236	Synthesis of Pt Nanowires Inside Aerosol Derived Spherical Mesoporous Silica Particles. Catalysis Letters, 2004, 98, 167-172.	1.4	14
237	Non-Additivity of Attractive Potentials in Modeling of N2 and Ar Adsorption Isotherms on Graphitized Carbon Black and Porous Carbon by Means of Density Functional Theory. Particle and Particle Systems Characterization, 2004, 21, 161-169.	1.2	12
238	Meso/Macroporous Carbon Monoliths from Polymeric Foams. Advanced Engineering Materials, 2004, 6, 897-899.	1.6	47
239	Incorporation of a (Cyclopentadienyl)molybdenum Oxo Complex in MCM-41 and Its Use as a Catalyst for Olefin Epoxidation. European Journal of Inorganic Chemistry, 2004, 2004, 4914-4920.	1.0	42
240	The possible use of Γ-functions for the determination of microporosity–mesoporosity and the pore size in materials with ordered (MCM) and quasi-ordered pore structure. Microporous and Mesoporous Materials, 2004, 67, 167-174.	2.2	10
241	Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. Microporous and Mesoporous Materials, 2004, 67, 273-281.	2.2	146

#	Article	IF	CITATIONS
242	Room temperature synthesis of ordered porous silicas templated by symmetric and dissymmetric gemini surfactants [CnH2n+1N(CH3)2(CH2)2(CH3)2NCmH2m+1]Br2. Microporous and Mesoporous Materials, 2004, 69, 43-48.	2.2	22
243	Lanthanum functionalized highly ordered mesoporous media: implications of arsenate removal. Microporous and Mesoporous Materials, 2004, 75, 159-168.	2.2	83
244	Al-MCM-41 sorbents for bovine serum albumin: relation between Al content and performance. Microporous and Mesoporous Materials, 2004, 75, 221-229.	2.2	43
245	Synthesis and characterization of a manganese(II) acetonitrile complex supported on functionalized MCM-41. Microporous and Mesoporous Materials, 2004, 76, 131-136.	2.2	25
246	The role of niobium in the gas- and liquid-phase oxidation on metallosilicate MCM-41-type materials. Journal of Catalysis, 2004, 224, 314-325.	3.1	71
247	Anomalous adsorption behavior observed during the characterization of a polystyrene film prepared on a mesoporous material. Journal of Colloid and Interface Science, 2004, 275, 48-52.	5.0	1
248	Well-ordered mesoporous silica prepared by cationic fluorinated surfactant templating. Microporous and Mesoporous Materials, 2004, 73, 197-202.	2.2	45
249	Cu state and behaviour in MCM-41 mesoporous molecular sieves modified with copper during the synthesis––comparison with copper exchanged materials. Microporous and Mesoporous Materials, 2004, 74, 23-36.	2.2	54
250	Synthesis and characterisation of mesoporous carbons of large textural porosity and tunable pore size by templating mesostructured HMS silica materials. Microporous and Mesoporous Materials, 2004, 74, 49-58.	2.2	37
251	Synthesis of MCM-41 with high content of framework aluminum using mixed templates. Microporous and Mesoporous Materials, 2004, 76, 35-40.	2.2	15
252	Ordered mesoporous silica: microwave synthesis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 112, 106-110.	1.7	42
253	Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. Journal of Power Sources, 2004, 133, 329-336.	4.0	275
254	Nanocasting of novel, designer-structured catalyst supports. Chemical Engineering Science, 2004, 59, 5113-5120.	1.9	11
255	Mesoporous FeAlMCM-41: an improved catalyst for the vapor phase tert-butylation of phenol. Applied Catalysis A: General, 2004, 265, 1-10.	2.2	76
256	Characterization of Co,Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol. Applied Catalysis A: General, 2004, 268, 139-149.	2.2	74
257	Argon and nitrogen adsorption studies of changes in connectivity of ordered cage-like large mesopores during the hydrothermal treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 27-34.	2.3	16
258	Textural and structural properties of niobium-containing micro-, meso- and macroporous molecular sieves. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 103-111.	2.3	19
259	Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells. Carbon, 2004, 42, 436-439.	5.4	142

#	Article	IF	CITATIONS
260	Template synthesis of mesoporous carbons with tailorable pore size and porosity. Carbon, 2004, 42, 433-436.	5.4	72
261	Synthesis and characterization of lanthanum incorporated mesoporous molecular sieves. Applied Surface Science, 2004, 238, 320-323.	3.1	11
262	Exceptionally High Stability of Copolymer-Templated Ordered Silica with Large Cage-Like Mesopores. Chemistry of Materials, 2004, 16, 698-707.	3.2	63
263	Periodic Mesoporous Silica-Supported Recyclable Rhodium-Complexed Dendrimer Catalysts. Chemistry of Materials, 2004, 16, 4095-4102.	3.2	112
264	Synthesis and Characterization of Polymer-Templated Mesoporous Silicas Containing Niobium. Journal of Physical Chemistry B, 2004, 108, 3722-3727.	1.2	27
265	Comprehensive Structure Analysis of Ordered Carbon Nanopipe Materials CMK-5 by X-ray Diffraction and Electron Microscopy. Chemistry of Materials, 2004, 16, 2274-2281.	3.2	55
266	Quantitative Information on Pore Size Distribution from the Tangents of Comparison Plots. Langmuir, 2004, 20, 10115-10122.	1.6	16
267	Dissociation Conditions of Methane Hydrate in Mesoporous Silica Gels in Wide Ranges of Pressure and Water Content. Journal of Physical Chemistry B, 2004, 108, 16540-16547.	1.2	32
268	Application of Density Functional Theory to Analysis of Energetic Heterogeneity and Pore Size Distribution of Activated Carbons. Langmuir, 2004, 20, 3791-3797.	1.6	49
269	Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time. Journal of Physical Chemistry B, 2004, 108, 11480-11489.	1.2	333
270	Self-Assembly of Colloidal Zeolite Precursors into Extended Hierarchically Ordered Solids. Chemistry of Materials, 2004, 16, 3139-3146.	3.2	30
271	A grand canonical Monte Carlo study of capillary condensation in mesoporous media: Effect of the pore morphology and topology. Journal of Chemical Physics, 2004, 121, 3767-3774.	1.2	100
272	Simple Surfactant-Free Route to Mesoporous Organicâ^'Inorganic Hybrid Silicas Containing Covalently Bound Cyclodextrins. Journal of Organic Chemistry, 2004, 69, 2213-2216.	1.7	26
273	Mesoporous Carbons Synthesized by Imprinting Ordered and Disordered Porous Structures of Silica Particles in Mesophase Pitch. Journal of Physical Chemistry B, 2004, 108, 824-826.	1.2	77
274	Novel pitch-based carbons with bimodal distribution of uniform mesopores. Chemical Communications, 2004, , 2576.	2.2	29
275	Synthesis of Periodic Mesoporous Ethylenesilica under Acidic Conditions. Chemistry of Materials, 2004, 16, 1756-1762.	3.2	84
276	Low-Cost Synthetic Route to Mesoporous Carbons with Narrow Pore Size Distributions and Tunable Porosity through Silica Xerogel Templates. Chemistry of Materials, 2004, 16, 449-455.	3.2	44
277	Synthesis and characterisation of multi-element (Nb, V, Mo) MCM-41 molecular sieves. Studies in Surface Science and Catalysis 2004 848-855	1.5	8

#	Article	IF	CITATIONS
278	Synthesis of mesostructured silica with tailorable textural porosity and particle size. Materials Letters, 2004, 58, 1494-1497.	1.3	12
279	PHYSICAL ADSORPTION CHARACTERIZATION OF ORDERED AND AMORPHOUS MESOPOROUS MATERIALS. Series on Chemical Engineering, 2004, , 317-364.	0.2	91
280	Influence of synthesis time on adsorption properties of FDU1 materials. Studies in Surface Science and Catalysis, 2005, 156, 105-112.	1.5	9
281	Synthesis and adsorption properties of periodic mesoporous organosilicas with large heterocyclic bridging groups. Studies in Surface Science and Catalysis, 2005, , 197-204.	1.5	0
282	Pitch-based carbons synthesized by using silica colloids and ordered mesoporous silica particles as templates. Studies in Surface Science and Catalysis, 2005, 156, 581-588.	1.5	1
283	Detailed characterisation of Al-grafted MCM-48. Studies in Surface Science and Catalysis, 2005, 158, 703-710.	1.5	1
284	Use of hexane isomers adsorption for texture characterisation of niobium-containing MCM-41 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, 158, 1533-1540.	1.5	2
285	Synthesis of niobium molecular sieves with a new Nb source and catalytic oxidation of cyclohexene. Studies in Surface Science and Catalysis, 2005, 156, 163-170.	1.5	2
286	SBA-15 templated-ordered mesoporous carbon: effect of SBA-15 microporosity. Studies in Surface Science and Catalysis, 2005, , 543-550.	1.5	5
287	A general and low-cost synthetic route to high-surface area metal oxides through a silica xerogel template. Journal of Physics and Chemistry of Solids, 2005, 66, 741-747.	1.9	33
288	Modification of micropore-containing SBA-3 by TEOS liquid phase deposition. Microporous and Mesoporous Materials, 2005, 79, 85-91.	2.2	20
289	Control of pore size and condensation rate of cubic mesoporous silica thin films using a swelling agent. Microporous and Mesoporous Materials, 2005, 78, 245-253.	2.2	35
290	Adsorption of Bovine Serum Albumin and lysozyme on siliceous MCM-41. Microporous and Mesoporous Materials, 2005, 80, 311-320.	2.2	90
291	Surface and porosity of nanocrystalline boehmite xerogels. Journal of Colloid and Interface Science, 2005, 290, 208-219.	5.0	24
292	Knowledge-based reconstruction of random porous media. Journal of Colloid and Interface Science, 2005, 291, 201-213.	5.0	26
293	Studies on the activity and stability of immobilized α-amylase in ordered mesoporous silicas. Microporous and Mesoporous Materials, 2005, 77, 67-77.	2.2	178
294	Preparation and characterisation of Pt containing NbMCM-41 mesoporous molecular sieves addressed to catalytic NO reduction by hydrocarbons. Microporous and Mesoporous Materials, 2005, 78, 103-116.	2.2	41
295	Effect of texture and structure on the catalytic activity of mesoporous niobosilicates for the oxidation of cyclohexene. Microporous and Mesoporous Materials, 2005, 78, 281-288.	2.2	41

ARTICLE IF CITATIONS # Hydrothermal synthesis of MCM-41 using different ratios of colloidal and soluble silica. 296 2.2 28 Microporous and Mesoporous Materials, 2005, 81, 191-200. The structure and morphology control of mesoporous silica under acidic conditions. Microporous and Mesoporous Materials, 2005, 85, 207-218. 2.2 Aluminosilicate MCM-48 mesostructures assembled from dried zeolite precursors and Gemini 298 2.2 10 surfactant. Microporous and Mesoporous Materials, 2005, 86, 256-267. Fluorinated surfactant templating of vinyl-functionalized nanoporous silica. Microporous and 2.2 Mesoporous Materials, 2005, 85, 16-24. Templated mesoporous carbons for supercapacitor application. Electrochimica Acta, 2005, 50, 300 399 2.6 2799-2805. Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. Journal of Chromatography A, 2005, 1069, 119-126. 1.8 158 Adsorption of argon and nitrogen in cylindrical pores of MCM-41 materials: application of density 302 3.1 16 functional theory. Applied Surface Science, 2005, 252, 1013-1028. Application of density functional theory to equilibrium adsorption of argon and nitrogen on 3.1 amorphous silica surface. Applied Surface Science, 2005, 252, 548-561. Adsorption characterization of surfactant-templated ordered mesoporous silicas synthesized with 304 3.1 12 and without hydrothermal treatment. Applied Surface Science, 2005, 252, 562-569. One-pot synthesis and characterization of HMS silica carrying Disperse-Red-1 (DR1) covalently bonded 0.2 to the inner surface. Comptes Rendus Chimie, 2005, 8, 655-661. Iron containing mesoporous solids: preparation, characterisation, and surface properties. Comptes 306 0.2 20 Rendus Chimie, 2005, 8, 635-654. SBA-15 Templated Mesoporous Carbon:  New Insights into the SBA-15 Pore Structure. Chemistry of 3.2 Materials, 2005, 17, 6108-6113. Modeling of Adsorption and Nucleation in Infinite Cylindrical Pores by Two-Dimensional Density 308 1.2 29 Functional Theory. Journal of Physical Chemistry B, 2005, 109, 11653-11660. Modeling Nitrogen Adsorption in Spherical Pores of Siliceous Materials by Density Functional Theory. Journal of Chemical Theory and Computation, 2005, 1, 653-661. 309 2.3 Equilibrium Adsorption in Cylindrical Mesopores:Â A Modified Broekhoff and de Boer Theory versus 310 1.2 49 Density Functional Theory. Journal of Physical Chemistry B, 2005, 109, 1947-1958. Release evaluation of drugs from ordered three-dimensional silica structures. European Journal of 1.9 200 Pharmaceutical Sciences, 2005, 26, 365-373. Preparation of high nickel-containing MCM-41-type mesoporous silica via a modified direct synthesis 312 2.7 19 method. Materials Research Bulletin, 2005, 40, 1737-1744. Tissue regeneration: A new property of mesoporous materials. Solid State Sciences, 2005, 7, 983-989. 1.5 186

#	Article	IF	CITATIONS
314	Polyamidoamine Dendrimers Prepared Inside the Channels of Pore-Expanded Periodic Mesoporous Silica. Advanced Functional Materials, 2005, 15, 1641-1646.	7.8	81
315	Rhodium ComplexedC2-PAMAM Dendrimers Supported on Large Pore Davisil Silica as Catalysts for the Hydroformylation of Olefins. Advanced Synthesis and Catalysis, 2005, 347, 1379-1388.	2.1	38
316	Encapsulation of Polypyrrole Chains Inside the Framework of an Ordered Mesoporous Carbon. Macromolecular Rapid Communications, 2005, 26, 1055-1059.	2.0	6
317	Porogen concentration and its desorbing temperature dependence in porous silica film incorporated with ethylene groups. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 250-252.	1.7	2
318	Short-time synthesis of SBA-15 using various silica sources. Journal of Colloid and Interface Science, 2005, 287, 717-720.	5.0	70
319	Ordered Mesoporous Silicas with 2,5-Dimercapto-1,3,4-Thiadiazole Ligand: High Capacity Adsorbents for Mercury Ions. Adsorption, 2005, 11, 205-214.	1.4	43
320	Expressiveness of Adsorption Measurements for Characterization of Zeolitic Materials—A Review. Adsorption, 2005, 11, 275-293.	1.4	6
321	Mesoporous Molecular Sieves Modified with Carbonaceous Deposits. Adsorption, 2005, 11, 363-377.	1.4	1
322	Modeling of Adsorption in Finite Cylindrical Pores by Means of Density Functional Theory. Adsorption, 2005, 11, 455-477.	1.4	24
323	Adsorption Characterization of Ordered Mesoporous Silicas with Mercury-Specific Immobilized Ligands. Adsorption, 2005, 11, 685-690.	1.4	19
324	Comparison of Adsorption Properties of Polymer-Templated Mesoporous Silicas with Incorporated Niobium. Adsorption, 2005, 11, 737-743.	1.4	1
325	Adsorption Monitoring of Hydrothermal and Thermal Stability of Polymer-Templated Mesoporous Materials. Adsorption, 2005, 11, 745-750.	1.4	Ο
326	Characterization of pore structure of copolymer-templated periodic mesoporous organosilicas. Studies in Surface Science and Catalysis, 2005, 156, 673-682.	1.5	1
327	Synthesis of Nitrogen-Doped Titanium Oxide Nanostructures Via a Surfactant-Free Hydrothermal Route. Journal of Materials Research, 2005, 20, 3011-3020.	1.2	22
328	Large- and small-nanopore silica prepared with a short-chain cationic fluorinated surfactant. Nanotechnology, 2005, 16, S502-S507.	1.3	16
329	Optimization of synthesis time for SBA-15 materials. Studies in Surface Science and Catalysis, 2005, 156, 75-82.	1.5	6
330	Optimization of silica/surfactant ratio in MCM-41 synthesis. Studies in Surface Science and Catalysis, 2005, 156, 55-62.	1.5	10
331	The effect of the Cs introduction into Pt/NbMCM-41 and Pt/SiMCM-41 on surface properties and NO reduction with hydrocarbons. Studies in Surface Science and Catalysis, 2005, 158, 1319-1326.	1.5	7

		CITATION REPORT		
#	Article		IF	CITATIONS
332	Domain theory for capillary condensation hysteresis. Physical Review B, 2005, 72, .		1.1	57
333	Synthesis of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 200	5, 157, 91-110.	1.5	34
334	Synthesis and Characterization of Gold Nanoparticleâ€Functionalized Ordered Mesoporo Journal of Dispersion Science and Technology, 2005, 26, 729-744.	us Materials.	1.3	13
335	Microwave synthesis of FDU-1 silica with incorporated humic acid and its application for a of Cd2+ from aqueous solutions. Studies in Surface Science and Catalysis, 2005, 156, 94	dsorption 1-950.	1.5	11
336	Highly Luminescent Tris(β-diketonate)europium(III) Complexes Immobilized in a Function Mesoporous Silica. Chemistry of Materials, 2005, 17, 5077-5084.	alized	3.2	172
337	Al-MCM-48 as a template for synthesis of porous carbons-adsorption study. Studies in Su and Catalysis, 2005, 158, 447-454.	rface Science	1.5	4
338	A high capacity, water tolerant adsorbent for CO2: diethanolamine supported on pore-ex MCM-41. Studies in Surface Science and Catalysis, 2005, , 879-886.	banded	1.5	19
339	Triblock copolymer-assisted synthesis of a hybrid mesoporous ethenylene–silica with 21 structure and large pores. Journal of Materials Chemistry, 2005, 15, 2362.	D hexagonal	6.7	25
340	Transition metal containing (Nb, V, Mo) SBA-15 molecular sieves —synthesis, characteri catalytic activity in gas and liquid phase oxidation. Studies in Surface Science and Catalys 1461-1468.	stic and is, 2005, 158,	1.5	25
341	Bifunctional periodic mesoporous organosilica with large heterocyclic bridging groups an mercaptopropyl ligands. Journal of Materials Chemistry, 2005, 15, 1517.	đ	6.7	93
342	A Direct Solâ€Gel Synthesis Method for Incorporation of Transition Metals into the Frame Ordered Mesoporous Materials. Journal of Dispersion Science and Technology, 2005, 26,	work of 95-104.	1.3	4
343	Three-Dimensional Cubic Mesoporous Molecular Sieves of FDU-1 Containing Niobium:â€9 Niobium Source on Structural Properties. Langmuir, 2005, 21, 755-760.	‰ Dependence of	1.6	15
344	Solvent Effects in the Hydrolysis of Magnesium Methoxide, and the Production of Nanocr Magnesium Hydroxide. An Aid in Understanding the Formation of Porous Inorganic Mater Chemistry of Materials, 2005, 17, 65-73.	ystalline ials.	3.2	77
345	Energetics of Mesoporous Silica:  Investigation into Pore Size and Symmetry. Chemis 2005, 17, 3772-3783.	try of Materials,	3.2	40
346	Synthesis of FDU-1 Silica with Narrow Pore Size Distribution and Tailorable Pore Entrance Presence of Sodium Chloride. Journal of Physical Chemistry B, 2005, 109, 3838-3843.	Size in the	1.2	33
347	Amine grafted, pore-expanded MCM–41 for acid gas removal: Effect of grafting temper and amine type on performance. Studies in Surface Science and Catalysis, 2005, , 987-99	ature, water, 4.	1.5	18
348	Large Pore Methylene-Bridged Periodic Mesoporous Organosilicas:  Synthesis, Bifunc Their Use as Nanotemplates. Chemistry of Materials, 2005, 17, 6407-6415.	tionalization and	3.2	26
349	Distribution of Carbon Nanotube Sizes from Adsorption Measurements and Computer Si Journal of Physical Chemistry B, 2005, 109, 14659-14666.	nulation.	1.2	30

ARTICLE IF CITATIONS Parametric Study of Cs/CaO Sorbents with Respect to Simulated Flue Gas at High Temperatures. 350 1.8 39 Industrial & amp; Engineering Chemistry Research, 2005, 44, 6485-6490. Synthesis Mechanism of Cationic Surfactant Templating Mesoporous Silica under an Acidic Synthesis 3.2 59 Process. Chemistry of Materials, 2005, 17, 4103-4113. Synthesis of Mesoporous Carbons Using Ordered and Disordered Mesoporous Silica Templates and 352 1.2 200 Polyacrylonitrile as Carbon Precursor. Journal of Physical Chemistry B, 2005, 109, 9216-9225. A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks withla3ì,,dBicontinuous Cubic Structure. Journal of the American Chemical Society, 2005, 127, 588 13508-13509 Adsorption and Structural Properties of Ordered Mesoporous Carbons Synthesized by Using Various Carbon Precursors and Ordered Siliceous P6mm and Ia31, d Mesostructures as Templates. Journal of 354 1.2 92 Physical Chemistry B, 2005, 109, 23263-23268. Improvement of the Derjaguin-Broekhoff-de Boer Theory for the Capillary Condensation/Evaporation of Nitrogen in Spherical Cavities and Its Application for the Pore Size Analysis of Silicas with Ordered Cagelike Mesopores. Langmuir, 2005, 21, 10530-10536. 1.6 16 Mesoporous carbons with graphitic structures fabricated by using porous silica materials as 356 templates and iron-impregnated polypyrrole as precursor. Journal of Materials Chemistry, 2005, 15, 6.7 147 1079. Characterization of mesoporous carbons synthesized with SBA-16 silica template. Journal of Materials 6.7 162 Chemistry, 2005, 15, 1560. Tailoring interfacial properties of periodic mesoporous organosilicas by incorporation of spacious 358 0 heterocyclic and thiol groups and its implication for structural changes., 2005, 5929, 176. Applications of Pore-Expanded Mesoporous Silica. 1. Removal of Heavy Metal Cations and Organic 3.2 Pollutants from Wastewater. Chemistry of Materials, 2005, 17, 212-216. Nature of Capillary Condensation and Evaporation Processes in Ordered Porous Materials. Langmuir, 360 101 1.6 2005, 21, 10515-10521. Pore size characterization of mesoporous materials by a thermodynamic approach: A 1.5 curvature-dependent solid-fluid potential. Studies in Surface Science and Catalysis, 2005, , 663-672. Fabrication and Characterization of Mesostructured Silica, HUM-1, and Its Ordered Mesoporous 362 1.8 13 Carbon Replica. Industrial & amp; Engineering Chemistry Research, 2005, 44, 4316-4322. A novel mixed cationic-nonionic surfactant templating approach for the synthesis of mesoporous niobium containing silica-a promising epoxidation catalyst. Studies in Surface Science and Catalysis, 2005, 156, 155-162. 1.5 Periodic Mesoporous Organosilica with Large Heterocyclic Bridging Groups. Journal of the American 364 6.6 217 Chemical Society, 2005, 127, 60-61. Improvement of the Derjaguina^{^3}Broekhoffa^{^3}de Boer Theory for Capillary Condensation/Evaporation of Nitrogen in Mesoporous Systems and Its Implications for Pore Size Analysis of MCM-41 Silicas and Related Materials. Langmuir, 2005, 21, 1827-1833. Postsynthesis Vapor-Phase Functionalization of MCM-48 with Hexamethyldisilazane and 3-Aminopropyldimethylethoxylsilane for Bioseparation Applications. Journal of Physical Chemistry B, 366 1.2 16 2005, 109, 16263-16271. Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. Journal of Materials Chemistry, 2005, 15, 5049.

