Framboidal pyrites in antique books

Nature 388, 631-631 DOI: 10.1038/41677

Citation Report

#	Article	IF	CITATIONS
1	Cell-Hosted Pyrite Framboids in Fossil Woods. Die Naturwissenschaften, 1998, 85, 78-81.	1.6	15
2	Single-crystal 40Ar-39Ar dating of pyrite: No fool's clock. Geology, 2001, 29, 403.	4.4	45
3	Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: Implications for microenvironment during early fossilization*. Progress in Natural Science: Materials International, 2003, 13, 206-212.	4.4	22
4	Pyrite oxidation: the conservation of historic shipwrecks and geological and palaeontological specimens. Studies in Conservation, 2003, 48, 26-38.	1.1	6
5	Pyrite Framboids as Biomarkers for Iron-Sulfur Systems. Geomicrobiology Journal, 2004, 21, 193-206.	2.0	101
6	Nannobacteria and the formation of framboidal pyrite: Textural evidence. Journal of Earth System Science, 2005, 114, 369-374.	1.3	94
7	Historical iron gall ink containing documents — Properties affecting their condition. Analytica Chimica Acta, 2006, 555, 167-174.	5.4	111
8	Pyrite framboids interpreted as microbial colonies within the Permian <i>Zoophycos</i> spreiten from southeastern Australia. Geological Magazine, 2008, 145, 95-103.	1.5	67
9	Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Marine and Petroleum Geology, 2008, 25, 706-713.	3.3	61
10	Ultrastructural evidence for iron accumulation within the tube of Vestimentiferan Ridgeia piscesae. BioMetals, 2009, 22, 723-732.	4.1	8
11	Potential of Trap Crops for Integrated Management of the Tropical Armyworm, <i>Spodoptera litura</i> in Tobacco. Journal of Insect Science, 2010, 10, 1-11.	1.5	15
12	The geomicrobiology of bauxite deposits. Geoscience Frontiers, 2010, 1, 81-89.	8.4	27
13	Bacterial biomineralization: new insights from <i>Myxococcus</i> -induced mineral precipitation. Geological Society Special Publication, 2010, 336, 31-50.	1.3	85
14	Iron-framboids in the hydrocarbon-related Middle Devonian Hollard Mound of the Anti-Atlas mountain range in Morocco: Evidence of potential microbial biosignatures. Sedimentary Geology, 2012, 263-264, 183-193.	2.1	47
15	Maize Developmental Stage Affects Indirect and Direct Defense Expression. Environmental Entomology, 2013, 42, 1309-1321.	1.4	7
16	The formation of low-temperature sedimentary pyrite and its relationship with biologically-induced processes. Geology of Ore Deposits, 2014, 56, 395-408.	0.7	31
17	Palaeoenvironmental and ecological interpretation of the trace fossil Rhizocorallium based on contained iron framoboids (Upper Devonian, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 446, 144-151.	2.3	13
18	Genesis of the Permian karstic Pingguo bauxite deposit, western Guangxi, China. Mineralium Deposita, 2017, 52, 1031-1048.	4.1	41

ITATION REDO

ARTICLE

Pyrite Decay of Large Fossils: The Case Study of the Hall of Palms in Padova, Italy. Minerals (Basel,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

20	Morphology and ethology of the Late Devonian trace fossil <i>Rhizocorallium</i> from the Xichuan section of Central China. Lethaia, 2020, 53, 217-228.	1.4	0
21	Diverse Intercropping Patterns Enhance the Productivity and Volatile Oil Yield of Atractylodes lancea (Thunb.) DC Frontiers in Plant Science, 2021, 12, 663730.	3.6	9
23	Uranium Occurrence State and Its Implication for Sandstone-Type Uranium Mineralization within the Hanbazhai Area of the Longchuanjiang Basin, China. Minerals (Basel, Switzerland), 2023, 13, 1037.	2.0	1