Connexin 26 mutations in hereditary non-syndromic se

Nature 387, 80-83

DOI: 10.1038/387080a0

Citation Report

#	Article	IF	CITATIONS
1	Two Different Connexin 26 Mutations in an Inbred Kindred Segregating Non-Syndromic Recessive Deafness: Implications for Genetic Studies in Isolated Populations. Human Molecular Genetics, 1997, 6, 2163-2172.	1.4	158
2	Prelingual Deafness: High Prevalence of a 30delG Mutation in the Connexin 26 Gene. Human Molecular Genetics, 1997, 6, 2173-2177.	1.4	601
3	Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Human Molecular Genetics, 1997, 6, 1605-1609.	1.4	540
4	Nonsyndromic Deafness DFNA1 Associated with Mutation of a Human Homolog of the Drosophila Gene diaphanous. Science, 1997, 278, 1315-1318.	6.0	423
5	Mapping and Characterization of a Novel Cochlear Gene in Human and in Mouse: A Positional Candidate Gene for a Deafness Disorder, DFNA9. Genomics, 1997, 46, 345-354.	1.3	139
6	Changes in Permeability Caused by Connexin 32 Mutations Underlie X-Linked Charcot-Marie-Tooth Disease. Neuron, 1997, 19, 927-938.	3.8	240
7	Trapping genes expressed in the developing mouse inner ear. Hearing Research, 1997, 114, 53-61.	0.9	10
8	A major gene affecting age-related hearing loss in C57BL/6J mice. Hearing Research, 1997, 114, 83-92.	0.9	349
9	Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nature Genetics, 1997, 16, 188-190.	9.4	445
10	The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nature Genetics, 1997, 16, 191-193.	9.4	387
11	Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nature Genetics, 1997, 17, 268-269.	9.4	304
12	Sounding out a novel sulphate transporter. Nature Genetics, 1997, 17, 370-371.	9.4	6
13	Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nature Genetics, 1997, 17, 411-422.	9.4	1,081
14	Motors, channels and the sounds of silence. Nature Medicine, 1997, 3, 608-609.	15.2	3
15	Sounds from the cochlea. Nature, 1997, 390, 559-560.	13.7	5
16	Ringing the changes. Nature, 1997, 390, 560-561.	13.7	4
17	Gap junctions: Getting the message through. Current Biology, 1997, 7, R340-R344.	1.8	71
18	Cretaceous plesiosaurs ate ammonites. Nature, 1998, 394, 629-630.	13.7	53

#	Article	IF	Citations
19	Connexin mutations in deafness. Nature, 1998, 394, 630-631.	13.7	119
20	Connexin 26 gene linked to a dominant deafness. Nature, 1998, 393, 319-320.	13.7	291
21	Transgene risk is low. Nature, 1998, 393, 320-320.	13.7	66
22	Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nature Genetics, 1998, 20, 299-303.	9.4	317
23	Synchronized courtship in fiddler crabs. Nature, 1998, 391, 31-32.	13.7	109
24	Connexin mutations and hearing loss. Nature, 1998, 391, 32-32.	13.7	98
25	A sensorineural progressive autosomal recessive form of isolated deafness, DFNB13, maps to chromosome 7q34-q36. European Journal of Human Genetics, 1998, 6, 245-250.	1.4	38
26	A second Middle Eastern kindred with autosomal recessive non-syndromic hearing loss segregates DFNB9. European Journal of Human Genetics, 1998, 6, 341-344.	1.4	14
27	Identification of a locus on chromosome 7q31, DFNB14, responsible for prelingual sensorineural non-syndromic deafness. European Journal of Human Genetics, 1998, 6, 548-551.	1.4	26
28	Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Therapy, 1998, 5, 277-281.	2.3	91
29	Hair hear!. Nature Genetics, 1998, 19, 8-8.	9.4	0
30	One connexin, two diseases. Nature Genetics, 1998, 20, 319-320.	9.4	23
31	Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nature Genetics, 1998, 20, 366-369.	9.4	356
32	Mutations in the gene encoding gap junction protein \hat{l}^2 -3 associated with autosomal dominant hearing impairment. Nature Genetics, 1998, 20, 370-373.	9.4	427
33	Medical genetic evaluation for the etiology of hearing loss in children. Journal of Communication Disorders, 1998, 31, 371-389.	0.8	7
34	Mapping and characterization of the basal promoter of the human connexin26 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 169-181.	2.4	44
35	Mechanosensation: Swimming round in circles. Current Biology, 1998, 8, R425-R427.	1.8	8
36	Diverse functions of vertebrate gap junctions. Trends in Cell Biology, 1998, 8, 477-483.	3.6	370

#	Article	IF	CITATIONS
37	GAP JUNCTIONAL COMMUNICATION IN THE DEVELOPING CENTRAL NERVOUS SYSTEM. Cell Biology International, 1998, 22, 751-763.	1.4	48
38	Mutated connexin43 proteins inhibit rat glioma cell growth suppression mediated by wild-type connexin43 in a dominant-negative manner., 1998, 78, 446-453.		91
39	Evidence for complex nuclear inheritance in a pedigree with nonsyndromic deafness due to a homoplasmic mitochondrial mutation., 1998, 77, 421-426.		71
40	Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to chromosome region 7q31. American Journal of Medical Genetics Part A, 1998, 78, 107-113.	2.4	45
41	Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss., 1998, 11, 387-394.		216
42	From neuro-glue (â€~nervenkitt') to glia: A prologue. , 1998, 24, 1-7.		73
43	Growth control of 3T3 fibroblast cell lines established from connexin 43–deficient mice. Molecular Carcinogenesis, 1998, 23, 121-128.	1.3	15
44	Gap junctions in health and disease. Medical Electron Microscopy: Official Journal of the Clinical Electron Microscopy Society of Japan, 1998, 31, 115-120.	1.8	4
45	Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Human Genetics, 1998, 103, 393-399.	1.8	272
46	Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell and Tissue Research, 1998, 294, 415-420.	1.5	264
49	Upregulation of Connexin 26 Between Keratinocytes of Psoriatic Lesions. Journal of Investigative Dermatology, 1998, 111, 72-76.	0.3	100
50	OCP2 exists as a dimer in the organ of Corti. Hearing Research, 1998, 126, 37-46.	0.9	13
51	Connexin 26 gene mutation and autosomal recessive deafness. Lancet, The, 1998, 351, 383-384.	6.3	15
52	Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet, The, 1998, 351, 394-398.	6.3	610
53	Connexin-26 mutations in sporadic non-syndromal sensorineural deafness. Lancet, The, 1998, 351, 415.	6.3	109
54	Mutations in the Connexin 26 Gene (GJB2) among Ashkenazi Jews with Nonsyndromic Recessive Deafness. New England Journal of Medicine, 1998, 339, 1500-1505.	13.9	513
55	Use of isolated inbred human populations for identification of disease genes. Trends in Genetics, 1998, 14, 391-396.	2.9	121
56	Familial Progressive Sensorineural Deafness Is Mainly Due to the mtDNA A1555G Mutation and Is Enhanced by Treatment with Aminoglycosides. American Journal of Human Genetics, 1998, 62, 27-35.	2.6	504

#	Article	IF	CITATIONS
57	A Missense Mutation in the Human Connexin50 Gene (GJA8) Underlies Autosomal Dominant "Zonular Pulverulent―Cataract, on Chromosome 1q. American Journal of Human Genetics, 1998, 62, 526-532.	2.6	358
58	Novel Mutations in the Connexin 26 Gene (GJB2) That Cause Autosomal Recessive (DFNB1) Hearing Loss. American Journal of Human Genetics, 1998, 62, 792-799.	2.6	474
59	Evidence for Digenic Inheritance of Nonsyndromic Hereditary Hearing Loss in a Swedish Family. American Journal of Human Genetics, 1998, 63, 786-793.	2.6	50
60	Development and Maintenance of Ear Innervation and Function: Lessons from Mutations in Mouse and Man. American Journal of Human Genetics, 1998, 63, 1263-1270.	2.6	12
61	Connexin 26 R143W Mutation Associated with Recessive Nonsyndromic Sensorineural Deafness in Africa. New England Journal of Medicine, 1998, 338, 548-550.	13.9	147
62	A New Era in the Genetics of Deafness. New England Journal of Medicine, 1998, 339, 1545-1547.	13.9	31
63	Molecular markers for cell types of the inner ear and candidate genes for hearing disorders. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11400-11405.	3.3	95
64	Rapid Determination of Gap Junction Formation Using HeLa Cells Microinjected with cDNAs Encoding Wild-Type and Chimeric Connexins. Biochemical and Biophysical Research Communications, 1998, 247, 785-789.	1.0	39
65	A Novel Type of Myosin Encoded by the Mouse Deafness Geneshaker-2. Biochemical and Biophysical Research Communications, 1998, 248, 655-659.	1.0	14
66	Sequence Characterization of a Newly Identified Human α-Tubulin Gene (TUBA2). Genomics, 1998, 47, 125-130.	1.3	6
67	Localization of a Voltage Gate in Connexin46 Gap Junction Hemichannels. Biophysical Journal, 1998, 75, 2323-2331.	0.2	70
68	Role of connexin (gap junction) genes in cell growth control: approach with site-directed mutagenesis and dominant-negative effects. Toxicology Letters, 1998, 96-97, 105-110.	0.4	16
69	Epigenetic toxicology as toxicant-induced changes in intracellular signalling leading to altered gap junctional intercellular communication. Toxicology Letters, 1998, 102-103, 71-78.	0.4	98
70	Mutation in Transcription Factor POU4F3 Associated with Inherited Progressive Hearing Loss in Humans. Science, 1998, 279, 1950-1954.	6.0	322
71	A Moroccan family with autosomal recessive sensorineural hearing loss caused by a mutation in the gap junction protein gene connexin 26 (GJB2) Journal of Medical Genetics, 1998, 35, 151-152.	1.5	33
72	Transplacental Uptake of Glucose Is Decreased in Embryonic Lethal Connexin26-deficient Mice. Journal of Cell Biology, 1998, 140, 1453-1461.	2.3	270
73	The fundamental and medical impacts of recent progress in research on hereditary hearing loss. Human Molecular Genetics, 1998, 7, 1589-1597.	1.4	79
74	Linkage analysis in Usher syndrome type I (USH1) families from Spain Journal of Medical Genetics, 1998, 35, 391-398.	1.5	16

#	Article	IF	Citations
75	Isoform Composition of Connexin Channels Determines Selectivity among Second Messengers and Uncharged Molecules. Journal of Biological Chemistry, 1998, 273, 2808-2816.	1.6	290
76	Identifying the genes of hearing, deafness, and dysequilibrium. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12080-12082.	3.3	8
77	Further Characterization of the DFNA1 Audiovestibular Phenotype. JAMA Otolaryngology, 1998, 124, 699.	1.5	40
78	Autosomal-dominant, prelingual, nonprogressive sensorineural hearing loss: localization of the gene (DFNA8) to chromosome $11q$ by linkage in an Austrian family. Cytogenetic and Genome Research, 1998, 82, 126-130.	0.6	42
79	Connexin-Aequorin Chimerae Report Cytoplasmic Calcium Environments along Trafficking Pathways Leading to Gap Junction Biogenesis in Living COS-7 Cells. Journal of Biological Chemistry, 1998, 273, 29822-29829.	1.6	57
80	A Particle-Receptor Model for the Insulin-Induced Closure of Connexin43 Channels. Circulation Research, 1998, 83, 27-32.	2.0	90
81	Molecular analysis of mitochondrial gene mutations in Korean patients with nonsyndromic hearing loss. International Journal of Molecular Medicine, 1998, 22, 175.	1.8	8
82	The molecular genetics of inherited deafness – current knowledge and recent advances. Journal of Laryngology and Otology, 1998, 112, 432-437.	0.4	14
83	The molecular genetics of inherited deafness $\hat{a}\in$ "current and future applications. Journal of Laryngology and Otology, 1998, 112, 523-530.	0.4	12
84	Connexin32 Mutations Associated with X-Linked Charcot–Marie–Tooth Disease Show Two Distinct Behaviors: Loss of Function and Altered Gating Properties. Journal of Neuroscience, 1998, 18, 4063-4075.	1.7	99
85	Presymptomatic Diagnosis of Nonsyndromic Hearing Loss by Genotyping. JAMA Otolaryngology, 1998, 124, 20.	1.5	12
86	Contig Maps and Genomic Sequencing Identify Candidate Genes in the Usher 1C Locus. Genome Research, 1998, 8, 57-68.	2.4	17
87	Molecular mechanism underlying a Cx50-linked congenital cataract. American Journal of Physiology - Cell Physiology, 1999, 276, C1443-C1446.	2.1	97
88	TPA Induced Expression and Function of Human Connexin 26 by Post-Translational Mechanisms in Stably Transfected Neuroblastoma Cells Cell Structure and Function, 1999, 24, 435-441.	0.5	13
89	Non-Syndromal Autosomal Dominant Hearing Impairment: Ongoing Phenotypical Characterization of Genotypes. International Journal of Audiology, 1999, 33, 335-348.	0.7	22
90	A new age in the genetics of deafness. Genetics in Medicine, 1999, 1, 295-304.	1.1	6
91	Trafficking, Assembly, and Function of a Connexin43-Green Fluorescent Protein Chimera in Live Mammalian Cells. Molecular Biology of the Cell, 1999, 10, 2033-2050.	0.9	195
92	Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV patients. Neurology, 1999, 52, 995-995.	1.5	166

#	ARTICLE	IF	CITATIONS
93	Clinical Studies of Families With Hearing Loss Attributable to Mutations in the Connexin 26ÂGene (GJB2/DFNB1). Pediatrics, 1999, 103, 546-550.	1.0	194
94	Mutation of the Na-K-Cl Co-Transporter Gene Slc12a2 Results in Deafness in Mice. Human Molecular Genetics, 1999, 8, 1579-1584.	1.4	154
95	Human cochlear expressed sequence tags provide insight into cochlear gene expression and identify candidate genes for deafness. Human Molecular Genetics, 1999, 8, 439-452.	1.4	70
96	Enu Mutagenesis and the Search for Deafness Genes. International Journal of Audiology, 1999, 33, 279-283.	0.7	17
97	Carrier Rates in the Midwestern United States for <emph type="ITAL">GJB2</emph> Mutations Causing Inherited Deafness. JAMA - Journal of the American Medical Association, 1999, 281, 2211.	3.8	331
98	An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Human Molecular Genetics, 1999, 8, 409-412.	1.4	164
99	Properties of Connexin26 Gap Junctional Proteins Derived from Mutations Associated With Non-Syndromal Heriditary Deafness. Human Molecular Genetics, 1999, 8, 2369-2376.	1.4	126
100	Genetic Deafness: A Step Closer. Pediatrics, 1999, 103, 674-674.	1.0	2
101	GENETIC DISEASES AND GENE KNOCKOUTS REVEAL DIVERSE CONNEXIN FUNCTIONS. Annual Review of Physiology, 1999, 61, 283-310.	5.6	375
102	The Genetics of Hearing Loss. Journal of Basic and Clinical Physiology and Pharmacology, 1999, 10, 163-71.	0.7	1
103	A Pro51Ser mutation in the COCH gene is associated with late onset autosomal dominant progressive sensorineural hearing loss with vestibular defects. Human Molecular Genetics, 1999, 8, 361-366.	1.4	124
104	Intracellular Trafficking Pathways in the Assembly of Connexins into Gap Junctions. Journal of Biological Chemistry, 1999, 274, 8678-8685.	1.6	106
105	Beginning of a molecular era in hearing and deafness. Clinical Genetics, 1999, 55, 149-159.	1.0	16
107	Beginning of a molecular era in hearing and deafness. Clinical Genetics, 1999, 57, 39-49.	1.0	0
108	Evidence for a single genetic locus in Clouston's hidrotic ectodermal dysplasia. British Journal of Dermatology, 1999, 140, 963-964.	1.4	23
109	Internalization of gap junctions in benign familial pemphigus (Hailey-Hailey disease) and keratosis follicularis (Darier's disease). British Journal of Dermatology, 1999, 141, 224-230.	1.4	9
110	Functional characteristics of skate connexin35, a member of the \hat{I}^3 subfamily of connexins expressed in the vertebrate retina. European Journal of Neuroscience, 1999, 11, 1883-1890.	1.2	78
111	Upregulation of Connexin 26 is a Feature of Keratinocyte Differentiation in Hyperproliferative Epidermis, Vaginal Epithelium, and Buccal Epithelium. Journal of Investigative Dermatology, 1999, 112, 354-361.	0.3	127

#	Article	IF	Citations
112	Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nature Genetics, 1999, 23, 16-18.	9.4	345
113	X-linked Charcot-Marie-Tooth Disease and Connexin32. Annals of the New York Academy of Sciences, 1999, 883, 36-41.	1.8	17
114	Sound Needs Sound Melanocytes to Be Heard. Pigment Cell & Melanoma Research, 1999, 12, 344-354.	4.0	125
115	Bumps and pumps, SERCA 1999. Nature Genetics, 1999, 21, 252-253.	9.4	13
116	Birds on a wire and tiling the inner ear. Nature Genetics, 1999, 21, 253-254.	9.4	2
117	A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nature Genetics, 1999, 21, 363-369.	9.4	481
118	Myosins and deafness. Journal of Muscle Research and Cell Motility, 1999, 20, 241-248.	0.9	38
119	Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Human Molecular Genetics, 1999, 8, 1321-1328.	1.4	154
120	Establishment and characterization of an osteocyte-like cell line, MLO-Y4. Journal of Bone and Mineral Metabolism, 1999, 17, 61-65.	1.3	127
121	Deafness genes: expressions of surprise. Trends in Genetics, 1999, 15, 207-211.	2.9	54
122	Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications. Brain Research, 1999, 846, 106-111.	1.1	63
123	The palmoplantar keratodermas: much more than palms and soles. Trends in Molecular Medicine, 1999, 5, 107-113.	2.6	53
124	Determination of the carrier frequency of the common GJB2 (connexin-26) 35delG mutation in the Belgian population using an easy and reliable screening method., 1999, 14, 263-266.		83
125	Novel mutation in the KCNQ4 gene in a large kindred with dominant progressive hearing loss. , 1999, 14, 493-501.		53
126	Congenital stapes ankylosis, broad thumbs, and hyperopia: report of a family and refinement of a syndrome. American Journal of Medical Genetics Part A, 1999, 82, 404-408.	2.4	17
127	Autosomal recessive nonsyndromic hearing loss. , 1999, 89, 123-129.		23
128	Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. American Journal of Medical Genetics Part A, 1999, 89, 130-136.	2.4	134
129	Autosomal dominant nonsyndromic hearing impairment. American Journal of Medical Genetics Part A, 1999, 89, 167-174.	2.4	23

#	ARTICLE	IF	Citations
130	High frequency of the deafness-associated 167delT mutation in the connexin 26 (GJB2) gene in Israeli Ashkenazim. American Journal of Medical Genetics Part A, 1999, 86, 499-500.	2.4	67
131	Structural determinants of developmental toxicity in hamsters. , 1999, 60, 190-205.		24
132	Developmental expression patterns of connexin26 and -30 in the rat cochlea. Genesis, 1999, 25, 306-311.	3.1	79
133	Altered Cochlear Fibrocytes in a Mouse Model of DFN3 Nonsyndromic Deafness. Science, 1999, 285, 1408-1411.	6.0	202
134	Connexin46 Mutations in Autosomal Dominant Congenital Cataract. American Journal of Human Genetics, 1999, 64, 1357-1364.	2.6	290
135	A Unique Point Mutation in the PMP22 Gene Is Associated with Charcot-Marie-Tooth Disease and Deafness. American Journal of Human Genetics, 1999, 64, 1580-1593.	2.6	74
136	Genes involved in deafness. Current Opinion in Genetics and Development, 1999, 9, 309-314.	1.5	32
137	Non-syndromic hearing impairment: gene linkage and cloning. International Journal of Pediatric Otorhinolaryngology, 1999, 49, S159-S163.	0.4	7
138	Congenital non-syndromal sensorineural hearing impairment due to connexin 26 gene mutations â€" molecular and audiological findings. International Journal of Pediatric Otorhinolaryngology, 1999, 50, 3-13.	0.4	57
139	Development of the vertebrate ear: insights from knockouts and mutants. Trends in Neurosciences, 1999, 22, 263-269.	4.2	140
140	Potassium channel ether \tilde{A} go-go mRNA expression in the spiral ligament of the rat. Hearing Research, 1999, 133, 133-138.	0.9	13
141	Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect: implications for genetic counselling. Lancet, The, 1999, 353, 1298-1303.	6.3	412
142	KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in Dominant Deafness. Cell, 1999, 96, 437-446.	13.5	783
143	GENETICS AND MOLECULAR BIOLOGY OF DEAFNESS. Otolaryngologic Clinics of North America, 1999, 32, 1067-1088.	0.5	8
144	Epigenetic Toxicity of a Mixture of Polycyclic Aromatic Hydrocarbons on Gap Junctional Intercellular Communication Before and After Biodegradation. Environmental Science & Enpy; Technology, 1999, 33, 1044-1050.	4.6	29
145	A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Human Molecular Genetics, 1999, 8, 1237-1243.	1.4	290
146	Gap Junctions Containing $\hat{l}\pm 8$ -Connexin (MP70) in the Adult Mammalian Lens Epithelium Suggests a Re-evaluation of its Role in the Lens. Experimental Eye Research, 1999, 69, 45-56.	1.2	55
147	Human Connexin 30 (GJB6), a Candidate Gene for Nonsyndromic Hearing Loss: Molecular Cloning, Tissue-Specific Expression, and Assignment to Chromosome 13q12. Genomics, 1999, 62, 172-176.	1.3	50

#	Article	IF	CITATIONS
148	Autosomal Recessive Spastic Ataxia of Charlevoix–Saguenay (ARSACS): High-Resolution Physical and Transcript Map of the Candidate Region in Chromosome Region 13q11. Genomics, 1999, 62, 156-164.	1.3	25
149	Synthesis and assembly of connexins in vitro into homomeric and heteromeric functional gap junction hemichannels. Biochemical Journal, 1999, 339, 247-253.	1.7	71
150	Synthesis and assembly of connexins in vitro into homomeric and heteromeric functional gap junction hemichannels. Biochemical Journal, 1999, 339, 247.	1.7	20
151	Chapter 1: Gap Junction Structure: New Structures and New Insights. Current Topics in Membranes, 1999, 49, 1-22.	0.5	21
152	Chapter 20: Hereditary Human Diseases Caused by Connexin Mutations. Current Topics in Membranes, 1999, 49, 423-459.	0.5	4
153	Chapter 21: Trafficking and Targeting of Connexin32 Mutations to Gap Junctions in Charcot-Marie-Tooth X-Linked Disease. Current Topics in Membranes, 1999, 49, 461-481.	0.5	5
154	Chapter 22: Molecular Basis of Deafness due to Mutations in the Connexin26 Gene (GJB2). Current Topics in Membranes, 1999, , 483-508.	0.5	0
155	Chapter 23: "Negative―Physiology: What Connexin-Deficient Mice Reveal about the Functional Roles of Individual Gap Junction Proteins. Current Topics in Membranes, 1999, 49, 509-533.	0.5	1
156	Chapter 24: Role of Gap Junctions in Cellular Growth Control and Neoplasia: Evidence and Mechanisms. Current Topics in Membranes, 1999, 49, 535-554.	0.5	3
157	<title>Optical biosensors based on direct coupling of recognition, signal transduction, and amplification /title>., 1999, 3537, 280.</td><td></td><td>1</td></tr><tr><td>158</td><td>British Society of Audiology Short Papers Meeting on Experimental Studies of Hearing and Deafness: University College London, 15–16 September 1998. International Journal of Audiology, 1999, 33, 76-133.</td><td>0.7</td><td>0</td></tr><tr><td>159</td><td>Three novel connexin26 gene mutations in autosomal recessive nonsyndromic deafness. NeuroReport, 1999, 10, 1853-1857.</td><td>0.6</td><td>115</td></tr><tr><td>160</td><td>Genetic causes of nonsyndromic hearing loss. Current Opinion in Pediatrics, 1999, 11, 551-557.</td><td>1.0</td><td>21</td></tr><tr><td>161</td><td>Genetic Analysis of Hearing Impairment Practica Otologica, 2000, 93, 613-621.</td><td>0.0</td><td>0</td></tr><tr><td>162</td><td>Characterization of Autosomal Dominant Non-Syndromic Hearing Loss Loci: DFNA 4, 6, 10 and 13., 2000, 56, 84-96.</td><td></td><td>3</td></tr><tr><td>163</td><td>Mapping of the DFNB1 Locus. , 2000, 56, 116-123.</td><td></td><td>0</td></tr><tr><td>164</td><td>DFNA3., 2000, 56, 78-83.</td><td></td><td>2</td></tr><tr><td>165</td><td>Targeting motifs and functional parameters governing the assembly of connexins into gap junctions. Biochemical Journal, 2000, 349, 281.</td><td>1.7</td><td>21</td></tr></tbody></table></title>		