#	Article	IF	CITATIONS
368	Molecularly Ordered Nanoporous Organosilicates Prepared with and without Surfactants. Journal of the American Chemical Society, 2005, 127, 12194-12195.	6.6	135
369	Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2. Industrial & Engineering Chemistry Research, 2005, 44, 8007-8013.	1.8	364
370	Aerosol-Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules. Journal of the American Chemical Society, 2006, 128, 4512-4513.	6.6	115
371	Assessment of ordered and complementary pore volumes in polymer-templated mesoporous silicas and organosilicas. Chemical Communications, 2006, , 2242.	2.2	21
372	Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. Journal of Materials Chemistry, 2006, 16, 462-466.	6.7	302
373	Removal of Arsenite and Arsenate Using Hydrous Ferric Oxide Incorporated into Naturally Occurring Porous Diatomite. Environmental Science & Technology, 2006, 40, 1636-1643.	4.6	157
374	Textural and electrochemical properties of carbon replica obtained from styryl organo-modified layered double hydroxide. Journal of Materials Chemistry, 2006, 16, 2074-2081.	6.7	54
375	Effect of polymer-to-silica ratio on the formation of large three-dimensional cage-like mesostructures. New Journal of Chemistry, 2006, 30, 1071.	1.4	18
377	Periodic mesoporous organosilicas: mesophase control via binary surfactant mixtures. Journal of Materials Chemistry, 2006, 16, 1238.	6.7	39
378	Adsorption and structural properties of mesoporous carbons obtained from mesophase pitch and phenol-formaldehyde carbon precursors using porous templates prepared from colloidal silica. Journal of Materials Chemistry, 2006, 16, 2819.	6.7	22
379	Accurate Relations between Pore Size and the Pressure of Capillary Condensation and the Evaporation of Nitrogen in Cylindrical Pores. Langmuir, 2006, 22, 4165-4169.	1.6	37
380	A Facile Route for the Preparation of Superparamagnetic Porous Carbons. Chemistry of Materials, 2006, 18, 1675-1679.	3.2	88
381	Adsorption of DNA into Mesoporous Silica. Journal of Physical Chemistry B, 2006, 110, 15261-15268.	1.2	104
382	Hydrothermal stability of SBA-15 and related ordered mesoporous silicas with plugged pores. Journal of Materials Chemistry, 2006, 16, 2824.	6.7	84
383	Synthesis and characterization of ordered mesoporous materials for removal of heavy metal ions. , 2006, , 325-336.		2
384	An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology. Chemistry of Materials, 2006, 18, 5279-5288.	3.2	238
385	Gas Adsorption in Mesoporous Micelle-Templated Silicas:Â MCM-41, MCM-48, and SBA-15. Langmuir, 2006, 22, 11097-11105.	1.6	78
386	X-ray Structural Modeling and Gas Adsorption Analysis of Cagelike SBA-16 Silica Mesophases Prepared in a F127/Butanol/H2O System. Chemistry of Materials, 2006, 18, 5070-5079.	3.2	111

#	Article	IF	CITATIONS
387	Carbons with Extremely Large Volume of Uniform Mesopores Synthesized by Carbonization of Phenolic Resin Film Formed on Colloidal Silica Template. Journal of the American Chemical Society, 2006, 128, 10026-10027.	6.6	142
388	Temperature-Programmed Microwave-Assisted Synthesis of SBA-15 Ordered Mesoporous Silica. Journal of the American Chemical Society, 2006, 128, 14408-14414.	6.6	135
389	Mesoporous ZSM-5 synthesized by simultaneous mesostructuring and crystallization of ZSM-5 nuclei. Studies in Surface Science and Catalysis, 2006, 162, 323-330.	1.5	2
390	Effective method for removal of polymeric template from SBA-16 silica combining extraction and temperature-controlled calcination. Journal of Materials Chemistry, 2006, 16, 819-823.	6.7	72
391	Well-Defined Poly(ethylene oxide)â´Polyacrylonitrile Diblock Copolymers as Templates for Mesoporous Silicas and Precursors for Mesoporous Carbons. Chemistry of Materials, 2006, 18, 1417-1424.	3.2	61
392	Periodic Mesoporous Organosilicas with Ethane and Large Isocyanurate Bridging Groups. Chemistry of Materials, 2006, 18, 1722-1725.	3.2	61
393	Chapter 3 Characterization of nanoporous carbons by using gas adsorption isotherms. Interface Science and Technology, 2006, , 107-158.	1.6	24
394	Controlling of Physicochemical Properties of Nickel-Substituted MCM-41 by Adjustment of the Synthesis Solution pH and Tetramethylammonium Silicate Concentration. Journal of Physical Chemistry B, 2006, 110, 5927-5935.	1.2	13
395	Characterization and Catalytic Performances of Three-Dimensional Mesoporous FeSBA-1 Catalysts. Journal of Physical Chemistry B, 2006, 110, 11924-11931.	1.2	40
396	Periodic Mesoporous Organosilicas with Im3m Symmetry and Large Isocyanurate Bridging Groups. Journal of Physical Chemistry B, 2006, 110, 2972-2975.	1.2	44
397	Synthesis of MCM-48 Silica Using a Gemini Surfactant with a Rigid Spacer. Chemistry of Materials, 2006, 18, 4147-4150.	3.2	22
398	Effects of progressive changes in organoalkoxysilane structure on the gelation and pore structure of templated and non-templated sol–gel materials. Journal of Non-Crystalline Solids, 2006, 352, 5453-5462.	1.5	25
399	Probing the microporous nature of hierarchically templated mesoporous silica via positron annihilation spectroscopy. Progress in Solid State Chemistry, 2006, 34, 67-75.	3.9	17
400	Adsorption Separation of Methyl Chloride from Nitrogen Using ZSM-5 and Mesoporous SBA-15. Adsorption Science and Technology, 2006, 24, 79-99.	1.5	1
401	Using Nano-Cast Model Porous Media and Integrated Gas Sorption to Improve Fundamental Understanding and Data Interpretation in Mercury Porosimetry. Particle and Particle Systems Characterization, 2006, 23, 82-93.	1.2	13
402	Catalytic graphitization of templated mesoporous carbons. Carbon, 2006, 44, 468-474.	5.4	422
403	Pore size distribution analysis of activated carbons: Application of density functional theory using nongraphitized carbon black as a reference system. Carbon, 2006, 44, 653-663.	5.4	95
404	WGS and reforming properties of NbMCM-41 materials. Catalysis Today, 2006, 114, 281-286.	2.2	11

#	Article	IF	CITATIONS
405	New Nb-containing SBA-3 mesoporous materials—Synthesis, characteristics, and catalytic activity in gas and liquid phase oxidation. Catalysis Today, 2006, 118, 416-424.	2.2	46
406	Application of a generalized thermodynamic approach to characterize mesoporous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 272, 68-81.	2.3	12
407	Co-condensation synthesis and adsorption properties of cage-like mesoporous silicas with imidazole groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 291, 139-147.	2.3	19
408	Luminescent europium complexes encapsulated in cage-like cubic ordered mesoporous silica. Microporous and Mesoporous Materials, 2006, 92, 94-100.	2.2	33
409	Size effect on SBA-15 microporosity. Microporous and Mesoporous Materials, 2006, 93, 313-317.	2.2	38
410	Synthesis and characterization of thermally stable MCM-41/Î ³ -Al2O3 composite materials. Microporous and Mesoporous Materials, 2006, 94, 254-260.	2.2	17
411	Optically functional nanocomposites with poly(oxyethylene)-based di-ureasils and mesoporous MCM-41. Microporous and Mesoporous Materials, 2006, 94, 185-192.	2.2	13
412	Al-MCM-41 supported phosphotungstic acid: Application to symmetrical and unsymmetrical ring opening of succinic anhydride. Journal of Molecular Catalysis A, 2006, 243, 183-193.	4.8	42
413	Comparison of nitrogen adsorption at 77 K on non-porous silica and pore wall of MCM-41 materials by means of density functional theory. Journal of Colloid and Interface Science, 2006, 297, 480-488.	5.0	7
414	Phase behavior and preparation of mesoporous silica in aqueous mixtures of fluorinated surfactant and hydrophobic fluorinated polymer. Journal of Colloid and Interface Science, 2006, 299, 297-304.	5.0	26
415	The local and surface structure of ordered mesoporous carbons from nitrogen sorption, NEXAFS and synchrotron radiation studies. Microporous and Mesoporous Materials, 2006, 92, 81-93.	2.2	16
416	The role of MCM-41 composition in the creation of basicity by alkali metal impregnation. Microporous and Mesoporous Materials, 2006, 90, 362-369.	2.2	25
417	Hepta-coordinate halocarbonyl molybdenum(II) and tungsten(II) complexes as heterogeneous polymerization catalysts. Journal of Molecular Catalysis A, 2006, 256, 90-98.	4.8	30
418	Influence of the acid concentration on the morphology of micropores and mesopores in porous glasses. Glass Physics and Chemistry, 2006, 32, 615-622.	0.2	15
419	Characterization of Y zeolites dealuminated by solid-state reaction with ammonium hexafluorosilicate. Journal of Porous Materials, 2006, 13, 107-114.	1.3	24
420	Adsorption and structural properties of channel-like and cage-like organosilicas. Adsorption, 2006, 12, 293-308.	1.4	30
421	Dioxomolybdenum(VI) modified mesoporous materials for the catalytic epoxidation of olefins. Catalysis Today, 2006, 114, 263-271.	2.2	71
422	Porous structure of natural and modified clinoptilolites. Journal of Colloid and Interface Science, 2006, 297, 77-85.	5.0	85

#	Article	IF	CITATIONS
423	Synthesis and characterization of mesoporous zinc sulfide by surfactant-assisted templating process. Materials Letters, 2006, 60, 2896-2899.	1.3	13
424	CO2 Capture by As-Prepared SBA-15 with an Occluded Organic Template. Advanced Functional Materials, 2006, 16, 1717-1722.	7.8	389
425	Budded, Mesoporous Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-Assembly. Advanced Materials, 2006, 18, 3284-3288.	11.1	156
426	Neutron diffraction and NMR relaxation studies of structural variation and phase transformations for water/ice in SBA-15 silica: I. The over-filled case. Journal of Physics Condensed Matter, 2006, 18, 10009-10028.	0.7	51
427	Physisorbed films in periodic mesoporous silica studied byin situsynchrotron small-angle diffraction. Physical Review B, 2006, 73, .	1.1	100
428	Review of Kelvin's Equation and Its Modification in Characterization of Mesoporous Materials. Chinese Journal of Chemical Physics, 2006, 19, 102-108.	0.6	18
429	The effect of hydrophilic agent on pores and walls of SBA-16 type mesoporous silica. Studies in Surface Science and Catalysis, 2007, 170, 641-647.	1.5	0
430	Large Pore Volume Carbons with Uniform Mesopores and Macropores:  Synthesis, Characterization, and Relations between Adsorption Parameters of Silica Templates and their Inverse Carbon Replicas. Journal of Physical Chemistry C, 2007, 111, 9742-9748.	1.5	26
431	Highly active cobalt-on-silica catalysts for the fischer-tropsch synthesis obtained via a novel calcination procedure. Studies in Surface Science and Catalysis, 2007, , 55-60.	1.5	25
432	Direct observation of cooperative effects in capillary condensation: The hysteretic origin. Applied Physics Letters, 2007, 91, .	1.5	42
433	A facile aqueous route tosynthesize highly ordered mesoporous carbons with open pore structures. Studies in Surface Science and Catalysis, 2007, , 1856-1862.	1.5	3
434	Controlled synthesis of mesoporous NbMSU-X: influence of the preparation route. Studies in Surface Science and Catalysis, 2007, 170, 519-524.	1.5	3
435	Thickness of Adsorbed Nitrogen Films in SBA-15 Silica from Small-Angle Neutron Diffraction. Studies in Surface Science and Catalysis, 2007, , 17-24.	1.5	13
436	Tailoring cage-like organosilicas with multifunctional bridging and surface groups. Studies in Surface Science and Catalysis, 2007, 165, 443-446.	1.5	2
437	Rapid and Deep Nitridation of Silica MCM-41 without Loss of Hexagonal Pore Structure. Chemistry Letters, 2007, 36, 1416-1417.	0.7	12
438	Three-dimensional large pore cubic niobosilicates: direct synthesis and characterization. Studies in Surface Science and Catalysis, 2007, 165, 69-72.	1.5	1
439	Adsorption Potential Distributions for Silicas and Organosilicas. Adsorption Science and Technology, 2007, 25, 573-581.	1.5	2
440	Effects of Hydrothermal Treatment and Template Removal on the Adsorption and Structural Properties of SBA-16 Mesoporous Silica. Adsorption Science and Technology, 2007, 25, 439-449.	1.5	9

#	Article	IF	Citations
441	Effect of pore morphology and topology on capillary condensation in nanopores: a theoretical and molecular simulation study. Studies in Surface Science and Catalysis, 2007, 160, 1-8.	1.5	11
442	Mesostructured Silica SBA-16 with Tailored Intrawall Porosity Part 1:  Synthesis and Characterization. Journal of Physical Chemistry C, 2007, 111, 3053-3058.	1.5	75
443	A Computational Study of the Reconstruction of Amorphous Mesoporous Materials from Gas Adsorption Isotherms and Structure Factors via Evolutionary Optimization. Langmuir, 2007, 23, 530-541.	1.6	23
444	Molecularly Ordered Biphenyl-Bridged Mesoporous Organosilica Prepared under Acidic Conditions. Chemistry of Materials, 2007, 19, 4117-4119.	3.2	35
445	How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?. Physical Chemistry Chemical Physics, 2007, 9, 5919.	1.3	70
446	Separation of Organic Compounds by Spherical Mesoporous Silica Prepared from W/O Microemulsions of Tetrabutoxysilane. Industrial & Engineering Chemistry Research, 2007, 46, 8152-8157.	1.8	20
447	Applications of Pore-Expanded Mesoporous Silica. 7. Adsorption of Volatile Organic Compounds. Environmental Science & Technology, 2007, 41, 4761-4766.	4.6	88
448	Single Gold Nanoparticles Encapsulated in Monodispersed Regular Spheres of Mesostructured Silica Produced by Pseudomorphic Transformation. Chemistry of Materials, 2007, 19, 1979-1983.	3.2	91
449	Highly Luminescent Organicâ^'Inorganic Hybrid Mesoporous Silicas Containing Tunable Chemosensor inside the Pore Wall. Chemistry of Materials, 2007, 19, 5347-5354.	3.2	125
450	Supercritical Fluid Growth of Porous Carbon Nanocages. Chemistry of Materials, 2007, 19, 3349-3354.	3.2	41
451	Hydration of MCM-41 Studied by Sorption Calorimetry. Journal of Physical Chemistry C, 2007, 111, 12906-12913.	1.5	69
452	Tailoring Porous Silica Films through Supercritical Carbon Dioxide Processing of Fluorinated Surfactant Templates. Journal of Physical Chemistry B, 2007, 111, 363-370.	1.2	18
453	Mesoporous Carbon Single-Crystals from Organicâ^'Organic Self-Assembly. Journal of the American Chemical Society, 2007, 129, 7746-7747.	6.6	105
454	Highly Ordered Supermicroporous Silica. Journal of Physical Chemistry C, 2007, 111, 10955-10958.	1.5	19
455	Facile synthetic route to nanosized ferrites by using mesoporous silica as a hard template. Nanotechnology, 2007, 18, 145603.	1.3	30
456	Ibuprofen delivery systems based on monodispersed spherical MCM-41 materials. Studies in Surface Science and Catalysis, 2007, , 861-865.	1.5	5
457	Polymer-Templated Mesoporous Organosilicas with Two Types of Multifunctional Organic Groups. Industrial & Engineering Chemistry Research, 2007, 46, 1745-1751.	1.8	38
458	Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2Dynamic and Equilibrium Adsorption Performance. Industrial & amp; Engineering Chemistry Research, 2007, 46, 446-458.	1.8	450

#	Article	IF	CITATIONS
459	Applications of pore-expanded MCM-41 silica: 4. Synthesis of a highly active base catalyst. Catalysis Communications, 2007, 8, 829-833.	1.6	40
460	Facile Synthesis of Monodisperse Microspheres and Gigantic Hollow Shells of Mesoporous Silica in Mixed Waterâ^'Ethanol Solvents. Langmuir, 2007, 23, 1107-1113.	1.6	115
461	Synthesis, Structure, and Characterization of Mesoporous Materials. , 0, , 467-601.		2
462	Synthetic Route to Nanocomposites Made Up of Inorganic Nanoparticles Confined within a Hollow Mesoporous Carbon Shell. Chemistry of Materials, 2007, 19, 5418-5423.	3.2	97
463	Hierarchical porous and composite particle architectures based on self assembly and phase separation in droplets. Journal of Materials Chemistry, 2007, 17, 2329.	6.7	25
465	Vibrational Study on the Local Structure of Postâ€Synthesis and Hybrid Mesoporous Materials: Are There Fundamental Distinctions?. Chemistry - A European Journal, 2007, 13, 7874-7882.	1.7	19
466	Synthesis and Characterization of Chiral Periodic Mesoporous Organosilicas. Angewandte Chemie - International Edition, 2007, 46, 7796-7798.	7.2	56
468	Templated Synthesis of Mesoporous Superparamagnetic Polymers. Advanced Functional Materials, 2007, 17, 2321-2327.	7.8	21
469	Molecular Network Reinforcement of Sol–Gel Glasses. Advanced Materials, 2007, 19, 3989-3994.	11.1	138
470	Determination of catalyst wetting fraction on the molecular level. AICHE Journal, 2007, 53, 741-745.	1.8	8
471	Comparison of oxidation properties of Nb and Sn in mesoporous molecular sieves. Applied Catalysis A: General, 2007, 321, 40-48.	2.2	27
472	Adsorption studies of thermal stability of SBA-16 mesoporous silicas. Applied Surface Science, 2007, 253, 5660-5665.	3.1	55
473	Theoretical studies of argon adsorption in MCM-41 mesoporous systems. Applied Surface Science, 2007, 253, 5671-5675.	3.1	3
474	Assessment of pore structure parameters for polymer-templated mesoporous molecular sieves by means of nitrogen and argon adsorption. Applied Surface Science, 2007, 253, 5676-5681.	3.1	2
475	Comparative studies of p6m siliceous mesostructures by powder X-ray diffraction and nitrogen adsorption. Applied Surface Science, 2007, 253, 5682-5687.	3.1	20
476	Applicability of classical methods of pore size analysis for MCM-41 and SBA-15 silicas. Applied Surface Science, 2007, 253, 5587-5590.	3.1	10
477	Pore structures in an implantable sol–gel titania ceramic device used in controlled drug release applications: A modeling study. Applied Surface Science, 2007, 253, 5767-5771.	3.1	22
478	Effect of organosilane/polymer ratio on adsorption properties of periodic mesoporous ethane-silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 235-244.	2.3	23

#	Article	IF	CITATIONS
479	Electron microscopy and nitrogen adsorption studies of film-type carbon replicas with large pore volume synthesized by using colloidal silica and SBA-15 as templates. Carbon, 2007, 45, 2171-2177.	5.4	22
480	Ce-silica mesoporous SBA-15-type materials for oxidative catalysis: Synthesis, characterization, and catalytic application. Applied Catalysis A: General, 2007, 317, 1-10.	2.2	85
481	Catalytic properties of niobium and gallium oxide systems supported on MCM-41 type materials. Applied Catalysis A: General, 2007, 325, 328-335.	2.2	18
482	Effect of hydrothermal treatment on the structure, stability and acidity of Al containing MCM-41 and MCM-48 synthesised at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 310, 9-19.	2.3	21
483	Surface properties of platinum catalysts based on various nanoporous matrices. Microporous and Mesoporous Materials, 2007, 99, 345-354.	2.2	14
484	Halogen-free acylation of toluene over FeSBA-1 molecular sieves. Microporous and Mesoporous Materials, 2007, 100, 87-94.	2.2	28
485	Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. Microporous and Mesoporous Materials, 2007, 102, 178-187.	2.2	88
486	Functionalization of periodic mesoporous organosilica with ureidopropyl groups by a direct synthesis method. Microporous and Mesoporous Materials, 2007, 101, 381-387.	2.2	11
487	In situ generation of Pd nanoparticles in MCM-41 and catalytic applications in liquid-phase alkyne hydrogenations. Journal of Molecular Catalysis A, 2007, 264, 170-178.	4.8	40
488	Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. Journal of Catalysis, 2007, 251, 239-243.	3.1	70
489	Use of the ternary phase diagram of a mixed cationic/glucopyranoside surfactant system to predict mesostructured silica synthesis. Journal of Colloid and Interface Science, 2007, 316, 930-938.	5.0	8
490	Monodisperse Carbon–Polymer Mesoporous Spheres with Magnetic Functionality and Adjustable Pore-Size Distribution. Small, 2007, 3, 275-279.	5.2	65
491	Full phenol peroxide oxidation over Fe-MMM-2 catalysts with enhanced hydrothermal stability. Applied Catalysis B: Environmental, 2007, 75, 290-297.	10.8	31
492	Synthesis of macro/mesoporous silica and carbon monoliths by using a commercial polyurethane foam as sacrificial template. Materials Letters, 2007, 61, 2378-2381.	1.3	44
493	Sorption on as-synthesized MCM-41. Journal of Thermal Analysis and Calorimetry, 2007, 87, 165-169.	2.0	9
494	Radius of Curvature Effect on the Selective Oxidation of Cyclohexene Over Highly Ordered V-MCM-41. Catalysis Letters, 2007, 117, 25-33.	1.4	7
495	Argon and krypton adsorption on templated mesoporous silicas: molecular simulation and experiment. Adsorption, 2007, 13, 425-437.	1.4	28
496	Preparation of MCM-41 silica using the cationic surfactant blend. Adsorption, 2007, 13, 247-256.	1.4	10

