Multihop R-ALOHA for intervehicle communications at

IEEE Transactions on Vehicular Technology 46, 992-1005 DOI: 10.1109/25.653073

Citation Report

#	Article	IF	CITATIONS
1	Communication systems at millimeter waves for ITS applications. , 0, , .		13
2	Performance evaluation of R-ALOHA for inter-vehicle communications at millimeter waves. , 0, , .		7
3	An autonomous distributed inter-vehicle communication network using multicode sense CDMA. , 0, , .		4
4	Millimeter waves for short-range multimedia communication systems. Proceedings of the IEEE, 1998, 86, 1383-1401.	21.3	37
5	The effect of multipath interference on the performance of random accessing. International Journal of Communication Systems, 1999, 12, 65-82.	2.5	0
6	Performance evaluation of autonomous decentralized vehicle-grouping protocol for vehicle-to-vehicle communications. , 0, , .		3
7	Combined cellular/direct method of inter-vehicle communication. , 0, , .		12
8	Intelligent transportation systems: the role of third generation mobile radio networks. , 2000, 38, 144-151.		90
9	Vehicle to vehicle communication outage and its impact on convoy driving. , 0, , .		11
10	Interference characteristics in intervehicle communication from oncoming vehicles. Electronics and Communications in Japan, 2001, 84, 9-18.	0.2	2
11	Distance dependence of path loss for millimeter wave inter-vehicle communications. , 2003, , .		25
12	A vehicle-to-vehicle communication protocol for cooperative collision warning. , 0, , .		257
13	Three-tiered sensor networks architecture for traffic information monitoring and processing. , 2005, , .		11
14	Capture effect on R-ALOHA protocol for inter-vehicle communications. , 0, , .		7
15	Simulation of mobile-to-mobile radio fading channels. , 2005, , .		3
16	Cooperative vehicle collision avoidance using inter-vehicle packet forwarding. , 2005, , .		55
17	Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety. , 2006, 44, 74-82.		733
18	VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks 2006		314 _

ITATION PEDO

2

IF

CITATIONS

Direction-oriented routing scheme for intervehicle multihop wireless networks. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi) Tj ETQq0 0 0 rgBD/Overloca 10 Tf 50 19 Analysis of Sliding Frame R-ALOHA for Real-Time Ad Hoc Wireless Networks in a Fading Environment., 2006,,. 21 An aggressive wireless access data strategy for mobile networks., 2007,,. 0 Performance Evaluation of Multi-hop Inter-Vehicle Communication for Vehicle Safety Using Road to Vehicle Communication to Control., 2007, , . Self-Configuring TDMA Protocols for Enhancing Vehicle Safety With DSRC Based Vehicle-to-Vehicle 23 14.0 101 Communications. IEEE Journal on Selected Areas in Communications, 2007, 25, 1526-1537. VADD: Vehicle-Assisted Data Delivery in Vehicular <i>Ad Hoc</i> Networks. IEEE Transactions on 6.3 Vehicular Technology, 2008, 57, 1910-1922. 25 V2V Wireless Communication Protocol for Rear-End Collision Avoidance on Highways., 2008,,. 59 Inter-vehicle communication systems: a survey. IEEE Communications Surveys and Tutorials, 2008, 10, 39.4 26 382 88-105. 27 Design and Analysis of a MAC Protocol for Vehicle to Roadside Networks., 2008, , . 10 Medium Access Control in Vehicle to Roadside Networks., 2008,,. Exploiting vertical diversity in vehicular channel environments., 2009,,. 7 29 Analysis of sliding frame R-ALOHA protocol for real-time distributed wireless networks. Wireless Networks, 2009, 15, 1102-1112. A-ADHOC: An adaptive real-time distributed MAC protocol for Vehicular Ad Hoc Networks. , 2009, , . $\mathbf{31}$ 13 Dynamic Slot Allocation Algorithm for R-ALOHA with Priority (PR-ALOHA)., 2010,,. R-ALOHA with priority (PR-ALOHA) in non ideal channel with capture effects., 2010,,. 33 11 VD4: Vehicular Density-Dependent Data Delivery Model in Vehicular Ad Hoc Networks., 2010, , . A-ADHOC: An Adaptive Real-time Distributed MAC Protocol for Vehicular Ad Hoc Networks. Mobile 35 3.3 21 Networks and Applications, 2011, 16, 576-585.

36Medium access control in vehicular <i>ad hoc</i>networks. Wireless Communications and Mobile1.230361.230

ARTICLE

#

CITATION REPORT

#	Article	IF	CITATIONS
37	Analyzing sliding frame reservation-Aloha MAC protocol against mobile hidden station problem in MANET. , 2011, , .		0
38	A Joint Vehicle-Vehicle/Vehicle-Roadside Communication Protocol for Highway Traffic Safety. International Journal of Vehicular Technology, 2011, 2011, 1-10.	1.1	15
39	Analysis of PR-ALOHA protocol for inter vehicle communications. , 2011, , .		2
40	On the Joint V2I and V2V Scheduling for Cooperative VANETs With Network Coding. IEEE Transactions on Vehicular Technology, 2012, 61, 62-73.	6.3	81
41	Maximal Scheduling in Wireless Ad Hoc Networks With Hypergraph Interference Models. IEEE Transactions on Vehicular Technology, 2012, 61, 297-310.	6.3	35
42	Realtime information propagation for a distributed traffic information system. , 2013, , .		0
43	A Localized Adaptive Strategy to Calculate the Backoff Interval in Contention-Based Vehicular Networks. IEEE Access, 2014, 2, 215-226.	4.2	6
44	Analysis of Priority R-ALOHA (PR-ALOHA) protocol. Wireless Communications and Mobile Computing, 2015, 15, 716-725.	1.2	3
45	A novel MAC protocol based on cooperative master-slave for V2V communication. , 2015, , .		4
46	Modeling and Analysis of Reservation Frame Slotted-ALOHA in Wireless Machine-to-Machine Area Networks for Data Collection. Sensors, 2015, 15, 3911-3931.	3.8	5
47	High precision localization for autonomous vehicles via multiple sensors, data fusion and novel wireless technologies. , 2016, , .		5
48	Millimeter Wave Data Networking for Autonomous Vehicle Systems. , 2020, , .		0
49	Moving Target Oriented Opportunistic Routing Algorithm in Vehicular Networks. International Journal of Distributed Sensor Networks, 2013, 9, 692146.	2.2	2
51	Enhancement of Delivery of Warning Messages for Mobile Networks. Journal of Networks, 2008, 3, .	0.4	1
52	Deep-Reinforcement-Learning-Based Distributed Vehicle Position Controls for Coverage Expansion in mmWave V2X. IEICE Transactions on Communications, 2019, E102.B, 2054-2065.	0.7	4
53	Novel Optical Scattering-Based V2V Communications With Experimental Analysis. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15765-15779.	8.0	5