#	Article	IF	CITATIONS
166	Targeting motifs and functional parameters governing the assembly of connexins into gap junctions. Biochemical Journal, 2000, 349, 281-287.	1.7	23
167	In Search of Connexin 26 Mutations in Archival Temporal Bones from Individuals with Congenital Deafness. Oto-rhino-laryngologia Nova, 2000, 10, 232-236.	0.0	0
168	Expression of connexin 31 in the developing mouse cochlea. NeuroReport, 2000, 11, 2449-2453.	0.6	80
169	Hearing: cracking the code. Journal of Laryngology and Otology, 2000, 114, 6-16.	0.4	3
170	Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population., 2000, 90, 141-145.		176
171	New genetics of hearing loss. Teratology, 2000, 61, 163-164.	1.8	0
172	Three novel mutations and twelve polymorphisms identified in the USH2A gene in Israeli USH2 families. , 2000, 15, 388-388.		37
173	Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. American Journal of Medical Genetics Part A, 2000, 93, 184-187.	2.4	59
174	Contribution of connexin 26 mutations to nonsyndromic deafness in Ashkenazi patients and the variable phenotypic effect of the mutation 167delT. American Journal of Medical Genetics Part A, 2000, 95, 53-56.	2.4	73
175	Clinical and pathological observations in men lacking the gap junction protein connexin 32. Muscle and Nerve, 2000, 23, S39-S48.	1.0	56
176	Mutation analysis of the GJB2 (connexin 26) gene by DGGE in Greek patients with sensorineural deafness. Human Mutation, 2000, 16, 7-12.	1.1	46
177	Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Human Mutation, 2000, 16, 190-202.	1.1	197
178	Genetic testing for hereditary hearing loss: Connexin 26 (GJB2) allele variants and two novel deafness-causing mutations (R32C and 645-648delTAGA). Human Mutation, 2000, 16, 502-508.	1.1	66
179	Differential Expression of Connexins During Stratification of Human Keratinocytes. Journal of Investigative Dermatology, 2000, 115, 278-285.	0.3	66
180	Induction of Skin Papillomas, Carcinomas, and Sarcomas in Mice in Which the Connexin 43 Gene is Heterologously Deleted. Journal of Investigative Dermatology, 2000, 114, 289-294.	0.3	16
181	Refined localization of the gene for Clouston syndrome (hidrotic ectodermal dysplasia) in a large French family. British Journal of Dermatology, 2000, 142, 248-252.	1.4	25
182	Inherited palmoplantar keratoderma and sensorineural deafness associated with A7445G point mutation in the mitochondrial genome. British Journal of Dermatology, 2000, 143, 876-883.	1.4	42
183	A case of erythrokeratoderma variabilis without mutations in connexin 31. British Journal of Dermatology, 2000, 143, 1283-1287.	1.4	23

#	Article	IF	CITATIONS
184	Towards a better classification of erythrokeratodermias. British Journal of Dermatology, 2000, 143, 1133-1137.	1.4	32
185	Drugâ€induced aphthous ulcers. British Journal of Dermatology, 2000, 143, 1138-1139.	1.4	6
186	Pseudodominant inheritance of DFNB1 deafness due to the common 35delG mutation. Clinical Genetics, 2000, 57, 232-234.	1.0	9
187	Mutations of GJB2 in three geographic isolates from northern Tunisia: evidence for genetic heterogeneity within isolates. Clinical Genetics, 2000, 57, 439-443.	1.0	18
188	Determination of the frequency of the 35delG allele in Brazilian neonates. Clinical Genetics, 2000, 58, 339-340.	1.0	29
189	Connexins: a connection with the skin. Experimental Dermatology, 2000, 9, 77-96.	1.4	160
190	Temporal Bone Histopathology in Connexin 26-Related Hearing Loss. Laryngoscope, 2000, 110, 269-269.	1.1	80
191	Connexin26 Mutations Associated With Nonsyndromic Hearing Loss. Laryngoscope, 2000, 110, 1535-1538.	1.1	169
192	Targeted disruption of Otog results in deafness and severe imbalance. Nature Genetics, 2000, 24, 139-143.	9.4	141
193	Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nature Genetics, 2000, 26, 142-144.	9.4	270
194	A view of Neandertal genetic diversity. Nature Genetics, 2000, 26, 144-146.	9.4	330
195	Dominant modifier DFNM1 suppresses recessive deafness DFNB26. Nature Genetics, 2000, 26, 431-434.	9.4	130
196	High carrier frequency of the 35delC deafness mutation in European populations. European Journal of Human Genetics, 2000, 8, 19-23.	1.4	363
197	Connexin mutations associated with palmoplantar keratoderma and profound deafness in a single family. European Journal of Human Genetics, 2000, 8, 141-144.	1.4	73
198	Clouston hidrotic ectodermal dysplasia (HED): genetic homogeneity, presence of a founder effect in the French Canadian population and fine genetic mapping. European Journal of Human Genetics, 2000, 8, 372-380.	1.4	43
199	Deafness heterogeneity in a Druze isolate from the Middle East: novel OTOF and PDS mutations, low prevalence of GJB2 35delG mutation and indication for a new DFNB locus. European Journal of Human Genetics, 2000, 8, 437-442.	1.4	54
200	Neuronal KCNQ potassium channels:physislogy and role in disease. Nature Reviews Neuroscience, 2000, 1, 21-30.	4.9	766
201	Use of population isolates for mapping complex traits. Nature Reviews Genetics, 2000, 1, 182-190.	7.7	348

#	Article	IF	CITATIONS
202	Identification of a new connexin gene GJA11 (Cx59) using degenerate PCR primers. GeneScreen, 2000, 1, 35-40.	0.7	1
203	Neurological diseases caused by ion-channel mutations. Current Opinion in Neurobiology, 2000, 10, 409-415.	2.0	26
204	lonizing radiation and genetic risks. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 453, 129-181.	0.4	14
205	A new locus for autosomal recessive non-syndromal sensorineural hearing impairment (DFNB27) on chromosome 2q23–q31. European Journal of Human Genetics, 2000, 8, 991-993.	1.4	21
206	Voltage Gating of Gap Junctions in Cochlear Supporting Cells: Evidence for Nonhomotypic Channels. Journal of Membrane Biology, 2000, 175, 17-24.	1.0	59
208	A Dutch family with progressive sensorineural hearing impairment linked to the DFNA2 region. European Archives of Oto-Rhino-Laryngology, 2000, 257, 62-67.	0.8	11
209	High frequency hearing loss correlated with mutations in the GJB2 gene. Human Genetics, 2000, 106, 399-405.	1.8	184
210	Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene. Human Genetics, 2000, 106, 40-44.	1.8	195
211	The spectrum of mutations in erythrokeratodermias - novel and de novo mutations in GJB3. Human Genetics, 2000, 106, 321-329.	1.8	73
212	Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Medical Electron Microscopy: Official Journal of the Clinical Electron Microscopy Society of Japan, 2000, 33, 51-56.	1.8	175
213	Connexin46 mutations linked to congenital cataract show loss of gap junction channel function. American Journal of Physiology - Cell Physiology, 2000, 279, C596-C602.	2.1	86
214	Reduced levels of connexin43 in cervical dysplasia: inducible expression in a cervical carcinoma cell line decreases neoplastic potential with implications for tumor progression. Carcinogenesis, 2000, 21, 1097-1109.	1.3	4
215	Gap junction function. Advances in Molecular and Cell Biology, 2000, , 263-322.	0.1	23
216	Gap junctions in development. Advances in Molecular and Cell Biology, 2000, 30, 193-219.	0.1	3
217	The M34T Allele Variant of Connexin 26. Genetic Testing and Molecular Biomarkers, 2000, 4, 335-344.	1.7	47
218	Exploring the relationship between the inhibition of gap junctional intercellular communication and other biological phenomena. Carcinogenesis, 2000, 21, 1007-1011.	1.3	92
219	Clustering of connexin 43-enhanced green fluorescent protein gap junction channels and functional coupling in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2556-2561.	3.3	249
220	GENETICS OF HEARING LOSS. Seminars in Hearing, 2000, 21, 399-408.	0.5	1

#	Article	IF	CITATIONS
221	Mammalian Cochlear Genes and Hereditary Deafness. Microbial & Comparative Genomics, 2000, 5, 61-69.	0.6	5
222	Intracellular Transport, Assembly, and Degradation of Wild-Type and Disease-linked Mutant Gap Junction Proteins. Molecular Biology of the Cell, 2000, 11, 1933-1946.	0.9	196
223	Current topic: Inherited deafness in childhood—the genetic revolution unmasks the clinical challenge. Archives of Disease in Childhood, 2000, 82, 319-321.	1.0	2
224	Mutations of the Pendred Syndrome Gene (PDS) in Patients with Large Vestibular Aqueduct. Acta Oto-Laryngologica, 2000, 120, 137-141.	0.3	32
225	Reduced levels of connexin43 in cervical dysplasia: inducible expression in a cervical carcinoma cell line decreases neoplastic potential with implications for tumor progression. Carcinogenesis, 2000, 21, 1097-1109.	1.3	92
226	Prevalent connexin 26 gene (GJB2) mutations in Japanese. Journal of Medical Genetics, 2000, 37, 41-43.	1.5	339
227	Regulation of Gap Junctions by Phosphorylation of Connexins. Archives of Biochemistry and Biophysics, 2000, 384, 205-215.	1.4	474
228	Functional Expression and Biophysical Properties of Polymorphic Variants of the Human Gap Junction Protein Connexin37. Biochemical and Biophysical Research Communications, 2000, 274, 216-224.	1.0	36
229	A 1.5-Mb Physical Map of the Hidrotic Ectodermal Dysplasia (Clouston Syndrome) Gene Region on Human Chromosome 13q11. Genomics, 2000, 67, 232-236.	1.3	8
230	Refining the DFNB7–DFNB11 deafness locus using intragenic polymorphisms in a novel gene, TMEM2. Gene, 2000, 246, 265-274.	1.0	25
231	Genomic structure of the human unconventional myosin VI gene. Gene, 2000, 261, 269-275.	1.0	19
232	Age-related changes in the murine cochlear lateral wall. Hearing Research, 2000, 139, 116-122.	0.9	61
233	Classification and culture of spiral ligament fibrocytes from mice. Hearing Research, 2000, 140, 137-144.	0.9	37
234	Electrical synapses, a personal perspective (or history). Brain Research Reviews, 2000, 32, 16-28.	9.1	79
235	Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene. Brain Research Reviews, 2000, 32, 159-162.	9.1	59
236	Gap junction systems in the mammalian cochlea. Brain Research Reviews, 2000, 32, 163-166.	9.1	231
237	Cell coupling in Corti's organ. Brain Research Reviews, 2000, 32, 167-171.	9.1	21
238	Immunolocalization of connexin 26 in the developing mouse cochlea. Brain Research Reviews, 2000, 32, 172-180.	9.1	25

#	Article	IF	CITATIONS
239	Functional analysis of human Cx26 mutations associated with deafness. Brain Research Reviews, 2000, 32, 181-183.	9.1	56
240	Connexin 26: required for normal auditory function. Brain Research Reviews, 2000, 32, 184-188.	9.1	29
241	Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of Charcot–Marie–Tooth disease. Brain Research Reviews, 2000, 32, 203-214.	9.1	101
242	Significance of spiral ligament fibrocytes with cochlear inflammation. International Journal of Pediatric Otorhinolaryngology, 2000, 56, 45-51.	0.4	88
243	Longitudinal gradients of KCNQ4 expression in spiral ganglion and cochlear hair cells correlate with progressive hearing loss in DFNA2. Molecular Brain Research, 2000, 82, 137-149.	2.5	101
244	Directional rectification of gap junctional voltage gating between Dieters cells in the inner ear of guinea pig. Neuroscience Letters, 2000, 296, 105-108.	1.0	29
245	Mutations in the Mitochondrial tRNA Ser(UCN) and in the GJB2 (Connexin 26) Gene Are Not Modifiers of the Age at Onset or Severity of Hearing Loss in Spanish Patients with the 12S rRNA A1555G Mutation. American Journal of Human Genetics, 2000, 66, 1465-1467.	2.6	16
246	Autosomal Recessive Nonsyndromic Neurosensory Deafness at DFNB1 Not Associated with the Compound-Heterozygous GJB2 (Connexin 26) Genotype M34T/167delT. American Journal of Human Genetics, 2000, 67, 745-749.	2.6	64
247	OTOF Encodes Multiple Long and Short Isoforms: Genetic Evidence That the Long Ones Underlie Recessive Deafness DFNB9. American Journal of Human Genetics, 2000, 67, 591-600.	2.6	160
248	Connexin gene mutations in human genetic diseases. Mutation Research - Reviews in Mutation Research, 2000, 462, 197-207.	2.4	94
249	Relation between choice of partner and high frequency of connexin-26 deafness. Lancet, The, 2000, 356, 500-501.	6.3	67
250	The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Human Genetics, 2000, 106, 50-57.	1.8	139
251	The spectrum of mutations in erythrokeratodermias – novel and de novo mutations in GJB3. Human Genetics, 2000, 106, 321-329.	1.8	70
252	Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexinÂ26) gene. Human Genetics, 2000, 106, 40-44.	1.8	176
253	The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Human Genetics, 2000, 106, 50-57.	1.8	135
254	GJB2 Gene Mutations in Childhood Deafness. Acta Oto-Laryngologica, 2000, 120, 133-136.	0.3	17
255	Connexin-26 Gene Analysis in Hearing-Impaired Newborns. Genetic Testing and Molecular Biomarkers, 2000, 4, 345-349.	1.7	19
256	The genetics of childhood cataract. Journal of Medical Genetics, 2000, 37, 481-488.	1.5	169

#	Article	IF	Citations
257	A simple PCR test to detect the common 35delG mutation in the connexin 26 gene. Molecular Diagnosis and Therapy, 2000, 5, 75-78.	1.3	8
258	Genetics and Molecular Biology of Deafness. Otolaryngologic Clinics of North America, 2000, 33, 1367-1394.	0.5	12
259	Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Human Molecular Genetics, 2000, 9, 63-67.	1.4	165
260	Emerging issues of connexin channels: biophysics fills the gap. Quarterly Reviews of Biophysics, 2001, 34, 325-472.	2.4	709
261	Hydrogen Peroxide Inhibits Gap Junctional Coupling and Modulates Intracellular Free Calcium in Cochlear Hensen Cells. Journal of Membrane Biology, 2001, 181, 107-114.	1.0	20
262	Intracellular Domains of Mouse Connexin26 and -30 Affect Diffusional and Electrical Properties of Gap Junction Channels. Journal of Membrane Biology, 2001, 181, 137-148.	1.0	79
263	Molecular Genetics of Hearing Loss. Annual Review of Genetics, 2001, 35, 589-645.	3.2	290
264	A common founder for the 35delG GJB2 gene mutation in connexin 26 hearing impairment. Journal of Medical Genetics, 2001, 38, 515-518.	1.5	169
265	Meta-Analysis of GJB2 Mutation 35delG Frequencies in Europe. Genetic Testing and Molecular Biomarkers, 2001, 5, 149-152.	1.7	44
266	High Frequency of GJB2 Gene Mutations in Polish Patients with Prelingual Nonsyndromic Deafness. Genetic Testing and Molecular Biomarkers, 2001, 5, 147-148.	1.7	24
267	Site-Directed Mutations in the Transmembrane Domain M3 of Human Connexin37 Alter Channel Conductance and Gating. Biochemical and Biophysical Research Communications, 2001, 280, 440-447.	1.0	13
268	PCR test for diagnosis of the common GJB2 (connexin 26) 35delG mutation on dried blood spots and determination of the carrier frequency in France. Molecular and Cellular Probes, 2001, 15, 57-59.	0.9	33
269	Nonradioactive Detection of the Common Connexin 26 167delT and 35delG Mutations and Frequencies among Ashkenazi Jews. Molecular Genetics and Metabolism, 2001, 73, 160-163.	0.5	18
270	Genetics of hearing impairment. Seminars in Fetal and Neonatal Medicine, 2001, 6, 531-541.	2.8	27
271	DFNA25, a Novel Locus for Dominant Nonsyndromic Hereditary Hearing Impairment, Maps to 12q21-24. American Journal of Human Genetics, 2001, 68, 254-260.	2.6	60
272	Connexin Mutations in Skin Disease and Hearing Loss. American Journal of Human Genetics, 2001, 68, 559-568.	2.6	156
273	At the Speed of Sound: Gene Discovery in the Auditory System. American Journal of Human Genetics, 2001, 69, 923-935.	2.6	87
274	A specific mitochondrial DNA deletion (mtDNA4977) is identified in a pedigree of a family with hearing loss. Hearing Research, 2001, 154, 73-80.	0.9	20

#	Article	IF	CITATIONS
275	OCP1, an F-box protein, co-localizes with OCP2/SKP1 in the cochlear epithelial gap junction region. Hearing Research, 2001, 157, 100-111.	0.9	32
276	Connexin 26 in human fetal development of the inner ear. Hearing Research, 2001, 160, 15-21.	0.9	29
277	Long-term natural culture of cochlear sensory epithelia of guinea pigs. Neuroscience Letters, 2001, 315, 73-76.	1.0	20
279	Mutations in the Gene Encoding Tight Junction Claudin-14 Cause Autosomal Recessive Deafness DFNB29. Cell, 2001, 104, 165-172.	13.5	430
280	Advances in hereditary deafness. Lancet, The, 2001, 358, 1082-1090.	6.3	136
281	Connexin 26 Gene Therapy of Human Bladder Cancer: Induction of Growth Suppression, Apoptosis, and Synergy with Cisplatin. Human Gene Therapy, 2001, 12, 2225-2236.	1.4	53
282	Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange- Nielsen Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2526-2531.	3.3	238
283	Prevalence and nature of connexin 26 mutations in children with nonâ€syndromic deafness. Medical Journal of Australia, 2001, 175, 191-194.	0.8	36
284	Immunolocalization of voltage-gated potassium channel Kv3.1b subunit in the cochlea. NeuroReport, 2001, 12, 2761-2765.	0.6	10
285	GJB2 (Connexin 26) Mutations and Childhood Deafness in Thailand. Otology and Neurotology, 2001, 22, 858-861.	0.7	33
286	A New Mouse Model with Cochleo-Saccular Type Inner Ear Defects Experimental Animals, 2001, 50, 417-421.	0.7	0
287	Genetic Testing to Identify the Common GJB2 233delC Mutation Practica Otologica, 2001, 94, 649-656.	0.0	1
288	1 Recent advances in the molecular basis of inherited skin diseases. Advances in Genetics, 2001, 43, 1-32.	0.8	16
289	MACF1 gene structure: a hybrid of plectin and dystrophin. Mammalian Genome, 2001, 12, 852-861.	1.0	33
290	Functional rescue of defective mutant connexons by pairing with wild-type connexons. Pflugers Archiv European Journal of Physiology, 2001, 441, 521-528.	1.3	12
291	De novo mutation of the connexin 26 gene associated with dominant non-syndromic sensorineural hearing loss. Human Genetics, 2001, 108, 269-270.	1.8	34
292	Cloning, mapping and mutation analysis of human geneGJB5 encoding gap junction protein \hat{l}^2 -5. Science in China Series C: Life Sciences, 2001, 44, 92-98.	1.3	0
293	Multiple Epidermal Connexins are Expressed in Different Keratinocyte Subpopulations Including Connexin 31. Journal of Investigative Dermatology, 2001, 117, 958-964.	0.3	138

#	Article	IF	Citations
294	Commentary: Is the concept of ?tumor promotion? a useful paradigm?. Molecular Carcinogenesis, 2001, 30, 131-137.	1.3	89
295	Connexin 26 distribution in gap junctions between melanocytes in the human vestibular dark cell area. The Anatomical Record, 2001, 262, 137-146.	2.3	25
296	Prenatal diagnosis of prelingual deafness: carrier testing and prenatal diagnosis of the common GJB2 35delG mutation. Prenatal Diagnosis, 2001, 21, 10-13.	1.1	15
297	Connexin 26 gene (GJB2) mutation modulates the severity of hearing loss associated with the 1555A?G mitochondrial mutation. American Journal of Medical Genetics Part A, 2001, 103, 334-338.	2.4	79
298	Mutations in the connexin26/GJB2 gene are the most common event in non-syndromic hearing loss among the German population. Human Mutation, 2001, 17, 521-522.	1.1	94
299	Assessment of denaturing high-performance liquid chromatography (DHPLC) in screening for mutations in connexin 26 (GJB2). Human Mutation, 2001, 18, 42-51.	1.1	46
300	Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Human Mutation, 2001, 18, 84-85.	1.1	137
301	A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: A novel founder mutation in Ashkenazi Jews. Human Mutation, 2001, 18, 460-460.	1.1	214
302	Absence of deafness-associated connexin-26 (GJB2) gene mutations in the Omani population. Human Mutation, 2001, 18, 545-546.	1.1	45
303	Allelic loss on chromosome bands 13q11-q13 in esophageal squamous cell carcinoma. Genes Chromosomes and Cancer, 2001, 31, 390-397.	1.5	26
304	A genetic approach to understanding auditory function. Nature Genetics, 2001, 27, 143-149.	9.4	270
305	A novel locus for autosomal dominant, non-syndromic hearing impairment (DFNA18) maps to chromosome 3q22 immediately adjacent to the DM2 locus. European Journal of Human Genetics, 2001, 9, 165-170.	1.4	16
306	Mapping of a new autosomal dominant nonsyndromic hearing loss locus (DFNA30) to chromosome 15q25-26. European Journal of Human Genetics, 2001, 9, 667-671.	1.4	11
307	Purinergic control of intercellular communication between Hensen's cells of the guineaâ€pig cochlea. Journal of Physiology, 2001, 531, 693-706.	1.3	47
308	Expression of connexin 30 in the developing mouse cochlea. Brain Research, 2001, 898, 364-367.	1.1	35
309	Human diseases: clues to cracking the connexin code?. Trends in Cell Biology, 2001, 11, 2-6.	3.6	138
310	Connexin 26 Studies in Patients With Sensorineural Hearing Loss. JAMA Otolaryngology, 2001, 127, 1037.	1.5	126
311	Recurrent mutations in the deafness gene GJB2 (connexin 26) in British Asian families. Journal of Medical Genetics, 2001, 38, 530-533.	1.5	23