#	Article	IF	CITATIONS
497	Polymer-templated organosilicas with hexagonally ordered mesopores: the effect of organosilane addition at different synthesis stages. Adsorption, 2007, 13, 323-329.	1.4	9
498	Ti-MCM-41 supported phosphotungstic acid: An effective and environmentally benign catalyst for epoxidation of styrene. Applied Surface Science, 2008, 255, 2632-2640.	3.1	40
499	Sol–Gel Assisted Preparation of Chromia–Silica Catalysts for Non-Oxidative Dehydrogenation of Propane. Catalysis Letters, 2008, 126, 164-172.	1.4	13
500	Superior mechanical properties of dense and porous organic/inorganic hybrid thin films. Journal of Sol-Gel Science and Technology, 2008, 48, 187-193.	1.1	68
501	"Hard―vs. "Soft―Templating Synthesis of Mesoporous Nb2O5 Catalysts for Oxidation Reactions. Topics in Catalysis, 2008, 49, 193-203.	1.3	19
502	Mesoporous niobium oxides with tailored pore structures. Journal of Materials Science, 2008, 43, 6278-6284.	1.7	5
503	Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular network. Adsorption, 2008, 14, 289-307.	1.4	16
504	SBAâ€15 poreâ€width decrease via a one―or a twoâ€step covalent bonding of a Fischer tungsten carbene as measured by N ₂ sorption. Surface and Interface Analysis, 2008, 40, 1262-1269.	0.8	4
505	Signatures of Clustering in Superparamagnetic Colloidal Nanocomposites of an Inorganic and Hybrid Nature. Small, 2008, 4, 254-261.	5.2	30
506	Threeâ€Dimensional Mesoporous Gallosilicate with <i>Pm</i> 3 <i>n</i> Symmetry and its Unusual Catalytic Performances. Chemistry - A European Journal, 2008, 14, 3553-3561.	1.7	28
507	Nanoporous Carbon Films from "Hairy―Polyacrylonitrileâ€Grafted Colloidal Silica Nanoparticles. Advanced Materials, 2008, 20, 1516-1522.	11.1	76
508	Reactive pore expansion during ammonia vapor post-treatment of ordered mesoporous silica prepared with mixed glucopyranoside and cationic surfactants. Microporous and Mesoporous Materials, 2008, 108, 65-76.	2.2	8
509	Carbon–silica composite adsorbent: Characterization and adsorption of light gases. Microporous and Mesoporous Materials, 2008, 111, 1-11.	2.2	56
510	Mesoporous carbons synthesized by soft-templating method: Determination of pore size distribution from argon and nitrogen adsorption isotherms. Microporous and Mesoporous Materials, 2008, 112, 573-579.	2.2	36
511	Expansion of the F127-templated mesostructure in aerosol-generated particles by using polypropylene glycol as a swelling agent. Microporous and Mesoporous Materials, 2008, 113, 1-13.	2.2	26
512	Synthesis and characterization of large-pore FDU-12 silica. Microporous and Mesoporous Materials, 2008, 114, 64-73.	2.2	57
513	Synthesis of onion-like mesoporous silica from sodium silicate in the presence of α,ω-diamine surfactant. Microporous and Mesoporous Materials, 2008, 114, 387-394.	2.2	25
514	Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. Journal of Power Sources, 2008, 175, 675-679.	4.0	119

#	Article	IF	CITATIONS
515	Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloids and Surfaces B: Biointerfaces, 2008, 62, 42-50.	2.5	65
516	Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method. Chemical Engineering Science, 2008, 63, 1997-2005.	1.9	25
517	Hydrogen adsorption on porous silica. International Journal of Hydrogen Energy, 2008, 33, 1688-1692.	3.8	34
518	Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO. International Journal of Hydrogen Energy, 2008, 33, 6687-6695.	3.8	60
519	Bifunctionalized mesoporous molecular sieve for perchlorate removal. Microporous and Mesoporous Materials, 2008, 108, 22-28.	2.2	41
520	Adsorption of Pb2+, Cu2+ and Cd2+ in FDU-1 silica and FDU-1 silica modified with humic acid. Microporous and Mesoporous Materials, 2008, 110, 250-259.	2.2	44
521	Fabrication and morphological control of three-dimensional cage type mesoporous titanosilicate with extremely high Ti content. Microporous and Mesoporous Materials, 2008, 110, 422-430.	2.2	14
522	A mesoporous composite template composed of self-assembled silica nanotube and multi-walled carbon nanotube. Microporous and Mesoporous Materials, 2008, 111, 292-299.	2.2	11
523	Synthesis and characterization of carbonaceous replicas of multilayered vesicular siliceous materials. Microporous and Mesoporous Materials, 2008, 111, 463-469.	2.2	6
524	Templated synthesis of high surface area inorganic oxides by silica aquagel-confined co-precipitation. Microporous and Mesoporous Materials, 2008, 112, 291-298.	2.2	10
525	Control of the structural properties of mesoporous polymers synthesized using porous silica materials as templates. Microporous and Mesoporous Materials, 2008, 112, 319-326.	2.2	20
526	Synthesis and characterization of Cu(I)–salen complex immobilized aluminosilicate MCM-41. Microporous and Mesoporous Materials, 2008, 113, 90-98.	2.2	16
527	Pore size engineering in fluorinated surfactant templated mesoporous silica powders through supercritical carbon dioxide processing. Microporous and Mesoporous Materials, 2008, 113, 106-113.	2.2	8
528	Structure and catalytic activity of Al-MCM-48 materials synthesised at room temperature: Influence of the aluminium source and calcination conditions. Microporous and Mesoporous Materials, 2008, 114, 293-302.	2.2	16
529	Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous and Mesoporous Materials, 2008, 115, 469-479.	2.2	108
530	Argon adsorption in channel-like mesoporous carbons at 77K: Grand Canonical Monte Carlo simulations and pore size analysis. Microporous and Mesoporous Materials, 2008, 116, 665-669.	2.2	6
531	Grafting of Alumina on SBA-15: Effect of Surface Roughness. Langmuir, 2008, 24, 9837-9842.	1.6	92
532	Melting and freezing of water in cylindrical silica nanopores. Physical Chemistry Chemical Physics, 2008, 10, 6039.	1.3	297

#	Article	IF	CITATIONS
533	Effect of synthesis conditions on preparation of mesoporous titania-silica by a modified sol-gel technique using a cationic surfactant. Research on Chemical Intermediates, 2008, 34, 629-639.	1.3	8
534	Adsorption of toluene, methylcyclohexane and neopentane onÂsilica MCM-41. Adsorption, 2008, 14, 367-375.	1.4	25
535	Novel Organic/Inorganic Hybrid Materials by Covalent Anchoring of Phenothiazines on MCM-41. Chemistry of Materials, 2008, 20, 4986-4992.	3.2	46
536	Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity. Journal of Catalysis, 2008, 254, 144-155.	3.1	144
537	How nitric oxide affects the decomposition of supported nickel nitrate to arrive at highly dispersed catalysts. Journal of Catalysis, 2008, 260, 227-235.	3.1	103
538	Templated synthesis of nanosized mesoporous carbons. Materials Research Bulletin, 2008, 43, 1898-1904.	2.7	8
539	Polypyrrole-Based Nitrogen-Doped Carbon Replicas of SBA-15 and SBA-16 Containing Magnetic Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 13126-13133.	1.5	66
540	Nitrogen Adsorption on Silica Surfaces of Nonporous and Mesoporous Materials. Langmuir, 2008, 24, 6668-6675.	1.6	20
542	The Reasons Behind Adsorption Hysteresis. , 2008, , 133-145.		3
543	Synthesis of porous silica with hierarchical structure directed by a silica precursor carrying a pore-generating cage. Journal of Materials Chemistry, 2008, 18, 4971.	6.7	7
544	Gas adsorption and capillary condensation in nanoporous alumina films. Nanotechnology, 2008, 19, 315709.	1.3	62
545	Adsorption on Ordered Porous Carbons. , 2008, , 455-477.		0
546	Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite. Journal of Materials Chemistry, 2008, 18, 2044.	6.7	68
548	<i>In situ</i> neutron diffraction study of adsorbed carbon dioxide in a nanoporous material: Monitoring the adsorption mechanism and the structural characteristics of the confined phase. Physical Review B, 2008, 78, .	1.1	33
549	Heptacoordinate tricarbonyl Mo(II) complexes as highly selective oxidation homogeneous and heterogeneous catalysts. Journal of Catalysis, 2008, 256, 301-311.	3.1	46
550	New Insights into the Interactions of CO ₂ with Amine-Functionalized Silica. Industrial & Engineering Chemistry Research, 2008, 47, 9406-9412.	1.8	361
551	Fabrication of Monodisperse Mesoporous Carbon Capsules Decorated with Ferrite Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 3648-3654.	1.5	60
552	Colloidal Silica Templating Synthesis of Carbonaceous Monoliths Assuring Formation of Uniform Spherical Mesopores and Incorporation of Inorganic Nanoparticles. Chemistry of Materials, 2008, 20, 1069-1075.	3.2	52

#	Article	IF	CITATIONS
553	Effect of surface interactions on the hysteresis of capillary condensation in nanopores. Europhysics Letters, 2008, 81, 26003.	0.7	32
554	Effects of alkali metal ions on the formation of mesoporous alumina. Journal of Materials Chemistry, 2008, 18, 5941.	6.7	21
555	High temperature treatment of ordered mesoporous carbons prepared by using various carbon precursors and ordered mesoporous silica templates. New Journal of Chemistry, 2008, 32, 981.	1.4	80
556	Mesoporous Organosilicates from Multiple Precursors: Co-Condensation or Phase Segregation/Separation?. Chemistry of Materials, 2008, 20, 2980-2984.	3.2	22
557	A Density Functional Theory for Lennard-Jones Fluids in Cylindrical Pores and Its Applications to Adsorption of Nitrogen on MCM-41 Materials. Langmuir, 2008, 24, 12431-12439.	1.6	58
558	Ordered Mesoporous Silica to Study the Preparation of Ni/SiO ₂ ex Nitrate Catalysts: Impregnation, Drying, and Thermal Treatments. Chemistry of Materials, 2008, 20, 2921-2931.	3.2	152
559	Direct Observation of Stacking Faults and Pore Connections in Ordered Cage-Type Mesoporous Silica FDU-12 by Electron Tomography. Journal of the American Chemical Society, 2008, 130, 16800-16806.	6.6	33
560	Inelastic neutron scattering from confined molecular oxygen. Physical Review B, 2008, 78, .	1.1	10
561	Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas. Macromolecules, 2008, 41, 8584-8591.	2.2	128
562	Facile Mesophase Control of Periodic Mesoporous Organosilicas under Basic Conditions. Chemistry of Materials, 2008, 20, 1451-1458.	3.2	34
563	Porous Texture Characterization from Gas-Solid Adsorption. , 2008, , 239-271.		7
564	Hydrothermally stable onion-like mesoporous silica. Studies in Surface Science and Catalysis, 2008, 174, 293-296.	1.5	0
565	Monolayer sorption of neon in mesoporous silica glass as monitored by wide-angle x-ray scattering. Physical Review E, 2008, 77, 021603.	0.8	1
566	Synthesis of Fluoro-Functionalized Mesoporous Silica and Application to Fluorophilic Separations. Industrial & Engineering Chemistry Research, 2008, 47, 530-538.	1.8	11
567	Engineering Silica Particles as Oral Drug Delivery Vehicles. Current Pharmaceutical Design, 2008, 14, 1821-1831.	0.9	57
569	Synthesis and characterization of large mesoporous silica SBA-15 sheets with ordered accessible 18Ânm pores. Materials Letters, 2009, 63, 2129-2131.	1.3	31
570	Functionalization of Porous Carbon Materials with Designed Pore Architecture. Advanced Materials, 2009, 21, 265-293.	11.1	807
571	Deep desulfurization of transportation fuels by characteristic reaction resided in adsorbents. AICHE Journal, 2009, 55, 1872-1881.	1.8	18

#	Article	IF	CITATIONS
572	Periodic Mesoporous Organosilica Materials: Selfâ€Assembly of Carbamothioic Acidâ€Bridged Organosilane Precursors. Chemistry - A European Journal, 2009, 15, 8310-8318.	1.7	12
573	Direct Synthesis of a Photoactive Inorganic–Organic Mesostructured Hybrid Material and its Application as a Photocatalyst. ChemPhysChem, 2009, 10, 1084-1089.	1.0	3
574	Carbamateâ€Linked (Oligo)phenothiazines in Mesoporous Silica by Postâ€5ynthetic Grafting: Fluorescent Redoxâ€Active Hybrid Materials. European Journal of Organic Chemistry, 2009, 2009, 3895-3905.	1.2	12
575	Effect of synthesis time and treatment on porosity of mesoporous silica materials. Adsorption, 2009, 15, 81-86.	1.4	2
576	Synthesis, structure and adsorption properties of nanoporous SBA-15 materials with framework and surface functionalities. Adsorption, 2009, 15, 278-286.	1.4	19
577	Studies on mesoporous niobosilicates synthesized using F127 triblock copolymer. Adsorption, 2009, 15, 247-253.	1.4	7
578	Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures. A comparative study as supercapacitor electrodes. Electrochimica Acta, 2009, 54, 2239-2245.	2.6	72
579	Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. Journal of Sol-Gel Science and Technology, 2009, 50, 421-429.	1.1	136
580	DSC estimation of structural and textural parameters of SBA-15 silica using water probe. Journal of Thermal Analysis and Calorimetry, 2009, 97, 701-704.	2.0	12
581	Titanium-Doped Solid Core-Mesoporous Shell Silica Particles: Synthesis and Catalytic Properties in Selective Oxidation Reactions. Catalysis Letters, 2009, 127, 75-82.	1.4	15
582	Activity of Mo(II) allylic complexes supported in MCM-41 as oxidation catalysts precursors. Microporous and Mesoporous Materials, 2009, 117, 670-677.	2.2	23
583	Characterization and the catalytic applications of mesoporous AlSBA-1. Microporous and Mesoporous Materials, 2009, 121, 18-25.	2.2	26
584	Determination of the Tolman length in the improved Derjaguin–Broekhoff–de Boer theory for capillary condensation of ethanol in mesoporous thin films by ellipsometric porosimetry. Microporous and Mesoporous Materials, 2009, 123, 243-252.	2.2	12
585	Effects of compression on the textural properties of porous solids. Microporous and Mesoporous Materials, 2009, 126, 291-301.	2.2	37
586	Comparison of liquid-phase olefin epoxidation catalysed by dichlorobis-(dimethylformamide)dioxomolybdenum(VI) in homogeneous phase and grafted onto MCM-41. Journal of Molecular Catalysis A, 2009, 297, 110-117.	4.8	42
587	Ethane dehydrogenation over pore-expanded mesoporous silica supported chromium oxide: 1. Catalysts preparation and characterization. Journal of Molecular Catalysis A, 2009, 301, 152-158.	4.8	31
588	Carbon–silica composite adsorbent: Sensitivity to synthesis conditions. Microporous and Mesoporous Materials, 2009, 118, 21-27.	2.2	21
589	Cage-like ordered mesoporous organosilicas with isocyanurate bridging groups: Synthesis, template removal and structural properties. Microporous and Mesoporous Materials, 2009, 118, 68-77.	2.2	19

#	Article	IF	CITATIONS
590	Cage-like mesoporous organosilicas with isocyanurate bridging groups synthesized by soft templating with poly(ethylene oxide)–poly(butylene oxide)–poly(ethylene oxide) block copolymer. Journal of Colloid and Interface Science, 2009, 333, 354-362.	5.0	12
591	Fabrication of mesoporous SiO2–C–Fe3O4/γ–Fe2O3 and SiO2–C–Fe magnetic composites. Journal of Colloid and Interface Science, 2009, 340, 230-236.	5.0	24
592	NMR cryoporometry: Principles, applications and potential. Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, 54, 97-122.	3.9	267
593	Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technology, 2009, 191, 13-20.	2.1	100
594	Synthesis, characterization, and near-infrared luminescent properties of the ternary thulium complex covalently bonded to mesoporous MCM-41. Journal of Solid State Chemistry, 2009, 182, 435-441.	1.4	22
595	The use of mesoporous molecular sieves containing niobium for the synthesis of vegetable oil-based products. Catalysis Today, 2009, 140, 23-29.	2.2	28
596	The possible use of alkali metal modified NbMCM-41 in the synthesis of 1,4-dihydropyridine intermediates. Catalysis Today, 2009, 142, 303-307.	2.2	25
597	display="inline" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>	w>1.9	msub>
598	overflow="scroll ^b > <mml:mrow><mml:msub><mm. 2009,="" 3721-3728.<br="" 64,="" chemical="" engineering="" science,="">Effect of mesoporosity on specific capacitance of carbons. Carbon, 2009, 47, 1598-1604.</mm.></mml:msub></mml:mrow>	5.4	65
599	Magnetically separable bimodal mesoporous carbons with a large capacity for the immobilization of biomolecules. Carbon, 2009, 47, 2519-2527.	5.4	33
600	Synthesis and properties of mesoporous carbons with high loadings of inorganic species. Carbon, 2009, 47, 3034-3040.	5.4	42
601	Synthesis of Largeâ€Pore Ureaâ€Bridged Periodic Mesoporous Organosilicas. Chemistry - an Asian Journal, 2009, 4, 587-593.	1.7	18
602	Nanocasting Synthesis of Iron-Doped Mesoporous Alâ^'Ti Mixed Oxides Using Ordered Mesoporous Carbon Templates. Journal of Physical Chemistry C, 2009, 113, 13565-13573.	1.5	12
603	Three-dimensional cubic (Im3m) periodic mesoporous organosilicas with benzene- and thiophene-bridging groups. Journal of Materials Chemistry, 2009, 19, 2076.	6.7	43
604	Modeling Micelle-Templated Mesoporous Material SBA-15: Atomistic Model and Gas Adsorption Studies. Langmuir, 2009, 25, 5802-5813.	1.6	44
605	Synthesis and Characterization of Ge,Al-ZSM-5 Made in Alkaline Media. Journal of Physical Chemistry C, 2009, 113, 12252-12259.	1.5	15
606	2H NMR Studies of Simple Organic Groups Covalently Attached to Ordered Mesoporous Silica. Journal of Physical Chemistry C, 2009, 113, 18142-18151.	1.5	19
607	N-Doped ZnS Nanoparticles Prepared through an Inorganicâ ~ Organic Hybrid Complex ZnS·(piperazine) _{0.5} . Journal of Physical Ch <u>emistry C, 2009, 113, 20445-20451.</u>	1.5	27

ARTICLE IF CITATIONS Influence of Elastic Strains on the Adsorption Process in Porous Materials: An Experimental 608 34 1.6 Approach. Langmuir, 2009, 25, 8083-8093. Synthesis and Properties of Ordered Mesoporous Organosilicas with Vinyl and Mercaptopropyl 609 Surface Groups: The Effect of Ligand Concentration on Pore Structure. Journal of Physical Chemistry 1.5 C, 2009, 113, 4875-4884. Internal and external surface characterisation of templating processes for ordered mesoporous 610 6.7 14 silicas and carbons. Journal of Materials Chemistry, 2009, 19, 2215. Preparation, Characterization, and Enzyme Immobilization Capacities of Superparamagnetic Silica/Iron 3.2 Oxide Nanocomposites with Mesostructured Porosity. Chemistry of Materials, 2009, 21, 1806-1814. A Study of the Catalytic Interface for O₂ Electroreduction on Pt: The Interaction between 612 Carbon Support Meso/Microstructure and Ionomer (Nafion) Distribution. Journal of Physical 1.543 Chemistry C, 2009, 113, 298-307. Modeling of N₂ Adsorption in MCM-41 Materials: Hexagonal Pores versus Cylindrical Pores. Langmuir, 2009, 25, 7450-7456. 1.6 A novel synthetic strategy for covalently bonding dendrimers to ordered mesoporous silica: 614 6.7 63 potential drug delivery applications. Journal of Materials Chemistry, 2009, 19, 9012. Thermochemistry of Microporous and Mesoporous Materials. Chemical Reviews, 2009, 109, 3885-3902. 23.0 164 Quantification of Water and Silanol Species on Various Silicas by Coupling IR Spectroscopy and 616 1.6 196 in-Situ Thermogravimetry. Langmuir, 2009, 25, 5825-5834. Catalysis by Mesoporous Molecular Sieves., 2009, , 669-692. On Defining a Simple Empirical Relationship to Predict the Pore Size of Mesoporous Silicas Prepared 618 3.2 43 from PEO-<i>b</i>b</i>PS Diblock Copolymers. Chemistry of Materials, 2009, 21, 48-55. Synthesis of Boehmite Hollow Core/Shell and Hollow Microspheres via Sodium Tartrate-Mediated Phase Transformation and Their Enhanced Adsorption Performance in Water Treatment. Journal of 1.5 194 Physical Chemistry C, 2009, 113, 14739-14746. Nanostructure and Bioactivity of Hybrid Aerogels. Chemistry of Materials, 2009, 21, 41-47. 620 3.2 18 Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation. Nano Letters, 2009, 4.5 64 9, 10<u>64-1070</u>. Temperature-Responsive Nanocomposites Based on Mesoporous SBA-15 Silica and PNIPAAm: Synthesis 622 1.5 74 and Characterization. Journal of Physical Chemistry C, 2009, 113, 4925-4931. Is There Any Microporosity in Ordered Mesoporous Silicas?. Langmuir, 2009, 25, 939-943. Flow-Based Multiadsorbate Ellipsometric Porosimetry for the Characterization of Mesoporous 624 1.6 28 Ptâ''TiO₂ and Auâ''TiO₂ Nanocomposites. Langmuir, 2009, 25, 4498-4509. Design of optically active nanoclusters of gold particles with mesostructured silica coating. Journal 6.7 of Materials Chemistry, 2009, 19, 3168.

#	Article	IF	CITATIONS
626	Convenient synthesis of ordered mesoporous silica at room temperature and quasi-neutral pH. Journal of Materials Chemistry, 2009, 19, 8290.	6.7	80
627	Molecular design of AEC tri-block anionic surfactant towards rational synthesis of targeted thick-walled mesoporous silica. Journal of Materials Chemistry, 2009, 19, 3404.	6.7	5
628	Hydrothermal Synthesis and Morphological Evolution of Mesoporous Titaniaâ^'Silica. Journal of Physical Chemistry C, 2009, 113, 20335-20348.	1.5	29
629	Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropylbenzene As Micelle Expander. Chemistry of Materials, 2009, 21, 1144-1153.	3.2	228
630	Adsorption of Laccase onto Mesoporous Silica Prepared with Inorganic Counterions. Adsorption Science and Technology, 2009, 27, 147-165.	1.5	10
631	"Click―Grafting of High Loading of Polymers and Monosaccharides on Surface of Ordered Mesoporous Silica. Langmuir, 2010, 26, 2688-2693.	1.6	51
632	Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chemical Engineering Journal, 2010, 161, 182-190.	6.6	348
633	Adsorption properties of phenolic resin-based mesoporous carbons obtained by using mixed templates of Pluronic F127 and Brij 58 or Brij 78 polymers. Adsorption, 2010, 16, 377-383.	1.4	13
634	Adsorption properties of ordered mesoporous silicas synthesized in the presence of block copolymer Pluronic F127 under microwave irradiation. Adsorption, 2010, 16, 385-396.	1.4	9
635	A family of ordered mesoporous carbons derived from mesophase pitch using ordered mesoporous silicas as templates. Adsorption, 2010, 16, 465-472.	1.4	12
636	Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies. Adsorption, 2010, 16, 567-575.	1.4	64
637	Template Synthesis of Three-Dimensional Cubic Ordered Mesoporous Carbon With Tunable Pore Sizes. Nanoscale Research Letters, 2010, 5, 103-7.	3.1	43
638	Highly selective synthesis of styrene oxide over phosphotungstic acid supported on mesoporous Mn-MCM-41 molecular sieves. Journal of Porous Materials, 2010, 17, 57-68.	1.3	4
639	The porosity and morphology of mesoporous silica agglomerates. Journal of Porous Materials, 2010, 17, 669-676.	1.3	8
640	Porosity and surface properties of mesoporous silicas and their carbon replicas investigated with quasi-equlibrated thermodesorption of n-hexane and n-nonane. Journal of Porous Materials, 2010, 17, 737-745.	1.3	17
641	Synthesis and characterization of mesoporous silica/poly(N-isopropylacrylamide) functional hybrid useful for drug delivery. Journal of Materials Science, 2010, 45, 1478-1486.	1.7	46
642	Isomerization of Eugenol Under Ultrasound Activation Catalyzed by Alkali Modified Mesoporous NbMCM-41. Topics in Catalysis, 2010, 53, 179-186.	1.3	15
643	Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous ironâ \in silicon oxides. Materials Chemistry and Physics, 2010, 124, 713-719.	2.0	8
#	Article	IF	CITATIONS
-----	--	-----	-----------
644	Thermally stable mesoporous zirconia prepared via post-synthesis hydrothermal restructuring. Materials Letters, 2010, 64, 1441-1444.	1.3	7
645	Nitroaldol reactions catalyzed by amine-MCM-41 hybrids. Journal of Catalysis, 2010, 271, 170-177.	3.1	38
646	Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen–Schmidt condensation reactions. Journal of Catalysis, 2010, 271, 220-227.	3.1	69
647	Effect of Pore Structure on the Nitridation of Mesoporous Silica with Ammonia. European Journal of Inorganic Chemistry, 2010, 2010, 2235-2243.	1.0	18
648	Grafting of Molecularly Ordered Mesoporous Phenylene‣ilica with Molybdenum Carbonyl Complexes: Efficient Heterogeneous Catalysts for the Epoxidation of Olefins. Advanced Synthesis and Catalysis, 2010, 352, 1759-1769.	2.1	28
649	Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer–Tropsch catalysts. Applied Catalysis A: General, 2010, 388, 57-67.	2.2	82
650	Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Applied Catalysis A: General, 2010, 389, 155-164.	2.2	114
651	Functionalized SBA-15 organosilicas as sorbents of zinc(II) ions. Applied Surface Science, 2010, 256, 5370-5375.	3.1	31
652	Mesoporous "core–shell―adsorbents and catalysts with controllable morphology. Applied Surface Science, 2010, 256, 5513-5519.	3.1	4
653	On the limits of CO2 capture capacity of carbons. Separation and Purification Technology, 2010, 74, 225-229.	3.9	117
654	Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. Journal of Colloid and Interface Science, 2010, 349, 173-180.	5.0	46
655	Factorial design to optimize microwave-assisted synthesis of FDU-1 silica with a new triblock copolymer. Microporous and Mesoporous Materials, 2010, 133, 1-9.	2.2	11
656	The effect of immobilization on the catalytic activity of molybdenum η3-allyldicarbonyl complexes with nitrogen donor ligands bearing N–H groups. Journal of Molecular Catalysis A, 2010, 321, 92-100.	4.8	19
657	The synthesis of high surface area cerium oxide and cerium oxide/silica nanocomposites by the silica aquagel-confined co-precipitation technique. Microporous and Mesoporous Materials, 2010, 127, 198-204.	2.2	6
658	Synthesis of monodispersed mesoporous silica spheres (MMSSs) with controlled particle size using gemini surfactant. Microporous and Mesoporous Materials, 2010, 128, 203-212.	2.2	66
659	Fluorocarbon and hydrocarbon functional group incorporation into nanoporous silica employing fluorinated and hydrocarbon surfactants as templates. Microporous and Mesoporous Materials, 2010, 129, 189-199.	2.2	8
660	A fractal description of pore structure in block-copolymer templated mesoporous silicates. Microporous and Mesoporous Materials, 2010, 131, 204-209.	2.2	23
661	The effects on pore size and particle morphology of heptane additions to the synthesis of mesoporous silica SBA-15. Microporous and Mesoporous Materials, 2010, 133, 66-74.	2.2	58

#	Article	IF	CITATIONS
662	Mesostructured silica–carbon composites synthesized by employing surfactants as carbon source. Microporous and Mesoporous Materials, 2010, 134, 165-174.	2.2	38
663	Catalytic properties of WOx/SBA-15 for vapor-phase Beckmann rearrangement of cyclohexanone oxime. Applied Catalysis A: General, 2010, 379, 141-147.	2.2	36
664	Composition of tungsten oxide bronzes active for hydrodeoxygenation. Applied Catalysis A: General, 2010, 388, 86-95.	2.2	25
665	A highly active, selective and stable copper/cobalt-structured nanocatalyst for methanol decomposition. Applied Catalysis B: Environmental, 2010, 99, 257-264.	10.8	45
666	Studies of intrawall porosity in the hexagonally ordered mesostructures of SBA-15 by small angle X-ray scattering and nitrogen adsorption. Applied Surface Science, 2010, 256, 5311-5315.	3.1	19
667	Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug. Applied Surface Science, 2010, 256, 6963-6968.	3.1	15
668	Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica. Chemical Engineering Journal, 2010, 158, 513-519.	6.6	146
669	Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model. Chemical Engineering Journal, 2010, 161, 173-181.	6.6	172
670	Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: An experimental and statistical study. Chemical Engineering Science, 2010, 65, 4166-4172.	1.9	71
671	Synthesis of large-pore SBA-15 silica from tetramethyl orthosilicate using triisopropylbenzene as micelle expander. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 357, 91-96.	2.3	34
672	New TiO2/SiO2 nanocomposites—Phase transformations and photocatalytic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 25-30.	2.3	67
673	Polymer-templated mesoporous carbons with nickel nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362, 20-27.	2.3	13
674	Surface area and pore size tailoring of mesoporous silica materials by different hydrothermal treatments and adsorption of heavy metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369, 223-231.	2.3	32
675	Gd‣abeled Microparticles in MRI: In vivo Imaging of Microparticles After Intraperitoneal Injection. Small, 2010, 6, 2678-2682.	5.2	25
676	Fast and Almost Complete Nitridation of Mesoporous Silica MCMâ€41 with Ammonia in a Plugâ€Flow Reactor. Journal of the American Ceramic Society, 2010, 93, 104-110.	1.9	31
677	Nitrogen-doped titanium oxide microrods decorated with titanium oxide nanosheets for visible light photocatalysis. Journal of Materials Research, 2010, 25, 1096-1104.	1.2	3
679	Hydrothermal Stability of Ordered Mesoporous Titanosilicate Materials Prepared at Room Temperature. Advanced Materials Research, 0, 107, 63-70.	0.3	1
681	Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor. Journal of the Electrochemical Society, 2010, 157, B1665.	1.3	116

#	Article	IF	CITATIONS
682	RECENT ADVANCES IN THE STUDY OF MESOPOROUS METAL-ORGANIC FRAMEWORKS. Comments on Inorganic Chemistry, 2010, 31, 165-195.	3.0	84
683	Template-Free Synthesis of Mesoporous CuO Dandelion Structures For Optoelectronic Applications. ACS Applied Materials & Interfaces, 2010, 2, 1536-1542.	4.0	77
684	Surfactant-Synthesized Ormosils with Application to Stone Restoration. Langmuir, 2010, 26, 6737-6745.	1.6	115
685	Facile Hydrothermal Synthesis of Hierarchical Boehmite: Sulfate-Mediated Transformation from Nanoflakes to Hollow Microspheres. Crystal Growth and Design, 2010, 10, 3977-3982.	1.4	136
686	Adsorption Behavior of Nano Sized Sol-Gel Derived TiO2-SiO2Binary Oxide in Removing Pb2+Metal Ions. Separation Science and Technology, 2010, 45, 801-808.	1.3	9
687	Grafting of polymer brushes from nanopore surface via atom transfer radical polymerization with activators regenerated by electron transfer. Polymer Chemistry, 2010, 1, 97-101.	1.9	42
688	On the Micro-, Meso-, and Macroporous Structures of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers. ACS Applied Materials & Interfaces, 2010, 2, 375-384.	4.0	315
689	Synthesis of Uniform Mesoporous Carbon Capsules by Carbonization of Organosilica Nanospheres. Chemistry of Materials, 2010, 22, 2526-2533.	3.2	84
690	Synthesis of Ultralarge-Pore FDU-12 Silica with Face-Centered Cubic Structure. Langmuir, 2010, 26, 14871-14878.	1.6	73
691	Synthesis of Mesoporous Alumina from Boehmite in the Presence of Triblock Copolymer. ACS Applied Materials & Interfaces, 2010, 2, 588-593.	4.0	81
692	Effect of Preparation Conditions on the Adsorption of Heavy Metal Ions from Aqueous Solution by Mesoporous Silica Materials Prepared Using Organic Template (HDTMAB). Journal of Chemical & Engineering Data, 2010, 55, 3667-3673.	1.0	21
693	Acid hybrid catalysts from poly(styrenesulfonic acid) grafted onto ultra-large-pore SBA-15 silica using atom transfer radical polymerization. Journal of Materials Chemistry, 2010, 20, 8026.	6.7	61
694	Demixed Micelle Morphology Control in Hydrocarbon/Fluorocarbon Cationic Surfactant Templating of Mesoporous Silica. Journal of Physical Chemistry C, 2010, 114, 17390-17400.	1.5	5
695	Tailoring Adsorption and Framework Properties of Mesoporous Polymeric Composites and Carbons by Addition of Organosilanes during Soft-Templating Synthesis. Journal of Physical Chemistry C, 2010, 114, 6298-6303.	1.5	28
696	NMR Studies of Cooperative Effects in Adsorption. Langmuir, 2010, 26, 18061-18070.	1.6	14
697	A thermodynamic limit of the melting/freezing processes of water under strongly hydrophobic nanoscopic confinement. Physical Chemistry Chemical Physics, 2010, 12, 1440-1443.	1.3	57
698	Alkali metal cation doped Al-SBA-15 for carbon dioxide adsorption. Physical Chemistry Chemical Physics, 2010, 12, 5240.	1.3	35
699	Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. Journal of Materials Chemistry, 2010, 20, 4587.	6.7	232

#	Article	IF	CITATIONS
700	Versatile approach to synthesis of 2-D hexagonal ultra-large-pore periodic mesoporous organosilicas. Journal of Materials Chemistry, 2010, 20, 7506.	6.7	41
701	Large-Pore Ethylene-Bridged Periodic Mesoporous Organosilicas with Face-Centered Cubic Structure. Journal of Physical Chemistry C, 2010, 114, 20091-20099.	1.5	34
702	Synthesis of highly nitrogen-doped hollow carbon nanoparticles and their excellent electrocatalytic properties in dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 10829.	6.7	126
703	Neutron scattering study of adsorption in porous MCM-41 silicaSpecial issue on Neutron Scattering in Canada Canadian Journal of Physics, 2010, 88, 707-713.	0.4	3
704	A facile and versatile partitioned cooperative self-assembly process to prepare SBA-15s with larger mesopores, high microporosity and tunable particle sizes. Journal of Materials Chemistry, 2011, 21, 12059.	6.7	30
705	Porcine pancreatic Lipase Immobilized in Amino-Functionalized Short Rod-Shaped Mesoporous Silica Prepared Using Poly(ethylene glycol) and Triblock Copolymer as Templates. Journal of Physical Chemistry C, 2011, 115, 22191-22199.	1.5	31
706	Tuning the Mesopore Size of Titania Thin Films Using a Polymeric Swelling Agent. Journal of Physical Chemistry C, 2011, 115, 11925-11933.	1.5	29
707	Evaluations of the BET, I-Point, and α-Plot Procedures for the Routine Determination of External Specific Surface Areas of Highly Dispersed and Porous Silicas. Langmuir, 2011, 27, 187-195.	1.6	8
708	Non-Hydrothermal Synthesis of Cylindrical Mesoporous Materials: Influence of the Surfactant/Silica Molar Ratio. Adsorption Science and Technology, 2011, 29, 975-988.	1.5	23
709	Magnetically separable carbon capsules loaded with laccase and their application to dye degradation. RSC Advances, 2011, 1, 1756.	1.7	17
710	Detection of Homogeneous Distribution of Functional Groups in Mesoporous Silica by Small Angle Neutron Scattering and in Situ Adsorption of Nitrogen or Water. Langmuir, 2011, 27, 5516-5522.	1.6	21
711	Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors. Physical Chemistry Chemical Physics, 2011, 13, 2652-2655.	1.3	59
712	Rapid Synthesis of SBA-15 Rods with Variable Lengths, Widths, and Tunable Large Pores. Langmuir, 2011, 27, 4994-4999.	1.6	72
713	Assessment of Porosities of SBA-15 and MCM-41 Using Water Sorption Calorimetry. Langmuir, 2011, 27, 3889-3897.	1.6	21
714	Direct preparation of mesoporous carbon by pyrolysis of poly(acrylonitrile-b-methylmethacrylate) diblock copolymer. Journal of Materials Chemistry, 2011, 21, 14226.	6.7	32
715	A designed nanoporous material for phosphate removal with high efficiency. Journal of Materials Chemistry, 2011, 21, 2489.	6.7	127
716	Facile preparation and new formation mechanism of plugged SBA-15 silicas based on cheap sodium silicate. Journal of Materials Chemistry, 2011, 21, 17433.	6.7	35
717	Phenylboronic Acid Functionalized SBA-15 for Sugar Capture. Langmuir, 2011, 27, 14554-14562.	1.6	28

#	Article	IF	CITATIONS
718	Direct Synthesis and Accessibility of Amine-Functionalized Mesoporous Silica Templated Using Fluorinated Surfactants. Industrial & amp; Engineering Chemistry Research, 2011, 50, 5510-5522.	1.8	16
719	Mechanism of freezing of water in contact with mesoporous silicas MCM-41, SBA-15 and SBA-16: role of boundary water of pore outlets in freezing. Physical Chemistry Chemical Physics, 2011, 13, 17222.	1.3	47
720	A new approach to synthesis of periodic mesoporous organosilicas: taking advantage of self-assembly and reactivity of organic precursors. Journal of Materials Chemistry, 2011, 21, 6389.	6.7	15
721	Synthesis and structure of cage-like mesoporous silica using different precursors. Journal of Alloys and Compounds, 2011, 509, S357-S360.	2.8	2
722	Size and Spatial Distribution of Micropores in SBA-15 using CM-SANS. Chemistry of Materials, 2011, 23, 3828-3840.	3.2	45
724	Mesoporous molecular sieve MCM-41 synthesis from fluoride media. Brazilian Journal of Chemical Engineering, 2011, 28, 649-658.	0.7	8
725	Sorption Properties of Ordered Mesoporous Silica for Toluene and Ethyl Acetate. Adsorption Science and Technology, 2011, 29, 405-412.	1.5	4
726	Adsorption Properties of Micro-/Meso-Porous Carbons Obtained by Colloidal Templating and Post-Synthesis KOH Activation. Adsorption Science and Technology, 2011, 29, 457-465.	1.5	2
727	Enlargement of mesopores of 2-D orthorhombic KSW-2 type silica by the addition of poly(oxyethylene) alkyl ether during the mesostructural formation. Solid State Sciences, 2011, 13, 714-720.	1.5	1
728	(2-Hydroxyethyl)-trimethylammonium hydroxide as an organic base for the synthesis of highly ordered MCM-41. Solid State Sciences, 2011, 13, 271-275.	1.5	3
729	Improving adsorption and activation of the lipase immobilized in amino-functionalized ordered mesoporous SBA-15. Solid State Sciences, 2011, 13, 867-874.	1.5	60
730	Ammonia synthesis over rhenium supported on mesoporous silica MCM-41. Microporous and Mesoporous Materials, 2011, 146, 184-189.	2.2	9
731	A simple equation for accurate mesopore size calculations. Microporous and Mesoporous Materials, 2011, 145, 9-13.	2.2	9
732	A standardization for BET fitting of adsorption isotherms. Microporous and Mesoporous Materials, 2011, 145, 188-193.	2.2	35
733	Immobilization of glucose oxidase enzyme (GOD) in large pore ordered mesoporous cage-like FDU-1 silica. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 149-153.	1.8	10
734	Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 2011, 31, 2915-2922.	2.8	27
735	Spectroscopic ellipsometry analyses of thin films in different environments: An innovative "reverse side―approach allowing multi angle measurements. Optical Materials, 2011, 34, 79-84.	1.7	5
736	Porous carbon nanospheres derived from chlorination of bis(cyclopentadienyl)titanium dichloride and their electrochemical capacitor performance. Materials Chemistry and Physics, 2011, 130, 243-250.	2.0	13

#	Article	IF	CITATIONS
737	SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities. Materials Research Bulletin, 2011, 46, 2187-2190.	2.7	5
738	Synthesis of size tuneable cadmium sulphide nanoparticles from a single source precursor using ammonia as the solvent. Materials Research Bulletin, 2011, 46, 2266-2270.	2.7	14
739	A novel application of mesoporous silica material for extraction of pesticides. Materials Letters, 2011, 65, 1357-1359.	1.3	15
740	Performance evaluation of mesoporous host materials in olefin epoxidation using Mo(II) and Mo(VI) active species—Inorganic vs. hybrid matrix. Applied Catalysis A: General, 2011, 408, 105-116.	2.2	27
741	Low-grade oils and fats: Effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts. Bioresource Technology, 2011, 102, 9571-9578.	4.8	43
742	CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: Experimental and kinetic modeling. Chemical Engineering Journal, 2011, 173, 72-79.	6.6	186
743	Capillary condensation of adsorbates in porous materials. Advances in Colloid and Interface Science, 2011, 169, 40-58.	7.0	340
744	Synthesis of Large-Pore Periodic Mesoporous Organosilicas Using Hexane as Swelling Agent. ACS Symposium Series, 2011, , 249-261.	0.5	1
745	Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chemical Society Reviews, 2011, 40, 1107.	18.7	266
746	Highly Active Cobalt Oxide Catalysts Prepared by SACOP for the Preferential Oxidation of CO in Excess Hydrogen. ChemCatChem, 2011, 3, 734-740.	1.8	12
747	Effect of nonionic structure-directing agents on adsorption and structural properties of mesoporous alumina. Journal of Materials Chemistry, 2011, 21, 9066.	6.7	44
748	Tetra-β-(2-(diethylamino)ethoxy) nickel phthalocyanine: synthesis and inclusion in MCM-41. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 225-230.	1.6	0
749	A simple room temperature synthesis of mesoporous silica nanoparticles for drug storage and pressure pulsed delivery. Journal of Porous Materials, 2011, 18, 233-239.	1.3	24
750	Tuning the wall thickness and pore orientation in mesoporous titania films prepared with low-temperature aging. Journal of Sol-Gel Science and Technology, 2011, 60, 81-90.	1.1	8
751	Mesoporous silica templated zirconia nanoparticles. Journal of Nanoparticle Research, 2011, 13, 2743-2748.	0.8	5
752	Improvement in the Pore Size Distribution for Ordered Mesoporous Materials with Cylindrical and Spherical Pores Using the Kelvin Equation. Topics in Catalysis, 2011, 54, 121-134.	1.3	54
753	Single component and binary diffusion of n-heptane and toluene in SBA-15 materials. Adsorption, 2011, 17, 27-38.	1.4	7
754	Soft-templating synthesis and adsorption properties ofÂmesoporous carbons withÂembedded silver nanoparticles. Adsorption, 2011, 17, 461-466.	1.4	13

#	Article	IF	CITATIONS
755	Photocatalytic oxidation of methyl ethyl ketones over sol–gel mesoporous and meso-structured TiO2 films obtained by EISA method. Applied Catalysis B: Environmental, 2011, 107, 52-58.	10.8	30
756	Reliable prediction of pore size distribution for nano-sized adsorbents with minimum information requirements. Chemical Engineering Journal, 2011, 171, 69-80.	6.6	12
757	Spontaneous Phase Separation Mediated Synthesis of 3D Mesoporous Carbon with Controllable Cage and Window Size. Advanced Materials, 2011, 23, 2357-2361.	11.1	32
758	Highâ€Temperature Synthesis and Formation Mechanism of Stable, Ordered MCMâ€41 Silicas by Using Surfactant Cetyltrimethylammonium Tosylate as Template. European Journal of Inorganic Chemistry, 2011, 2011, 59-67.	1.0	35
759	Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: Equilibrium properties. Chemical Engineering Journal, 2011, 166, 445-453.	6.6	167
760	Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon, 2011, 49, 154-160.	5.4	119
761	Effect of regeneration conditions on the cyclic performance of amine-modified SBA-15 for removal of copper from aqueous solutions: Composite surface design methodology. Desalination, 2011, 277, 54-60.	4.0	14
762	Spherical mesoporous silica particles by spray drying: Doubling the retention factor of HPLC columns. Microporous and Mesoporous Materials, 2011, 142, 282-291.	2.2	24
763	The role of the electric conductivity of carbons in the electrochemical capacitor performance. Journal of Electroanalytical Chemistry, 2011, 657, 176-180.	1.9	71
764	Facile method to synthesize platelet SBA-15 silica with highly ordered large mesopores. Journal of Colloid and Interface Science, 2011, 361, 472-476.	5.0	29
765	Ordered Mesoporous SBA-15 for Controlled Release of Water-Insolube Drug. Advanced Materials Research, 2011, 236-238, 1873-1876.	0.3	4
767	Silica-Based Mesoporous Nanospheres. , 2011, , 515-528.		Ο
768	Synthesis of Plugged Mesoporous SBA-15-Type Silicas from Sodium Silicate. Key Engineering Materials, 2012, 512-515, 568-574.	0.4	0
769	Preparation and Characterization of Immobilization of Lipase in Amino-Functionalized Mesoporous Silica. Advanced Materials Research, 0, 486, 187-192.	0.3	0
770	Chemically Modified Mesoporous Silicas and Organosilicas for Adsorption and Detection of Heavy Metal Ions. , 2012, , 227-260.		1
771	A Comparative Study of the Effects of Different Chemical Agents on the Pore-Size Distributions of Macadamia Nutshell-Based Activated Carbons Using Different Models. Adsorption Science and Technology, 2012, 30, 159-169.	1.5	9
772	Effect of acid concentration on pore size in polymer-templated mesoporous alumina. Journal of Materials Chemistry, 2012, 22, 86-92.	6.7	43
773	Family of Single-Micelle-Templated Organosilica Hollow Nanospheres and Nanotubes Synthesized through Adjustment of Organosilica/Surfactant Ratio. Chemistry of Materials, 2012, 24, 123-132.	3.2	117

#	Article	IF	CITATIONS
774	Surfactant-Templated Synthesis of Ordered Silicas with Closed Cylindrical Mesopores. Chemistry of Materials, 2012, 24, 149-154.	3.2	28
775	Facile synthesis route to monodispersed platelet-like SBA-15 silica. Journal of Porous Materials, 2012, 19, 745-749.	1.3	8
776	Short-time synthesis of SBA-15s with large mesopores via partitioned cooperative self-assembly process based on sodium silicate. Journal of Sol-Gel Science and Technology, 2012, 64, 200-208.	1.1	7
777	Coal tar pitch-based porous carbon by one dimensional nano-sized MgO template. Journal of Physics and Chemistry of Solids, 2012, 73, 1428-1431.	1.9	26
778	Wall thickness determination of hydrophobically functionalized MCM-41 materials. Journal of Materials Chemistry, 2012, 22, 557-567.	6.7	21
779	Poly(N-isopropylacrylamide) and poly(2-(dimethylamino)ethyl methacrylate) grafted on an ordered mesoporous silica surface using atom transfer radical polymerization with activators regenerated by electron transfer. Journal of Materials Chemistry, 2012, 22, 6939.	6.7	28
780	Partitioned cooperative self-assembly process: taking the mesopore swelling strategy one step further for the preparation of mesocellular foams. Journal of Materials Chemistry, 2012, 22, 3462.	6.7	15
781	Face-Centered-Cubic Large-Pore Periodic Mesoporous Organosilicas with Unsaturated and Aromatic Bridging Groups. Langmuir, 2012, 28, 8737-8745.	1.6	15
782	Coconut-Shell-Based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors. Energy & Fuels, 2012, 26, 5321-5329.	2.5	234
783	Pore size distribution calculation from 1H NMR signal and N2 adsorption–desorption techniques. Physica B: Condensed Matter, 2012, 407, 3797-3801.	1.3	16
784	New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry, 2012, 22, 12636.	6.7	120
785	Exploration of Dependence of Organo-Catalyzed Enantioselective Michael Addition on the Pore Size of Mesoporous Host. ACS Catalysis, 2012, 2, 1118-1126.	5.5	22
786	Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, nickel oxide nanoparticles, and nickel nitrate. Applied Surface Science, 2012, 258, 3763-3770.	3.1	22
787	Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica. Applied Surface Science, 2012, 258, 6366-6372.	3.1	46
788	As(V) adsorption onto nanoporous titania adsorbents (NTAs): Effects of solution composition. Journal of Hazardous Materials, 2012, 229-230, 273-281.	6.5	9
789	Preparation of molecularly imprinted nanospheres by premix membrane emulsification technique. Journal of Membrane Science, 2012, 417-418, 87-95.	4.1	18
790	Preparation and characterization of SBA-1–supported chromium oxide catalysts for CO2 assisted dehydrogenation of propane. Microporous and Mesoporous Materials, 2012, 161, 56-66.	2.2	107
791	Synthesis of stable H-galloaluminosilicate MFI with hierarchical pore architecture by surfactant-mediated base hydrolysis, and their application in propane aromatization. Journal of Molecular Catalysis A, 2012, 360, 1-15.	4.8	43