#	Article	IF	CITATIONS
312	Cx26 Affects the in Vitro Reconstruction of Human Epidermis. Cell Communication and Adhesion, 2001, 8, 409-413.	1.0	5
313	Inherited Connexin Mutations Associated with Hearing Loss. Cell Communication and Adhesion, 2001, 8, 419-424.	1.0	6
314	Frequency of the recessive 30delG mutation in the GJB2 gene in Northeast-Hungarian individuals and patients with hearing impairment. International Journal of Molecular Medicine, 2001, 8, 189.	1.8	3
315	Autosomal recessive non-syndromic hearing loss in the Lebanese population: prevalence of the 30delC mutation and report of two novel mutations in the connexin 26 (GJB2) gene. Journal of Medical Genetics, 2001, 38, 36e-36.	1.5	53
316	Genes in the ear: what have we learned over the last years?. Scandinavian Audiology, 2001, 30, 44-53.	0.5	3
317	Different Regulation of Connexin26 and ZO-1 in Cochleas of Developing Rats and of Guinea Pigs with Endolymphatic Hydrops. Journal of Histochemistry and Cytochemistry, 2001, 49, 573-586.	1.3	15
318	Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Human Molecular Genetics, 2001, 10, 2945-2951.	1.4	126
319	Dissecting a population genome for targeted screening of disease mutations. Human Molecular Genetics, 2001, 10, 2961-2972.	1.4	53
320	Connexin 26 Gene Mutations in Congenitally Deaf Children. JAMA Otolaryngology, 2001, 127, 927.	1.5	111
321	Genetic analysis of the connexin-26 M34T variant: identification of genotype M34T/M34T segregating with mild-moderate non-syndromic sensorineural hearing loss. Journal of Medical Genetics, 2001, 38, 20-25.	1.5	79
323	PGE2 Is Essential for Gap Junction-Mediated Intercellular Communication between Osteocyte-Like MLO-Y4 Cells in Response to Mechanical Strain. Endocrinology, 2001, 142, 3464-3473.	1.4	164
324	Human Connexin Disorders of the Skin. Cell Communication and Adhesion, 2001, 8, 401-407.	1.0	11
325	A PCR-RFLP Test for Simultaneous Detection of Two Single-Nucleotide Insertions in the Connexin-26 Gene Promoter. Genetic Testing and Molecular Biomarkers, 2002, 6, 225-228.	1.7	5
326	Genetics of Deafness: Recent Advances and Clinical Implications. Journal of Basic and Clinical Physiology and Pharmacology, 2002, 13, 75-88.	0.7	6
327	Mutation of a transcription factor, TFCP2L3, causes progressive autosomal dominant hearing loss, DFNA28. Human Molecular Genetics, 2002, 11, 2877-2885.	1.4	91
328	Genetic Epidemiology of Deafness. , 2002, , 67-91.		6
329	Autosomal and X-Linked Auditory Disorders. , 2002, , 121-227.		7
330	Connexins and Gap Junctions in the Inner Ear. Audiology and Neuro-Otology, 2002, 7, 141-145.	0.6	33

#	Article	IF	CITATIONS
331	K ⁺ Cycling and Its Regulation in the Cochlea and the Vestibular Labyrinth. Audiology and Neuro-Otology, 2002, 7, 199-205.	0.6	91
332	A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect?. European Journal of Human Genetics, 2002, 10, 72-76.	1.4	169
333	Ion channel diseases. Human Molecular Genetics, 2002, 11, 2435-2445.	1.4	197
334	Endolymphatic Deafness: A Particular Variety of Cochlear Disorder. Orl, 2002, 64, 120-124.	0.6	20
335	Clinical Presentation of DFNB1., 2002, 61, 113-119.		0
337	Molecular Diagnosis of Deafness: Impact of Gene Identification. Audiology and Neuro-Otology, 2002, 7, 185-190.	0.6	6
338	Prelingual Nonsyndromic Hearing Loss in Greece. Orl, 2002, 64, 321-323.	0.6	13
339	Clinical Implications of Inflammatory Cytokines in the Cochlea: A Technical Note. Otology and Neurotology, 2002, 23, 316-322.	0.7	124
340	Disorders of Keratinization., 0,, 1025-1068.		0
341	Molecular Diagnosis of Hereditary Hearing Impairment. , 2002, 61, 11-27.		2
342	DFNA3., 2002, 61, 47-52.		5
343	Current status of genetics in the evaluation and management of sensorineural hearing loss. Current Opinion in Otolaryngology and Head and Neck Surgery, 2002, 10, 435-439.	0.8	1
344	Isolation and characterization of gap junctions from tissue culture cells 1 1Edited by W. Baumeister. Journal of Molecular Biology, 2002, 315, 587-600.	2.0	44
345	Structural and Functional Diversity of Connexin Genes in the Mouse and Human Genome. Biological Chemistry, 2002, 383, 725-37.	1.2	1,025
346	Molecular Motors in Sensory Defects. , 0, , 511-537.		1
347	GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: A HuGE review. Genetics in Medicine, 2002, 4, 258-274.	1.1	337
348	Nonsyndromic hereditary hearing loss. Otolaryngologic Clinics of North America, 2002, 35, 275-285.	0.5	12
349	Etiology of syndromic and nonsyndromic sensorineural hearing loss. Otolaryngologic Clinics of North America, 2002, 35, 891-908.	0.5	29

#	Article	IF	CITATIONS
350	Connexin 26 preverbal hearing impairment: Mutation prevalence and heterozygosity in a selected population: Problemas auditivos preverbales por Conexina 26: Prevalencia de mutacion y heterocigosidad en una población seleccionada. International Journal of Audiology, 2002, 41, 120-124.	0.9	7
351	Effectiveness of sequencing connexin 26 (GJB2) in cases of familial or sporadic childhood deafness referred for molecular diagnostic testing. Genetics in Medicine, 2002, 4, 279-288.	1.1	56
355	Genetics, genomics and gene discovery in the auditory system. Human Molecular Genetics, 2002, 11, 1229-1240.	1.4	110
356	Deafness: from bedside to bench and back. Lancet, The, 2002, 360, 656-657.	6.3	5
357	Hearing loss: frequency and functional studies of the most common connexin26 alleles. Biochemical and Biophysical Research Communications, 2002, 296, 685-691.	1.0	89
358	Expression of a connexin31 mutation causing erythrokeratodermia variabilis is lethal for HeLa cells. Biochemical and Biophysical Research Communications, 2002, 296, 721-728.	1.0	37
359	The molecular basis of hereditary palmoplantar keratodermas. Journal of the American Academy of Dermatology, 2002, 47, 327-346.	0.6	78
360	Connexin mutations in hearing loss, dermatological and neurological disorders. Trends in Molecular Medicine, 2002, 8, 205-212.	3.5	75
361	Mouse models for human deafness: current tools for new fashions. Trends in Molecular Medicine, 2002, 8, 447-451.	3.5	30
364	Expression of members of Wnt and Frizzled gene families in the postnatal rat cochlea. Molecular Brain Research, 2002, 105, 98-107.	2.5	26
365	Prevalence of GJB2 mutations in prelingual deafness in the Greek population. International Journal of Pediatric Otorhinolaryngology, 2002, 65, 101-108.	0.4	63
366	The effects of a connexin 26 mutation – 35delG – on oto-acoustic emissions and brainstem evoked potentials: homozygotes and carriers. Hearing Research, 2002, 163, 93-100.	0.9	42
367	K+ cycling and the endocochlear potential. Hearing Research, 2002, 165, 1-9.	0.9	409
368	Late-onset hearing loss in a mouse model of DFN3 non-syndromic deafness: morphologic and immunohistochemical analyses. Hearing Research, 2002, 166, 150-158.	0.9	38
369	OCP2 immunoreactivity in the human fetal cochlea at weeks 11 , 17 , 20 , and 28 , and the human adult cochlea. Hearing Research, 2002 , 167 , 102 - 109 .	0.9	3
370	Identification of 605ins46, a novel GJB2 mutation in a Japanese family. Auris Nasus Larynx, 2002, 29, 379-382.	0.5	8
371	Medical evaluation of pediatric hearing loss. Otolaryngologic Clinics of North America, 2002, 35, 751-764.	0.5	43
372	A mutation in GJB3 is associated with recessive erythrokeratodermia variabilis (EKV) and leads to defective trafficking of the connexin 31 protein. Human Molecular Genetics, 2002, 11, 1311-1316.	1.4	73

#	Article	IF	CITATIONS
374	Hearing Loss and Connexin 26. Journal of the Royal Society of Medicine, 2002, 95, 171-177.	1.1	28
375	Genetics and Deafness: Impacts on the Deaf Community. Sign Language Studies, 2002, 2, 150-168.	0.1	9
376	Mice as Models for Human Hereditary Deafness. , 2002, , 247-296.		11
377	Targeted Ablation of Connexin26 in the Inner Ear Epithelial Gap Junction Network Causes Hearing Impairment and Cell Death. Current Biology, 2002, 12, 1106-1111.	1.8	409
378	Auditory deprivation affects processing of motion, but not color. Cognitive Brain Research, 2002, 14, 422-434.	3.3	116
379	Further evidence for a third deafness gene within the DFNA2 locus. American Journal of Medical Genetics Part A, 2002, 108, 304-309.	2.4	11
380	Exploring the clinical and epidemiological complexity of GJB2-linked deafness. American Journal of Medical Genetics Part A, 2002, 112, 38-45.	2.4	34
381	Pyrosequencing for detection of mutations in the connexin 26 (GJB2) and mitochondrial 12S RNA (MTRNR1) genes associated with hereditary hearing loss. Human Mutation, 2002, 20, 312-320.	1.1	18
382	GJB2 mutations in Iranians with autosomal recessive non-syndromic sensorineural hearing loss. Human Mutation, 2002, 19, 572-572.	1.1	40
383	Frequencies of GJB2 mutations in German control individuals and patients showing sporadic non-syndromic hearing impairment. Human Mutation, 2002, 20, 77-78.	1.1	35
385	Genetics of congenital deafness in the Palestinian population: multiple connexinÂ26 alleles with shared origins in the Middle East. Human Genetics, 2002, 110, 284-289.	1.8	127
386	Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression Human Genetics, 2002, 111, 190-197.	1.8	86
387	Progressive hearing loss, and recurrent sudden sensorineural hearing loss associated with GJB2 mutations – phenotypic spectrum and frequencies of GJB2 mutations in Austria. Human Genetics, 2002, 111, 145-153.	1.8	63
388	A novel locus for autosomal dominant nonsyndromic hearing loss identified at 5q31.1-32 in a Chinese pedigree. Journal of Human Genetics, 2002, 47, 0635-0640.	1.1	15
389	Connexin26 gene (GJB2): prevalence of mutations in the Chinese population. Journal of Human Genetics, 2002, 47, 0688-0690.	1.1	44
390	W44C mutation in the connexin 26 gene associated with dominant non-syndromic deafness. Clinical Genetics, 2002, 59, 269-273.	1.0	19
391	Deafness resulting from mutations in the GJB2 (connexin 26) gene in Brazilian patients. Clinical Genetics, 2002, 61, 354-358.	1.0	35
392	Homozygosity for the V37I Connexin 26 mutation in three unrelated children with sensorineural hearing loss. Clinical Genetics, 2002, 61, 459-464.	1.0	37

#	Article	IF	CITATIONS
393	Non-syndromic autosomal-dominant deafness. Clinical Genetics, 2002, 62, 1-13.	1.0	62
394	The novel R75Q mutation in the GJB2 gene causes autosomal dominant hearing loss and palmoplantar keratoderma in a Turkish family. Clinical Genetics, 2002, 62, 306-309.	1.0	67
395	A Novel Connexin 30 Mutation in Clouston Syndrome. Journal of Investigative Dermatology, 2002, 118, 530-532.	0.3	89
396	Erythrokeratodermia Variabilis with Erythema Gyratum Repens‣ike Lesions. Pediatric Dermatology, 2002, 19, 285-292.	0.5	38
397	Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. European Journal of Human Genetics, 2002, 10, 427-432.	1.4	68
398	Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. European Journal of Human Genetics, 2002, 10, 495-498.	1.4	61
399	Successful Cochlear Implantation in Prelingual Profound Deafness Resulting From the Common 233delC Mutation of the GJB2 Gene in the Japanese. Laryngoscope, 2002, 112, 255-261.	1.1	49
400	Hypothesis: Research in Otolaryngology Is Essential for Continued Improvement in Health Care. Laryngoscope, 2002, 112, 943-947.	1.1	2
401	A Novel Connexin 26 Compound Heterozygous Mutation Results in Deafness. Laryngoscope, 2002, 112, 1159-1162.	1.1	4
402	Effects of Gap Junction Uncoupling in the Gerbil Cochlea. Laryngoscope, 2002, 112, 1635-1641.	1.1	31
403	Application of physiological genomics to the study of hearing disorders. Journal of Physiology, 2002, 543, 3-12.	1.3	9
404	Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature, 2002, 416, 874-878.	13.7	366
405	A gene-driven approach to the identification of ENU mutants in the mouse. Nature Genetics, 2002, 30, 255-256.	9.4	175
406	The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Human Genetics, 2002, 111, 394-397.	1.8	159
407	Construction and characterization of a vestibular-specific cDNA library using T7-based RNA amplification. Journal of Human Genetics, 2003, 48, 0142-0149.	1.1	12
408	Gene structure, chromosomal localization, and mutation screening of the human gene for the inner ear protein otospiralin. Neurogenetics, 2003, 4, 137-140.	0.7	6
409	Mutations in the calcium-binding motifs of CDH23 and the 35delG mutation in GJB2 cause hearing loss in one family. Human Genetics, 2003, 112, 156-163.	1.8	43
410	Evidence of a founder effect for the 235delC mutation of GJB2 (connexin�26) in east Asians. Human Genetics, 2003, 114, 44-50.	1.8	96

#	Article	IF	CITATIONS
411	Connexins and apoptotic transformation. Biochemical Pharmacology, 2003, 66, 1661-1672.	2.0	97
412	Gap junctions in the inner ear: Comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. Journal of Comparative Neurology, 2003, 467, 207-231.	0.9	239
413	The Iranian Human Mutation Gene Bank: A data and sample resource for worldwide collaborative genetics research. Human Mutation, 2003, 21, 146-150.	1.1	25
414	Evaluation of Cx26/GJB2 in German hearing impaired persons: mutation spectrum and detection of disequilibrium between M34T (c.101T>C) and -493del10. Human Mutation, 2003, 21, 98-98.	1.1	35
415	The otolaryngologist's role in management of hearing loss in infancy and childhood. Mental Retardation and Developmental Disabilities Research Reviews, 2003, 9, 94-102.	3.5	2
416	Screening of families with autosomal recessive non-syndromic hearing impairment (ARNSHI) for mutations in GJB2 gene: Indian scenario. American Journal of Medical Genetics Part A, 2003, 120A, 180-184.	2.4	55
417	Use of a multiplex PCR/sequencing strategy to detect both connexin 30 (GJB6) 342 kb deletion and connexin 26 (GJB2) mutations in cases of childhood deafness. American Journal of Medical Genetics Part A, 2003, 121A, 102-108.	2.4	52
418	Mutation analysis of Connexin 31 (GJB3) in sporadic non-syndromic hearing impairment. Clinical Genetics, 2003, 63, 154-159.	1.0	28
419	A novel dominant missense mutation - D179N - in the GJB2 gene (Connexin 26) associated with non-syndromic hearing loss. Clinical Genetics, 2003, 63, 516-521.	1.0	30
420	Frequencies of gap- and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss. Clinical Genetics, 2003, 64, 65-69.	1.0	87
421	Elevated frequencies of the 35delG allele of the connexin 26 gene in Corsica, France. Clinical Genetics, 2003, 64, 517-518.	1.0	9
422	Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. Journal of Neurochemistry, 2003, 84, 735-742.	2.1	60
423	The molecular genetics of the genodermatoses: progress to date and future directions. British Journal of Dermatology, 2003, 148, 1-13.	1.4	70
424	Novel mutations in GJB2 encoding connexin-26 in Japanese patients with keratitis-ichthyosis-deafness syndrome. British Journal of Dermatology, 2003, 148, 649-653.	1.4	83
425	Connexin gene pathology. Clinical and Experimental Dermatology, 2003, 28, 397-409.	0.6	51
426	Mapping of a new autosomal recessive nonsyndromic hearing loss locus (DFNB32) to chromosome 1p13.3-22.1. European Journal of Human Genetics, 2003, 11, 185-188.	1.4	20
427	Lack of a modulative factor in locus 8p23 in a Finnish family with nonsyndromic sensorineural hearing loss associated with the 1555A>G mitochondrial DNA mutation. European Journal of Human Genetics, 2003, 11, 652-658.	1.4	6
428	Beyond the gap: functions of unpaired connexon channels. Nature Reviews Molecular Cell Biology, 2003, 4, 285-295.	16.1	645

#	Article	IF	Citations
429	Genetic screening for deafness. Pediatric Clinics of North America, 2003, 50, 315-329.	0.9	29
430	Connexin-30 Deletion Analysis in Connexin-26 Heterozygotes. Genetic Testing and Molecular Biomarkers, 2003, 7, 151-154.	1.7	45
431	Roles of Met-34, Cys-64, and Arg-75 in the Assembly of Human Connexin 26. Journal of Biological Chemistry, 2003, 278, 1807-1816.	1.6	96
432	Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Letters, 2003, 533, 79-88.	1.3	142
433	Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochemical and Biophysical Research Communications, 2003, 305, 1024-1033.	1.0	58
434	Differential roles of 2, 6, and 8 carbon ceramides on the modulation of gap junctional communication and apoptosis during carcinogenesis. Cancer Letters, 2003, 191, 27-34.	3.2	13
435	Prevalence and Evolutionary Origins of the del(GJB6-D13S1830) Mutation in the DFNB1 Locus in Hearing-Impaired Subjects: a Multicenter Study. American Journal of Human Genetics, 2003, 73, 1452-1458.	2.6	269
436	Spinocerebellar ataxia type 15 (sca15) maps to 3p24.2-3pter:. Neurobiology of Disease, 2003, 13, 147-157.	2.1	70
437	Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. Journal of Medical Genetics, 2003, 40, 68e-68.	1.5	103
438	Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genetics in Medicine, 2003, 5, 161-165.	1.1	100
439	HUMANNONSYNDROMICSENSORINEURALDEAFNESS. Annual Review of Genomics and Human Genetics, 2003, 4, 341-402.	2.5	200
440	Current issues on aetiological evaluation of hearing-impaired infants. Audiological Medicine, 2003, 1, 185-190.	0.4	5
441	Plasma Membrane Channels Formed by Connexins: Their Regulation and Functions. Physiological Reviews, 2003, 83, 1359-1400.	13.1	1,045
442	Expression of Adhesion Molecules by Cultured Spiral Ligament Fibrocytes Stimulated with Proinflammatory Cytokines. Annals of Otology, Rhinology and Laryngology, 2003, 112, 722-728.	0.6	23
443	Expression of Gap Junction Protein Connexin43 in the Adult Rat Cochlea: Comparison with Connexin26. Journal of Histochemistry and Cytochemistry, 2003, 51, 903-912.	1.3	38
444	Single-channel SCAM Identifies Pore-lining Residues in the First Extracellular Loop and First Transmembrane Domains of Cx46 Hemichannels. Journal of General Physiology, 2003, 122, 389-405.	0.9	103
445	Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Human Molecular Genetics, 2003, 12, 995-1004.	1.4	140
446	Delayed liver regeneration and increased susceptibility to chemical hepatocarcinogenesis in transgenic mice expressing a dominant-negative mutant of connexin32 only in the liver. Carcinogenesis, 2003, 25, 483-492.	1.3	59

#	Article	IF	Citations
447	Gap junctions – from cell to molecule. Journal of Cell Science, 2003, 116, 4479-4481.	1.2	70
448	Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Human Molecular Genetics, 2003, 12, 805-812.	1.4	150
449	Progress in Understanding GJB2-Linked Deafness. Public Health Genomics, 2003, 6, 125-132.	0.6	7
450	Genetic information but not termination: pregnant women's attitudes and willingness to pay for carrier screening for deafness genes. Journal of Medical Genetics, 2003, 40, 80e-80.	1.5	21
451	Cellular Mechanisms of Mutant Connexins in Skin Disease and Hearing Loss. Cell Communication and Adhesion, 2003, 10, 347-351.	1.0	17
452	Regulation of Intermuscular Electrical Coupling by the Caenorhabditis elegans Innexininx-6. Molecular Biology of the Cell, 2003, 14, 2630-2644.	0.9	34
453	Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Human Molecular Genetics, 2003, 12, 13-21.	1.4	322
454	Epithelial Cells of Nasal Mucosa Express Functional Gap Junctions of Connexin 43. Acta Oto-Laryngologica, 2003, 123, 314-320.	0.3	21
455	Gap Junctional Communication Modulates Gene Transcription by Altering the Recruitment of Sp1 and Sp3 to Connexin-response Elements in Osteoblast Promoters. Journal of Biological Chemistry, 2003, 278, 24377-24387.	1.6	121
456	Mapping of a new autosomal dominant non-syndromic hearing loss locus (DFNA43) to chromosome 2p12. Journal of Medical Genetics, 2003, 40, 278-281.	1.5	8
457	Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Human Molecular Genetics, 2003, 12, 1737-1744.	1.4	67
458	Audiological Manifestations and Features of Connexin 26 Deafness. Audiological Medicine, 2003, 1, 5-11.	0.4	21
459	Genotypic and Phenotypic Correlations of DFNB1-Related Hearing Impairment in the Midwestern United States. JAMA Otolaryngology, 2003, 129, 836.	1.5	34
460	The Role of Connexins in Human Disease. Ear and Hearing, 2003, 24, 314-323.	1.0	57
461	Nonsyndromic Hearing Loss. Ear and Hearing, 2003, 24, 275-288.	1.0	51
462	Autosomal Dominant Nonsyndromic Hearing Impairment: an Overview. Audiological Medicine, 2003, 1, 21-28.	0.4	1
463	Toward an Understanding of Cochlear Homeostasis: The Impact of Location and the Role of OCP1 and OCP2. Acta Oto-Laryngologica, 2003, 123, 203-208.	0.3	16
464	GJB2 Mutations in the Swiss Hearing Impaired. Ear and Hearing, 2003, 24, 440-447.	1.0	22

#	Article	IF	CITATIONS
465	Deafness Genes and Ear Disease. Practica Otologica, 2003, 96, 939-947.	0.0	1
466	Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genetics in Medicine, 2003, 5, 295-303.	1.1	138
468	Marital Status and Birthrate of Deaf People in Two Swedish Counties: The Impact of Social Environment in Terms of Deaf Community. American Annals of the Deaf, 2004, 149, 415-427.	0.1	6
469	Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26M34T. FASEB Journal, 2004, 18, 860-862.	0.2	49
470	Deafness Genes and Their Diagnostic Applications. Audiology and Neuro-Otology, 2004, 9, 2-22.	0.6	47
471	Frequency of the 35delG Mutation in the GJB2 Gene in Samples of European, Asian, and African Brazilians. Human Biology, 2004, 76, 313-316.	0.4	23
472	Further evidence for heterozygote advantage of GJB2 deafness mutations: a link with cell survival. Journal of Medical Genetics, 2004, 41, 573-575.	1.5	48
473	Genetics Content in the Graduate Audiology Curriculum. American Journal of Audiology, 2004, 13, 126-134.	0.5	5
474	Longitudinal Phenotypic Analysis in Patients with Connexin 26 (<i>GJB2</i>) (DFNB1) and Connexin 30 (<i>GJB6</i>) Mutations. Annals of Otology, Rhinology and Laryngology, 2004, 113, 587-593.	0.6	8
475	Expression of connexin 26 in the lateral wall of the rat cochlea after acoustic trauma. Acta Oto-Laryngologica, 2004, 124, 459-463.	0.3	10
476	Aspects of cochlear lateral wall inflammation. Audiological Medicine, 2004, 2, 179-181.	0.4	1
477	A Novel Connexin 26 Mutation Associated with Autosomal Recessive Sensorineural Deafness. Audiology and Neuro-Otology, 2004, 9, 47-50.	0.6	13
478	Genes related to hearing disorders. Acta Oto-Laryngologica, 2004, 124, 10-13.	0.3	0
479	The frequency of GJB2 mutations and the \hat{l} " (GJB6-D13S1830) deletion as a cause of autosomal recessive non-syndromic deafness in the Kurdish population. Clinical Genetics, 2004, 65, 506-508.	1.0	34
480	Spectrum and frequencies of mutations in the GJB2 (Cx26) gene among 156 Czech patients with pre-lingual deafness. Clinical Genetics, 2004, 66, 152-157.	1.0	49
481	High prevalence of V37I genetic variant in the connexin-26 (GJB2) gene among non-syndromic hearing-impaired and control Thai individuals. Clinical Genetics, 2004, 66, 452-460.	1.0	75
482	Low prevalence of Connexin 26 (GJB2) variants in Pakistani families with autosomal recessive non-syndromic hearing impairment. Clinical Genetics, 2004, 67, 61-68.	1.0	66
484	Intercellular junctions in normal epidermis. Experimental Dermatology, 2004, 13, 652-653.	1.4	1