#	Article	IF	CITATIONS
792	In-situ synthesis, local structure, photoelectrochemical property of Fe-intercalated titanate nanotube. International Journal of Hydrogen Energy, 2012, 37, 11081-11089.	3.8	12
793	Biocatalytic esterification of caprylic acid with caprylic alcohol by immobilized lipase on amino-functionalized mesoporous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 406, 75-83.	2.3	26
794	Electrorheological fluids: smart soft matter and characteristics. Soft Matter, 2012, 8, 11961.	1.2	223
795	Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells. Particle and Fibre Toxicology, 2012, 9, 6.	2.8	57
796	Distribution of functional groups in periodic mesoporous organosilica materials studied by small-angle neutron scattering with in situ adsorption of nitrogen. Beilstein Journal of Nanotechnology, 2012, 3, 428-437.	1.5	6
797	Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer. Journal of the American Chemical Society, 2012, 134, 14846-14857.	6.6	354
798	Virtual Porous Carbons. , 2012, , 61-104.		10
799	Catalytic performance of sucrose-derived CMK-3 in oxidative dehydrogenation of propane to propene. Applied Catalysis A: General, 2012, 445-446, 321-328.	2.2	20
800	Sulfonated mesoporous silica–carbon composites and their use as solid acid catalysts. Applied Surface Science, 2012, 261, 574-583.	3.1	76
801	Entrance Size Analysis of Silica Materials with Cagelike Pore Structure by Thermoporometry. Journal of Physical Chemistry C, 2012, 116, 23383-23393.	1.5	19
802	Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials. Journal of Materials Chemistry, 2012, 22, 13918.	6.7	73
803	Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture. Biomass and Bioenergy, 2012, 46, 145-154.	2.9	78
804	Quantitative Assessment of Pore Blockage in Supported Catalysts: Comparing Differential Scanning Calorimetry and Physisorption. Journal of Physical Chemistry C, 2012, 116, 7480-7490.	1.5	10
805	A high-surface-area silicoaluminophosphate material rich in Brönsted acid sites as a matrix in catalytic cracking. Journal of Natural Gas Chemistry, 2012, 21, 685-693.	1.8	13
806	Hierarchically porous titanium phosphate nanoparticles: an efficient solid acid catalyst for microwave assisted conversion of biomass and carbohydrates into 5-hydroxymethylfurfural. Journal of Materials Chemistry, 2012, 22, 14094.	6.7	93
807	Producing Surfactant-Synthesized Nanomaterials In Situ on a Building Substrate, without Volatile Organic Compounds. ACS Applied Materials & Interfaces, 2012, 4, 4259-4269.	4.0	75
808	On the Shelf Life and Aging Stability of Mesoporous Silica: Insights on Thermodynamically Stable MCM-41 Structure from Assessment of 12-Year-Old Samples. Chemistry of Materials, 2012, 24, 4450-4458.	3.2	8
809	Grafting of Poly(methyl methacrylate) on the Surface of Cylindrical Mesopores of Ordered Silica via Atom Transfer Radical Polymerization. ACS Symposium Series, 2012, , 231-240.	0.5	1

# 810	ARTICLE Adsorption, Capillary Bridge Formation, and Cavitation in SBA-15 Corrugated Mesopores: A Deriaguin–Broekhoff–de Boer Analysis. Langmuir. 2012. 28. 5101-5115.	IF 1.6	CITATIONS
811	Synthesis, electronic property and photocatalytic applications of mesoporous cobalt-doped ZnS and ZnO nanoplates. Applied Catalysis A: General, 2012, 427-428, 106-113.	2.2	26
812	Photocatalytic degradation of rhodamine B using Mo heterogeneous catalysts under aerobic conditions. Applied Catalysis B: Environmental, 2012, 113-114, 180-191.	10.8	36
813	Synthesis of ultra-large-pore FDU-12 silica using ethylbenzene as micelle expander. Journal of Colloid and Interface Science, 2012, 365, 137-142.	5.0	29
814	Mesoporous silica synthesis: Energetics of interaction between framework and structure directing agent. Microporous and Mesoporous Materials, 2012, 149, 119-125.	2.2	21
815	Facile synthesis of new periodic mesoporous organosilica and its performance of immobilizing horseradish peroxidase. Microporous and Mesoporous Materials, 2012, 155, 24-33.	2.2	24
816	Soft-templating synthesis of ordered mesoporous carbons in the presence of tetraethyl orthosilicate and silver salt. Microporous and Mesoporous Materials, 2012, 156, 121-126.	2.2	19
817	Low temperature nanocasting of hematite nanoparticles using mesoporous silica molds. Powder Technology, 2012, 217, 269-273.	2.1	5
818	Synthesis of homogeneously dispersed cobalt nanoparticles in the pores of functionalized SBA-15 silica. Powder Technology, 2012, 221, 359-364.	2.1	18
819	Synthesis and investigation of anchored copper (II) complexes within MCM-41 as selective catalysts for epoxidation of olefins. Journal of Porous Materials, 2013, 20, 821-826.	1.3	1
820	Phase behavior of dodecane–tridecane mixtures confined in SBA-15. Journal of Thermal Analysis and Calorimetry, 2013, 113, 1297-1302.	2.0	12
821	Simple Strategy for Producing Superhydrophobic Nanocomposite Coatings In Situ on a Building Substrate. ACS Applied Materials & Interfaces, 2013, 5, 7517-7526.	4.0	127
822	Glutathione-sensitive nanoplatform for monitored intracellular delivery and controlled release of Camptothecin. RSC Advances, 2013, 3, 15121.	1.7	20
823	The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials, 2013, 34, 7662-7673.	5.7	93
824	Temperature controlled surface chemistry of nitrogen-doped mesoporous carbon and its influence on Pt ORR activity. Applied Catalysis A: General, 2013, 464-465, 233-242.	2.2	28
825	Carboxyl-functionalized mesoporous silica–carbon composites as highly efficient adsorbents in liquid phase. Microporous and Mesoporous Materials, 2013, 176, 78-85.	2.2	33
826	Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves. Microporous and Mesoporous Materials, 2013, 181, 166-174.	2.2	54
827	Microwave-Assisted Synthesis of Porous Carbon–Titania and Highly Crystalline Titania Nanostructures. ACS Applied Materials & Interfaces, 2013, 5, 1948-1954.	4.0	20

#	Article	IF	CITATIONS
828	Pore Size Determination in Ordered Mesoporous Materials Using Powder X-ray Diffraction. Journal of Physical Chemistry C, 2013, 117, 18120-18130.	1.5	41
829	Pore morphology: a vital factor in determining electrochemical properties of electrical double layer capacitors. Chemical Communications, 2013, 49, 9998.	2.2	28
830	Highly acidic mesoporous aluminosilicates assembled from zeolitic subunits generated by controllable desilication of ZSM-5 in Na2SiO3 solution. Microporous and Mesoporous Materials, 2013, 180, 242-249.	2.2	11
831	Tuning the Shape of Mesoporous Silica Particles by Alterations in Parameter Space: From Rods to Platelets. Langmuir, 2013, 29, 13551-13561.	1.6	44
832	Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts. Coordination Chemistry Reviews, 2013, 257, 3107-3124.	9.5	78
833	Hierarchically Porous Nitrogen-Doped Graphene–NiCo ₂ O ₄ Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material. ACS Nano, 2013, 7, 10190-10196.	7.3	506
834	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy and Environmental Science, 2013, 6, 3693.	15.6	309
835	A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. Journal of Materials Chemistry A, 2013, 1, 13738.	5.2	147
836	Preparation and photocatalytic activity of strontium titanate nanocube-dispersed mesoporous silica. Journal of Colloid and Interface Science, 2013, 407, 282-286.	5.0	14
837	The effect of recrystallization time on pore size and surface area of mesoporous SBA-15. Journal of Sol-Gel Science and Technology, 2013, 68, 270-277.	1.1	13
838	Toward Tunable Adsorption Properties, Structure, and Crystallinity of Titania Obtained by Block Copolymer and Scaffold-Assisted Templating. Langmuir, 2013, 29, 12549-12559.	1.6	20
839	A Novel Approach To Calibrate Mesopore Size from Nitrogen Adsorption Using X-ray Diffraction: An SBA-15 Case Study. Journal of Physical Chemistry C, 2013, 117, 17493-17502.	1.5	18
840	Method to create a hydrophilic environment within hydrophobic nanostructures. Microporous and Mesoporous Materials, 2013, 179, 17-21.	2.2	1
841	Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates. Nanoscale, 2013, 5, 5825.	2.8	7
842	Fabrication of porous carbon monoliths with a graphitic framework. Carbon, 2013, 56, 155-166.	5.4	141
843	2D and 3D characterization of a surfactant-synthesized TiO2–SiO2 mesoporous photocatalyst obtained at ambient temperature. Physical Chemistry Chemical Physics, 2013, 15, 2800.	1.3	26
844	Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. Journal of Materials Chemistry A, 2013, 1, 9409.	5.2	64
845	Phosphate adsorption on aluminum-coordinated functionalized macroporous–mesoporous silica: Surface structure and adsorption behavior. Materials Research Bulletin, 2013, 48, 4974-4978.	2.7	8

#	Article	IF	CITATIONS
846	Metal dispersion, accessibility and catalytic activity in methane oxidation of mesoporous templated aluminosilica supported palladium. Applied Catalysis A: General, 2013, 464-465, 116-127.	2.2	23
847	Mo(II) complexes of 8-aminoquinoline and their immobilization in MCM-41. Applied Catalysis A: General, 2013, 455, 172-182.	2.2	13
848	Local atomic structure of lanthanide complexes in cubic ordered mesoporous silica. Journal of Alloys and Compounds, 2013, 560, 67-71.	2.8	3
849	Transformation of porous glasses into MCM-41 containing geometric bodies. Microporous and Mesoporous Materials, 2013, 182, 136-146.	2.2	20
850	Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon, 2013, 62, 233-239.	5.4	46
851	Novel Pore-Expanded MCM-41 for CO ₂ Capture: Synthesis and Characterization. Langmuir, 2013, 29, 3491-3499.	1.6	127
852	Ordered mesoporous Ga2O3 and Ga2O3–Al2O3 prepared by nanocasting as effective catalysts for propane dehydrogenation in the presence of CO2. Catalysis Communications, 2013, 35, 95-100.	1.6	55
853	Synthesis and characterization of thermally stable large-pore mesoporous nanocrystallineanatase. Journal of Solid State Chemistry, 2013, 200, 90-98.	1.4	15
854	Silica monoliths with hierarchical porosity obtained from porous glasses. Chemical Society Reviews, 2013, 42, 3753-3764.	18.7	84
855	Organic acid-assisted soft-templating synthesis of ordered mesoporous carbons. Adsorption, 2013, 19, 563-569.	1.4	15
856	Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chemical Society Reviews, 2013, 42, 4141.	18.7	204
857	Facile Fabrication of Nanoparticles Confined in Graphene Films and Their Electrochemical Properties. Chemistry - A European Journal, 2013, 19, 7631-7636.	1.7	21
859	Functionalization of mesostructured silica–carbon composites. Materials Chemistry and Physics, 2013, 139, 281-289.	2.0	28
860	Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. RSC Advances, 2013, 3, 9904.	1.7	83
861	Carbon-assisted synthesis of mesoporous SnO2 nanomaterial as highly sensitive ethanol gas sensor. Sensors and Actuators B: Chemical, 2013, 183, 526-534.	4.0	40
862	Opening and blocking the inner-pores of halloysite. Chemical Communications, 2013, 49, 4519.	2.2	74
863	An economic method for synthesis of highly ordered porous silica. Journal of Colloid and Interface Science, 2013, 407, 128-132.	5.0	16
864	Cysteine-Assisted Tailoring of Adsorption Properties and Particle Size of Polymer and Carbon Spheres. Langmuir, 2013, 29, 4032-4038.	1.6	48

#	Article	IF	CITATIONS
865	Mesoporous isocyanurate-containing organosilica–alumina composites and their thermal treatment in nitrogen for carbon dioxide sorption at elevated temperatures. Journal of Materials Chemistry A, 2013, 1, 8244.	5.2	23
866	Size-dependent melting of ice in mesoporous silica. Philosophical Magazine, 2013, 93, 1827-1842.	0.7	4
867	One-pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties. Catalysis Science and Technology, 2013, 3, 1942.	2.1	45
868	Lignin–phenol–formaldehyde aerogels and cryogels. Microporous and Mesoporous Materials, 2013, 168, 19-29.	2.2	105
869	Growth of Gd2O3 nanoparticles inside mesoporous silica frameworks. Microporous and Mesoporous Materials, 2013, 168, 221-224.	2.2	29
870	Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon, 2013, 65, 334-340.	5.4	130
871	Fabrication of Fe-coordinated diamino-functionalized SBA-15 with hierarchical porosity for phosphate removal. Materials Letters, 2013, 99, 154-157.	1.3	10
872	One-pot synthesis of a hierarchical PMO monolith with superior performance in enzyme immobilization. Journal of Materials Chemistry B, 2013, 1, 1738.	2.9	18
873	Standard nitrogen adsorption data for \hat{l} ±-alumina and their use for characterization of mesoporous alumina-based materials. Adsorption, 2013, 19, 475-481.	1.4	13
874	Diffraction analysis of mesostructured mesoporous materials. Chemical Society Reviews, 2013, 42, 3708-3720.	18.7	23
875	Phase Behavior of Undecane-Dodecane Mixtures Confined in SBA-15. Journal of Chemistry, 2013, 2013, 1-7.	0.9	4
876	Preparation of Porous ZrO ₂ â€Based Composite Oxides Containing W, Cr, Mo, or V Through a Wall Ionâ€Exchange Method. European Journal of Inorganic Chemistry, 2013, 2013, 4970-4975.	1.0	1
877	Improved Heat Insulation and Mechanical Properties of Highly Porous <scp>YSZ</scp> Ceramics After Silica Aerogels Impregnation. Journal of the American Ceramic Society, 2013, 96, 3223-3227.	1.9	27
878	Estimating Pore-Size Distributions of Moderately Hydrophobic Mesoporous Solids. Adsorption Science and Technology, 2013, 31, 153-164.	1.5	4
879	Importance of the α _s -plot Method in the Characterization of Nanoporous Materials. Adsorption Science and Technology, 2013, 31, 165-183.	1.5	42
880	Ethyleneâ€bridged Periodic Mesoporous Organosilicas with Large Spherical Pores Templated by PEOâ€PPOâ€PEO Surfactant Micelles Swollen by Ethylbenzene. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 624-631.	0.6	6
881	Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 20030-20037.	5.2	37
882	Adsorptive characterization of porous solids: Error analysis guides the way. Microporous and Mesoporous Materials, 2014, 200, 199-215.	2.2	134

#	Article	IF	CITATIONS
883	Nitrogen and Oxygen Dualâ€Doped Carbon Hydrogel Film as a Substrateâ€Free Electrode for Highly Efficient Oxygen Evolution Reaction. Advanced Materials, 2014, 26, 2925-2930.	11.1	594
884	Synthesis and Characterization of an Azobenzeneâ€Functionalized Etheneâ€Bridged PMO. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 561-564.	0.6	2
885	Enzymes immobilized in mesoporous silica: A physical–chemical perspective. Advances in Colloid and Interface Science, 2014, 205, 339-360.	7.0	198
886	Assessment of Mesoporosity. , 2014, , 269-302.		16
887	Adsorption by Ordered Mesoporous Materials. , 2014, , 529-564.		7
888	Single-pot synthesis of ordered mesoporous silica films with unique controllable morphology. Journal of Colloid and Interface Science, 2014, 413, 1-7.	5.0	16
889	New Mo(II) complexes in MCM-41 and silica: Synthesis and catalysis. Journal of Organometallic Chemistry, 2014, 751, 443-452.	0.8	13
890	Heteroatom-doped carbon gels from phenols and heterocyclic aldehydes: Sulfur-doped carbon xerogels. Carbon, 2014, 75, 56-67.	5.4	64
891	Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous and Mesoporous Materials, 2014, 191, 82-96.	2.2	240
892	Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption, 2014, 20, 233-250.	1.4	533
893	Effects of support identity and metal dispersion in supported ruthenium hydrodeoxygenation catalysts. Applied Catalysis A: General, 2014, 477, 64-74.	2.2	144
894	Improved calculations of pore size distribution for relatively large, irregular slit-shaped mesopore structure. Microporous and Mesoporous Materials, 2014, 184, 112-121.	2.2	75
895	Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Applied Surface Science, 2014, 299, 86-91.	3.1	124
896	A molecular model to explain the controlled release from SBA-15 functionalized with APTES. Microporous and Mesoporous Materials, 2014, 195, 43-49.	2.2	41
897	Preparation of Pd/Cu MCM-41 catalysts for hydrodechlorination: Influence of the synthesis procedure. Microporous and Mesoporous Materials, 2014, 190, 1-9.	2.2	18
898	Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. Applied Surface Science, 2014, 289, 592-600.	3.1	28
899	Highly enantioselective olefin epoxidation controlled by helical confined environments. Journal of Catalysis, 2014, 309, 21-32.	3.1	40
900	Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium–sulfur batteries. Carbon, 2014, 68, 265-272.	5.4	66

#	Article	IF	CITATIONS
901	Development of mesoporosity in carbon spheres obtained by Stöber method. Microporous and Mesoporous Materials, 2014, 185, 197-203.	2.2	18
902	Recent Advances in the Synthesis and Characterization of Chalcogenide Nanoparticles. Solid State Phenomena, 0, 222, 187-233.	0.3	21
903	A non-micellar synthesis of mesoporous carbon via spinodal decomposition. RSC Advances, 2014, 4, 23703-23706.	1.7	4
904	Water-deficient templating system: a general, versatile and efficient synthetic approach for mesoporous silicas. RSC Advances, 2013, 4, 2195-2204.	1.7	5
905	KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14844.	5.2	156
906	Highly microporous polymer-based carbons for CO2 and H2 adsorption. RSC Advances, 2014, 4, 14795.	1.7	23
907	A simple ternary non-ionic templating system for preparation of complex hierarchically meso–mesoporous silicas with 3D-interconnected large mesopores. Journal of Materials Chemistry A, 2014, 2, 5363-5370.	5.2	27
908	Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous and Mesoporous Materials, 2014, 200, 68-78.	2.2	132
909	Supported Polytertiary Amines: Highly Efficient and Selective SO ₂ Adsorbents. Environmental Science & Technology, 2014, 48, 2025-2034.	4.6	85
910	Short synthesis of ordered silicas with very large mesopores. RSC Advances, 2014, 4, 331-339.	1.7	15
911	<scp>l</scp> -Proline-Grafted Mesoporous Silica with Alternating Hydrophobic and Hydrophilic Blocks to Promote Direct Asymmetric Aldol and Knoevenagel–Michael Cascade Reactions. ACS Catalysis, 2014, 4, 2566-2576.	5.5	66
912	One-Step Introduction of Broad-Band Mesoporosity in Silica Particles Using a Stimuli-Responsive Bioderived Glycolipid. ACS Sustainable Chemistry and Engineering, 2014, 2, 512-522.	3.2	4
913	Effect of surface chemistry on the double layer capacitance of polypyrrole-derived ordered mesoporous carbon. RSC Advances, 2014, 4, 47039-47046.	1.7	12
914	Mesoporous Organosilica with Amidoxime Groups for CO ₂ Sorption. ACS Applied Materials & Interfaces, 2014, 6, 13069-13078.	4.0	38
915	Mixed bifunctional surface-modified silicas using tethered aminofunctional silane catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 1-8.	2.3	13
916	Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Microporous and Mesoporous Materials, 2014, 194, 167-173.	2.2	55
918	Silica Gels: Characterization by Physical Methods. , 2015, , 6606-6622.		0
919	Tuning of the Temperature Window for Unitâ€Cell and Poreâ€Size Enlargement in Faceâ€Centeredâ€Cubic Largeâ€Mesopore Silicas Templated by Swollen Block Copolymer Micelles. Chemistry - A European Journal, 2015, 21, 12747-12754	1.7	9

#	Article	IF	CITATIONS
920	Helical Channel Mesoporous Materials with Embedded Magnetic Iron Nanoparticles: Chiral Recognition and Implications in Asymmetric Olefin Epoxidation. Advanced Synthesis and Catalysis, 2015, 357, 3127-3140.	2.1	12
921	Synthesis Mechanism and Thermal Optimization of an Economical Mesoporous Material Using Silica: Implications for the Effective Removal or Delivery of Ibuprofen. PLoS ONE, 2015, 10, e0130253.	1.1	6
922	Mesostructured HSO 3 -functionalized TiO 2 -P 2 O 5 sol-gel films prepared by evaporation induced self-assembly method with high proton conductivity. Electrochimica Acta, 2015, 173, 215-222.	2.6	4
923	Ordered arrays of hollow carbon nanospheres and nanotubules from polyacrylonitrile grafted on ordered mesoporous silicas using atom transfer radical polymerization. Polymer, 2015, 72, 356-360.	1.8	13
924	Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere, 2015, 136, 273-280.	4.2	59
925	Pd–Cu interaction in Pd/Cu-MCM-41 catalysts: Effect of silica source and metal content. Catalysis Today, 2015, 246, 108-115.	2.2	15
926	Silica–Titania Composite Aerogel Photocatalysts by Chemical Liquid Deposition of Titania onto Nanoporous Silica Scaffolds. ACS Applied Materials & Interfaces, 2015, 7, 5400-5409.	4.0	96
927	Pore size matters! Helical heterogeneous catalysts in olefin oxidation. Applied Catalysis A: General, 2015, 504, 328-337.	2.2	7
928	Hierarchical Microporous/Mesoporous Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 4344-4353.	4.0	220
929	Versatile Surfactant/Swelling-Agent Template for Synthesis of Large-Pore Ordered Mesoporous Silicas and Related Hollow Nanoparticles. Chemistry of Materials, 2015, 27, 679-689.	3.2	65
930	Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis. RSC Advances, 2015, 5, 13331-13340.	1.7	38
931	A Highly Resilient Mesoporous SiO _{<i>x</i>} Lithium Storage Material Engineered by Oil–Water Templating. ChemSusChem, 2015, 8, 688-694.	3.6	45
932	Three-dimensional MnO ₂ ultrathin nanosheet aerogels for high-performance Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 2559-2563.	5.2	85
933	Predicting Adsorption on Bare and Modified Silica Surfaces. Journal of Physical Chemistry C, 2015, 119, 6009-6017.	1.5	15
934	Design of highly efficient Zn-, Cu-, Ni- and Co-promoted M-AlPO4 solid acids: The acetalization of glycerol with acetone. Applied Catalysis A: General, 2015, 496, 32-39.	2.2	35
935	Scaffold-assisted synthesis of crystalline mesoporous titania materials. RSC Advances, 2015, 5, 61960-61972.	1.7	6
936	Pluronic-P123-Templated Synthesis of Silica with Cubic <i>la</i> 3 <i>d</i> Structure in the Presence of Micelle Swelling Agent. Langmuir, 2015, 31, 7623-7632.	1.6	14
937	Polystyrene- <i>block</i> -Polybutadiene- <i>block</i> -Polystyrene Triblock Copolymer Meets Silica: From Modification of Copolymer to Formation of Mesoporous Silica. Industrial & Engineering Chemistry Research, 2015, 54, 6454-6466.	1.8	14

#	Article	IF	CITATIONS
938	Importance of pore length and geometry in the adsorption/desorption process: a molecular simulation study. Molecular Physics, 2015, 113, 3849-3853.	0.8	9
939	Solvent-free selective oxidation of toluene by oxygen over MnOx/SBA-15 catalysts: Relationship between catalytic behavior and surface structure. Chemical Engineering Journal, 2015, 280, 737-747.	6.6	46
940	3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries. Electrochimica Acta, 2015, 176, 575-585.	2.6	72
941	Catalytic Activity of Molybdenum(II) Complexes in Homogeneous and Heterogeneous Conditions. Organometallics, 2015, 34, 1465-1478.	1.1	21
942	Adsorption/Desorption of Hg(II) on FDU-1 Silica and FDU-1 Silica Modified with Humic Acid. Separation Science and Technology, 2015, 50, 984-992.	1.3	2
943	Enhancing adsorption efficiency of dichloroacetic acid onto mesoporous carbons: Procedure optimization, mechanism and characterization. Journal of Colloid and Interface Science, 2015, 452, 134-140.	5.0	4
944	Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: Effectiveness and complexation rate. Microporous and Mesoporous Materials, 2015, 212, 125-136.	2.2	78
945	Template synthesis and water vapor adsorption by micro- and mesoporous silica gels with high specific surface area. Glass Physics and Chemistry, 2015, 41, 187-193.	0.2	5
946	Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. Journal of Materials Chemistry A, 2015, 3, 11650-11659.	5.2	177
947	Synthesis of Nanoporous Materials Al -MCM-41 from Natural Halloysite. Nano, 2015, 10, 1550005.	0.5	11
948	Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon, 2015, 88, 239-251.	5.4	113
949	Design of mesoporous silica hybrid materials as sorbents for the selective recovery of rare earth metals. Journal of Materials Chemistry A, 2015, 3, 10327-10335.	5.2	83
950	Statistical Optimization for Production of Light Olefins in a Fluidizedâ€Bed Reactor. Chemical Engineering and Technology, 2015, 38, 931-940.	0.9	4
951	Protein Adsorption From Biofluids on Silica Nanoparticles: Corona Analysis as a Function of Particle Diameter and Porosity. ACS Applied Materials & Interfaces, 2015, 7, 21682-21689.	4.0	83
952	Structural analysis of hierarchically organized zeolites. Nature Communications, 2015, 6, 8633.	5.8	206
953	Direct Synthesis, Structural Features, and Enhanced Catalytic Activity of the Basolite F300-like Semiamorphous Fe-BTC Framework. Crystal Growth and Design, 2015, 15, 4498-4506.	1.4	98
954	Single-micelle-templated synthesis of hollow silica nanospheres with tunable pore structures. RSC Advances, 2015, 5, 69870-69877.	1.7	25
955	Adsorption of Lead Ions from Aqueous Phase on Mesoporous Silica with P-Containing Pendant Groups. ACS Applied Materials & Interfaces, 2015, 7, 23144-23152.	4.0	47

#	Article	IF	CITATIONS
956	Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energy Storage Materials, 2015, 1, 17-24.	9.5	67
957	Magnetised nanocomposite mesoporous silica and its application for effective removal of methylene blue from aqueous solution. Separation and Purification Technology, 2015, 153, 67-75.	3.9	26
958	Photodegradation of dye acridine yellow on the surface of mesoporous TiO2, SiO2/TiO2 and SiO2 films: spectroscopic and theoretical studies. Journal of Nanostructure in Chemistry, 2015, 5, 333-346.	5.3	16
959	Undulation Theory and Analysis of Capillary Condensation in Cylindrical and Spherical Pores. Journal of Physical Chemistry C, 2015, 119, 20433-20445.	1.5	7
960	Sandwich-like mesoporous silica flakes for anticancer drug transport—Synthesis, characterization and kinetics release study. Colloids and Surfaces B: Biointerfaces, 2015, 136, 119-125.	2.5	14
961	Investigations on the development of MCM-41 as a potential mesoporous silica based reference material for the analysis of multi-textural properties. RSC Advances, 2015, 5, 8006-8013.	1.7	1
962	N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2914-2923.	5.2	214
963	From the capillary condensation to the glass transition of a confined molecular liquid: Case of toluene. Journal of Non-Crystalline Solids, 2015, 407, 262-269.	1.5	11
964	Mesoporous alumina–zirconia–organosilica composites for CO ₂ capture at ambient and elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 2707-2716.	5.2	25
965	Nitration and reduction route to surface groups of mesoporous carbons obtained from sucrose and phloroglucinol/formaldehyde precursors. Materials Chemistry and Physics, 2015, 149-150, 539-552.	2.0	9
966	Catalytic activity of CeIVO2/Ce2IIIO3-silica mesoporous composite materials for oxidation and esterification reactions. Chemical Engineering Journal, 2015, 262, 1116-1125.	6.6	20
967	Selective catalytic oxidations of cyclohexene, thioether and geraniol with hydrogen peroxide. Sensitivity to the structure of mesoporous niobosilicates. Microporous and Mesoporous Materials, 2015, 202, 80-89.	2.2	23
968	Optical Metamaterials by Block Copolymer Self-Assembly. Springer Theses, 2015, , .	0.0	3
969	Removal of cadmium from aqueous solutions by adsorption onto polyethylenimine-functionalized mesocellular silica foam: Equilibrium properties. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 372-378.	2.7	39
971	Methanol conversion to light olefins over surfactant-modified nanosized SAPO-34. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 701-717.	0.8	19
972	The design and synthesis of porous NiCo ₂ O ₄ ellipsoids supported by flexile carbon nanotubes with enhanced lithium-storage properties for lithium-ion batteries. RSC Advances, 2016, 6, 31925-31933.	1.7	15
973	Aminosilane decorated carbon template-induced in situ encapsulation of multiple-Ag-cores inside mesoporous hollow silica. RSC Advances, 2016, 6, 30852-30861.	1.7	8
974	Looking inside the pores of a MCM-41 based Mo heterogeneous styrene oxidation catalyst: an inelastic neutron scattering study. Physical Chemistry Chemical Physics, 2016, 18, 17272-17280.	1.3	12

щ		IF	Citations
#	ARTICLE	IF	CHATIONS
975	Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.	7.3	403
976	Sandwiched graphene-fullerene composite: A novel 3-D nanostructured material for hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 6403-6411.	3.8	73
977	A Novel Self-Assembled Hierarchical-Structured Catalyst for the Diffusion of Macromolecules. Australian Journal of Chemistry, 2016, 69, 856.	0.5	4
978	Multiscale Model for the Templated Synthesis of Mesoporous Silica: The Essential Role of Silica Oligomers. Chemistry of Materials, 2016, 28, 2715-2727.	3.2	32
979	Tuning the acid content of propylsulfonic acid-functionalized mesoporous benzene-silica by microwave-assisted synthesis. Microporous and Mesoporous Materials, 2016, 226, 386-395.	2.2	13
980	Conversion of fly ashes from different regions to mesoporous silica: effect of the mineralogical composition. Journal of Sol-Gel Science and Technology, 2016, 78, 239-247.	1.1	8
981	Template-based syntheses for shape controlled nanostructures. Advances in Colloid and Interface Science, 2016, 234, 51-79.	7.0	108
982	Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106, 179-187.	5.4	185
983	Photocatalytic activity of electron-deficient and porous WO3 nanoparticles derived from thermal oxidation of bulk WC particles. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 330, 37-43.	2.0	3
984	Helical Materials with Chiral Mo(II) Catalysts. Topics in Catalysis, 2016, 59, 1237-1248.	1.3	4
986	Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine. ChemSusChem, 2016, 9, 2796-2803.	3.6	82
987	High and Reversible Ammonia Uptake in Mesoporous Azolate Metal–Organic Frameworks with Open Mn, Co, and Ni Sites. Journal of the American Chemical Society, 2016, 138, 9401-9404.	6.6	229
988	Mesoporous calcium oxide–silica and magnesium oxide–silica composites for CO ₂ capture at ambient and elevated temperatures. Journal of Materials Chemistry A, 2016, 4, 10914-10924.	5.2	44
989	Supercritical Fluid Atomic Layer Deposition: Base-Catalyzed Deposition of SiO2. Langmuir, 2016, 32, 7170-7179.	1.6	3
990	Amine-modified silica nanotubes and nanospheres: synthesis and CO ₂ sorption properties. Environmental Science: Nano, 2016, 3, 806-817.	2.2	26
991	Sorptive properties of aluminium ions containing mesoporous silica towards l-histidine. Adsorption, 2016, 22, 571-579.	1.4	13
992	Amine tethered pore-expanded MCM-41 for CO2 capture: Experimental, isotherm and kinetic modeling studies. Chemical Engineering Journal, 2016, 303, 89-99.	6.6	62
993	Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory. Journal of Physical Chemistry Letters, 2016, 7, 2647-2652.	2.1	13

ARTICLE IF CITATIONS The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen 994 5.2 195 doped carbon microspheres. Journal of Materials Chemistry A, 2016, 4, 2581-2589. Grafted propyldiethanolamine for selective removal of SO 2 in the presence of CO 2. Chemical 6.6 Engineering Journal, 2016, 289, 142-149. Synthesis of Xylylene-Bridged Periodic Mesoporous Organosilicas and Related Hollow Spherical 996 1.6 18 Nanoparticles, Langmuir, 2016, 32, 900-908. New insights on estimating pore size distribution of latex particles: Statistical mechanics approach and modeling. Microporous and Mesoporous Materials, 2016, 224, 360-371. Effect of drug precursor in cell uptake and cytotoxicity of redox-responsive camptothecin 998 3.8 11 nanomedicines. Materials Science and Engineering C, 2016, 58, 692-699. Hydrogen storage at low temperature and high pressure for application in automobile manufacturing. International Journal of Hydrogen Energy, 2016, 41, 1744-1758. 3.8 37 Synthesis of large-pore face-centered-cubic periodic mesoporous organosilicas with unsaturated 1000 2.2 27 bridging groups. Microporous and Mesoporous Materials, 2016, 222, 153-159. Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar 3.2 159 Solvent-Assisted StA¶ber Method. Chemistry of Materials, 2016, 28, 2356-2362. Catalytic performances of Ni/mesoporous SiO 2 catalysts for dry reforming of methane to hydrogen. 1002 7.1 65 Journal of Energy Chemistry, 2016, 25, 709-719. Aqueous synthesis of bimodal mesoporous carbons and carbon-silica mesostructures under basic 2.2 conditions. Microporous and Mesoporous Materials, 2016, 226, 299-308. Effect of aluminum sulfate addition on the thermal storage performance of mesoporous SBA-15 and 1004 32 3.0MCM-41 materials. Solar Energy Materials and Solar Cells, 2016, 149, 232-241. Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a 4.6 58 block copolymer. Green Chemistry, 2016, 18, 3265-3271. Rapid synthesis of Ti-MCM-41 by microwave-assisted hydrothermal method towards photocatalytic 1006 3.2 49 degradátion of oxytetracycline. Journal of Environmental Sciences, 2016, 44, 76-87. Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths. Cellulose, 2016, 23, 1363-1374. 2.4 36 Amidoxime-functionalized microcrystalline cellulose–mesoporous silica composites for carbon 1008 5.233 dioxide sorption at elevated temperatures. Journal of Materials Chemistry A, 2016, 4, 4808-4819. Hybrid silica with bimodal mesopore system: Synthesis and catalytic evaluation. Journal of Molecular 4.8 Catalysis A, 2016, 422, 51-58. Synthesis and application of the MCM-41 and SBA-15 as matrices for inÂvitro efavirenz release study. 1010 1.4 25 Journal of Drug Delivery Science and Technology, 2016, 31, 153-159. Development of mesoporous magnesium oxide–alumina composites for CO2 capture. Journal of CO2 3.3 Utilization, 2016, 13, 114-118.

#	Article	IF	CITATIONS
1012	Synthesis and characterization of SBA-16 type mesoporous materials containing amine groups. Microporous and Mesoporous Materials, 2016, 220, 231-238.	2.2	44
1013	Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45, 3400-3438.	18.7	196
1014	β-Cyclodextrin incorporated nanoporous carbon: Host–guest inclusion for removal of p-Nitrophenol and pesticides from aqueous solutions. Chemical Engineering Journal, 2016, 283, 1424-1434.	6.6	51
1015	Vapor phase esterification of levulinic acid over ZrO2/SBA-15 catalyst. Catalysis Communications, 2016, 75, 1-5.	1.6	44
1016	Mesoporous silica and carbon based catalysts for esterification and biodiesel fabrication—The effect of matrix surface composition and porosity. Applied Catalysis A: General, 2017, 533, 49-58.	2.2	40
1017	Mineralogical characterization and design of a treatment process for Yunnan nickel laterite ore, China. International Journal of Mineral Processing, 2017, 159, 51-59.	2.6	24
1018	Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode. Nano Research, 2017, 10, 2083-2095.	5.8	40
1019	The supported sulphated La2O3-ZrO2 on SBA-15 as a promising mesoporous solid superacid catalyst for alkenylation of p-xylene with phenylacetylene. Catalysis Communications, 2017, 93, 53-56.	1.6	6
1020	Influence of the Morphological Characteristics of Separator Membranes on Ionic Mobility in Lithium Secondary Batteries. Journal of Physical Chemistry C, 2017, 121, 2512-2520.	1.5	15
1021	The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels. Journal of the American Chemical Society, 2017, 139, 3619-3622.	6.6	72
1022	Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation. Molecular Catalysis, 2017, 435, 144-155.	1.0	34
1023	Adsorption of Uranium over NH ₂ -Functionalized Ordered Silica in Aqueous Solutions. ACS Applied Materials & Interfaces, 2017, 9, 15672-15684.	4.0	98
1024	Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium. Applied Surface Science, 2017, 424, 275-281.	3.1	40
1025	Improvement of thermal insulation performance of silica aerogels by Al2O3 powders doping. Ceramics International, 2017, 43, 10799-10804.	2.3	31
1026	Computational methodology for determining textural properties of simulated porous carbons. Journal of Colloid and Interface Science, 2017, 503, 28-38.	5.0	7
1027	SBA-15 templating synthesis of mesoporous bismuth oxide for selective removal of iodide. Journal of Colloid and Interface Science, 2017, 501, 248-255.	5.0	26
1028	Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto Ordered Mesoporous Carbon (OMC). Journal of Hazardous Materials, 2017, 336, 249-259.	6.5	149
1029	Oriented Coimmobilization of Oxidase and Catalase on Tailor-Made Ordered Mesoporous Silica. Langmuir, 2017, 33, 5065-5076.	1.6	39

ARTICLE IF CITATIONS Synthesis of an alumina enriched Al2O3-SiO2 aerogel: Reinforcement and ambient pressure drying. 1030 1.5 31 Journal of Non-Crystalline Solids, 2017, 471, 160-168. Room temperature sintering of polar ZnO nanosheets: I-evidence. Physical Chemistry Chemical Physics, 1.3 2017, 19, 16406-16412. Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast 1032 4.0 101 response acetone gas sensor. Sensors and Actuators B: Chemical, 2017, 248, 85-91. Modeling hydrogen diffusion in hybrid activated carbon-MIL-101(Cr) considering temperature 2.2 variations and surface loading changes. Microporous and Mesoporous Materials, 2017, 248, 72-83. Amidoxime-functionalized nanocrystalline cellulose–mesoporous silica composites for carbon dioxide sorption at ambient and elevated temperatures. Journal of Materials Chemistry A, 2017, 5, 1034 5.2 42 7462-7473. Reversible Capture and Release of Cl₂ and Br₂ with a Redox-Active Metalâ€"Organic Framework. Journal of the American Chemical Society, 2017, 139, 5992-5997. 6.6 Hydrogen adsorption and kinetics in MIL-101(Cr) and hybrid activated carbon-MIL-101(Cr) materials. 1036 3.8 49 International Journal of Hydrogen Energy, 2017, 42, 8021-8031. Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas. Nuclear Instruments & Methods in Physics Research B, 2017, 411, 72-77. 0.6 1038 Dependent Domain Model of Cylindrical Pores. Journal of Physical Chemistry C, 2017, 121, 5099-5107. 1.5 18 Pore size distribution of MCM-41-type silica materials from pseudomorphic transformation - A minimal input data approach based on excess surface work. Microporous and Mesoporous Materials, 2017, 240, 2.2 169-177. Relative Permeability and Residual Saturation Estimates for Organic-Rich Shale Samples From Bakken, 1040 2 Wolfcamp, Eagle Ford and Woodford Formations., 2017,,. Biosorption of Acridine Orange and Auramine O dyes onto MCM-41 mesoporous silica nanoparticles using high-accuracy UV–Vis partial least squares regression. Journal of Molecular Liquids, 2017, 248, 990-1002 A new method for analysis of dual pore size distributions in shale using nitrogen adsorption 1042 3.4 35 measurements. Fuel, 2017, 210, 446-454. Pore connectivity and pore size distribution estimates for Wolfcamp and Eagle Ford shale samples from oil, gas and condensate windows using adsorption-desorption measurements. Journal of Petroleum Science and Engineering, 2017, 158, 454-468. 1043 2.1 1044 Unprecedented CO2 uptake in vertically aligned carbon nanotubes. Carbon, 2017, 125, 327-335. 20 5.4A Selective Interaction between Cation and Separator Membrane in Lithium Secondary Batteries. 1045 Journal of Physical Chemistry C, 2017, 121, 23926-23930. Single-Layered Mesoporous Carbon Sandwiched Graphene Nanosheets for High Performance Ionic 1046 1.512 Liquid Supercapacitors. Journal of Physical Chemistry C, 2017, 121, 23947-23954. Iron(II) phthalocyanine immobilized SBA-15 catalysts: Preparation, characterization and application for 1047 1.2 19 toluene selective aerobic oxidation. Inorganica Chimica Acta, 2017, 467, 307-315.

#	ARTICLE Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly	IF 5.8	CITATIONS
1049	Alcoholysis of Furfuryl Alcohol into n-Butyl Levulinate Over SBA-16 Supported Heteropoly Acid Catalyst. Catalysis Letters, 2017, 147, 2807-2816.	1.4	35
1050	A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface. Scientific Reports, 2017, 7, 10634.	1.6	130
1051	Microwave-assisted preparation of hollow porous carbon spheres and as anode of lithium-ion batteries. Microporous and Mesoporous Materials, 2017, 251, 114-121.	2.2	40
1052	APTES-functionalized mesoporous silica as a vehicle for antipyrine – adsorption and release studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 187-196.	2.3	52
1053	Oneâ€stage Templateâ€free <scp>KOH</scp> Activation for Mesoporeâ€enriched Carbons and Their Application in <scp>CO₂</scp> Capture. Journal of the Chinese Chemical Society, 2017, 64, 1041-1047.	0.8	12
1054	Dual optimization of microporosity in carbon spheres for CO ₂ adsorption by using pyrrole as the carbon precursor and potassium salt as the activator. Journal of Materials Chemistry A, 2017, 5, 19456-19466.	5.2	27
1055	Ordered mesoporous chromium–zirconium oxophosphate composites with homogeneously dispersed chromium oxide: synthesis, characterization and application in liquid phase oxidation of benzyl alcohol and ethylbenzene. Journal of Materials Science, 2017, 52, 12141-12155.	1.7	4
1056	Experimental investigation of the pore structure of triassic terrestrial shale in the Yanchang Formation, Ordos Basin, China. Journal of Natural Gas Science and Engineering, 2017, 46, 436-450.	2.1	16
1057	Sintered metal fibers@carbon molecular sieve membrane (SMFs@CMSM) composites for the adsorptive removal of low concentration isopropanol. RSC Advances, 2017, 7, 37604-37611.	1.7	5
1058	Long-Term Effect of Steam Exposure on CO ₂ Capture Performance of Amine-Grafted Silica. ACS Applied Materials & Interfaces, 2017, 9, 43747-43754.	4.0	36
1059	Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nature Communications, 2017, 8, 15341.	5.8	1,042
1060	Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery. Marine Pollution Bulletin, 2017, 122, 129-138.	2.3	38
1061	Amine-modified mesoporous silica for quantitative adsorption and release of hydroxytyrosol and other phenolic compounds from olive mill wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 111-118.	2.7	34
1062	Tailoring porosity in carbon spheres for fast carbon dioxide adsorption. Journal of Colloid and Interface Science, 2017, 487, 162-174.	5.0	28
1063	Synthesis, gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO 2 and water adsorption. Chinese Journal of Chemical Engineering, 2017, 25, 595-601.	1.7	19
1064	Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 2017, 46, 389-414.	18.7	760
1065	Multifunctional Mesoporous Carbon Capsules and their Robust Coatings for Encapsulation of Actives: Antimicrobial and Anti-bioadhesion Functions. ACS Applied Materials & Mater	4.0	20

#	Article	IF	CITATIONS
1066	Amine tethered pore-expanded MCM-41: A promising adsorbent for CO 2 capture. Chemical Engineering Journal, 2017, 308, 827-839.	6.6	79
1067	Preparation of nanoporous nickel phosphate VSB-5 nanorods carbon paste electrode as glucose non-enzymatic sensor. Journal of Porous Materials, 2017, 24, 85-95.	1.3	27
1068	Catalytic Abatement of Nitrous Oxide Coupled with Ethane Oxydehydrogenation over Mesoporous Cr/Al2O3 Catalyst. Catalysts, 2017, 7, 137.	1.6	5
1069	4.36 Silica Based Mesoporous Nanospheres â~†. , 2017, , 686-704.		0
1070	Development and characterization of a hybrid mesoporous material infused with metallic oxide nanoparticles for water treatment. Nanomaterials and Nanotechnology, 2017, 7, 184798041772742.	1.2	1
1071	Mesoporous Akaganeite of Adjustable Pore Size Synthesized using Mixed Templates. IOP Conference Series: Materials Science and Engineering, 2017, 281, 012035.	0.3	Ο
1072	The development of zirconia/silica hybrids for the adsorption and controlled release of active pharmaceutical ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 39-50.	2.3	19
1073	Kinetics and thermodynamics of NPX adsorption by Î ³ -FeOOH in aqueous media. Arabian Journal of Chemistry, 2018, 11, 910-917.	2.3	20
1074	Direct Visualization of Evaporation in a Two-Dimensional Nanoporous Model for Unconventional Natural Gas. ACS Applied Nano Materials, 2018, 1, 1332-1338.	2.4	40
1075	Hierarchical porous carbon templated with silica spheres of a diameter of 14Ânm from pure chitosan or a chitosan/ZnCl2 solution. Journal of Porous Materials, 2018, 25, 1633-1648.	1.3	12
1076	Investigation of amino-grafted TiO2/reduced graphene oxide hybrids as a novel photocatalyst used for decomposition of selected organic dyes. Journal of Environmental Management, 2018, 212, 395-404.	3.8	31
1077	Stochastic analysis of capillary condensation in disordered mesopores. Physical Chemistry Chemical Physics, 2018, 20, 13646-13659.	1.3	11
1078	Phenomenological Study of Confined Criticality: Insights from the Capillary Condensation of Propane, <i>n</i> -Butane, and <i>n</i> -Pentane in Nanopores. Langmuir, 2018, 34, 4473-4483.	1.6	34
1079	Swollen mixed Pluronic surfactant micelles as templates for mesoporous nanotubes with diverse bridged-organosilica frameworks. Journal of Colloid and Interface Science, 2018, 524, 445-455.	5.0	16
1080	Dynamic laser speckle technique as an alternative tool to determine hygroscopic capacity and specific surface area of microporous zeolites. Applied Surface Science, 2018, 447, 587-593.	3.1	6
1081	Pore size effect of mesoporous silica stationary phase on the separation performance of microfabricated gas chromatography columns. Journal of Chromatography A, 2018, 1552, 73-78.	1.8	19
1082	VOCs reduction and inhibition mechanisms of using active carbon filler in bituminous materials. Journal of Cleaner Production, 2018, 181, 784-793.	4.6	52
1083	Application of novel hierarchical niobium-containing zeolites for synthesis of alkyl lactate and lactic acid. Journal of Colloid and Interface Science, 2018, 516, 379-383.	5.0	24