#	Article	IF	CITATIONS
485	Dysfunction of keratinocyte adhesion. Experimental Dermatology, 2004, 13, 654-655.	1.4	2
486	Developmental signals in skin morphogenesis. Experimental Dermatology, 2004, 13, 656-658.	1.4	0
487	Animal models of human skin disease. Experimental Dermatology, 2004, 13, 659-660.	1.4	3
488	Connexin mutations in human disease. Experimental Dermatology, 2004, 13, 661-662.	1.4	15
489	Role of integrins in tumor invasion and metastasis. Experimental Dermatology, 2004, 13, 663-663.	1.4	6
490	Clinical evidence of the nonpathogenic nature of the M34T variant in the connexin 26 gene. European Journal of Human Genetics, 2004, 12, 279-284.	1.4	48
491	Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene, 2004, 23, 4763-4770.	2.6	75
492	Connexin 26 and Connexin 30 Mutations in Children with Nonsyndromic Hearing Loss. Laryngoscope, 2004, 114, 607-611.	1.1	22
493	Mutation Detection of GJB2 Using IsoCode and Real-Time Quantitative Polymerase Chain Reaction With SYBR Green I Dye for Newborn Hearing Screening. Laryngoscope, 2004, 114, 1299-1304.	1.1	6
494	Cochlear Implantation for Children With GJB2-Related Deafness. Laryngoscope, 2004, 114, 1415-1419.	1.1	45
495	Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. European Journal of Neuroscience, 2004, 19, 76-84.	1,2	60
496	Multivariate search for differentially expressed gene combinations. BMC Bioinformatics, 2004, 5, 164.	1.2	40
497	Properties of Connexin26 Hemichannels Expressed in Xenopus Oocytes. Cellular and Molecular Neurobiology, 2004, 24, 647-665.	1.7	53
498	Altered gating properties of functional Cx26 mutants associated with recessive non-syndromic hearing loss. Human Genetics, 2004, 115, 191-199.	1.8	63
499	Molecular epidemiology of DFNB1 deafness in France. BMC Medical Genetics, 2004, 5, 5.	2.1	100
500	Gap junction development in the human fetal hair follicle and bulge region. British Journal of Dermatology, 2004, 150, 429-434.	1.4	29
501	Large deletion of the GJB6 gene in deaf patients heterozygous for the GJB2 gene mutation: Genotypic and phenotypic analysis., 2004, 127A, 263-267.		42
502	Gene discovery in the auditory system using a tissue specific approach. American Journal of Medical Genetics Part A, 2004, 130A, 26-28.	2.4	6

#	Article	IF	Citations
503	Clinical application of genetic testing for deafness. American Journal of Medical Genetics Part A, 2004, 130A, 8-12.	2.4	12
504	Self-healing congenital verruciform hyperkeratosis. , 2004, 130A, 303-306.		4
505	Genetic diseases of the skin: Progress and perspectives. American Journal of Medical Genetics Part A, 2004, 131C, 1-3.	2.4	1
506	GJB2: The spectrum of deafness-causing allele variants and their phenotype. Human Mutation, 2004, 24, 305-311.	1.1	72
507	Low frequency of deafness-associated GJB2 variants in Kenya and Sudan and novel GJB2 variants. Human Mutation, 2004, 23, 206-207.	1.1	60
508	GJB2mutations in patients with non-syndromic hearing loss from Northeastern Hungary. Human Mutation, 2004, 23, 631-632.	1.1	29
509	Incorporation of connexins into plasma membranes and gap junctions. Cardiovascular Research, 2004, 62, 378-387.	1.8	107
510	The developmental genetics of auditory hair cells. Human Molecular Genetics, 2004, 13, R289-R296.	1.4	19
511	Variability in noise susceptibility in a Swedish population: the role of 35delG mutation in the connexin 26 (GJB2) gene. Audiological Medicine, 2004, 2, 123-130.	0.4	19
512	Hereditary Non-Syndromic Sensorineural Hearing Loss. Journal of Molecular Diagnostics, 2004, 6, 275-284.	1.2	89
513	Isolates and their potential use in complex gene mapping efforts. Current Opinion in Genetics and Development, 2004, 14, 316-323.	1.5	94
514	Connexin disorders of the ear, skin, and lens. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1662, 159-170.	1.4	136
515	Mutational analysis of parkin gene by denaturing high-performance liquid chromatography (DHPLC) in essential tremor. Parkinsonism and Related Disorders, 2004, 10, 357-362.	1.1	20
516	A Diagnostic Paradigm for Childhood Idiopathic Sensorineural Hearing Loss. Otolaryngology - Head and Neck Surgery, 2004, 131, 804-809.	1.1	77
517	Connexin 26 mutations in nonsyndromic autosomal recessive hearing loss: speech and hearing rehabilitation. International Journal of Pediatric Otorhinolaryngology, 2004, 68, 995-1005.	0.4	13
518	The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hearing Research, 2004, 191, 101-109.	0.9	46
519	Lack of association between Connexin 31 (GJB3) alterations and sensorineural deafness in Austria. Hearing Research, 2004, 194, 81-86.	0.9	13
520	Prevalence of the GJB2 mutations and the del(GJB6-D13S1830) mutation in Brazilian patients with deafness. Hearing Research, 2004, 196, 87-93.	0.9	33

#	ARTICLE	IF	CITATIONS
521	GJB2 gene mutations in newborns with non-syndromic hearing impairment in Northern China. Hearing Research, 2004, 197, 19-23.	0.9	36
522	Screening for monogenetic del(GJB6-D13S1830) and digenic del(GJB6-D13S1830)/GJB2 patterns of inheritance in deaf individuals from Eastern Austria. Hearing Research, 2004, 196, 115-118.	0.9	42
523	Down-regulation of otospiralin mRNA in response to acoustic stress in guinea pig. Hearing Research, 2004, 198, 36-40.	0.9	5
524	The effects of connexin phosphorylation on gap junctional communication. International Journal of Biochemistry and Cell Biology, 2004, 36, 1171-1186.	1.2	528
525	Cell–Cell Communication: An Overview Emphasizing Gap Junctions. , 2004, , 431-458.		5
526	Phenotypic variability of non-syndromic hearing loss in patients heterozygous for both c.35delG of GJB2 and the 342-kb deletion involving GJB6. Hearing Research, 2004, 188, 42-46.	0.9	46
527	Molecular Diagnosis of Hearing Loss. Current Protocols in Human Genetics, 2004, 43, Unit9.16.	3.5	0
528	Genetic testing for deafness is here, but how do we do it?. Genetics in Medicine, 2004, 6, 463-464.	1.1	5
529	Gene-Based Deafness Research: Ion Transport and Hearing. Tohoku Journal of Experimental Medicine, 2004, 202, 1-11.	0.5	5
530	Gap junction mutations in human disease. Advances in Molecular and Cell Biology, 2004, , 161-187.	0.1	1
531	Genetic testing as part of the Early Hearing Detection and Intervention (EHDI) process. Genetics in Medicine, 2004, 6, 521-525.	1.1	25
532	Prevalence of Cx26 (GJB2) Gene Mutations Causing Recessive Nonsyndromic Hearing Impairment in India. International Journal of Human Genetics, 2005, 5, 241-246.	0.1	10
533	Screening of GJB6 Gene for the 342-kb Deletion in Patients from Jordan with Non Syndromic Hearing Loss. International Journal of Human Genetics, 2005, 5, 253-257.	0.1	6
534	Clinical Application of Genetic Testing. Practica Otologica, 2005, 98, 673-680.	0.0	0
535	Audiological Features of GJB2 (Connexin 26) Deafness. Ear and Hearing, 2005, 26, 361-369.	1.0	43
536	Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. European Journal of Neuroscience, 2005, 21, 1859-1868.	1.2	68
537	Analysis of GJB2 mutation: evidence for a Mediterranean ancestor for the 35delG mutation. Clinical Genetics, 2005, 68, 188-189.	1.0	22
538	GJB2 gene mutations in Slovak hearing-impaired patients of Caucasian origin: spectrum, frequencies and SNP analysis. Clinical Genetics, 2005, 68, 554-557.	1.0	13

#	Article	IF	CITATIONS
539	Specific loss of connexin 26 expression in ductal sweat gland epithelium associated with the deletion mutation del(GJB6-D13S1830). Clinical and Experimental Dermatology, 2005, 30, 688-693.	0.6	33
540	GJB2 Mutations in Hearing Impairment: Identification of a Broad Clinical Spectrum for Improved Genetic Counseling. Laryngoscope, 2005, 115, 461-465.	1.1	21
541	Intracellular Distribution, Assembly and Effect of Disease-associated Connexin 31 Mutants in HeLa Cells. Acta Biochimica Et Biophysica Sinica, 2005, 37, 547-554.	0.9	24
542	Estimation of the frequency of occult mutations for an autosomal recessive disease in the presence of genetic heterogeneity: application to genetic hearing loss disorders. Human Mutation, 2005, 26, 462-470.	1.1	31
543	Cell-cell interactions in regulating osteogenesis and osteoblast function. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 72-80.	3 . 6	84
544	GJB2mutations in keratitis-ichthyosis-deafness syndrome including its fatal form. , 2005, 133A, 128-131.		85
545	GJB2 mutations: Passage through Iran. American Journal of Medical Genetics, Part A, 2005, 133A, 132-137.	0.7	77
546	GJB2 (connexin 26) mutations are not a major cause of hearing loss in the Indonesian population. American Journal of Medical Genetics, Part A, 2005, 135A, 126-129.	0.7	15
547	TheGJB2 mutation R75Q can cause nonsyndromic hearing loss DFNA3 or hereditary palmoplantar keratoderma with deafness. American Journal of Medical Genetics, Part A, 2005, 137A, 225-227.	0.7	27
548	G59S mutation in theGJB2 (connexin 26) gene in a patient with Bart-Pumphrey syndrome. American Journal of Medical Genetics, Part A, 2005, 136A, 282-284.	0.7	33
549	High prevalence of theW24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. American Journal of Medical Genetics, Part A, 2005, 137A, 255-258.	0.7	68
550	Connexin 26 variants and auditory neuropathy/dys-synchrony among children in schools for the deaf. American Journal of Medical Genetics, Part A, 2005, 139A, 13-18.	0.7	41
551	Audiometric evaluation of carriers of the connexin 26 mutation 35delG. European Archives of Oto-Rhino-Laryngology, 2005, 262, 921-924.	0.8	14
552	Survival of Partially Differentiated Mouse Embryonic Stem Cells in the Scala Media of the Guinea Pig Cochlea. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 341-354.	0.9	83
553	KID Syndrome: Report of a Scandinavian Patient with Connexinâ€26 Gene Mutation. Acta Dermato-Venereologica, 2005, 85, 152-155.	0.6	19
554	Connexins in Hearing Loss: A Comprehensive Overview. Journal of Basic and Clinical Physiology and Pharmacology, 2005, 16, 101-116.	0.7	32
555	Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. American Journal of Physiology - Cell Physiology, 2005, 288, C613-C623.	2.1	125
556	Connexins Responsible for Hereditary Deafness — The Tale Unfolds. , 2005, , 111-134.		8

#	Article	IF	CITATIONS
557	Gap Junctions Regulate Extracellular Signal-regulated Kinase Signaling to Affect Gene Transcription. Molecular Biology of the Cell, 2005, 16, 64-72.	0.9	114
558	Functional Characterization of Connexin43 Mutations Found in Patients With Oculodentodigital Dysplasia. Circulation Research, 2005, 96, e83-91.	2.0	104
559	Connexin interaction patterns in keratinocytes revealed morphologically and by FRET analysis. Journal of Cell Science, 2005, 118, 1505-1514.	1.2	45
560	Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18724-18729.	3.3	189
561	A missense mutation in the previously undescribed gene Tmhs underlies deafness in hurry-scurry (hscy) mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7894-7899.	3.3	99
563	GJB2 and GJB6 Mutations. JAMA Otolaryngology, 2005, 131, 481.	1.5	93
564	Prelingual Siblings of Children With GJB2 Hearing Loss. JAMA Otolaryngology, 2005, 131, 1020.	1.5	0
565	Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15201-15206.	3.3	136
566	In vitro and in vivo suppression of GJB2 expression by RNA interference. Human Molecular Genetics, 2005, 14, 1641-1650.	1.4	112
567	Sound from silence. Nature Medicine, 2005, 11, 249-250.	15.2	10
567 568	Sound from silence. Nature Medicine, 2005, 11, 249-250. GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957.	15.2 2.6	10 455
	GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics,		
568	GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. Journal of	2.6	455
568 569	GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. Journal of Medical Genetics, 2005, 42, 588-594.	2.6	455 282
568 569 570	GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. Journal of Medical Genetics, 2005, 42, 588-594. On the role of gap junctions in cardiac memory effect., 2005, ,. The 35 del GMutation in the Connexin 26 Gene (GJB2) Associated with Congenital Deafness: European Carrier Frequencies and Evidence for Its Origin in Ancient Greece. Genetic Testing and Molecular	2.6	455 282 2
568 569 570	GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. Journal of Medical Genetics, 2005, 42, 588-594. On the role of gap junctions in cardiac memory effect., 2005, ,. The 35 del GMutation in the Connexin 26 Gene (GJB2) Associated with Congenital Deafness: European Carrier Frequencies and Evidence for Its Origin in Ancient Greece. Genetic Testing and Molecular Biomarkers, 2005, 9, 20-25. Prevalence of the 35 del G Mutation in the GJB2 Gene of Patients with Nonsyndromic Hearing Loss from	2.6 1.5	455 282 2 43
568 569 570 571	GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study. American Journal of Human Genetics, 2005, 77, 945-957. A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. Journal of Medical Genetics, 2005, 42, 588-594. On the role of gap junctions in cardiac memory effect., 2005,,. The35delGMutation in the Connexin 26 Gene (GJB2) Associated with Congenital Deafness: European Carrier Frequencies and Evidence for Its Origin in Ancient Greece. Genetic Testing and Molecular Biomarkers, 2005, 9, 20-25. Prevalence of the 35delG Mutation in theGJB2Gene of Patients with Nonsyndromic Hearing Loss from Croatia. Genetic Testing and Molecular Biomarkers, 2005, 9, 297-300.	2.6 1.5 1.7	455 282 2 43

#	Article	IF	Citations
576	Expression of the carrier protein apolipoprotein D in the mouse inner ear. Hearing Research, 2005, 200, 102-114.	0.9	15
577	A novel missense mutation in the Connexin 26 gene associated with autosomal recessive sensorineural deafness. Hearing Research, 2005, 202, 258-261.	0.9	5
578	GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations. Hearing Research, 2005, 203, 88-93.	0.9	47
579	Prevalence of GJB2 mutations and the del(GJB6-D13S1830) in Argentinean non-syndromic deaf patients. Hearing Research, 2005, 207, 43-49.	0.9	42
580	Structural organization of gap junction channels. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 99-125.	1.4	204
581	Temporal regulation of connexin phosphorylation in embryonic and adult tissues. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1719, 24-35.	1.4	42
582	Length of C-terminus of rCx46 influences oligomerization and hemichannel properties. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1720, 35-43.	1.4	13
583	Functional characterization of a novel Cx26 (T55N) mutation associated to non-syndromic hearing loss. Biochemical and Biophysical Research Communications, 2005, 337, 799-805.	1.0	27
584	Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins. Developmental Biology, 2005, 278, 208-219.	0.9	115
585	Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 126-141.	1.4	100
586	Gap junction channels reconstituted in two closely apposed lipid bilayers. Archives of Biochemistry and Biophysics, 2005, 436, 128-135.	1.4	6
587	Surdités de perception d'origine génétique. EMC - Oto-Rhino-Laryngologie, 2005, 2, 343-364.	0.0	3
589	Gap Junctions Mediate Glucose Transport Between GLUT1-Positive and -Negative Cells in the Spiral Limbus of the Rat Cochlea. Cell Communication and Adhesion, 2006, 13, 93-102.	1.0	19
590	The Structural Context of Disease-causing Mutations in Gap Junctions. Journal of Biological Chemistry, 2006, 281, 28958-28963.	1.6	14
591	An Overview of Hereditary Hearing Loss. Orl, 2006, 68, 57-63.	0.6	70
592	Hipoacusias neurosensoriales de origen genético. EMC - OtorrinolaringologÃa, 2006, 35, 1-17.	0.0	0
593	Genetic deafness and gene therapy approaches for treatment. Drug Discovery Today Disease Mechanisms, 2006, 3, 143-150.	0.8	6
594	High Frequency of 35delG GJB2 Mutation and Absence of del(GJB6-D13S1830) in Greek Cypriot Patients with Nonsyndromic Hearing Loss. Genetic Testing and Molecular Biomarkers, 2006, 10, 285-289.	1.7	21

#	Article	IF	CITATIONS
595	Cochlear nerve size evaluation in children with sensorineural hearing loss by high-resolution magnetic resonance imaging. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2006, 27, 166-172.	0.6	34
596	$M\tilde{A}^{1}\!\!/\!\!$ llerian anomalies, hearing loss, and connexin 26 mutations. Fertility and Sterility, 2006, 85, 1824-1825.	0.5	6
597	Mutational analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in Tunisian patients with nonsyndromic hearing loss. Biochemical and Biophysical Research Communications, 2006, 340, 1251-1258.	1.0	22
598	Ethnicity and mutations in GJB2 (connexin 26) and GJB6 (connexin 30) in a multi-cultural Canadian paediatric Cochlear Implant Program. International Journal of Pediatric Otorhinolaryngology, 2006, 70, 435-444.	0.4	30
599	Determination of the carrier frequency of the common GJB2 (connexin-26) 35delG mutation in the Greek Cypriot population. International Journal of Pediatric Otorhinolaryngology, 2006, 70, 1473-1477.	0.4	15
600	Two patients with the V37I/235delC genotype: Are radiographic cochlear anomalies part of the phenotype?. International Journal of Pediatric Otorhinolaryngology, 2006, 70, 2109-2113.	0.4	12
601	Prevalence of Connexin 26 Mutations in Patients from Jordan with Non Syndromic Hearing Loss. International Journal of Human Genetics, 2006, 6, 119-124.	0.1	9
602	Connexin-Associated Deafness and Speech Perception Outcome of Cochlear Implantation. JAMA Otolaryngology, 2006, 132, 495.	1.5	41
604	Does Universal Newborn Hearing Screening Identify All Children with GJB2 (Connexin 26) Deafness? Penetrance of GJB2 Deafness. Ear and Hearing, 2006, 27, 732-741.	1.0	69
605	Molecular and Physiological Bases of the K+ Circulation in the Mammalian Inner Ear. Physiology, 2006, 21, 336-345.	1.6	165
606	Non-syndromic, autosomal-recessive deafness. Clinical Genetics, 2006, 69, 371-392.	1.0	199
607	Hereditary Familial Vestibular Degenerative Diseases. Annals of the New York Academy of Sciences, 2001, 942, 493-496.	1.8	2
608	Attitudes to Genetic Testing for Deafness: The Importance of Informed Choice. Journal of Genetic Counseling, 2006, 15, 51-59.	0.9	23
609	Gap Junctions and Cochlear Homeostasis. Journal of Membrane Biology, 2006, 209, 177-186.	1.0	144
610	The c.IVS1+1G>A mutation intheGJB2 gene is prevalent and large deletions involving theGJB6 gene are not present in the Turkish population. Journal of Genetics, 2006, 85, 213-216.	0.4	53
611	Loss of function mutations of the GJB2 gene detected in patients with DFNB1-associated hearing impairment. Neurobiology of Disease, 2006, 22, 112-118.	2.1	57
612	Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. Journal of Comparative Neurology, 2006, 499, 506-518.	0.9	101
613	Expression pattern and functional characterization of connexin29 in transgenic mice. Glia, 2006, 53, 601-611.	2.5	57

#	Article	IF	CITATIONS
614	The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Human Mutation, 2006, 27, 786-795.	1.1	109
615	Mutations in thelipoma HMGIC fusion partner-like 5 (LHFPL5)gene cause autosomal recessive nonsyndromic hearing loss. Human Mutation, 2006, 27, 633-639.	1.1	58
616	V37I connexin 26 allele in patients with sensorineural hearing loss: Evidence of its pathogenicity. American Journal of Medical Genetics, Part A, 2006, 140A, 2394-2400.	0.7	37
617	DNA sequence analysis of GJB2, encoding connexin 26: Observations from a population of hearing impaired cases and variable carrier rates, complex genotypes, and ethnic stratification of alleles among controls. American Journal of Medical Genetics, Part A, 2006, 140A, 2401-2415.	0.7	59
619	Connexins and Deafness: From Molecules to Disease. Seminars in Hearing, 2006, 27, 148-159.	0.5	3
620	Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential. American Journal of Physiology - Cell Physiology, 2006, 291, C1038-C1048.	2.1	45
621	Mutation of a Conserved Threonine in the Third Transmembrane Helix of \hat{l}_{\pm} - and \hat{l}^2 -Connexins Creates a Dominant-negative Closed Gap Junction Channel. Journal of Biological Chemistry, 2006, 281, 7994-8009.	1.6	77
622	Life cycle of connexins in health and disease. Biochemical Journal, 2006, 394, 527-543.	1.7	703
623	Low Conductance Gap Junctions Mediate Specific Electrical Coupling in Body-wall Muscle Cells of Caenorhabditis elegans*. Journal of Biological Chemistry, 2006, 281, 7881-7889.	1.6	62
624	Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. Journal of Cell Science, 2006, 119, 3435-3442.	1.2	142
625	Pathogenetic role of the deafness-related M34T mutation of Cx26. Human Molecular Genetics, 2006, 15, 2569-2587.	1.4	71
626	Sensori-Neural Deafness and Hypothyroidism: Autoimmunity Causing  Pseudo-Pendred Syndrome'. Hormone Research in Paediatrics, 2006, 65, 267-268.	0.8	8
627	Compartmentalized and Signal-Selective Gap Junctional Coupling in the Hearing Cochlea. Journal of Neuroscience, 2006, 26, 1260-1268.	1.7	99
628	Hereditary sensorineural hearing loss: advances in molecular genetics and mutation analysis. Expert Review of Molecular Diagnostics, 2006, 6, 375-386.	1.5	19
629	Clinical Course of Hearing and Language Development in <i>GJB2</i> and Non- <i>GJB2 </i> Deafness following Habilitation with Hearing Aids. Audiology and Neuro-Otology, 2006, 11, 59-68.	0.6	21
630	The Genetic Deafness in Chinese Population. Journal of Otology, 2006, 1, 1-10.	0.4	4
631	GJB2 mutation spectrum in deaf population in a typical southeastern area of China. Journal of Otology, 2006, $1,94-98$.	0.4	0
632	Species specificity of mammalian connexinâ€26 to form open voltageâ€gated hemichannels. FASEB Journal, 2006, 20, 2329-2338.	0.2	61

#	Article	IF	Citations
633	Characterization of Rat Spiral Ligament Cell Line Immortalized by Adenovirus 12-Simian Virus 40 Hybrid Virus. Annals of Otology, Rhinology and Laryngology, 2006, 115, 930-938.	0.6	8
634	Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC. Journal of Cell Biology, 2007, 179, 1301-1309.	2.3	148
635	Selective Cochlear Degeneration in Mice Lacking the F-Box Protein, Fbx2, a Glycoprotein-Specific Ubiquitin Ligase Subunit. Journal of Neuroscience, 2007, 27, 5163-5171.	1.7	70
636	The influence of genetic factors, smoking and cardiovascular diseases on human noise susceptibility. Audiological Medicine, 2007, 5, 82-91.	0.4	12
637	Coincidence of mutations in different connexin genes in Hungarian patients. International Journal of Molecular Medicine, 2007, 20, 315.	1.8	8
638	Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10034-10039.	3.3	174
639	Prevalence of the GJB2 Mutations in Deafness Patients of Different Ethnic Origins in Xinjiang. Journal of Otology, 2007, 2, 23-29.	0.4	1
640	Screening of GJB2 mutations in Chinese population. Journal of Otology, 2007, 2, 18-22.	0.4	3
641	GJB2 mutation spectrum in Inner Mongolia and its comparison with other Asian populations. Journal of Otology, 2007, 2, 81-91.	0.4	2
642	Analysis of phenotype–genotype connection: the story of dissecting disease pathogenesis in genomic era in China, and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1043-1061.	1.8	3
643	Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1337-1341.	3.3	114
644	Connexin 26 gene: Defining the role of the V1531 mutation. Audiological Medicine, 2007, 5, 200-206.	0.4	2
645	Relevance of the A1555G Mutation in the 12S rRNA Gene for Hearing Impairment in Austria. Otology and Neurotology, 2007, 28, 884-886.	0.7	8
646	High Incidence of GJB2 Mutations During Screening of Newborns for Hearing Loss in Austria. Ear and Hearing, 2007, 28, 298-301.	1.0	15
647	Correlation between audiometric data and the 35delG mutation in ten patients. Brazilian Journal of Otorhinolaryngology, 2007, 73, 777-783.	0.4	5
648	ldentification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience, 2007, 147, 938-956.	1.1	77
649	How similar are amino acid mutations in human genetic diseases and evolution. Biochemical and Biophysical Research Communications, 2007, 362, 233-237.	1.0	19
650	Cochlear expression of a dominant-negative GJB2R75W construct delivered through the round window membrane in mice. Neuroscience Research, 2007, 58, 250-254.	1.0	40

#	Article	IF	Citations
651	Characterization of supporting cell phenotype in the avian inner ear: Implications for sensory regeneration. Hearing Research, 2007, 227, 11-18.	0.9	33
652	Mesenchymal Stem Cell Transplantation Accelerates Hearing Recovery through the Repair of Injured Cochlear Fibrocytes. American Journal of Pathology, 2007, 171, 214-226.	1.9	77
653	Molecular Pathology in Clinical Practice., 2007,,.		8
654	The prevalence of the 235delC GJB2 mutation in a Chinese deaf population. Genetics in Medicine, 2007, 9, 283-289.	1.1	68
655	Connexin 26 mutations in autosomal recessive deafness disorders: A review. International Journal of Audiology, 2007, 46, 75-81.	0.9	42
656	Correlação entre dados audiométricos e mutação 35delG em dez pacientes. Revista Brasileira De Otorrinolaringologia, 2007, 73, 777-783.	0.2	2
657	Mutations in GJB2, GJB6, and mitochondrial DNA are rare in African American and Caribbean Hispanic individuals with hearing impairment. American Journal of Medical Genetics, Part A, 2007, 143A, 830-838.	0.7	50
658	Additional clinical manifestations in children with sensorineural hearing loss and biallelicGJB2 mutations: Who should be offeredGJB2 testing?. American Journal of Medical Genetics, Part A, 2007, 143A, 1560-1566.	0.7	21
659	Assessing parental attitudes toward genetic testing for childhood hearing loss: Before and after genetic consultation. American Journal of Medical Genetics, Part A, 2007, 143A, 1546-1553.	0.7	11
660	Molecular study in Brazilian cochlear implant recipients. American Journal of Medical Genetics, Part A, 2007, 143A, 1580-1582.	0.7	11
661	Epidemiological study of nonsyndromic hearing loss in Sicilian newborns. American Journal of Medical Genetics, Part A, 2007, 143A, 1666-1670.	0.7	8
662	Molecular genetics study of deafness in Brazil: 8-year experience. American Journal of Medical Genetics, Part A, 2007, 143A, 1574-1579.	0.7	24
663	M34T and V37I mutations in <i>GJB2</i> associated hearing impairment: Evidence for pathogenicity and reduced penetrance. American Journal of Medical Genetics, Part A, 2007, 143A, 2534-2543.	0.7	92
664	Analysis of connexin subunits required for the survival of vestibular hair cells. Journal of Comparative Neurology, 2007, 504, 499-507.	0.9	20
665	A Novel GJB2 Mutation p.Asn54His in a Patient with Palmoplantar Keratoderma, Sensorineural Hearing Loss and Knuckle Pads. Journal of Investigative Dermatology, 2007, 127, 1540-1543.	0.3	18
666	Genetic Diseases of Junctions. Journal of Investigative Dermatology, 2007, 127, 2713-2725.	0.3	132
667	Stateâ€ofâ€theâ€art for DNA technology in newborn screening. Acta Paediatrica, International Journal of Paediatrics, 1999, 88, 58-60.	0.7	22
668	Atypical Patterns of Inheritance. Seminars in Pediatric Neurology, 2007, 14, 34-45.	1.0	33

#	Article	IF	CITATIONS
669	A Deafness-Associated Mutant Human Connexin 26 Improves the Epithelial Barrier In Vitro. Journal of Membrane Biology, 2007, 218, 29-37.	1.0	45
670	Role of the Cytoplasmic Loop Domain of Cx43 in Its Intracellular Localization and Function: Possible Interaction with Cadherin. Journal of Membrane Biology, 2007, 217, 63-69.	1.0	20
671	Connexins and Gap Junctions in Mammary Gland Development and Breast Cancer Progression. Journal of Membrane Biology, 2007, 218, 107-121.	1.0	95
672	Hearing molecules: contributions from genetic deafness. Cellular and Molecular Life Sciences, 2007, 64, 566-580.	2.4	28
673	Ethnic Differences in Parental Perceptions of Genetic Testing for Deaf Infants. Journal of Genetic Counseling, 2008, 17, 129-138.	0.9	22
674	Human hereditary hearing impairment: mouse models can help to solve the puzzle. Human Genetics, 2008, 124, 325-348.	1.8	19
675	Cellular characterization of Connexin26 and Connnexin30 expression in the cochlear lateral wall. Cell and Tissue Research, 2008, 333, 395-403.	1.5	59
676	Resveratrol and X rays affect gap junction intercellular communications in human glioblastoma cells. Molecular Carcinogenesis, 2008, 47, 587-598.	1.3	32
677	Infrequency of two deletion mutations at the DFNB1 locus in patients and controls. American Journal of Medical Genetics, Part A, 2008, 146A, 934-936.	0.7	2
678	Spectrum of <i>GJB2</i> mutations causing deafness in the British Bangladeshi population. Clinical Otolaryngology, 2008, 33, 313-318.	0.6	29
679	Neuronal connexin expression in the cochlear nucleus of big brown bats. Brain Research, 2008, 1197, 76-84.	1.1	9
680	Genetic and pharmacological intervention for treatment/prevention of hearing loss. Journal of Communication Disorders, 2008, 41, 421-443.	0.8	40
681	Auditory Trauma, Protection, and Repair., 2008,,.		4
682	Genetic Hearing Loss. , 2008, , 139-148.		0
683	Homeostasis of the Inner Ear., 2008, , 149-155.		0
684	Interpreting voltage-sensitivity of gap junctions as a mechanism of cardiac memory. Mathematical Biosciences, 2008, 212, 132-148.	0.9	7
685	Efficient and specific transduction of cochlear supporting cells by adeno-associated virus serotype 5. Neuroscience Letters, 2008, 442, 134-139.	1.0	31
686	The analysis of three markers flanking GJB2 gene suggests a single origin of the most common 35delG mutation in the Moroccan population. Biochemical and Biophysical Research Communications, 2008, 377, 971-974.	1.0	14

#	Article	IF	CITATIONS
687	Incidence of the 35delG/GJB2 mutation in low-risk newborns. Journal of Maternal-Fetal and Neonatal Medicine, 2008, 21, 463-468.	0.7	5
688	Hemichannel-Mediated Inositol 1,4,5-Trisphosphate (IP ₃) Release in the Cochlea: A Novel Mechanism of IP ₃ Intercellular Signaling. Cell Communication and Adhesion, 2008, 15, 305-315.	1.0	62
689	Infant hearing loss and connexin testing in a diverse population. Genetics in Medicine, 2008, 10, 517-524.	1.1	27
690	Chapter 8 Mouse Models for Human Hereditary Deafness. Current Topics in Developmental Biology, 2008, 84, 385-429.	1.0	68
691	Audiological and genetic features of the <i>mt</i> DNA mutations. Acta Oto-Laryngologica, 2008, 128, 732-738.	0.3	29
692	Connexin26 deafness associated mutations show altered permeability to large cationic molecules. American Journal of Physiology - Cell Physiology, 2008, 295, C966-C974.	2.1	35
693	Advances in Molecular and Cellular Therapies for Hearing Loss. Molecular Therapy, 2008, 16, 224-236.	3.7	66
694	Chapter 5 Channelopathies of Transepithelial Transport and Vesicular Function. Advances in Genetics, 2008, 63, 113-152.	0.8	4
695	Connexin43 in LA-25 Cells with Active v-src Is Phosphorylated on Y247, Y265, S262, S279/282, and S368 via Multiple Signaling Pathways. Cell Communication and Adhesion, 2008, 15, 75-84.	1.0	73
696	Recent progresses in stem cell research and hearing restoration. Journal of Otology, 2008, 3, 1-8.	0.4	1
697	Noninvasive In Vivo Delivery of Transgene via Adeno-Associated Virus into Supporting Cells of the Neonatal Mouse Cochlea. Human Gene Therapy, 2008, 19, 384-390.	1.4	46
698	Gap Junctions: Connexin Functions and Roles in Human Disease. , 0, , 197-216.		1
699	Pannexins are new molecular candidates for assembling gap junctions in the cochlea. NeuroReport, 2008, 19, 1253-1257.	0.6	26
700	Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Current Opinion in Otolaryngology and Head and Neck Surgery, 2008, 16, 452-457.	0.8	104
702	Gap Junction Mediated Intercellular Metabolite Transfer in the Cochlea Is Compromised in Connexin30 Null Mice. PLoS ONE, 2008, 3, e4088.	1.1	88
703	Cochlear molecules and hereditary deafness. Frontiers in Bioscience - Landmark, 2008, Volume, 4972.	3.0	36
704	Investigação genética da surdez hereditária: mutação do gene da Conexina 26. Revista Da Sociedade Brasileira De Fonoaudiologia, 2009, 14, 142-147.	0.3	3
705	Gap-Junction Channels Dysfunction in Deafness and Hearing Loss. Antioxidants and Redox Signaling, 2009, 11, 309-322.	2.5	132

#	Article	IF	CITATIONS
706	Gap Junctions. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002576-a002576.	2.3	498
707	Screening of the <i>DFNB3</i> Locus: Identification of Three Novel Mutations of <i>MYO15A</i> Associated with Hearing Loss and Further Suggestion for Two Distinctive Genes on This Locus. Genetic Testing and Molecular Biomarkers, 2009, 13, 147-151.	0.3	39
708	<i>Connexin43</i> pseudogene in breast cancer cells offers a novel therapeutic target. Molecular Cancer Therapeutics, 2009, 8, 786-793.	1.9	44
709	Absence of mutations in <i>GJB2</i> (Connexin-26) gene in an ethnic group of southwest Iran. Indian Journal of Human Genetics, 2009, 15, 9.	0.7	12
710	Deafness Genes in Israel: Implications for Diagnostics in the Clinic. Pediatric Research, 2009, 66, 128-134.	1.1	34
711	Post-translational modifications of connexin26 revealed by mass spectrometry. Biochemical Journal, 2009, 424, 385-398.	1.7	54
712	Diverse deafness mechanisms of connexin mutations revealed by studies using in vitro approaches and mouse models. Brain Research, 2009, 1277, 52-69.	1.1	57
713	New evidence for the correlation of the p.G130V mutation in the <i>GJB2</i> gene and syndromic hearing loss with palmoplantar keratoderma. American Journal of Medical Genetics, Part A, 2009, 149A, 685-688.	0.7	22
714	Identification and characterization of pannexin expression in the mammalian cochlea. Journal of Comparative Neurology, 2009, 512, 336-346.	0.9	77
715	Connexin30 null and conditional connexin26 null mice display distinct pattern and time course of cellular degeneration in the cochlea. Journal of Comparative Neurology, 2009, 516, 569-579.	0.9	92
716	Audiologic and temporal bone imaging findings in patients with sensorineural hearing loss and <i>GJB2</i> mutations. Laryngoscope, 2009, 119, 554-558.	1.1	28
717	Pannexins, distant relatives of the connexin family with specific cellular functions?. BioEssays, 2009, 31, 953-974.	1.2	151
718	Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea. Histochemistry and Cell Biology, 2009, 131, 89-102.	0.8	18
719	Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Human Genetics, 2009, 125, 53-62.	1.8	93
720	Correlation between GJB2 mutations and audiological deficits: personal experience. European Archives of Oto-Rhino-Laryngology, 2009, 266, 489-494.	0.8	9
721	GJB2 and GJB6 gene mutations found in Indian probands with congenital hearing impairment. Journal of Genetics, 2009, 88, 267-272.	0.4	50
722	Functional consequences of novel connexin 26 mutations associated with hereditary hearing loss. European Journal of Human Genetics, 2009, 17, 502-509.	1.4	66
723	Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature, 2009, 458, 597-602.	13.7	642

#	Article	IF	Citations
724	Rapid umbilical cord diagnostic of hereditary profound hearing loss: how we do it. Clinical Otolaryngology, 2009, 34, 374-376.	0.6	2
725	Analysis of Gene Polymorphisms Associated with K ⁺ Ion Circulation in the Inner Ear of Patients Susceptible and Resistant to Noiseâ€induced Hearing Loss. Annals of Human Genetics, 2009, 73, 411-421.	0.3	67
726	Conformational stabilities of guinea pig OCP1 and OCP2. Biophysical Chemistry, 2009, 144, 108-118.	1.5	5
727	A comparison of motor abilities and perceived self-efficacy between children with hearing impairments and normal hearing children. Disability and Rehabilitation, 2009, 31, 352-358.	0.9	28
728	Low incidence of GJB2, GJB6 and mitochondrial DNA mutations in North Indian patients with non-syndromic hearing impairment. Biochemical and Biophysical Research Communications, 2009, 385, 445-448.	1.0	27
729	Genetic evaluation of American minority pediatric cochlear implant recipients. International Journal of Pediatric Otorhinolaryngology, 2009, 73, 195-203.	0.4	7
730	High frequency of connexin26 (GJB2) mutations associated with nonsyndromic hearing loss in the population of Kerala, India. International Journal of Pediatric Otorhinolaryngology, 2009, 73, 437-443.	0.4	33
731	The M34A mutant of Connexin26 reveals active conductance states in pore-suspending membranes. Journal of Structural Biology, 2009, 168, 168-176.	1.3	24
732	Structural studies of the N-terminus of Connexin 32 using 1H NMR spectroscopy. Archives of Biochemistry and Biophysics, 2009, 490, 9-16.	1.4	19
733	Gene Therapy and Stem Cell Transplantation: Strategies for Hearing Restoration. Advances in Oto-Rhino-Laryngology, 2009, 66, 64-86.	1.6	48
734	Statistical study of 35delG mutation of GJB2 gene: A meta-analysis of carrier frequency. International Journal of Audiology, 2009, 48, 363-370.	0.9	60
735	Mutation Analysis of Familial <i>GJB2</i> Related Deafness in Iranian Azeri Turkish Patients. Genetic Testing and Molecular Biomarkers, 2009, 13, 689-692.	0.3	31
736	Connexin-26 mutations in deafness and skin disease. Expert Reviews in Molecular Medicine, 2009, 11, e35.	1.6	99
737	GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment. Journal of Translational Medicine, 2009, 7, 26.	1.8	157
738	Spectrum and Frequency of the GJB2 Gene Mutations Among Latvian Patients with Prelingual Nonsyndromic Hearing Loss. Proceedings of the Latvian Academy of Sciences, 2009, 63, 198-203.	0.0	0
739	The genetic bases for non-syndromic hearing loss among Chinese. Journal of Human Genetics, 2009, 54, 131-140.	1.1	50
740	Hearing Loss: Mechanisms Revealed by Genetics and Cell Biology. Annual Review of Genetics, 2009, 43, 411-437.	3.2	178
741	Non-invasive prenatal diagnosis using cell-free fetal DNA in maternal plasma from PGD pregnancies. Reproductive BioMedicine Online, 2009, 19, 714-720.	1.1	5

#	Article	IF	CITATIONS
742	Unique expression of connexins in the human cochlea. Hearing Research, 2009, 250, 55-62.	0.9	94
743	Analysis of the <i>GJB2</i> and <i>GJB6</i> Genes in Italian Patients with Nonsyndromic Hearing Loss: Frequencies, Novel Mutations, Genotypes, and Degree of Hearing Loss. Genetic Testing and Molecular Biomarkers, 2009, 13, 209-217.	0.3	24
744	Functional Studies Reveal New Mechanisms for Deafness Caused by Connexin Mutations. Otology and Neurotology, 2009, 30, 237-240.	0.7	8
745	Genetic Studies on Noise-Induced Hearing Loss: A Review. Ear and Hearing, 2009, 30, 151-159.	1.0	114
746	REGULATORY EFFECTS OF MYOENDOTHELIAL GAP JUNCTION ON VASCULAR REACTIVITY AFTER HEMORRHAGIC SHOCK IN RATS. Shock, 2009, 31, 80-86.	1.0	15
747	Factors influencing parental decision about genetics evaluation for their deaf or hard-of-hearing child. Genetics in Medicine, 2009, 11, 248-255.	1.1	16
748	GJB2 Mutations in Non Syndromic Hearing Loss in the Republic of Macedonia. Balkan Journal of Medical Genetics, 2009, 12, 11-16.	0.5	2
749	Dysfunctions of the Diffusional Membrane Pathways Mediated Hemichannels in Inherited and Acquired Human Diseases. Current Vascular Pharmacology, 2009, 7, 486-505.	0.8	30
750	Connexin43 phosphorylation: structural changes and biological effects. Biochemical Journal, 2009, 419, 261-272.	1.7	487
751	Audiologic Phenotype and Progression in GJB2 (Connexin 26) Hearing Loss. JAMA Otolaryngology, 2010, 136, 81.	1.5	84
752	Gap junctions in inherited human disease. Pflugers Archiv European Journal of Physiology, 2010, 460, 451-466.	1.3	57
753	A novel mutation in the connexin 29 gene may contribute to nonsyndromic hearing loss. Human Genetics, 2010, 127, 191-199.	1.8	14
754	Novel mutations in the connexin43 (GJA1) and GJA1 pseudogene may contribute to nonsyndromic hearing loss. Human Genetics, 2010, 127, 545-551.	1.8	18
755	Two Novel Missense Mutations in the Connexin 26 Gene in Turkish Patients with Nonsyndromic Hearing Loss. Biochemical Genetics, 2010, 48, 248-256.	0.8	14
756	Trafficking abnormality and ER stress underlie functional deficiency of hearing impairmentassociated connexin-31 mutants. Protein and Cell, 2010, 1, 935-943.	4.8	17
757	Critical role of connexin43 in zebrafish late primitive and definitive hematopoiesis. Fish Physiology and Biochemistry, 2010, 36, 945-951.	0.9	5
758	Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiology of Disease, 2010, 38, 226-236.	2.1	44
759	Structural and functional studies of gap junction channels. Current Opinion in Structural Biology, 2010, 20, 423-430.	2.6	63

#	Article	IF	Citations
760	Transient disruption of liver gap junctional intercellular communication and induction of apoptosis after administration of 1,4-bis[2-(3,5 dichloropyridyloxy)]benzene in mice. Experimental and Toxicologic Pathology, 2010, 62, 525-531.	2.1	3
761	Risk indicators for hearing loss in infants treated in different Neonatal Intensive Care Units. Acta Paediatrica, International Journal of Paediatrics, 2010, 99, 344-349.	0.7	32
762	R75Q dominant mutation in <i>GJB2</i> gene silenced by the in cis recessive mutation c.35delG. American Journal of Medical Genetics, Part A, 2010, 152A, 2658-2660.	0.7	6
763	Connexin 26 mutations and nonsyndromic hearing impairment in Northern Finland. Laryngoscope, 2010, 113, 1758-1763.	1.1	31
764	Hearing loss: a common disorder caused by many rare alleles. Annals of the New York Academy of Sciences, 2010, 1214, 168-179.	1.8	52
765	Original Synthetic Report: Carrier frequencies of the common $\langle i \rangle GJB2 \langle j \rangle$ (connexin-26) 35delG mutation in the Greek-Turkish area: predominance of the mutation in Crete. International Journal of Modern Anthropology, 2010, 1, .	0.3	1
766	Hereditary Palmoplantar Keratoderma and Deafness Resulting from Genetic Mutation of Connexin 26. Journal of Korean Medical Science, 2010, 25, 1539.	1.1	9
767	Finding New Genes for Non-Syndromic Hearing Loss through an In Silico Prioritization Study. PLoS ONE, 2010, 5, e12742.	1.1	10
768	Medidas de audição de pais de indivÃduos com deficiência auditiva de herança autossômica recessiva. Pró-fono: Revista De Atualização CientÃfica, 2010, 22, 403-408.	0.5	3
769	Glia modulation of the extracellular milieu as a factor in central CO ₂ chemosensitivity and respiratory control. Journal of Applied Physiology, 2010, 108, 1803-1811.	1.2	37
770	Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome. Journal of General Physiology, 2010, 136, 47-62.	0.9	127
771	Impact of gene patents and licensing practices on access to genetic testing for hearing loss. Genetics in Medicine, 2010, 12, S171-S193.	1.1	6
772	Screening for GJB2 and GJB6 gene mutations in patients from Campania region with sensorineural hearing loss. International Journal of Audiology, 2010, 49, 326-331.	0.9	8
773	Connexin Modulators and Their Potential Targets under the Magnifying Glass. Current Medicinal Chemistry, 2010, 17, 4191-4230.	1.2	52
776	Next Generation DNA Sequencing and the Future of Genomic Medicine. Genes, 2010, 1, 38-69.	1.0	60
777	Novel expression patterns of connexin 30.3 in adult rat cochlea. Hearing Research, 2010, 265, 77-82.	0.9	9
778	Minimally invasive genetic screen for GJB2 related deafness using dried blood spots. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 75-81.	0.4	6
779	Prevalence of DFNB1 mutations in Argentinean children with non-syndromic deafness. Report of a novel mutation in GJB2. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 250-254.	0.4	28

#	Article	IF	CITATIONS
780	Prevalence of the c.35delG and p.W24X mutations in the GJB2 gene in patients with nonsyndromic hearing loss from North-West Romania. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 351-355.	0.4	22
781	High homogeneity in auditory outcome of pediatric Cl-patients with mutations in Gap-Junction-Protein Beta2. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 791-795.	0.4	12
782	Newborn hearing screening and genetic testing in 8974 Brazilian neonates. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 926-929.	0.4	19
783	Cochlear implantation in common forms of genetic deafness. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 1107-1112.	0.4	28
784	Hearing Impairment: A Panoply of Genes and Functions. Neuron, 2010, 68, 293-308.	3.8	138
785	Connexin-26–associated deafness: Phenotypic variability and progression of hearing loss. Genetics in Medicine, 2010, 12, 174-181.	1.1	80
786	Spectrum of <i>GJB2</i> Mutations in a Cohort of Nonsyndromic Hearing Loss Cases from the Kingdom of Saudi Arabia. Genetic Testing and Molecular Biomarkers, 2010, 14, 79-83.	0.3	24
787	Determination of the carrier frequencies of selected <i>GJB2 < /i>International Journal of Audiology, 2011, 50, 694-698.</i>	0.9	4
788	Mutation Screening of the <i>GJA7</i> (Cx45) Gene in a Large International Series of Probands with Nonsyndromic Hearing Impairment. Genetic Testing and Molecular Biomarkers, 2011, 15, 333-336.	0.3	2
789	Phenotype–Genotype Correlation in 295 Chinese Deaf Subjects with Biallelic Causative Mutations in the GJB2 Gene. Genetic Testing and Molecular Biomarkers, 2011, 15, 619-625.	0.3	10
790	Current Status and Prospects of Gene Therapy for the Inner Ear. Human Gene Therapy, 2011, 22, 1311-1322.	1.4	18
791	Towards an Etiologic Diagnosis: Assessing the Patient with Hearing Loss. Advances in Oto-Rhino-Laryngology, 2011, 70, 28-36.	1.6	14
792	High Throughput Assay of Diffusion through Cx43 Gap Junction Channels with a Microfluidic Chip. Analytical Chemistry, 2011, 83, 933-939.	3.2	28
793	Mutational analysis for <i>GJB2, GJB6</i> , and <i>GJB3</i> genes in Campania within a universal neonatal hearing screening programme. International Journal of Audiology, 2011, 50, 866-870.	0.9	8
794	Autosomal recessive deafness 1A (DFNB1A) in Yakut population isolate in Eastern Siberia: extensive accumulation of the splice site mutation IVS1+1G>A in GJB2 gene as a result of founder effect. Journal of Human Genetics, 2011, 56, 631-639.	1.1	40
795	How the Genetics of Deafness Illuminates Auditory Physiology. Annual Review of Physiology, 2011, 73, 311-334.	5.6	195
796	The clinical features of patients with the homozygous 235delC and the compound-heterozygous Y136X/G45E of the GJB2 mutations (Connexin 26) in cochlear implant recipients. Auris Nasus Larynx, 2011, 38, 444-449.	0.5	6
797	Etiological diagnosis in the hearing impaired newborn: Proposal of a flow chart. International Journal of Pediatric Otorhinolaryngology, 2011, 75, 27-32.	0.4	27