#	Article	IF	CITATIONS
1084	lsobaric Vapor–Liquid Phase Diagrams for Multicomponent Systems with Nanoscale Radii of Curvature. Journal of Physical Chemistry B, 2018, 122, 2434-2447.	1.2	19
1085	Controlled Gas Uptake in Metal–Organic Frameworks with Record Ammonia Sorption. Journal of the American Chemical Society, 2018, 140, 3461-3466.	6.6	250
1086	Estimation of Pore-Network Characteristics and Irreducible Saturations in Wolfcamp and Eagle Ford Shales Using Low-Pressure-Nitrogen-Adsorption/Desorption-Isotherm Measurements. SPE Reservoir Evaluation and Engineering, 2018, 21, 373-391.	1.1	6
1087	Influences of ordered mesoporous silica on product distribution over Nb-promoted cobalt catalyst for Fischer-Tropsch synthesis. Fuel, 2018, 216, 843-851.	3.4	15
1088	Gated Porous Materials for Biomedical Applications. From Biomaterials Towards Medical Devices, 2018, , 113-183.	0.0	1
1089	Recent progress of amine modified sorbents for capturing CO2 from flue gas. Chinese Journal of Chemical Engineering, 2018, 26, 2292-2302.	1.7	31
1090	Extension of Kelvin equation to CO 2 adsorption in activated carbon. Fuel Processing Technology, 2018, 174, 118-122.	3.7	15
1091	A highly organic functionalized three-connected periodic mesoporous silica by Co-condensation with hydridosilica. Microporous and Mesoporous Materials, 2018, 266, 177-182.	2.2	5
1092	Development of mesoporous carbon incorporated hybrid membranes for separation of azeotropic mixtures by pervaporation. Polymer Engineering and Science, 2018, 58, 405-415.	1.5	3
1093	CO2 capture using triamine-grafted SBA-15: The impact of the support pore structure. Chemical Engineering Journal, 2018, 334, 1260-1269.	6.6	113
1094	Preparation of polycarbonate/poly(acrylonitrileâ€butadieneâ€styrene)/mesoporous silica nanocomposite films and its rheological, mechanical, and sound absorption properties. Journal of Applied Polymer Science, 2018, 135, 45777.	1.3	5
1095	β-galactosidase covalent immobilization over large-pore mesoporous silica supports for the production of high galacto-oligosaccharides (GOS). Microporous and Mesoporous Materials, 2018, 257, 51-61.	2.2	30
1096	Energetics of van der Waals Adsorption on the Metal–Organic Framework NU-1000 with Zr ₆ -oxo, Hydroxo, and Aqua Nodes. Journal of the American Chemical Society, 2018, 140, 328-338.	6.6	11
1097	Amine-modified SBA-15(P): A promising adsorbent for CO2 capture. Journal of CO2 Utilization, 2018, 24, 22-33.	3.3	100
1098	One-Pot Synthesis of MeAl ₂ O ₄ (Me = Ni, Co, or Cu) Supported on Î ³ -Al ₂ O ₃ with Ultralarge Mesopores: Enhancing Interfacial Defects in Î ³ -Al ₂ O ₃ To Facilitate the Formation of Spinel Structures at Lower Temperatures. Chemistry of Materials, 2018, 30, 436-446.	3.2	58
1099	Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2018, 513, 82-91.	5.0	65
1100	Insignificant influence of the matrix on the melting of ice confined in decorated mesoporous silica. Philosophical Magazine, 2018, 98, 237-249.	0.7	0
1101	Reverse Micro-Emulsion Synthesis of Oxygen-Enriched Low-Friction Boron Nitride/Calcium Borate Microspheres. Australian Journal of Chemistry, 2018, 71, 983.	0.5	1

#	Article	IF	CITATIONS
1102	Pore Structure Characterization and the Controlling Factors of the Bakken Formation. Energies, 2018, 11, 2879.	1.6	18
1103	Thermoresponsive Coatings on Hollow Particles with Mesoporous Shells Serve as Stimuli-Responsive Gates to Species Encapsulation and Release. Langmuir, 2018, 34, 14608-14616.	1.6	28
1104	Iron–Nitrogen-Doped Dendritic Carbon Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 6560-6568.	2.5	16
1105	Development of Alumina–Mesoporous Organosilica Hybrid Materials for Carbon Dioxide Adsorption at 25 °C. Materials, 2018, 11, 2301.	1.3	15
1106	<i>In situ</i> intercalation of Au nanoparticles and magnetic γ-Fe ₂ O ₃ in the walls of MCM-41 with abundant void defects for highly efficient reduction of 4-nitrophenol and organic dyes. Dalton Transactions, 2018, 47, 16862-16875.	1.6	20
1107	On the computer simulations of carbon nanoparticles porosity: statistical mechanics model for CO2 and N2 adsorption isotherms. Adsorption, 2018, 24, 769-779.	1.4	4
1108	Closely Arranged 3D–0D Graphene–Nickel Sulfide Superstructures for Bifunctional Hydrogen Electrocatalysis. ACS Applied Energy Materials, 2018, 1, 6368-6373.	2.5	5
1109	Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel. Petroleum Science, 2018, 15, 857-869.	2.4	10
1110	Simultaneous Desulfurization and Denitrification on the SAPO-34@Al ₂ O ₃ Core–Shell Structure Adsorbent. Energy & Fuels, 2018, 32, 11694-11700.	2.5	9
1111	SiO ₂ aerogel monolith allows ultralow amounts of TiO ₂ for the fast and efficient removal of gaseous pollutants. Dalton Transactions, 2018, 47, 13608-13615.	1.6	14
1112	2D-NLDFT adsorption models for porous oxides with corrugated cylindrical pores. Journal of Colloid and Interface Science, 2018, 532, 588-597.	5.0	22
1113	Relative Permeability and Production-Performance Estimations for Bakken, Wolfcamp, Eagle Ford, and Woodford Shale Formations. SPE Reservoir Evaluation and Engineering, 2018, 21, 307-324.	1.1	16
1114	Networked mesoporous SnO2 nanostructures templated by Brij® 35 with enhanced H2S selective performance. Microporous and Mesoporous Materials, 2018, 270, 93-101.	2.2	7
1115	Ionic Liquid Originated Synthesis of N,Pâ€doped Graphene for Hydrogen Evolution Reaction. ChemistrySelect, 2018, 3, 6814-6820.	0.7	6
1116	Solid Phase Extraction of Bio-Oil Model Compounds and Lignin-Derived Bio-Oil Using Amine-Functionalized Mesoporous Silicas. ACS Sustainable Chemistry and Engineering, 2018, 6, 9716-9724.	3.2	15
1117	Antioil Ag ₃ PO ₄ Nanoparticle/Polydopamine/Al ₂ O ₃ Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 8019-8028.	3.2	134
1118	Thermocatalytic conversion of methane to highly pure hydrogen over Ni–Cu/MgO·Al2O3 catalysts: Influence of noble metals (Pt and Pd) on the catalytic activity and stability. Energy Conversion and Management, 2018, 166, 268-280.	4.4	50
1119	Importance of surface modification of Î ³ -alumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. Journal of Colloid and Interface Science, 2018, 526, 497-504.	5.0	31

#	Article	IF	CITATIONS
1120	Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Advanced Materials, 2018, 30, e1800005.	11.1	394
1121	A new continuous flow-through structured reactor for the photodegradation of aqueous contaminants. Journal of Environmental Chemical Engineering, 2018, 6, 4070-4077.	3.3	6
1122	A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support. Separation and Purification Technology, 2019, 209, 516-527.	3.9	74
1123	Selective oxidation of CO in the presence of propylene over Ag/MCM-41 catalyst. Catalysis Today, 2019, 333, 245-250.	2.2	18
1124	PtFe catalysts supported on hierarchical porous carbon toward oxygen reduction reaction in microbial fuel cells. Journal of Solid State Electrochemistry, 2019, 23, 2683-2693.	1.2	5
1125	Record-Setting Sorbents for Reversible Water Uptake by Systematic Anion Exchanges in Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 13858-13866.	6.6	118
1126	Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48, 5184-5206.	18.7	260
1127	Comparison of filtration performance of commercially available automotive cabin air filters against various airborne pollutants. Building and Environment, 2019, 161, 106272.	3.0	17
1128	Continuous production of hierarchically porous silica beads using co-axial flow. Microporous and Mesoporous Materials, 2019, 288, 109612.	2.2	0
1129	Influence of Crystallization and Ageing Time on the Reproducibility of Mesoporous Molecular Sieve SBA-15. Revista Materia, 2019, 24, .	0.1	1
1130	Infrared-spectroscopic porosimetry: Development and application for characterization of hundred-nanometer-thick porous thin films. Thin Solid Films, 2019, 685, 299-305.	0.8	0
1131	Amino acid-assisted synthesis of porous graphitic carbon spheres with highly dispersed Ni nanoparticles. Carbon, 2019, 153, 206-216.	5.4	20
1132	Capillary Condensation of Single- and Multicomponent Fluids in Nanopores. Industrial & Engineering Chemistry Research, 2019, 58, 19302-19315.	1.8	21
1133	Ontology-based uncertainty management approach in designing of robust decision workflows. Journal of Engineering Design, 2019, 30, 726-757.	1.1	14
1134	Controlling Porous Hollow Silica Particles through Soap-free Emulsion Polymerization with Polymer Core Particles. Chemistry Letters, 2019, 48, 1229-1231.	0.7	1
1135	One-step synthesis of ordered mesoporous silica from olivine and its pore size tailoring. Journal of Cleaner Production, 2019, 238, 117951.	4.6	4
1136	Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Canadian Journal of Chemical Engineering, 2019, 97, 2781-2791.	0.9	492
1137	Pore Size-Dependent Structure of Confined Water in Mesoporous Silica Films from Water Adsorption/Desorption Using ATR–FTIR Spectroscopy. Langmuir, 2019, 35, 11986-11994.	1.6	38

#	Article	IF	CITATIONS
1138	Facile Synthesis and Surface Characterization of Titania-Incorporated Mesoporous Organosilica Materials. Journal of Composites Science, 2019, 3, 77.	1.4	3
1139	Comparative Gas Sorption and Cryoporometry Study of Mesoporous Glass Structure: Application of the Serially Connected Pore Model. Frontiers in Chemistry, 2019, 7, 230.	1.8	11
1140	Amino acid modified molecular sieves with different pore size for chiral separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123789.	2.3	10
1141	Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 4882-4898.	2.6	100
1142	Pressure-varying Langmuir parameters and stepped nitrogen adsorption on alumina and silica. Physical Chemistry Chemical Physics, 2019, 21, 2558-2566.	1.3	7
1143	Ordered mesoporous silica cubic particles decorated with silver nanoparticles: a highly active and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol. Dalton Transactions, 2019, 48, 2692-2700.	1.6	30
1144	Facile, template-free synthesis of macroporous SiO2 as catalyst support towards highly enhanced catalytic performance for soot combustion. Chemical Engineering Journal, 2019, 375, 121958.	6.6	20
1145	Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications. , 2019, , .		16
1147	Selective extraction of aliphatic amines by functionalized mesoporous silica-coated solid phase microextraction Arrow. Mikrochimica Acta, 2019, 186, 412.	2.5	16
1148	Titania surface chemistry and its influence on supported metal catalysts. Polyhedron, 2019, 170, 41-50.	1.0	11
1149	Incorporating Aluminum Into the Structure of SBA-15 by Adjusting the pH and Adding NaF. Materials Research, 2019, 22, .	0.6	8
1150	Analytical Investigation of the Confinement Effect on Capillary Condensation Pressure of Fluids in Nanopores. , 2019, , .		2
1151	Structural consequences of the fluorides using in the synthesis of SBA-15 mesostructured silica. Materials Chemistry and Physics, 2019, 232, 193-199.	2.0	6
1152	Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: Effect of Cr adding time in sol-gel process. Microporous and Mesoporous Materials, 2019, 284, 69-77.	2.2	45
1153	Development of nickel-incorporated MCM-41–carbon composites and their application in nitrophenol reduction. Journal of Materials Chemistry A, 2019, 7, 9618-9628.	5.2	43
1154	Maneuvering the ordered mesoporosity of electrospun silica nanofibers for water harvesting. Microporous and Mesoporous Materials, 2019, 281, 23-31.	2.2	16
1155	Evaluation of drying methods by nitrogen adsorption. Cement and Concrete Research, 2019, 120, 13-26.	4.6	56
1156	Modifying release of poorly soluble active pharmaceutical ingredients with the amine functionalized SBA-16 type mesoporous materials. Journal of Biomaterials Applications, 2019, 33, 1214-1231.	1.2	7

#	Article	IF	CITATIONS
1157	Carbon aerogels prepared by autocondensation of flavonoid tannin. Carbon Resources Conversion, 2019, 2, 72-84.	3.2	9
1158	Multi-scale biomass-based carbon microtubes decorated with Ni-Co sulphides nanoparticles for supercapacitors with high rate performance. Electrochimica Acta, 2019, 302, 78-91.	2.6	33
1159	Removal of Rhodamine B (A Basic Dye) and Acid Yellow 17 (An Acidic Dye) from Aqueous Solutions by Ordered Mesoporous Carbon and Commercial Activated Carbon. Colloids and Interfaces, 2019, 3, 30.	0.9	41
1160	UV-Induced Photodegradation of Naproxen Using a Nano Î ³ -FeOOH Composite: Degradation Kinetics and Photocatalytic Mechanism. Frontiers in Chemistry, 2019, 7, 847.	1.8	17
1161	Evaporation-induced self-assembly synthesis of nanostructured alumina-based mixed metal oxides with tailored porosity. Journal of Colloid and Interface Science, 2019, 537, 725-735.	5.0	18
1162	Ethylene-bridged organosilica nanotubes of controlled inner diameter templated by judiciously selected Pluronic surfactant. Microporous and Mesoporous Materials, 2019, 278, 340-347.	2.2	3
1163	Iron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 278, 280-288.	2.2	34
1164	Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide. Journal of Energy Chemistry, 2019, 34, 161-170.	7.1	31
1165	Characterization of micelle-templated silica nanotubes and nanotube bundles using tilt-series transmission electron microscopy. Microporous and Mesoporous Materials, 2020, 293, 109760.	2.2	3
1166	A Photoelectrochemical Biosensor Fabricated using Hierarchically Structured Gold Nanoparticle and MoS 2 on Tannic Acid Templated Mesoporous TiO 2. Electroanalysis, 2020, 32, 166-177.	1.5	26
1167	Synthesis and physicochemical properties of hierarchical zeolites containing ruthenium oxide nanoparticles and their application in the reaction of dihydroxyacetone isomerization. Microporous and Mesoporous Materials, 2020, 293, 109787.	2.2	6
1168	Utilization of water-quenching blast furnace slag as alternative filler in asphalt mastic. Canadian Journal of Civil Engineering, 2020, 47, 1075-1083.	0.7	1
1169	Carbohydrate coated fluorescent mesoporous silica particles for bacterial imaging. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110751.	2.5	18
1170	Room temperature sintering of polar ZnO nanosheets: III-Prevention. Microporous and Mesoporous Materials, 2020, 294, 109836.	2.2	4
1171	Mechanical properties and thermal stability of porous polyimide/hollow mesoporous silica nanoparticles composite films prepared by using polystyrene microspheres as the poreâ€forming template. Journal of Applied Polymer Science, 2020, 137, 48792.	1.3	12
1172	Facile synthesis of hydrothermally stable mesoporous ZSM-5 zeolite from Al- SBA-16 via steam assisted crystallization. Journal of Porous Materials, 2020, 27, 587-601.	1.3	11
1173	Amine-Grafted Silica Gels for CO ₂ Capture Including Direct Air Capture. Industrial & Engineering Chemistry Research, 2020, 59, 7072-7079.	1.8	70
1174	Synthesis of SiO2–Al2O3 composite aerogel from fly ash: a low-cost and facile approach. Journal of Sol-Gel Science and Technology, 2020, 93, 281-290.	1.1	20

#	Article	IF	CITATIONS
1175	Catalytic Activity of Ag-Co-MCM-41 for Liquid-Phase Selective Oxidation of Styrene to Benzaldehyde. Journal of Nanoscience and Nanotechnology, 2020, 20, 1670-1677.	0.9	4
1176	Folic Acid/Methotrexate Functionalized Mesoporous Silica Nanoflakes from Different Supports: Comparative Study. Applied Sciences (Switzerland), 2020, 10, 6465.	1.3	5
1177	Core/shell type, Ce3+ and Tb3+ doped GdBO3 system: Synthesis and Celecoxib drug delivery application. Microporous and Mesoporous Materials, 2020, 308, 110528.	2.2	4
1178	The nature of active Ni sites and the role of Al species in the oligomerization of ethylene on mesoporous Ni-Al-MCM-41 catalysts. Applied Catalysis A: General, 2020, 608, 117831.	2.2	12
1179	Microporous Materials in Scalable Shapes: Fiber Sorbents. Chemistry of Materials, 2020, 32, 7081-7104.	3.2	15
1180	Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2020, 2, 100019.	2.2	144
1181	A zero-dimensional nickel, iron–metal–organic framework (MOF) for synergistic N ₂ electrofixation. Journal of Materials Chemistry A, 2020, 8, 18810-18815.	5.2	52
1182	Mesoporous Titanium Oxynitride Monoliths from Block Copolymer-Directed Self-Assembly of Metal–Urea Additives. Langmuir, 2020, 36, 10803-10810.	1.6	11
1183	Relevance of the theoretical critical pore radius in mesoporous silica for fast crystallizing drugs. International Journal of Pharmaceutics, 2020, 591, 120019.	2.6	16
1184	Nanoporous silicas and their composites. , 2020, , 89-140.		1
1184 1185	Nanoporous silicas and their composites. , 2020, , 89-140. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 8549-8561.	1.2	1
1184 1185 1186	Nanoporous silicas and their composites. , 2020, , 89-140. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 8549-8561. Study on the synthesis of mesoporous materials with liquid crystals formed in SDS/CTAB/NaBr/1-Hexanol/H2O as templates. Journal of Dispersion Science and Technology, 2020, , 1-8.	1.2	1 10 0
1184 1185 1186 1187	Nanoporous silicas and their composites. , 2020, , 89-140. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 8549-8561. Study on the synthesis of mesoporous materials with liquid crystals formed in SDS/CTAB/NaBr/1-Hexanol/H2O as templates. Journal of Dispersion Science and Technology, 2020, , 1-8. Graphene Oxide: Study of Pore Size Distribution and Surface Chemistry Using Immersion Calorimetry. Nanomaterials, 2020, 10, 1492.	1.2 1.3 1.9	1 10 0 7
1184 1185 1186 1187 1188	Nanoporous silicas and their composites. , 2020, , 89-140.Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 8549-8561.Study on the synthesis of mesoporous materials with liquid crystals formed in SDS/CTAB/NaBr/1-Hexanol/H2O as templates. Journal of Dispersion Science and Technology, 2020, , 1-8.Graphene Oxide: Study of Pore Size Distribution and Surface Chemistry Using Immersion Calorimetry. Nanomaterials, 2020, 10, 1492.A Novel Method for Analyzing Pore Size Distribution of Complex Geometry Shaped Porous Shale. Materials Science Forum, 0, 1003, 134-143.	1.2 1.3 1.9 0.3	1 10 0 7 2
1184 1185 1186 1187 1188	Nanoporous silicas and their composites. , 2020, , 89-140. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 8549-8561. Study on the synthesis of mesoporous materials with liquid crystals formed in SDS/CTAB/NaBr/1-Hexanol/H2O as templates. Journal of Dispersion Science and Technology, 2020, , 1-8. Graphene Oxide: Study of Pore Size Distribution and Surface Chemistry Using Immersion Calorimetry. Nanomaterials, 2020, 10, 1492. A Novel Method for Analyzing Pore Size Distribution of Complex Geometry Shaped Porous Shale. Materials Science Forum, 0, 1003, 134-143. Colloidal Stability and Redispersibility of Mesoporous Silica Nanoparticles in Biological Media. Langmuir, 2020, 36, 11442-11449.	1.2 1.3 1.9 0.3 1.6	1 10 0 7 2 27
1184 1185 1186 1187 1188 1189	Nanoporous silicas and their composites. , 2020, , 89-140. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 8549-8561. Study on the synthesis of mesoporous materials with liquid crystals formed in SDS/CTAB/NaBr/1-Hexanol/H2O as templates. Journal of Dispersion Science and Technology, 2020, , 1-8. Graphene Oxide: Study of Pore Size Distribution and Surface Chemistry Using Immersion Calorimetry. Nanomaterials, 2020, 10, 1492. A Novel Method for Analyzing Pore Size Distribution of Complex Geometry Shaped Porous Shale. Materials Science Forum, 0, 1003, 134-143. Colloidal Stability and Redispersibility of Mesoporous Silica Nanoparticles in Biological Media. Langmuir, 2020, 36, 11442-11449. Understanding porous structure of SBA-15 upon pseudomorphic transformation into MCM-41: Non-direct investigation by carbon replication. Journal of Industrial and Engineering Chemistry, 2020, 92, 131-144.	1.2 1.3 1.9 0.3 1.6 2.9	1 10 0 7 2 27 14
1184 1185 1186 1187 1188 1189 1190	Nanoporous silicas and their composites., 2020, 89-140. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 8549-8561. Study on the synthesis of mesoporous materials with liquid crystals formed in SDS/CTAB/NaBr/1-Hexanol/H2O as templates. Journal of Dispersion Science and Technology, 2020, , 1-8. Graphene Oxide: Study of Pore Size Distribution and Surface Chemistry Using Immersion Calorimetry. Nanomaterials, 2020, 10, 1492. A Novel Method for Analyzing Pore Size Distribution of Complex Geometry Shaped Porous Shale. Materials Science Forum, 0, 1003, 134-143. Colloidal Stability and Redispersibility of Mesoporous Silica Nanoparticles in Biological Media. Langmuir, 2020, 36, 11442-11449. Understanding porous structure of SBA-15 upon pseudomorphic transformation into MCM-41: Non-direct investigation by carbon replication. Journal of Industrial and Engineering Chemistry, 2020, 92, 131-144. Reaction Kinetics Analysis of Ethanol Dehydrogenation Catalyzed by MgOâ€"SiO _{2 Reaction Kinetics Analysis of Ethanol Dehydrogenation Catalyzed by MgOâ€"SiO₂}	1.2 1.3 1.9 0.3 1.6 2.9 5.5	1 10 0 7 2 27 14 32