#	ARTICLE	IF	CITATIONS
798	Absence of GJB6 mutations in Indian patients with non-syndromic hearing loss. International Journal of Pediatric Otorhinolaryngology, 2011, 75, 356-359.	0.4	10
799	Absence of CJB2 gene mutations, the CJB6 deletion (CJB6-D13S1830) and four common mitochondrial mutations in nonsyndromic genetic hearing loss in a South African population. International Journal of Pediatric Otorhinolaryngology, 2011, 75, 611-617.	0.4	48
800	Viral vector tropism for supporting cells in the developing murine cochlea. Hearing Research, 2011, 277, 28-36.	0.9	21
801	Hereditary hearing loss: From human mutation to mechanism. Hearing Research, 2011, 281, 3-10.	0.9	54
802	Deafness in the genomics era. Hearing Research, 2011, 282, 1-9.	0.9	74
803	Dominant Cx26 mutants associated with hearing loss have dominant-negative effects on wild type Cx26. Molecular and Cellular Neurosciences, 2011, 47, 71-78.	1.0	26
804	Asymmetric Configurations and N-terminal Rearrangements in Connexin26 Gap Junction Channels. Journal of Molecular Biology, 2011, 405, 724-735.	2.0	63
805	D184E mutation in aquaporin-4 gene impairs water permeability and links to deafness. Neuroscience, 2011, 197, 80-88.	1.1	31
806	Impact of Consanguineous Marriages in <i>GJB2</i> -Related Hearing Loss in the Iranian Population: A Report of a Novel Variant. Genetic Testing and Molecular Biomarkers, 2011, 15, 489-493.	0.3	31
807	Functional Evaluation of GJB2 Variants in Nonsyndromic Hearing Loss. Molecular Medicine, 2011, 17, 550-556.	1.9	30
808	A Novel Missense Mutation in the Connexin30 Causes Nonsyndromic Hearing Loss. PLoS ONE, 2011, 6, e21473.	1,1	21
809	BAAV Mediated GJB2 Gene Transfer Restores Gap Junction Coupling in Cochlear Organotypic Cultures from Deaf Cx26Sox10Cre Mice. PLoS ONE, 2011, 6, e23279.	1.1	69
810	Comprehensive Diagnostic Battery for Evaluating Sensorineural Hearing Loss in Children. Otology and Neurotology, 2011, 32, 259-264.	0.7	58
811	Diagnostic Yield in the Workup of Congenital Sensorineural Hearing Loss Is Dependent on Patient Ethnicity. Otology and Neurotology, 2011, 32, 81-87.	0.7	19
812	Mutations of the Connexin 26 gene in families with non-syndromic hearing loss. Molecular Medicine Reports, 2011, 4, 331-5.	1.1	17
813	Key functions for gap junctions in skin and hearing. Biochemical Journal, 2011, 438, 245-254.	1.7	49
814	The microcirculation: physiology at the mesoscale. Journal of Physiology, 2011, 589, 1047-1052.	1.3	47
815	Structure of the gap junction channel and its implications for its biological functions. Cellular and Molecular Life Sciences, 2011, 68, 1115-1129.	2.4	115

#	Article	IF	Citations
816	Structural physiology based on electron crystallography. Protein Science, 2011, 20, 806-817.	3.1	11
817	Causes of permanent childhood hearing impairment. Laryngoscope, 2011, 121, 409-416.	1.1	37
818	Temporal bone abnormalities in children with <i>GJB2</i> mutations. Laryngoscope, 2011, 121, 630-635.	1.1	18
819	Did the <i>GJB2</i> 35delG mutation originate in Iran?. American Journal of Medical Genetics, Part A, 2011, 155, 2453-2458.	0.7	15
820	Divergent patrilineal signals in three Roma populations. American Journal of Physical Anthropology, 2011, 144, 80-91.	2.1	16
821	Detection of the GJB2 Mutation in Iranian Children with Hearing Loss Treated with Cochlear Implantation. Balkan Journal of Medical Genetics, 2011, 14, 19-24.	0.5	1
822	Do Cell Junction Protein Mutations Cause an Airway Phenotype in Mice or Humans?. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 202-220.	1.4	6
824	Identification of direct downstream targets of Dlx5 during early inner ear development. Human Molecular Genetics, 2011, 20, 1262-1273.	1.4	37
825	Molecular Investigation of Pediatric Portuguese Patients with Sensorineural Hearing Loss. Genetics Research International, 2011, 2011, 1-5.	2.0	9
826	Connexin 26 mutations in congenital SNHL in Indian population. Indian Journal of Otology, 2011, 17, 145.	0.0	6
827	Investigation of the Reciprocal Relationship between the Expression of Two Gap Junction Connexin Proteins, Connexin46 and Connexin43. Journal of Biological Chemistry, 2011, 286, 24519-24533.	1.6	31
828	Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50. American Journal of Physiology - Cell Physiology, 2011, 300, C1055-C1064.	2.1	39
829	GJB2 and MTRNR1 contributions in children with hearing impairment from Northern Cameroon. International Journal of Audiology, 2011, 50, 133-138.	0.9	16
830	Electron crystallography for structural and functional studies of membrane proteins. Microscopy (Oxford, England), 2011, 60, S149-S159.	0.7	16
831	<i>GJB2</i> (Connexin 26) gene mutations among hearing-impaired persons in a Swedish cohort. Acta Oto-Laryngologica, 2012, 132, 1301-1305.	0.3	10
832	Permeation Pathway of Homomeric Connexin 26 and Connexin 30 Channels Investigated by Molecular Dynamics. Journal of Biomolecular Structure and Dynamics, 2012, 29, 985-998.	2.0	50
833	Activation of Akt, Not Connexin 43 Protein Ubiquitination, Regulates Gap Junction Stability. Journal of Biological Chemistry, 2012, 287, 2600-2607.	1.6	91
834	Genomic advances for gene discovery in hereditary hearing loss. Journal of Basic and Clinical Physiology and Pharmacology, 2012, 23, 93-7.	0.7	13

#	Article	IF	CITATIONS
835	Prevalence and audiological features in carriers of GJB2 mutations, c.35delG and c.101T>C (p.M34T), in a UK population study. BMJ Open, 2012, 2, e001238.	0.8	20
836	Cochlear Implantation and Congenital Deafness. Otology and Neurotology, 2012, 33, 539-544.	0.7	11
837	Novel connexin 30 and connexin 26 mutational spectrum in patients with progressive sensorineural hearing loss. Journal of Laryngology and Otology, 2012, 126, 763-769.	0.4	8
838	Intracellular Delivery of Short Interfering RNA in Rat Organ of Corti Using a Cell-penetrating Peptide PepFect6. Molecular Therapy - Nucleic Acids, 2012, 1, e61.	2.3	17
839	Human Cochlea: Anatomical Characteristics and their Relevance for Cochlear Implantation. Anatomical Record, 2012, 295, 1791-1811.	0.8	133
840	Mutation detection in GJB2 gene among Malays with non-syndromic hearing loss. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 1175-1179.	0.4	10
841	GJB2(Connexin-26) mutations are not frequent among hearing impaired patients in East Greenland. International Journal of Audiology, 2012, 51, 433-436.	0.9	9
842	Biological role of connexin intercellular channels and hemichannels. Archives of Biochemistry and Biophysics, 2012, 524, 2-15.	1.4	191
844	Prevalence of mutations located at the dfnb1 locus in a population of cochlear implanted children in eastern Romania. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 90-94.	0.4	19
845	Microarray-based mutation detection of pediatric sporadic nonsyndromic hearing loss in China. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 235-239.	0.4	19
846	Prevalence of GJB6 mutations in Chinese patients with non-syndromic hearing loss. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 265-267.	0.4	12
847	Prevalence of the 35delG mutation in deaf South Brazilian infants submitted to cochlear implantation. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 287-290.	0.4	12
848	Segregation of a new mutation in SLC26A4 and p.E47X mutation in GJB2 within a consanguineous Tunisian family affected with Pendred syndrome. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 832-836.	0.4	13
849	Connexins in epidermal homeostasis and skin disease. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1952-1961.	1.4	61
850	Early developmental expression of connexin26 in the cochlea contributes to its dominate functional role in the cochlear gap junctions. Biochemical and Biophysical Research Communications, 2012, 417, 245-250.	1.0	33
851	TDT-HET: A new transmission disequilibrium test that incorporates locus heterogeneity into the analysis of family-based association data. BMC Bioinformatics, 2012, 13, 13.	1.2	27
852	Identification of Novel Genes Involved in Migraine. Headache, 2012, 52, 107-110.	1.8	33
853	ATP activates P2X receptors to mediate gap junctional coupling in the cochlea. Biochemical and Biophysical Research Communications, 2012, 426, 528-532.	1.0	36

#	ARTICLE	IF	CITATIONS
854	Connexins and Cap-independent translation: Role of internal ribosome entry sites. Brain Research, 2012, 1487, 99-106.	1.1	10
856	Hereditary Hearing Loss. , 2012, , 1013-1024.		0
857	Gap Junctions. , 2012, 2, 1981-2035.		331
858	Prevalence of GJB2 (CX26) gene mutations in south Iranian patients with autosomal recessive nonsyndromic sensorineural hearing loss. Molecular Biology Reports, 2012, 39, 10481-10487.	1.0	14
859	Connexin Composition in Apposed Gap Junction Hemiplaques Revealed by Matched Double-Replica Freeze-Fracture Replica Immunogold Labeling. Journal of Membrane Biology, 2012, 245, 333-344.	1.0	25
860	Defining the Cellular Environment in the Organ of Corti following Extensive Hair Cell Loss: A Basis for Future Sensory Cell Replacement in the Cochlea. PLoS ONE, 2012, 7, e30577.	1.1	69
861	Autosomal recessive nonsyndromic deafness genes: a review. Frontiers in Bioscience - Landmark, 2012, 17, 2213.	3.0	121
862	Genetics of isolated auditory neuropathies. Frontiers in Bioscience - Landmark, 2012, 17, 1251.	3.0	25
863	Genetics of Hearing Loss. , 2012, , .		1
864	Genetics of hearing loss: focus on DFNA2. The Application of Clinical Genetics, 2012, 5, 97.	1.4	15
865	Cell–cell connectivity: desmosomes and disease. Journal of Pathology, 2012, 226, 158-171.	2.1	153
866	Homozygous M34T mutation of the <i>GJB2</i> gene associates with an autosomal recessive nonsyndromic sensorineural hearing impairment in Finnish families. Acta Oto-Laryngologica, 2012, 132, 1-12.	0.3	3
867	Congenital cytomegalovirus infection – a common cause of hearing loss of unknown aetiology. Acta Paediatrica, International Journal of Paediatrics, 2012, 101, e357-62.	0.7	31
868	Deaf Genetic Testing and Psychological Wellâ€Being in Deaf Adults. Journal of Genetic Counseling, 2013, 22, 492-507.	0.9	12
869	A novel frameshift mutation (c.405delC) in the GJB2 gene associated with autosomal recessive hearing loss in two Tunisian families. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 1485-1488.	0.4	3
870	Compound heterozygosity for dominant and recessive GJB2 mutations in a Tunisian family and association with successful cochlear implant outcome. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 1481-1484.	0.4	10
871	Hereditary Hearing Impairment. , 2013, , 1-38.		0
872	Deafness. Springer Handbook of Auditory Research, 2013, , .	0.3	3

#	Article	IF	CITATIONS
873	Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. Journal of Cell Science, 2014, 127, 455-64.	1.2	121
874	Insights into the Role of Cell–Cell Junctions in Physiology and Disease. International Review of Cell and Molecular Biology, 2013, 306, 187-221.	1.6	32
875	The triological society and its research legacy. Laryngoscope, 2013, 123, 2331-2333.	1.1	0
876	Genome-wide analysis reveals a novel autosomal-recessive hearing loss locus DFNB80 on chromosome 2p16.1-p21. Journal of Human Genetics, 2013, 58, 98-101.	1.1	3
877	Cell-to-cell communication in plants, animals, and fungi: a comparative review. Die Naturwissenschaften, 2013, 100, 3-19.	0.6	86
878	A case of palmoplantar lichen planus in a patient with congenital sensorineural deafness. Clinical and Experimental Dermatology, 2013, 38, 30-32.	0.6	3
879	Connexin 36, a key element in pancreatic beta cell function. Neuropharmacology, 2013, 75, 557-566.	2.0	28
880	Mesenchymal stem cell transplantation to the mouse cochlea as a treatment for childhood sensorineural hearing loss. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 936-942.	0.4	32
881	Biallelic nonsense mutations in the otogelin-like gene (OTOGL) in a child affected by mild to moderate hearing impairment. Gene, 2013, 527, 537-540.	1.0	19
882	Aetiology of congenital hearing loss: A cohort review of 569 subjects. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 1385-1391.	0.4	24
883	GJB2 and GJB6 screening in Tunisian patients with autosomal recessive deafness. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 714-716.	0.4	10
884	EMQN Best Practice guidelines for diagnostic testing of mutations causing non-syndromic hearing impairment at the DFNB1 locus. European Journal of Human Genetics, 2013, 21, 1325-1329.	1.4	28
885	Hair phenotype in non-syndromic deafness. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 1280-1285.	0.4	2
886	Update of the spectrum of GJB2 gene mutations in Tunisian families with autosomal recessive nonsyndromic hearing loss. Gene, 2013, 525, 1-4.	1.0	31
887	Non-syndromic hearing impairment in a multi-ethnic population of Northeastern Brazil. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 1077-1082.	0.4	13
888	Active cochlear amplification is dependent on supporting cell gap junctions. Nature Communications, 2013, 4, 1786.	5.8	67
889	Pathophysiology of Gap Junctions in the Brain. , 2013, , 31-49.		1
890	The role of connexins in ear and skin physiology — Functional insights from disease-associated mutations. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 167-178.	1.4	106

#	Article	IF	CITATIONS
891	Etiologic and diagnostic evaluation: Algorithm for severe to profound sensorineural hearing loss in Brazil. International Journal of Audiology, 2013, 52, 746-752.	0.9	14
892	The enigmatic root cell – Emerging roles contributing to fluid homeostasis within the cochlear outer sulcus. Hearing Research, 2013, 303, 1-11.	0.9	30
893	Molecular Etiology of Deafness and Cochlear Consequences. Springer Handbook of Auditory Research, 2013, , 17-39.	0.3	0
894	Identification of a SNP in a Regulatory Region of GJB2 Associated With Idiopathic Nonsyndromic Autosomal Recessive Hearing Loss in a Multicenter Study. Otology and Neurotology, 2013, 34, 650-656.	0.7	3
895	Sensory Organ Disorders (Retina, Auditory, Olfactory, Gustatory)., 2013,, 731-759.		0
897	Role of Gap Junctions and Hemichannels in Parasitic Infections. BioMed Research International, 2013, 2013, 1-17.	0.9	11
898	Connexin 26 and 30 mutations in paediatric patients with congenital, non-syndromic hearing loss treated with cochlear implantation in Mediterranean Turkey. Journal of Laryngology and Otology, 2013, 127, 33-37.	0.4	17
899	A study of GJB2 and delGJB6-D13S1830 mutations in Brazilian non-syndromic deaf children from the Amazon region. Brazilian Journal of Otorhinolaryngology, 2013, 79, 95-99.	0.4	15
900	Optimization of simultaneous screening of the main mutations involved in non-syndromic deafness using the TaqMan® OpenArrayâ,,¢ Genotyping Platform. BMC Medical Genetics, 2013, 14, 112.	2.1	21
901	Six Innexins Contribute to Electrical Coupling of C. elegans Body-Wall Muscle. PLoS ONE, 2013, 8, e76877.	1.1	21
902	Gap Junctional Communication in Osteocytes Is Amplified by Low Intensity Vibrations In Vitro. PLoS ONE, 2014, 9, e90840.	1.1	49
903	Deficiency of Transcription Factor Brn4 Disrupts Cochlear Gap Junction Plaques in a Model of DFN3 Non-Syndromic Deafness. PLoS ONE, 2014, 9, e108216.	1.1	9
904	Connexin and Pannexin Based Channels in the Nervous System. , 2014, , 257-283.		2
905	Molecular dynamics simulations highlight structural and functional alterations in deafnessââ,¬â€œrelated M34T mutation of connexin 26. Frontiers in Physiology, 2014, 5, 85.	1.3	32
906	Aberrant Cx26 hemichannels and keratitis-ichthyosis-deafness syndrome: insights into syndromic hearing loss. Frontiers in Cellular Neuroscience, 2014, 8, 354.	1.8	46
907	Human Gene Discovery for Understanding Development of the Inner Ear and Hearing Loss. , 2014, , 107-127.		1
908	American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genetics in Medicine, 2014, 16, 347-355.	1.1	207
909	Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6. European Journal of Human Genetics, 2014, 22, 208-215.	1.4	60

#	Article	IF	CITATIONS
910	Apparent phenotypic anticipation in autosomal dominant connexin 26 deafness. Journal of Basic and Clinical Physiology and Pharmacology, 2014, 25, 289-292.	0.7	1
911	Mechanism of a novel missense mutation, p.V174M, of the human connexin31 (<i>GJB3</i>) in causing nonsyndromic hearing loss. Biochemistry and Cell Biology, 2014, 92, 251-257.	0.9	8
912	Mutation analysis of the GJB2 and GJB6 genes in Egyptian patients with autosomal recessive sensorineural nonsyndromic hearing loss. Middle East Journal of Medical Genetics, 2014, 3, 11-15.	0.0	3
913	Consanguinity and Hereditary Hearing Loss in Qatar. Human Heredity, 2014, 77, 175-182.	0.4	15
914	Non-syndromic hereditary sensorineural hearing loss: review of the genes involved. Journal of Laryngology and Otology, 2014, 128, 13-21.	0.4	27
915	Connexin 26 Gene Mutations in Non-Syndromic Hearing Loss Among Kuwaiti Patients. Medical Principles and Practice, 2014, 23, 74-79.	1.1	8
916	Down regulated connexin26 at different postnatal stage displayed different types of cellular degeneration and formation of organ of Corti. Biochemical and Biophysical Research Communications, 2014, 445, 71-77.	1.0	28
917	GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope, 2014, 124, E34-E53.	1.1	230
918	Hearing loss associated with an unusual mutation combination in the gap junction beta 2 (GJB2) gene in a Chinese family. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 599-603.	0.4	4
919	Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders. Biochemical and Biophysical Research Communications, 2014, 448, 28-32.	1.0	56
920	Particular distribution of the GJB2/GJB6 gene mutations in Mexican population with hearing impairment. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 1057-1060.	0.4	9
921	The connexin 30.3 of zebrafish homologue of human connexin 26 may play similar role in the inner ear. Hearing Research, 2014, 313, 55-66.	0.9	23
922	Genetics of non-syndromic hearing loss in the Middle East. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 2026-2036.	0.4	45
923	Common genes for non-syndromic deafness are uncommon in sub-Saharan Africa: A report from Nigeria. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 1870-1873.	0.4	26
924	Dynamin 2 interacts with connexin 26 to regulate its degradation and function in gap junction formation. International Journal of Biochemistry and Cell Biology, 2014, 55, 288-297.	1.2	8
925	Lower carrier rate of GJB2 W24X ancestral Indian mutation in Roma samples from Hungary: implication for public health intervention. Molecular Biology Reports, 2014, 41, 6105-6110.	1.0	2
926	Structure and closure of connexin gap junction channels. FEBS Letters, 2014, 588, 1230-1237.	1.3	82
927	High incidence of GJB2 gene mutations among assortatively mating hearing impaired families in Kerala: future implications. Journal of Genetics, 2014, 93, 207-213.	0.4	7

#	Article	IF	CITATIONS
928	Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose. Biochemical and Biophysical Research Communications, 2014, 452, 340-346.	1.0	32
929	Connexin 32 and 43 mutations: Do they play a role in chronic rhinosinusitis?. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2014, 35, 33-36.	0.6	2
930	GJB2 mutations are rare in probands with hearing loss in Chinese assortative mating families. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 244-247.	0.4	0
931	Prevalence of DFNB1 mutations among cochlear implant users in Slovakia and its clinical implications. European Archives of Oto-Rhino-Laryngology, 2014, 271, 1401-1407.	0.8	4
932	Letter to the Editor: Detection of the GJB2 gene mutations in two children with hearing impairment. Romanian Journal of Laboratory Medicine, 2015, 23, 495-499.	0.1	2
933	Alkaline pH sensor molecules. Journal of Neuroscience Research, 2015, 93, 1623-1630.	1.3	8
934	Screening of genetic alterations related to non-syndromic hearing loss using MassARRAY iPLEX® technology. BMC Medical Genetics, 2015, 16, 85.	2.1	23
935	Molecular architecture of the stria vascularis membrane transport system, which is essential for physiological functions of the mammalian cochlea. European Journal of Neuroscience, 2015, 42, 1984-2002.	1.2	33
936	A genetic coding variant rs72474224 in GJB2 is associated with clinical features of psoriasis vulgaris in a Chinese Han population. Tissue Antigens, 2015, 86, 134-138.	1.0	8
937	Prevalence of Deafnessâ€Associated Connexinâ€26 (<i>GJB2</i>) and Connexinâ€30 (<i>GJB6</i>) Pathogenic Alleles in a Large Patient Cohort from Eastern Sicily. Annals of Human Genetics, 2015, 79, 341-349.	0.3	13
938	A study of deafness-related genetic mutations as a basis for strategies to prevent hereditary hearing loss in Hebei, China. Intractable and Rare Diseases Research, 2015, 4, 131-138.	0.3	6
939	Advances in Genetic Diagnosis and Treatment of Hearing Loss — A Thirst for Revolution. , 0, , .		0
940	Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss ââ,¬â€œ A Common Hereditary Deafness. Frontiers in Cellular Neuroscience, 2015, 9, 202.	1.8	114
941	Preferentially regulated expression of connexin 43 in the developing spiral ganglion neurons and afferent terminals in post-natal rat cochlea. European Journal of Histochemistry, 2015, 59, 2464.	0.6	13
942	Residual Hearing in DFNB1 Deafness and Its Clinical Implication in a Korean Population. PLoS ONE, 2015, 10, e0125416.	1.1	11
943	Identification of a Novel MYO15A Mutation in a Chinese Family with Autosomal Recessive Nonsyndromic Hearing Loss. PLoS ONE, 2015, 10, e0136306.	1.1	32
944	Deformation of the Outer Hair Cells and the Accumulation of Caveolin-2 in Connexin 26 Deficient Mice. PLoS ONE, 2015, 10, e0141258.	1.1	8
945	The Genetics of Deafness in Domestic Animals. Frontiers in Veterinary Science, 2015, 2, 29.	0.9	46