#	Article	IF	CITATIONS
1193	Characterizing coal pore space by gas adsorption, mercury intrusion, FIB–SEM and µ-CT. Environmental Earth Sciences, 2020, 79, 1.	1.3	18
1194	Evolution of pore structure and fractal characteristics of coal char during coal gasification. Journal of the Energy Institute, 2020, 93, 1999-2005.	2.7	27
1195	Temperature stability of a pure metakaolin based Kâ€geopolymer: Part 2. Variations in the mesoporous network and its rehydration stability. Journal of the American Ceramic Society, 2020, 103, 5813-5824.	1.9	5
1196	Validity of the Kelvin equation and the equation-of-state-with-capillary-pressure model for the phase behavior of a pure component under nanoconfinement. Chemical Engineering Science, 2020, 226, 115839.	1.9	23
1197	Optimal Synthesis and Evaluation of Tri-Amine Modified Ordered Mesoporous Carbon (TriFeOMC) and Its Application for the Adsorption of Arsenic and Lead From Aqueous Solution. Frontiers in Materials, 2020, 7, .	1.2	3
1198	Synthesis of Hematite Nanodiscs from Natural Laterites and Investigating Their Adsorption Capability of Removing Ni2+ and Cd2+ Ions from Aqueous Solutions. Journal of Composites Science, 2020, 4, 57.	1.4	11
1199	Removal of sodium compounds from Co/SBA-15 catalysts for Fischer-Tropsch Synthesis. Acta Scientiarum - Technology, 0, 42, e45899.	0.4	2
1200	Ruthenium-containing SBA-12 catalysts for anisole hydrodeoxygenation. Catalysis Today, 2020, 354, 67-76.	2.2	16
1201	Capillary bridge formation between hexagonally ordered carbon nanorods. Adsorption, 2020, 26, 563-578.	1.4	4
1202	Titanium dioxide: A heterogeneous catalyst for dark peroxidation superior to iron oxide. Journal of Environmental Chemical Engineering, 2020, 8, 104254.	3.3	12
1203	Synthesis of Ordered Mesoporous Carbon from Vietnam Natural Kaolin Clay for Supercapacitor Application. Materials Science Forum, 0, 985, 124-136.	0.3	3
1204	Batch to batch variation study for biodiesel production by hydrothermal carbon catalyst: preparation, characterization and its application. Materials Research Express, 2020, 7, 015521.	0.8	6
1205	Nonmolten state metalized reduction of saprolitic laterite ores: Effective extraction and process optimization of nickel and iron. Journal of Cleaner Production, 2020, 256, 120415.	4.6	21
1206	Preparation and characterization of porous (Si\$\$_{1-x}\$\$Ti\$\$_{{x}}\$\$)\$\$hbox {O}_{mathrm {{2}}}\$ (x \$\$le \$\$ 0.25) prepared by sol–gel hydrothermal process. Bulletin of Materials Science, 2020, 43, 1.	0.8	0
1207	Tailoring NiMoS active phases with high hydrodesulfurization activity through facilely synthesized supports with tunable mesostructure and morphology. Journal of Catalysis, 2020, 387, 170-185.	3.1	18
1208	Imprinting isolated single iron atoms onto mesoporous silica by templating with metallosurfactants. Journal of Colloid and Interface Science, 2020, 573, 193-203.	5.0	17
1209	Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 2021, 401, 123413.	6.5	20
1210	Boosting anode performance of mesoporous Si by embedding copper nano-particles. Journal of Alloys and Compounds, 2021, 850, 156863.	2.8	6

IF

0.4

CITATIONS

Carbon Related Materials., 2021,,. 5 1211 Selective adsorption of U(VI) from real mine water using an NH2-functionalized silica packed column. 6.6 Chemical Engineering Journal, 2021, 405, 126912. Carbon gels derived from phenolic-oil for pollutants removal in water phase. Fuel Processing 1213 3.7 4 Technology, 2021, 211, 106588. Facile mechanochemical synthesis of highly mesoporous \hat{I}^3 -Al2O3 using boehmite. Microporous and 1214 Mesoporous Materials, 2021, 312, 110792. Simulation of densification behavior of nano-powder in final sintering stage: Effect of pore-size 1215 7 2.8 distribution. Journal of the European Ceramic Society, 2021, 41, 625-634. The Relationship between CO2 Adsorption and Microporous Volume in a Porous Carbon Material. Chemistry and Technology of Fuels and Oils, 2021, 56, 932-940. 0.2 Current Advances in Characterization of Nano-porous Materials: Pore Size Distribution and Surface 1217 0.3 10 Area. Engineering Materials, 2021, , 315-340. Formation of Double-Helical Structures by Silica Nanotubes Templated by Mixtures of Common 7.3 Nonionic Surfactants in Aqueous Solutions. ACS Nano, 2021, 15, 1016-1029. Cellulose macromolecule as a source for advanced materials preparation. Materials Today: 1219 0.9 2 Proceedings, 2021, 45, 7473-7476. Efficient hydrogenation of biomass-derived phenol to cyclohexanol over 3D mesoporous silica-supported Ni catalysts in a continuous gas phase conditions. Biomass Conversion and Biorefinery, 2023, 13, 2757-2768. Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury 1221 1.9 145 Porosimetryâ€"A Tutorial Review. Advanced Materials Interfaces, 2021, 8, 2002181. Removal of Pb(II) Ions from Aqueous Solution Using Modified Starch. Journal of Composites Science, 1.4 2021, 5, 46. Hybrid mesoporous nanostructured scaffolds as dielectric biosimilar restorative materials. 1223 0.4 1 Bio-Medical Materials and Engineering, 2021, 32, 1-13. General Cluster Sorption Isotherm. Microporous and Mesoporous Materials, 2021, 316, 110909. 1224 2.2 An excellent sulfonated hydrothermal carbon catalyst from Mangifera indica L. (mango peels) for 1225 biodiesel production: preparation, characterization, optimization, and kinetic study. Biomass 2.9 7 Conversion and Biorefinery, 2022, 12, 141-151. Comprehensive Review about Methane Adsorption in Shale Nanoporous Media. Energy & amp; Fuels, 38 2021, 35, 8456-8493. SBA-15 Functionalized with Amines in the Presence of Water: Applications to CO₂ Capture 1227 1.8 9 and Natural Gas Desulfurization. Industrial & amp; Engineering Chemistry Research, 2021, 60, 6277-6286. Adsorption properties of mesoporous carbon synthesized by pyrolysis of zinc glycerolate. Russian 1228

Chemical Bulletin, 2021, 70, 805-810.

ARTICLE

#	Article	IF	CITATIONS
1229	Adsorption of simple gases into the porous glass MCM-41. Journal of Chemical Physics, 2021, 154, 184503.	1.2	6
1230	Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization. Energies, 2021, 14, 2880.	1.6	19
1231	Characterization of Nanoporous Materials. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 137-162.	3.3	27
1232	Feasibility of regenerative adsorption of a hydrofluorocarbon (HFC-134a) using activated carbon fiber studied by the gaseous flow method. Journal of Hazardous Materials, 2021, 411, 125009.	6.5	5
1233	Diatom Biosilica Doped with Palladium(II) Chloride Nanoparticles as New Efficient Photocatalysts for Methyl Orange Degradation. International Journal of Molecular Sciences, 2021, 22, 6734.	1.8	19
1234	Effect of amount of additional water during ionothermal synthesis process on physicochemical properties of vanadium phosphate catalyst material. Journal of Solid State Chemistry, 2021, 298, 122119.	1.4	2
1235	Study of CuO–CeO2 catalysts supported on ordered porous silica with different mesostructure and morphology. Influence on CO preferential oxidation. Microporous and Mesoporous Materials, 2021, 320, 111094.	2.2	5
1236	Mesoporous Ta–W Composite Oxides: A Highly Effective and Reusable Acid–Base Catalysts for the Cycloaddition Reaction of Carbon Dioxide with Epoxides. Catalysis Letters, 2022, 152, 1392-1406.	1.4	1
1237	Superstructured Macroporous Carbon Rods Composed of Defective Graphitic Nanosheets for Efficient Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2100120.	5.6	31
1238	Ordered Mesoporous Alumina with Tunable Morphologies and Pore Sizes for CO ₂ Capture and Dye Separation. ACS Applied Materials & Interfaces, 2021, 13, 36117-36129.	4.0	18
1239	A novel immobilized enzyme enhances the conversion of phosphatidylserine in two-phase system. Biochemical Engineering Journal, 2021, 172, 108035.	1.8	0
1240	CuO-CeO2 catalysts based on SBA-15 and SBA-16 for COPrOx. Influence of oxides concentration, incorporation method and support structure. Catalysis Today, 2022, 394-396, 325-335.	2.2	4
1241	Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis. Exploration, 2021, 1, 217.	5.4	59
1242	Copper and Nickel Nanoparticles Prepared by Thermal Treatment of Their Respective Cations Confined in Nanopores through High-Pressure Synthesis. Applied Nano, 2021, 2, 278-288.	0.9	1
1243	Assessing the contribution of micropores and mesopores from nitrogen adsorption on nanoporous carbons: Application to pore size analysis. Carbon, 2021, 183, 150-157.	5.4	25
1244	Synthesis and environmental applications of aluminum-containing MCM-41 type material from industrial waste containing silicon and aluminum. Journal of Non-Crystalline Solids, 2021, 569, 120954.	1.5	6
1245	CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica. Chemical Engineering Journal, 2022, 427, 131561.	6.6	21
1246	Transparent silica aerogel slabs synthesized from nanoparticle colloidal suspensions at near ambient conditions on omniphobic liquid substrates. Journal of Colloid and Interface Science, 2022, 606, 884-897.	5.0	6

#	Article	IF	CITATIONS
1247	Production of jet-fuel-range molecules from biomass-derived mixed acids. Reaction Chemistry and Engineering, 2021, 6, 845-857.	1.9	5
1248	Differential hysteresis scanning of non-templated monomodal amorphous aerogels. Physical Chemistry Chemical Physics, 2021, 23, 5422-5430.	1.3	5
1250	Synthesis and Characterization of Nanoporous Carbon and its Electrochemical Application to Electrode Material for Supercapacitors. Modern Aspects of Electrochemistry, 2007, , 139-195.	0.2	10
1251	Removal of Heavy Metals from Industrial Wastewater Through Minerals. Lecture Notes in Civil Engineering, 2020, , 615-632.	0.3	1
1252	Polymer matrix nanocomposites for heavy metal adsorption: a review. Journal of the Iranian Chemical Society, 2020, 17, 1259-1281.	1.2	17
1253	TEXTURAL AND SURFACE CHEMISTRY CHARACTERIZATION OF ZEOLITES VIA ADSORPTION PHENOMENA. , 2001, , 481-507.		2
1254	Synthesis of ordered Ca- and Li-doped mesoporous silicas for H2 and CO2 adsorption at ambient temperature and pressure. RSC Advances, 2018, 8, 35294-35305.	1.7	7
1255	Synthesis and Characterization of Zeolitic Material Derived from Sugarcane Straw Ash. American Journal of Environmental Protection, 2014, 2, 16-21.	0.4	6
1256	Adsorption of Acid Red 114 and Basic Fuchsin from Aqueous Solutions on Mesoporous Carbon Materials. Engineering and Protection of Environment, 2016, 19, 227-239.	0.3	1
1257	Preparation and Catalytic Application of Pd Loaded Titanate Nanotube: Highly Selective α Alkylation of Ketones with Alcohols. Bulletin of the Korean Chemical Society, 2012, 33, 1617-1621.	1.0	5
1258	Mesoporous Carbon Additives for Long Cycle Life Sulfur Cathodes of Li-S Batteries. Bulletin of the Korean Chemical Society, 2014, 35, 3331-3335.	1.0	4
1259	The role of contact angle and pore width on pore condensation and freezing. Atmospheric Chemistry and Physics, 2020, 20, 9419-9440.	1.9	20
1260	Pore Size Distribution Analysis of Coal-Based Activated Carbons: Investigating the Effects of Activating Agent and Chemical Ratio. ISRN Chemical Engineering, 2012, 2012, 1-10.	1.2	12
1262	METHOD DEVELOPMENT FOR ADSORPTION CHARACTERIZATION OF MODIFIED MESOPOROUS SILICAS. , 2000,		0
1263	Design of Hierarchical Materials—Focussing on the Structure-Forming Processes of Silica Mesoporous Materials—. Kagaku Kogaku Ronbunshu, 2001, 27, 663-677.	0.1	4
1264	Synthesis and Characterization of Mesoporous MCM-41 Templated by the Mixture of Cationic-Anionic Surfactant. Tenside, Surfactants, Detergents, 2006, 43, 103-105.	0.5	0
1265	ADSORPTION STUDIES OF CAGE-LIKE AND CHANNEL-LIKE ORDERED MESOPOROUS ORGANOSILICAS WITH VINYL AND MERCAPTOPROPYL SURFACE GROUPS. , 2007, , .		0
1266	Metamaterial Sensors. Springer Theses, 2015, , 71-76.	0.0	1

#	Article	IF	CITATIONS
1267	N-Doped carbon Fibers/NiCo double hydroxide framwork as three-dimensional electrocatalysts for water oxidation. , 2015, , 249-253.		0
1270	Influence of Water-Miscible Organic Solvent on the Activity and Stability of Silica-Coated Ru Catalysts in the Selective Hydrolytic Hydrogenation of Cellobiose into Sorbitol. Catalysts, 2020, 10, 149.	1.6	4
1271	Synergy between alkali activation and a salt template in superactive carbon production from lignin. Nanotechnology, 2021, 32, 085605.	1.3	5
1272	Carbon Materials as Electrodes of Electrochemical Double-Layer Capacitors: Textural and Electrochemical Characterization. , 2021, , 149-185.		0
1273	Ice nucleation. , 2022, , 209-248.		2
1274	Synthesis of Mesoporous γ-Alumina Support for Water Composite Sorbents for Low Temperature Sorption Heat Storage. Energies, 2021, 14, 7809.	1.6	5
1275	Photoactive organic-inorganic hybrid materials: From silylated compounds to optical applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100474.	5.6	17
1276	Relating Mobility of dsRNA in Nanoporous Silica Particles to Loading and Release Behavior. ACS Applied Bio Materials, 2021, 4, 8267-8276.	2.3	0
1277	Green and efficient synthesis of Co-MOF-based/g-C3N4 composite catalysts to activate peroxymonosulfate for degradation of the antidepressant venlafaxine. Journal of Colloid and Interface Science, 2022, 610, 280-294.	5.0	34
1278	The Rule of Wetting Liquid Surface Tension on the Stability of Mesoporous Silica upon Drying Process. Silicon, 0, , 1.	1.8	0
1279	Pore network modeling of a solid desiccant for dehumidification applications. International Journal of Heat and Mass Transfer, 2022, 186, 122456.	2.5	3
1280	Restrictive diffusion and hydrodesulfurization reaction of <scp>dibenzothiophenes</scp> over <scp>NiMo</scp> / <scp>SBA</scp> â€15 catalysts. AICHE Journal, 2022, 68, e17577.	1.8	8
1281	Encapsulation and controlled release of isothiazolinones in zeolite NaY (FAU). Journal of Environmental Chemical Engineering, 2022, 10, 107277.	3.3	0
1282	Biomassâ€Derived Nanoporous Graphene Memory Cell. Advanced Materials Interfaces, 2022, 9, .	1.9	3
1283	One-Piece Molding Mfc Cathode: Flexible and Conductive Ag@Pvdf Nanofiber Membrane Integrated Collector Layer and Catalytic Layer. SSRN Electronic Journal, 0, , .	0.4	0
1284	Development and Characterization of Composite Desiccant Impregnated with LiCl for Thermoelectric Dehumidifier (TED). Energies, 2022, 15, 1778.	1.6	3
1285	Schiff base-functionalized mesoporous titania: an efficient sorbent for the removal of radioactive thorium ions from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 0, , 1.	0.7	1
1286	Pore Size Distribution Analysis Using Developing Hysteresis of Nitrogen in the Cylindrical Pores of Silica. Langmuir, 2022, 38, 4222-4233.	1.6	5

#	Article	IF	Citations	
1287	Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Frontiers of Chemical Science and Engineering, 2022, 16, 1198-1210.	2.3	13	
1288	Catalytic effect of highly dispersed ultrafine Ru nanoparticles on a TiO2-Ti3C2 support: Hydrolysis of sodium borohydride for H2 generation. Journal of Alloys and Compounds, 2022, 906, 164380.	2.8	21	
1289	A comprehensive comparison of zeolite-5A molecular sieves and amine-grafted SBA-15 silica for cyclic adsorption-desorption of carbon dioxide in enclosed environments. Chemical Engineering Journal, 2022, 437, 135139.	6.6	14	
1290	The Role of Transmission Electron Microscopy in the Early Development of Mesoporous Materials for Tissue Regeneration and Drug Delivery Applications. Pharmaceutics, 2021, 13, 2200.	2.0	1	
1291	Synergistic bimetallic CeNi/SiO2 for boosting the catalytic activity of levulinic acid hydrogenation in gas phase. Journal of Environmental Chemical Engineering, 2022, 10, 107760.	3.3	2	
1292	Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification. Atmospheric Chemistry and Physics, 2022, 22, 4985-5016.	1.9	8	
1294	Laser-sintering fabrication of integrated Al/Ni anodes for lithium-ion batteries. RSC Advances, 2022, 12, 13168-13179.	1.7	1	
1295	Ultrafast Crystallization of Ordered Mesoporous Metal Oxides and Carbon from Block Copolymer Selfâ€Assembly and Joule Heating. Advanced Materials Interfaces, 2022, 9, .	1.9	6	
1296	Synthesis of Highly Porous Metal Oxide Nanoparticles for Adsorption Applications. ACS Applied Nano Materials, 2022, 5, 7078-7091.	2.4	7	
1297	Synergistic Effect of MIL-101/Reduced Graphene Oxide Nanocomposites on High-Pressure Ammonia Uptake. ACS Omega, 0, , .	1.6	2	
1298	Zirconium Containing Periodic Mesoporous Organosilica: The Effect of Zr on CO2 Sorption at Ambient Conditions. Journal of Composites Science, 2022, 6, 168.	1.4	5	
1299	Hydrogen peroxide and peroxymonosulfate intensifying Feâ~doped Câ~Al2O3â~frameworkâ~based catalytic ozonation for advanced treatment of landfill leachate: Performance and mechanisms. Science of the Total Environment, 2022, 843, 156904.	3.9	15	
1300	Mesoporous Silica Supported Highly Dispersed GaN Catalysts Synthesized by Thermal Atomic Layer Deposition for Propane Dehydrogenation. ChemCatChem, 2022, 14, .	1.8	1	
1301	Kelvin equation-based scaling model for pore-size estimation in mesoporous materials. Journal of Physics: Conference Series, 2022, 2176, 012050.	0.3	1	
1302	Protein-based luminescent aerogels with elastic properties. Green Chemistry Letters and Reviews, 2022, 15, 508-518.	2.1	2	
1303	Organic-Free Synthesis of Finned Mordenite Zeolite. Nanomaterials, 2022, 12, 2623.	1.9	2	
1304	Base modified organic mesoporous silicas, their characterization and application in the aldol reaction of n-butanal. Molecular Catalysis, 2022, 531, 112670.	1.0	1	
1305	Toluene/water separation using MCM-41/ PEBA mixed matrix membrane via pervaporation process. Journal of Membrane Science, 2022, 662, 120988.	4.1	7	
		CITATION REPORT		
------	---	--	-----	-----------
#	Article		IF	CITATIONS
1306	Modification and Functionalization of Zeolites for Curcumin Uptake. Materials, 2022, 2	15, 6316.	1.3	4
1307	Textural Characterization by Using an Alternative Langmuir Isotherm and a New Thickr Langmuir, 2022, 38, 11972-11982.	ess Function.	1.6	Ο
1308	Synthesis and characterization of superhydrophobic fluorinated mesoporous silica for separation. Microporous and Mesoporous Materials, 2022, 344, 112240.	oil/water	2.2	4
1309	Architectural MCM 41 was anchored to the Schiff base Co(II) complex to enhance met degradation and mimic activity. Environmental Research, 2022, 215, 114325.	hylene blue dye	3.7	11
1310	Mesoporous carbon-alumina composites, aluminas and carbons prepared via a facile ba milling-assisted strategy. Microporous and Mesoporous Materials, 2022, 346, 112325	all	2.2	2
1311	Using small angle x-ray scattering to examine the aggregation mechanism in silica nan- ambigels for improved optical clarity. Journal of Chemical Physics, 2023, 158, .	oparticle-based	1.2	5
1312	Larix Sibirica Arabinogalactan Hydrolysis over Zr-SBA-15; Depolymerization Insight. Mo 27, 8756.	lecules, 2022,	1.7	1
1313	Construction of a MOFâ€Supported Palladium Catalyst via Metal Metathesis. Chemist Journal, 0, , .	ry - an Asian	1.7	1
1314	Mechanochemical synthesis of alumina-based catalysts enriched with vanadia and lant selective catalytic reduction of nitrogen oxides. Scientific Reports, 2022, 12, .	hana for	1.6	6
1315	Influence of electrode processing and electrolyte composition on multiwall carbon nar negative electrodes for sodium ion batteries. JPhys Energy, 2023, 5, 015004.	otube	2.3	3
1316	Synthesis of bridged-organosilica nanotubes with widely adjustable inner diameter bas temperature-dependent templating by swollen mixed surfactant micelles. Microporous Mesoporous Materials, 2023, 349, 112433.	ed on ; and	2.2	0
1317	Enhancing the activity of biocatalysts supported on calcium phosphate by inducing me phosphopeptides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2	2soporosity with 2023, 660, 130906.	2.3	0
1318	Universal Langmuir and Fractal Analysis of High-Resolution Adsorption Isotherms of Ar Nitrogen on Macroporous Silica. Langmuir, 2023, 39, 1914-1926.	gon and	1.6	0
1319	Photoremoval of Bisphenol A Using Hierarchical Zeolites and Diatom Biosilica. Internat of Molecular Sciences, 2023, 24, 2878.	ional Journal	1.8	3
1320	Modified BET theory for actual surfaces: implementation of surface curvature. Physical Chemical Physics, 2023, 25, 8424-8438.	Chemistry	1.3	0
1321	Exploring the Multifunctionality of Mechanochemically Synthesized Î ³ -Alumina with Ind Selected Metal Oxide Species. Molecules, 2023, 28, 2002.	corporated	1.7	3
1322	Low-Dimensional Hollow Nanostructures: From Morphology Control to the Release of Pharmaceutical Ingredient. Chemistry of Materials, 2023, 35, 1877-1890.	an Active	3.2	2
1323	Valorization of silica-based residues for the synthesis of ordered mesoporous silicas an applications. Microporous and Mesoporous Materials, 2023, 354, 112520.	d their	2.2	3

		CITATION RE	CITATION REPORT		
#	Article		IF	CITATIONS	
1324	Improved Light Hydrocarbon, Furans, and BTEX Production from the Catalytic Assisted F Agave salmiana Bagasse over Silica Mesoporous Catalysts. Catalysts, 2023, 13, 548.	yrolysis of	1.6	1	
1325	Hollow-Out Fe ₂ O ₃ -Loaded NiO Heterojunction Nanorods Ena Exhaled Ethanol Monitoring under High Humidity. ACS Applied Materials & amp; Interfac 15707-15720.	ble Real-Time es, 2023, 15,	4.0	8	
1326	A new approach for determination of adsorption energy for each adsorption site and im conventional adsorption isotherms. International Journal of Petrochemical Science & En 2018, 3, 131-142.	prove gineering,	0.2	3	