#	Article	IF	Citations
946	Single Nucleotide Polymorphisms of the GJB2 and GJB6 Genes Are Associated with Autosomal Recessive Nonsyndromic Hearing Loss. Bio Med Research International, 2015, 2015, 1-8.	0.9	9
947	Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Developmental Neurobiology, 2015, 75, 1219-1240.	1.5	80
948	The p.Cys169Tyr variant of connexin 26 is not a polymorphism. Human Molecular Genetics, 2015, 24, 2641-2648.	1.4	14
949	A new compound heterozygous mutation in GJB2 causes nonsyndromic hearing loss in a consanguineous Iranian family. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 553-556.	0.4	5
950	Connexins and gap junctions in the inner ear – it's not just about K+ recycling. Cell and Tissue Research, 2015, 360, 633-644.	1.5	80
951	The controversial p.Met34Thr variant in GJB2 gene: Two siblings, one genotype, two phenotypes. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 1316-1319.	0.4	7
952	Carrier frequency of the GJB2 mutations that cause hereditary hearing loss in the Japanese population. Journal of Human Genetics, 2015, 60, 613-617.	1.1	19
953	Inner ear cell therapy targeting hereditary deafness by activation of stem cell homing factors. Frontiers in Pharmacology, 2015, 6, 2.	1.6	16
954	Whole-exome sequencing and its impact in hereditary hearing loss. Genetical Research, 2015, 97, e4.	0.3	43
955	Gene Expression Profiles of the Cochlea and Vestibular Endorgans. Annals of Otology, Rhinology and Laryngology, 2015, 124, 6S-48S.	0.6	44
956	Gene Therapy for Sensorineural Hearing Loss. Ear and Hearing, 2015, 36, 1-7.	1.0	51
957	New treatment options for hearing loss. Nature Reviews Drug Discovery, 2015, 14, 346-365.	21.5	151
958	Mutation spectrum of autosomal recessive non-syndromic hearing loss in central Iran. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 1892-1895.	0.4	10
959	Radiographic Evaluation of Children with Hearing Loss. Otolaryngologic Clinics of North America, 2015, 48, 913-932.	0.5	23
960	Gap Junction Channels: The Electrical Conduit of the Intercellular World. Springer Series in Biophysics, 2015, , 313-341.	0.4	0
961	Electrophysiology of Unconventional Channels and Pores. Springer Series in Biophysics, 2015, , .	0.4	9
962	Prevalence of 35delG and Met34Thr GJB2 variants in Portuguese samples. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 2187-2190.	0.4	3
963	Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene. Experimental and Molecular Medicine, 2015, 47, e169-e169.	3.2	9

#	Article	IF	CITATIONS
964	Genetics of Hearing Lossâ€"Nonsyndromic. Otolaryngologic Clinics of North America, 2015, 48, 1063-1072.	0.5	48
965	Genetics of auditory mechano-electrical transduction. Pflugers Archiv European Journal of Physiology, 2015, 467, 49-72.	1.3	25
966	Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing. Neurobiology of Disease, 2015, 73, 418-427.	2.1	31
967	Predictive factors and outcomes of cochlear implantation in patients with connexin 26 mutation: A comparative study. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2015, 36, 7-12.	0.6	3
968	A genotype–phenotype correlation in Sicilian patients with GJB2 biallelic mutations. European Archives of Oto-Rhino-Laryngology, 2015, 272, 1857-1865.	0.8	2
969	Radix astragali inhibits the down-regulation of connexin 26 in the stria vascularis of the guinea pig cochlea after acoustic trauma. European Archives of Oto-Rhino-Laryngology, 2015, 272, 2153-2160.	0.8	6
970	Reduced Connexin26 in the Mature Cochlea Increases Susceptibility to Noise-Induced Hearing Loss in Mice. International Journal of Molecular Sciences, 2016, 17, 301.	1.8	28
971	Investigation of the GJB6 Deletion Mutations Del (GJB6-D13s1830) and Del (GJB6-D13s1854) in Iranian Patients with Autosomal-Recessive Non-Syndromic Hearing Loss (ARNSHL). Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	3
972	Association of nuclear and mitochondrial genes with audiological examinations in Iranian patients with nonaminoglycoside antibiotics-induced hearing loss. Therapeutics and Clinical Risk Management, 2016, 12, 117.	0.9	3
973	Connexins and Heritable Human Diseases. , 2016, , 331-343.		2
974	Analysis of p.V37I compound heterozygous mutations in the <i>GJB2</i> gene in Chinese infants and young children. BioScience Trends, 2016, 10, 220-226.	1.1	5
975	Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes. Human Gene Therapy, 2016, 27, 687-699.	1.4	79
976	Functional Analysis of a Novel Connexin30 Mutation in a Large Family with Hearing Loss, Pesplanus, Ichthyosis, Cutaneous Nodules, and Keratoderma. Annals of Human Genetics, 2016, 80, 11-19.	0.3	2
977	Altered CO ₂ sensitivity of connexin26 mutant hemichannels <i>inÂvitro</i> . Physiological Reports, 2016, 4, e13038.	0.7	17
978	Genetic hearing loss: the journey of discovery to destination – how close are we to therapy?. Molecular Genetics & Denomic Medicine, 2016, 4, 583-587.	0.6	15
980	Genetic Testing for Deaf and Hard of Hearing Individuals: Genetic Counseling. Current Genetic Medicine Reports, 2016, 4, 27-34.	1.9	1
981	Compound heterozygous <i>GJB2</i> mutations associated to a consanguineous Han family with autosomal recessive non-syndromic hearing loss. Acta Oto-Laryngologica, 2016, 136, 782-785.	0.3	11
982	Next-Generation Newborn Hearing Screening. Monographs in Human Genetics, 2016, , 30-39.	0.5	6

#	ARTICLE	IF	CITATIONS
983	A screening analysis of the GJB2 c.176 del 16 mutation responsible for hereditary deafness in a Chinese family. Journal of Otology, 2016, 11, 134-137.	0.4	2
984	The unique electrical properties in an extracellular fluid of the mammalian cochlea; their functional roles, homeostatic processes, and pathological significance. Pflugers Archiv European Journal of Physiology, 2016, 468, 1637-1649.	1.3	47
985	Diagnosis and Management of Congenital Sensorineural Hearing Loss. Current Treatment Options in Pediatrics, 2016, 2, 256-265.	0.2	25
986	Prevalence of GJB2 gene mutation in 330 cochlear implant patients in the Jiangsu province. Journal of Laryngology and Otology, 2016, 130, 902-906.	0.4	2
987	Expanding the Phenotype of <i>TRNT1 </i> I>-Related Immunodeficiency to Include Childhood Cataract and Inner Retinal Dysfunction. JAMA Ophthalmology, 2016, 134, 1049.	1.4	29
988	Guidelines for aetiological investigation into mild to moderate bilateral permanent childhood hearing impairment. Hearing, Balance and Communication, 2016, 14, 125-134.	0.1	3
989	Guidelines for aetiological investigation into severe to profound bilateral permanent childhood hearing impairment. Hearing, Balance and Communication, 2016, 14, 135-145.	0.1	4
990	Molecular study of patients with auditory neuropathy. Molecular Medicine Reports, 2016, 14, 481-490.	1.1	11
991	Guidelines for aetiological investigation into unilateral permanent childhood hearing impairment. Hearing, Balance and Communication, 2016, 14, 146-155.	0.1	2
992	Connexinopathies: a structural and functional glimpse. BMC Cell Biology, 2016, 17, 17.	3.0	42
993	Clinical Challenges in Diagnosing the Genetic Etiology of Hearing Loss. Monographs in Human Genetics, 0, , 40-55.	0.5	1
994	ATP-sensitive K+ channels (Kir6.1/SUR1) regulate gap junctional coupling in cochlear-supporting cells. Pflugers Archiv European Journal of Physiology, 2016, 468, 1215-1222.	1.3	2
995	Detection of Connexion 26 GENE (GJB2) Mutations in Cases of Congenital Non Syndromic Deafness. Indian Journal of Otolaryngology and Head and Neck Surgery, 2016, 68, 248-253.	0.3	8
996	Study of Met34Thr variant in nonsyndromic hearing loss in four Portuguese families. Porto Biomedical Journal, 2016, 1, 32-35.	0.4	1
997	Investigating intercellular calcium waves by microfluidic gated pinched-flow. Sensors and Actuators B: Chemical, 2016, 234, 583-592.	4.0	12
998	Using Zebrafish to Study Human Deafness and Hearing Regeneration. Monographs in Human Genetics, 2016, , 110-131.	0.5	7
999	Connexin channels in congenital skin disorders. Seminars in Cell and Developmental Biology, 2016, 50, 4-12.	2.3	62
1000	Science, Not Philosophy, Will Help Deaf and Hard-of-Hearing Children Reach Their Potential. Pediatrics, 2016, 137, .	1.0	12

#	Article	IF	CITATIONS
1001	Deafness., 2016,, 197-201.		0
1002	A next-generation sequencing gene panel (MiamiOtoGenes) for comprehensive analysis of deafness genes. Hearing Research, 2016, 333, 179-184.	0.9	38
1003	Genetics: A New Frontier in Otology. Indian Journal of Otolaryngology and Head and Neck Surgery, 2016, 68, 1-5.	0.3	3
1004	Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell and Tissue Research, 2016, 365, 13-27.	1.5	34
1005	GJB2 mutations in deaf population of Ilam (Western Iran): a different pattern of mutation distribution. European Archives of Oto-Rhino-Laryngology, 2016, 273, 1161-1165.	0.8	14
1006	Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Advanced Drug Delivery Reviews, 2017, 108, 2-12.	6.6	92
1007	Evaluation of electrocardiographic parameters in patients with hearing loss genotyped for the connexin 26 gene (GJB2) mutations. Brazilian Journal of Otorhinolaryngology, 2017, 83, 176-182.	0.4	3
1008	A novel dominant GJB2 (DFNA3) mutation in a Chinese family. Scientific Reports, 2017, 7, 34425.	1.6	8
1009	Evaluaci \tilde{A}^3 n de la historia familiar de hipoacusia permanente en la infancia como factor de riesgo en el cribado universal. Acta Otorrinolaringol \tilde{A}^3 gica Espa $\tilde{A}\pm$ ola, 2017, 68, 157-163.	0.2	0
1011	The genetic basis of deafness in populations of African descent. Journal of Genetics and Genomics, 2017, 44, 285-294.	1.7	29
1012	Molecular composition and distribution of gap junctions in the sensory epithelium of the human cochlea—a super-resolution structured illumination microscopy (SR-SIM) study. Upsala Journal of Medical Sciences, 2017, 122, 160-170.	0.4	25
1013	Evaluation of Family History of Permanent Hearing Loss in Childhood as a Risk Indicator in Universal Screening. Acta Otorrinolaringologica (English Edition), 2017, 68, 157-163.	0.1	0
1014	Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Biochemical and Biophysical Research Communications, 2017, 489, 223-227.	1.0	13
1015	Alteration of protein localization and intracellular calcium content due to connexin26 D50A and A88V mutations. Turkish Journal of Biochemistry, 2017, 42, 195-202.	0.3	0
1016	Genetic Predisposition to Sporadic Congenital Hearing Loss in a Pediatric Population. Scientific Reports, 2017, 7, 45973.	1.6	28
1017	Opinions of hearing parents about the causes of hearing impairment of their children with biallelic GJB2 mutations. Journal of Community Genetics, 2017, 8, 167-171.	0.5	2
1018	c.464A>G variation in the <i>GJB2</i> gene is detected in a Han Chinese family. Clinical Case Reports (discontinued), 2017, 5, 1785-1788.	0.2	1
1019	Prevalence of <i>GJB2</i> Mutations in Affected Individuals from United Arab Emirates with Autosomal Recessive Nonsyndromic Hearing Loss. Genetic Testing and Molecular Biomarkers, 2017, 21, 686-691.	0.3	20

#	Article	IF	CITATIONS
1020	Whole-exome sequencing to identify the cause of congenital sensorineural hearing loss in carriers of a heterozygous GJB2 mutation. European Archives of Oto-Rhino-Laryngology, 2017, 274, 3619-3625.	0.8	8
1021	Emerging Gene Therapies for Genetic Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 649-670.	0.9	86
1022	The relationship between the GJB3 c.538C>T variant and hearing phenotype in the Chinese population. International Journal of Pediatric Otorhinolaryngology, 2017, 102, 67-70.	0.4	14
1023	Evaluation and management of nonsyndromic congenital hearing loss. Current Opinion in Otolaryngology and Head and Neck Surgery, 2017, 25, 385-389.	0.8	13
1024	Analysis of GJB6 (Đ¡x30) and GJB3 (Đ¡x31) genes in deaf patients with monoallelic mutations in GJB2 (Đ¡x26) gene in the Sakha Republic (Yakutia). Russian Journal of Genetics, 2017, 53, 688-697.	0.2	6
1025	Hereditary Hearing Loss., 2017, , 1331-1344.		0
1026	The role of alternative <i>GJB2</i> transcription in screening for neonatal sensorineural deafness in Austria. Acta Oto-Laryngologica, 2017, 137, 356-360.	0.3	7
1027	Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Molecular Psychiatry, 2017, 22, 1604-1614.	4.1	118
1028	Three-dimensional reconstruction of root cells and interdental cells in the rat inner ear by serial section scanning electron microscopy . Biomedical Research, 2017, 38, 239-248.	0.3	10
1029	Research of genetic bases of hereditary non-syndromic hearing loss. Turk Pediatri Arsivi, 2017, 52, 122-132.	0.9	7
1030	Involvement of Gap Junction Proteins in Infectious Diseases Caused by Parasites., 2017,,.		1
1031	Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge. Frontiers in Physiology, 2017, 8, 206.	1.3	3
1032	Hypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 (GJB2) Deficiency. Frontiers in Molecular Neuroscience, 2017, 10, 162.	1.4	37
1033	DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Frontiers in Molecular Neuroscience, 2017, 10, 428.	1.4	66
1034	Pannexin 3 regulates proliferation and differentiation of odontoblasts via its hemichannel activities. PLoS ONE, 2017, 12, e0177557.	1.1	35
1035	Functional analysis of a nonsyndromic hearing loss-associated mutation in the transmembrane II domain of the GJC3 gene. International Journal of Medical Sciences, 2017, 14, 246-256.	1.1	6
1036	Effect of GJB2 235delC and 30-35delC genetic polymorphisms on risk of congenital deafness in a Chinese population. Genetics and Molecular Research, 2017, 16, .	0.3	6
1037	Atoh1 as a Coordinator of Sensory Hair Cell Development and Regeneration in the Cochlea. Chonnam Medical Journal, 2017, 53, 37.	0.5	19

#	Article	IF	Citations
1038	The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels. Journal of General Physiology, 2018, 150, 697-711.	0.9	19
1039	Synaptically silent sensory hair cells in zebrafish are recruited after damage. Nature Communications, 2018, 9, 1388.	5.8	59
1040	Connexin 26 (GJB2) Mutations Associated with Non-Syndromic Hearing Loss (NSHL). Indian Journal of Pediatrics, 2018, 85, 1061-1066.	0.3	22
1041	Human diseases associated with connexin mutations. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 192-201.	1.4	115
1042	Identification of aÂrare COCH mutation by whole-exome sequencing. Wiener Klinische Wochenschrift, 2018, 130, 299-306.	1.0	11
1043	Single nucleotide polymorphism rs2274084 of gap junction protein beta 2 gene among Epstein-Barr virus-associated tumors. Cancer Biomarkers, 2018, 21, 499-504.	0.8	3
1044	Endoplasmic Reticulum Stress in Hearing Loss. Journal of Otorhinolaryngology Hearing and Balance Medicine, 2018, 1, 3.	0.2	1
1045	Calcium interactions with Cx26 hemmichannel: Spatial association between MD simulations biding sites and variant pathogenicity. Computational Biology and Chemistry, 2018, 77, 331-342.	1.1	9
1046	Cancer Connectors: Connexins, Gap Junctions, and Communication. Frontiers in Oncology, 2018, 8, 646.	1.3	61
1047	A novel compound heterozygous mutation in the <i>GJB2</i> gene is associated with non-syndromic hearing loss in a Chinese family. BioScience Trends, 2018, 12, 470-475.	1.1	5
1048	Gap junction $\hat{l}^2\hat{a}\in 2$ expression is negatively associated with the estrogen receptor status in breast cancer tissues and is a regulator of breast tumorigenesis. Oncology Reports, 2018, 40, 3645-3653.	1.2	6
1050	Gene Therapy in Mouse Models of Deafness and Balance Dysfunction. Frontiers in Molecular Neuroscience, 2018, 11, 300.	1.4	21
1051	Gene expression dataset for whole cochlea of Macaca fascicularis. Scientific Reports, 2018, 8, 15554.	1.6	5
1052	A Cell Junctional Protein Network Associated with Connexin-26. International Journal of Molecular Sciences, 2018, 19, 2535.	1.8	13
1053	Altered Potassium Ion Homeostasis in Hearing Loss., 0,,.		0
1054	Three <i>MYO15A</i> Nonsyndromic Hearing Loss. Neural Plasticity, 2018, 2018, 1-8.	1.0	11
1055	Intrinsic Oncogenic Function of Intracellular Connexin26 Protein in Head and Neck Squamous Cell Carcinoma Cells. International Journal of Molecular Sciences, 2018, 19, 2134.	1.8	6
1056	Role of DFNB1 mutations in hereditary hearing loss among assortative mating hearing impaired families from South India. BMC Medical Genetics, 2018, 19, 105.	2.1	9

#	Article	IF	CITATIONS
1057	Connexin 26 Immunohistochemistry in Temporal Bones With Cochlear Otosclerosis. Annals of Otology, Rhinology and Laryngology, 2018, 127, 536-542.	0.6	3
1058	ATP Release Channels. International Journal of Molecular Sciences, 2018, 19, 808.	1.8	151
1059	Analysis of GJB2 mutations and the clinical manifestation in a large Hungarian cohort. European Archives of Oto-Rhino-Laryngology, 2018, 275, 2441-2448.	0.8	13
1060	Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biology, 2018, 19, 301-317.	3.9	50
1061	Diagnosing and Preventing Hearing Loss in the Genomic Age. Trends in Hearing, 2019, 23, 233121651987898.	0.7	16
1062	The p.Gly130Val mutation in the GJB2 gene: A familiar case of autosomal dominant non-syndromic hearing loss. International Journal of Pediatric Otorhinolaryngology, 2019, 127, 109653.	0.4	0
1063	Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges. Neuroscience Letters, 2019, 713, 134527.	1.0	17
1064	Frequency of <i>GJB</i> 2 mutations, <i>GJB</i> 6â€D13S1830 and <i>GJB</i> 6â€D13S1854 deletions among patients with nonâ€syndromic hearing loss from the central region of Iran. Molecular Genetics & Genomic Medicine, 2019, 7, e00780.	0.6	11
1065	A proposal for comprehensive newborn hearing screening to improve identification of deaf and hard-of-hearing children. Genetics in Medicine, 2019, 21, 2614-2630.	1.1	63
1066	Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel. Genetics in Medicine, 2019, 21, 2442-2452.	1.1	56
1067	Next-generation sequencing reveals a novel pathological mutation in the TMC1 gene causing autosomal recessive non-syndromic hearing loss in an Iranian kindred. International Journal of Pediatric Otorhinolaryngology, 2019, 124, 99-105.	0.4	4
1068	GJB2 c.235delC variant associated with autosomal recessive nonsyndromic hearing loss and auditory neuropathy spectrum disorder. Genetics and Molecular Biology, 2019, 42, 48-51.	0.6	9
1069	Analysis of p.Gly12Valfs*2, p.Trp24* and p.Trp77Arg mutations in GJB2 and p.Arg81Gln variant in LRTOMT among non syndromic hearing loss Egyptian patients: implications for genetic diagnosis. Molecular Biology Reports, 2019, 46, 2139-2145.	1.0	15
1070	Actin-independent trafficking of cochlear connexin 26 to non-lipid raft gap junction plaques. Hearing Research, 2019, 374, 69-75.	0.9	10
1071	Eph/ephrin signalling in the development and function of the mammalian cochlea. Developmental Biology, 2019, 449, 35-40.	0.9	19
1072	Genetics and Acquired Hearing Loss. , 2019, , .		1
1073	An Immunological Perspective to Non-syndromic Sensorineural Hearing Loss. Frontiers in Immunology, 2019, 10, 2848.	2.2	5
1074	Case report: Novel GJB2 variant c.113T>C associated with autosomal recessive non-syndromic hearing loss (ARNSHL) in a Han family. Medicine (United States), 2019, 98, e18253.	0.4	1

#	Article	IF	CITATIONS
1075	Possible Role of Gap Junction Channels and Non-Junctional Channels in the Infection Caused by <code><i>Trypanosoma cruzi</i>., 0, , .</code>		0
1076	Systematic Review of Hearing Loss Genes in the African American Population. Otology and Neurotology, 2019, 40, e488-e496.	0.7	8
1077	Advances in cochlear implantation for hereditary deafness caused by common mutations in deafness genes. Journal of Bio-X Research, 2019, 2, 74-80.	0.3	2
1078	Inner Ear Connexin Channels: Roles in Development and Maintenance of Cochlear Function. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033233.	2.9	45
1079	Update of spectrum c.35delG and c.â€23+1G>A mutations on the <i>GJB2</i> gene in individuals with autosomal recessive nonsyndromic hearing loss. Annals of Human Genetics, 2019, 83, 1-10.	0.3	28
1080	Gap junctions in liver disease: Implications for pathogenesis and therapy. Journal of Hepatology, 2019, 70, 759-772.	1.8	30
1081	A novel autosomal recessive <i>GJB2 </i> -associated disorder: Ichthyosis follicularis, bilateral severe sensorineural hearing loss, and punctate palmoplantar keratoderma. Human Mutation, 2019, 40, 217-229.	1.1	16
1082	Perceptions of parents of children with hearing loss of genetic origin in South Africa. Journal of Community Genetics, 2019, 10, 325-333.	0.5	4
1083	Evidence for an autosomal recessive pattern of inheritance in Keratitis-ichthyosis-deafness (KID) syndrome: Exome sequencing reveals a novel homozygous GJB2 mutation. Meta Gene, 2019, 19, 15-22.	0.3	1
1084	A Mutational Analysis of <i>GJB2</i> , <i>SLC26A4</i> , <i>MT-RNA1</i> , and <i>GJB3</i> in Children with Nonsyndromic Hearing Loss in the Henan Province of China. Genetic Testing and Molecular Biomarkers, 2019, 23, 51-56.	0.3	7
1085	Imaging of Pediatric Hearing Loss. Neuroimaging Clinics of North America, 2019, 29, 103-115.	0.5	15
1086	Global genetic insight contributed by consanguineous Pakistani families segregating hearing loss. Human Mutation, 2019, 40, 53-72.	1.1	48
1087	Cochlear connexin 30 homomeric and heteromeric channels exhibit distinct assembly mechanisms. Mechanisms of Development, 2019, 155, 8-14.	1.7	15
1088	The Epidemiology of Deafness. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a033258.	2.9	78
1089	Connexin hemichannels and cochlear function. Neuroscience Letters, 2019, 695, 40-45.	1.0	19
1090	Frequency of GJB2 mutations in patients with nonsyndromic hearing loss from an ethnically characterized Brazilian population. Brazilian Journal of Otorhinolaryngology, 2019, 85, 92-98.	0.4	1
1091	Genetic Epidemiology of Hearing Loss in the 22 Arab Countries: A Systematic Review. Otology and Neurotology, 2020, 41, e152-e162.	0.7	11
1092	Systematic Review of Pathogenic GJB2 Variants in the Latino Population. Otology and Neurotology, 2020, 41, e182-e191.	0.7	8

#	Article	IF	CITATIONS
1093	Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hearing Research, 2020, 394, 107858.	0.9	8
1094	Future directions for screening and treatment in congenital hearing loss. Precision Clinical Medicine, 2020, 3, 175-186.	1.3	20
1095	Gene therapy development in hearing research in China. Gene Therapy, 2020, 27, 349-359.	2.3	7
1096	Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families. Genes, 2020, 11, 1329.	1.0	7
1097	Molecular Mechanisms and Biological Functions of Autophagy for Genetics of Hearing Impairment. Genes, 2020, 11, 1331.	1.0	13
1098	Inner Ear Gene Therapies Take Off: Current Promises and Future Challenges. Journal of Clinical Medicine, 2020, 9, 2309.	1.0	71
1099	The Importance of Early Genetic Diagnostics of Hearing Loss in Children. Medicina (Lithuania), 2020, 56, 471.	0.8	10
1100	Human cochlear microanatomy $\hat{a}\in$ an electron microscopy and super-resolution structured illumination study and review. Hearing, Balance and Communication, 2020, 18, 256-269.	0.1	8
1101	Novel Mutations in CLPP, LARS2, CDH23, and COL4A5 Identified in Familial Cases of Prelingual Hearing Loss. Genes, 2020, 11, 978.	1.0	5
1102	Expression of Connexins 37, 43 and 45 in Developing Human Spinal Cord and Ganglia. International Journal of Molecular Sciences, 2020, 21, 9356.	1.8	8
1103	Improving the Management of Patients with Hearing Loss by the Implementation of an NGS Panel in Clinical Practice. Genes, 2020, 11, 1467.	1.0	16
1104	GJB2 and GJB6 Genetic Variant Curation in an Argentinean Non-Syndromic Hearing-Impaired Cohort. Genes, 2020, 11, 1233.	1.0	13
1105	Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden. Life, 2020, 10, 258.	1.1	14
1106	Identification and characterization of key long non-coding RNAs in the mouse cochlea. RNA Biology, 2021, 18, 1160-1169.	1.5	4
1107	Cisplatin-induced ototoxicity in organotypic cochlear cultures occurs independent of gap junctional intercellular communication. Cell Death and Disease, 2020, 11, 342.	2.7	4
1108	A novel missense variant in <i>MYO3A</i> is associated with autosomal dominant highâ€frequency hearing loss in a German family. Molecular Genetics & Enomic Medicine, 2020, 8, e1343.	0.6	10
1109	Fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. Hearing Research, 2020, 394, 107931.	0.9	16
1110	Practical aspects of inner ear gene delivery for research and clinical applications. Hearing Research, 2020, 394, 107934.	0.9	7

#	Article	IF	CITATIONS
1111	Identification and clinical implications of a novel pathogenic variant in the <i>GJB2</i> gene causes autosomal recessive non-syndromic hearing loss in a consanguineous Iranian family. Intractable and Rare Diseases Research, 2020, 9, 30-34.	0.3	2
1112	A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochemistry International, 2020, 136, 104727.	1.9	23
1113	Emerging approaches for restoration of hearing and vision. Physiological Reviews, 2020, 100, 1467-1525.	13.1	45
1114	Cochlear Implantation From the Perspective of Genetic Background. Anatomical Record, 2020, 303, 563-593.	0.8	27
1115	Application of Cervical Vestibular-Evoked Myogenic Potentials in Adults with Moderate to Profound Sensorineural Hearing Loss: A Preliminary Study. International Archives of Otorhinolaryngology, 2020, 24, e5-e10.	0.3	16
1116	Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hearing Research, 2020, 397, 107906.	0.9	20
1117	High GJB2 mRNA expression and its prognostic significance in lung adenocarcinoma: a study based on the TCGA database. Medicine (United States), 2020, 99, e19054.	0.4	8
1118	Genetics of Postlingual Sensorineural Hearing Loss. Laryngoscope, 2021, 131, 401-409.	1.1	17
1119	Translational and interdisciplinary insights into presbyacusis: A multidimensional disease. Hearing Research, 2021, 402, 108109.	0.9	21
1120	Folding and Quality Control of Glycoproteins. , 2021, , 1-28.		2
1121	Massively parallel assessment of human variants with base editor screens. Cell, 2021, 184, 1064-1080.e20.	13.5	175
1122	Molecular alteration in the Gap Junction Beta 2 (<i>GJB2</i>) gene associated with non-syndromic sensorineural hearing impairment. Intractable and Rare Diseases Research, 2021, 10, 31-36.	0.3	3
1123	Tricellular adherens junctions provide a cell surface delivery platform for connexin 26/30 oligomers in the cochlea. Hearing Research, 2021, 400, 108137.	0.9	6
1124	Congenital Deafness and Recent Advances Towards Restoring Hearing Loss. Current Protocols, 2021, 1, e76.	1.3	10
1125	High Prevalence of MYO6 Variants in an Austrian Patient Cohort With Autosomal Dominant Hereditary Hearing Loss. Otology and Neurotology, 2021, 42, e648-e657.	0.7	3
1126	The Complex and Critical Role of Glycine 12 (G12) in Beta-Connexins of Human Skin. International Journal of Molecular Sciences, 2021, 22, 2615.	1.8	3
1127	Identification of homozygous mutations for hearing loss. Gene, 2021, 778, 145464.	1.0	2
1128	Whole exome sequencing, in silico and functional studies confirm the association of the GJB2 mutation p.Cys169Tyr with deafness and suggest a role for the TMEM59 gene in the hearing process. Saudi Journal of Biological Sciences, 2021, 28, 4421-4429.	1.8	5

#	Article	IF	Citations
1129	Pannexin 1 Transgenic Mice: Human Diseases and Sleep-Wake Function Revision. International Journal of Molecular Sciences, 2021, 22, 5269.	1.8	3
1130	Undescribed GJB2 c.35dupG homozygous prelingual distinguished from c.35delG homozygous/compound heterozygous deafs, dwelling a German ancestry Venezuelan isolate. Egyptian Journal of Medical Human Genetics, 2021, 22, .	0.5	1
1131	Identification of autosomal recessive nonsyndromic hearing impairment genes through the study of consanguineous and non-consanguineous families: past, present, and future. Human Genetics, 2022, 141, 413-430.	1.8	2
1132	Molecular genetic landscape of hereditary hearing loss in Pakistan. Human Genetics, 2021, , 1.	1.8	5
1133	Transcriptomic Profile Reveals Deregulation of Hearing-Loss Related Genes in Vestibular Schwannoma Cells Following Electromagnetic Field Exposure. Cells, 2021, 10, 1840.	1.8	3
1134	Gap Junction Channelopathies and Calmodulinopathies. Do Disease-Causing Calmodulin Mutants Affect Direct Cell–Cell Communication?. International Journal of Molecular Sciences, 2021, 22, 9169.	1.8	3
1135	Genetic etiology of hereditary hearing loss in the Gulf Cooperation Council countries. Human Genetics, 2022, 141, 595-605.	1.8	5
1136	Efnb2 haploinsufficiency induces early gap junction plaque disassembly and endocytosis in the cochlea. Brain Research Bulletin, 2021, 174, 153-160.	1.4	8
1137	Single-Cell RNA-Seq of Cisplatin-Treated Adult Stria Vascularis Identifies Cell Type-Specific Regulatory Networks and Novel Therapeutic Gene Targets. Frontiers in Molecular Neuroscience, 2021, 14, 718241.	1.4	18
1138	Genetic hearing loss: the audiologist's perspective. Human Genetics, 2022, 141, 311-314.	1.8	2
1141	GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. Molecular Therapy - Methods and Clinical Development, 2021, 23, 319-333.	1.8	15
1142	The road (not) taken – Placental transfer and interspecies differences. Placenta, 2021, 115, 70-77.	0.7	12
1144	Biological Functions of Connexin Genes Revealed by Human Genetic Defects, Dominant Negative Approaches and Targeted Deletions in the Mouse. Novartis Foundation Symposium, 1999, 219, 76-96.	1.2	23
1145	Gap Junctions and Connexin Expression in the Inner Ear. Novartis Foundation Symposium, 1999, 219, 134-156.	1.2	56
1149	Genetics of Hearing Loss. , 2008, , 9-47.		3
1150	Cochlear Homeostasis and Homeostatic Disorders. , 2008, , 49-100.		2
1151	Gap Junctions and Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, 2013, 763, 260-280.	0.8	45
1152	From the Cochlea to the Cortex and Back. Springer Handbook of Auditory Research, 2002, , 6-71.	0.3	22

#	Article	IF	CITATIONS
1153	Connexins in the Nervous System. , 2009, , 323-357.		5
1154	Connexins in the Inner Ear., 2009, , 419-434.		3
1155	Genetic Disorders Among Jews from Arab Countries. , 2010, , 677-702.		1
1156	Degradation and modification of cochlear gap junction proteins in the early development of age-related hearing loss. Experimental and Molecular Medicine, 2020, 52, 166-175.	3.2	10
1157	A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect?. , 0, .		1
1158	Connexin 26 as a Cause of Hereditary Hearing Loss. American Journal of Audiology, 1999, 8, 93-100.	0.5	22
1159	Genetic and Epigenetic Changes of Intercellular Communication Genes During Multistage Carcinogenesis. Cancer Detection and Prevention, 1999, 23, 273-279.	2.1	62
1160	Genetic causes of hearing loss. Current Opinion in Neurology, 1998, 11, 11-16.	1.8	16
1161	Vestibular and hearing loss in genetic and metabolic disorders. Current Opinion in Neurology, 1999, 12, 35-39.	1.8	6
1162	Recent progress in hereditary hearing loss. Current Opinion in Otolaryngology and Head and Neck Surgery, 1999, 7, 259-265.	0.8	5
1165	Non-Syndromic Autosomal Recessive Deafness in Gaza Strip: A Study of Five GJB2 Gene Mutations. International Journal of Genetics and Genomics, 2014, 2, 92.	0.1	2
1166	Mutations of MAP1B encoding a microtubule-associated phosphoprotein cause sensorineural hearing loss. JCI Insight, 2020, 5, .	2.3	18
1167	Assembly of the cochlear gap junction macromolecular complex requires connexin 26. Journal of Clinical Investigation, 2014, 124, 1598-1607.	3.9	59
1168	Sensorineural deafness in X-linked Charcot-Marie-Tooth disease with connexin 32 mutation (R142Q). Neurology, 1999, 52, 1010-1010.	1.5	83
1169	Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the <i>Barhl1</i> homeobox gene. Development (Cambridge), 2002, 129, 3523-3532.	1.2	86
1170	An essential role for connexin43 gap junctions in mouse coronary artery development. Development (Cambridge), 2002, 129, 2031-2042.	1.2	125
1171	trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. Journal of Cell Science, 2001, 114, 2105-2113.	1.2	162
1172	Hearing loss and connexin 26. Journal of the Royal Society of Medicine, 2002, 95, 171-177.	1.1	34

#	Article	IF	CITATIONS
1173	Failure of Fluid Absorption in the Endolymphatic Sac Initiates Cochlear Enlargement that Leads to Deafness in Mice Lacking Pendrin Expression. PLoS ONE, 2010, 5, e14041.	1.1	74
1174	Age-Related Hearing Impairment (ARHI) Associated with GJB2 Single Mutation IVS1+1G>A in the Yakut Population Isolate in Eastern Siberia. PLoS ONE, 2014, 9, e100848.	1.1	4
1175	Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic). PLoS ONE, 2016, 11, e0156300.	1.1	21
1176	Age-dependent gene expression in the inner ear of big brown bats (Eptesicus fuscus). PLoS ONE, 2017, 12, e0186667.	1.1	3
1177	Perspectivas para triagem da deficiência auditiva genética: rastreamento da mutação 35delG em neonatos. Jornal De Pediatria, 2005, 81, 139-142.	0.9	8
1180	Hearing consequences in Gjb2 knock-in mice: implications for human p.V37l mutation. Aging, 2019, 11, 7416-7441.	1.4	14
1181	GJB2 Gene Mutations in Syndromic Skin Diseases with Sensorineural Hearing Loss Current Genomics, 2011, 12, 475-485.	0.7	42
1182	Nonsyndromic Deafness - Molecular Update. The Open Biology Journal, 2009, 2, 80-90.	0.5	3
1183	Relationship Between Patients with Clinical Auditory Neuropathy Spectrum Disorder and Mutations in Gjb2 Gene. The Open Neurology Journal, 2016, 10, 127-135.	0.4	4
1184	Whats new in genodermatoses?. Keio Journal of Medicine, 2001, 50, 35-38.	0.5	1
1185	Extremely High Carrier Frequency of the GJB2 Splice Site IVS $1+1$ G>A Mutation in Eastern Siberia is Comparable to the Carrier Frequency of the Sickle Cell Anemia in Africa. Journal of Genetics and Genome Research, 2014, 1, .	0.3	2
1186	Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Frontiers in Bioscience - Landmark, 2007, 12, 1450.	3.0	117
1187	Molecular biology of hearing. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 2011, 10, Doc06.	0.8	7
1188	Genetic Screening of <i>GJB2 </i> and <i>SLC26A4 </i> in Korean Cochlear Implantees: Experience of Soree Ear Clinic. Clinical and Experimental Otorhinolaryngology, 2012, 5, S10.	1.1	31
1189	SLC26A4Mutations in Korean Population. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2014, 57, 733.	0.0	1
1190	Hearing Function in Heterozygous Carriers of a Pathogenic GJB2 Gene Mutation. Physiological Research, 2013, 62, 323-330.	0.4	8
1191	Ultrastructural pathological changes in the cochlear cells of connexin 26 conditional knockout mice. Molecular Medicine Reports, 2013, 8, 1029-1036.	1.1	9
1192	Medical Management of Childhood Hearing Loss. Pediatric Annals, 2004, 33, 822-832.	0.3	16

#	ARTICLE	IF	CITATIONS
1193	Applying Two Different Bioinformatic Approaches to Discover Novel Genes Associated with Hereditary Hearing Loss via Whole-Exome Sequencing: ENDEAVOUR and HomozygosityMapper. Advanced Biomedical Research, 2018, 7, 141.	0.2	3
1194	Mutations in & genes as major causes of hearing impairment in Dhadkai village, Jammu & Kashmir, India. Indian Journal of Medical Research, 2017, 146, 489-497.	0.4	9
1195	Molecular and hereditary mechanisms of sensorineural hearing loss with focus on selected endocrinopathies. Endocrine Regulations, 2012, 46, 167-186.	0.5	6
1196	Satisfaction of Children with Auditory Neuropathy and Cochlear Implant. Journal of International Advanced Otology, 2016, 11, 229-235.	1.0	4
1197	Genetic Hearing Loss and Gene Therapy. Genomics and Informatics, 2018, 16, e20.	0.4	28
1198	A Review on Autosomal Recessive Non-syndromic Hearing Impairment. Basic Sciences of Medicine, 2012, 1, 12-18.	0.0	1
1199	Long Term Speech Perception Outcomes of Cochlear Implantation in Gap Junction Protein Beta 2 Related Hearing Loss. Journal of Audiology and Otology, 2017, 21, 95-102.	0.2	2
1200	Deafness in an auditory specialist, the big brown bat (Eptesicus fuscus). Hearing Research, 2021, 412, 108377.	0.9	1
1202	Genetic Linkage Studies of Hereditary Hearing Loss. , 2000, , 123-132.		0
1203	妿jææè°°ã§ç™°è¦‹ã•ã,ŒãŸè»½å°¦-ä,ç‰å°¦é›£èíã®é›£èíé³ä¼åã®è§£æž• Audiology Japan, 2000, 43, 385-386.	0.1	0
1204	Genetik und molekulare Grundlagen der nicht-syndromalen Taubheit. , 2000, , 115-149.		0
1205	Connexins and Conduction. Developments in Cardiovascular Medicine, 2000, , 61-80.	0.1	0
1207	Hereditary Hearing Impairment in Children: An Explosion of New Knowledge Emerging From the Human Genome Project and Mouse Models. Perspectives on Hearing and Hearing Disorders in Childhood, 2001, 11, 2-7.	0.2	0
1208	The Genetics of Deafness: A Model for Genomic and Biological Complexity., 2002,, 71-93.		1
1210	GJB2é³ä¼åå‰ç•°ãƒžã,¦ã,¹ã®è÷覚機能解枕 Audiology Japan, 2002, 45, 573-574.	0.1	0
1212	Review of Hereditary Hearing Loss Audiology Japan, 2002, 45, 283-288.	0.1	0
1213	Mapping and Cloning of Genes for Inherited Hearing Impairment. Springer Handbook of Auditory Research, 2002, , 45-66.	0.3	0
1214	Modulation of GAP junctional communication by "epigenetic" toxicants. , 2002, , .		0

#	Article	IF	CITATIONS
1215	Contribution à l'étude de l'homéostasie de l'endolymphe. Bulletin De L'Academie Nationale De Medecine, 2002, 186, 1269-1288.	0.0	0
1217	Molekulare Mechanismen von Zell-Zell-Wechselwirkungen. , 2003, , 213-252.		O
1218	Connexins. , 2003, , .		0
1219	Claudin 14., 2003, , .		0
1222	Animal Models for Otolaryngological Disorders. , 2004, , 241-261.		0
1223	2 Genetics of Hearing Loss. , 2006, , .		O
1224	Genetic counseling for hereditary deafness and its application to auditory and speech/language rehabilitation. Audiology Japan, 2006, 49, 339-345.	0.1	0
1225	Deafness gene has health benefit. Nature, 0, , .	13.7	0
1226	Newborn Hearing Impairment: Device and Biological Advancements. Perspectives on Hearing and Hearing Disorders in Childhood, 2006, 16, 3-8.	0.2	1
1227	Deafness. , 2007, , 125-133.		0
1230	Deafness. , 2009, , 123-131.		0
1231	A Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis of Connexin 26 (GJB2) Gene Common Mutation (235delC) In Indonesian Patients with Prelingual Nonsyndromic Sensorineural Hearing Loss: A Preliminary Study. The Open Otorhinolaryngology Journal, 2009. 3, 16-20.	0.1	1
1235	Structure of the Gap Junction Channel. Nihon Kessho Gakkaishi, 2010, 52, 25-30.	0.0	0
1236	Genetic Sensorineural Hearing Loss. , 2010, , 2086-2099.		1
1237	In Silico Study of Human Gap Junction Beta-2 Protein by Homology Modeling. Genomics and Informatics, 2010, 8, 70-75.	0.4	0
1238	Advances in the Genetics of Deafness. , 2011, , .		1
1240	CONNEXIN 43 EXPRESSION IN THE HUMAN COCHLEA: AN IMMUNOHISTOCHEMISTRY STUDY. Journal of Hearing Science, $2011, 1, 21-29$.	0.1	2
1241	Hipoacusias hereditarias., 2012,, 101-115.		O

#	Article	IF	CITATIONS
1242	Structure modeling and mutational analysis of gap junction beta 2 (GJB2). African Journal of Biotechnology, $2012,11,$	0.3	0
1243	Gene Therapy for the Inner Ear: Progress and Prospects. , 2013, , 595-623.		0
1244	N-Glycans and Quality Control of Proteins. , 2015, , 1-20.		0
1245	Protein structure prediction of human connexin 30 and its mutations in hearing system. Journal of Biology and Today's World, 2014, 3, .	0.1	0
1246	Analysis of Gjb2 (Connexin 26) Mutation in Patients with Congenital Non-Syndromic Sensorineural Hearing Loss. Turkish Archives of Otorhinolaryngology, 2014, 52, 1-6.	0.2	1
1247	Gap Junctional Communication and the Regulation of Multicellular Functions. , 1998, , 1-22.		0
1248	Molecular Genetics of Hearing Disorders. , 1998, , 1093-1098.		1
1249	Personalized Medicine for Hereditary Deafness. Advances in Predictive, Preventive and Personalised Medicine, 2015, , 47-59.	0.6	0
1250	Hereditary hearing loss. Genetic factors in ethiopathogenesis of deafness. Medicinos Teorija Ir Praktika, 2014, 21, 55-64.	0.0	0
1251	GJB2 Gene Testing, Etiologic Diagnosis and Genetic Counseling in Romanian Persons With Prelingual Hearing Loss. International Journal of Clinical Pediatrics, 2015, 4, 121-126.	0.2	2
1252	Hereditary Hearing Loss. , 2016, , 1-14.		0
1253	PREVALENCE OF DFNB1HEARING LOSS AMONGCOCHLEAR IMPLANT USERS ESTABLISHED WITHTHE 3-STEP DFNB1 APPROACH. Journal of Hearing Science, 2017, 7, 33-40.	0.1	3
1255	Genetic Diagnosis of Deafness. , 2017, , 61-81.		0
1256	Actin-independent Trafficking of Cochlear Connexin 26 to Non-lipid Raft Gap Junction Plaques. SSRN Electronic Journal, 0, , .	0.4	0
1260	Physiology and Pharmacology of the Cochlea. , 2020, , 468-486.		0
1261	Development and Deafness. , 2020, , 838-860.		0
1263	Developmental Genes Associated with Human Hearing Loss. , 2005, , 204-232.		3
1264	Synthesis and assembly of connexins in vitro into homomeric and heteromeric functional gap junction hemichannels. Biochemical Journal, 1999, 339 (Pt 2), 247-53.	1.7	20

#	Article	IF	CITATIONS
1265	Cx26 deafness: mutation analysis and clinical variability. Journal of Medical Genetics, 1999, 36, 829-32.	1.5	103
1266	Variations in genetic assessment and recurrence risks quoted for childhood deafness: a survey of clinical geneticists. Journal of Medical Genetics, 1999, 36, 125-30.	1.5	8
1267	Connexin26 deafness in several interconnected families. Journal of Medical Genetics, 1999, 36, 383-5.	1.5	6
1269	Mutational screening of Indian families with hereditary congenital cataract. Molecular Vision, 2013, 19, 1141-8.	1.1	18
1272	Significance of heterozygosis M34T mutation of GJB2 gene in non-syndromic congenital deafness. Retrospective analysis of 12,472 samples of amniotic fluid. Journal of Prenatal Medicine, 2013, 7, 56-8.	0.2	2
1275	A Novel De Novo Dominant Mutation in GJB2 Gene Associated with a Sporadic Case of Nonsyndromic Sensorineural Hearing Loss. Iranian Journal of Public Health, 2014, 43, 1710-3.	0.3	O
1276	A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) test to detect the common mutation (35delG) in the connexin-26 gene. Journal for Scientific Research Medical Sciences, 2001, 3, 9-12.	0.1	1
1277	Gene Mutations in Non-Syndromic Hearing Loss of Bloch, Kurd, and Turkmen Ethnicities in Iran. Iranian Journal of Public Health, 2020, 49, 2128-2135.	0.3	0
1278	Genomics and Hearing Impairment. Genome Research, 1999, 9, 7-16.	2.4	44
1280	Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear and Hearing, 2022, 43, 1049-1066.	1.0	13
1281	Genetics & Epigenetics of Hereditary Deafness: An Historical Overview. Audiology Research, 2021, 11, 629-635.	0.8	3
1282	A combined genome-wide association and molecular study of age-related hearing loss in H. sapiens. BMC Medicine, 2021, 19, 302.	2.3	16
1283	Gene therapy as a possible option to treat hereditary hearing loss. Medizinische Genetik, 2020, 32, 149-159.	0.1	2
1284	Gjb3 Gene Mutations in Non-Syndromic Hearing Loss of Bloch, Kurd, and Turkmen Ethnicities in Iran. Iranian Journal of Public Health, 2020, 49, 2128-2135.	0.3	1
1286	Selective Inner Hair Cell Loss in a Neonate Harbor Seal (Phoca vitulina). Animals, 2022, 12, 180.	1.0	4
1287	Atypical Presentation of Enlarged Vestibular Aqueducts Caused by SLC26A4 Variants. Children, 2022, 9, 165.	0.6	1
1288	Generation of hiPSC line UMi030-A from an individual with the hearing loss-related GJB2 mutation c.109GÂ>ÂA. Stem Cell Research, 2022, 58, 102599.	0.3	1
1289	Connexin30-Deficiency Causes Mild Hearing Loss With the Reduction of Endocochlear Potential and ATP Release. Frontiers in Cellular Neuroscience, 2021, 15, 819194.	1.8	8

#	Article	IF	CITATIONS
1290	Genetic etiology of non-syndromic hearing loss in Europe. Human Genetics, 2022, 141, 683-696.	1.8	23
1291	Regulation of hematopoiesis by gap junction-mediated intercellular communication. Journal of Leukocyte Biology, 2001, 70, 341-347.	1.5	39
1292	Carrier frequency of connexin26 W24X mutation in the population of Kerala, India. Indian Journal of Otology, 2021, 27, 222.	0.0	0
1293	Analysis of GJB2 Gene Mutations in 1330 Deafness Cases of Major Ethnic Groups in Northwest China. Inquiry (United States), 2022, 59, 004695802110555.	0.5	1
1294	Analysis of Genetic Variations in Connexin 26 (GJB2) Gene among Nonsyndromic Hearing Impairment: Familial Study. Global Medical Genetics, 2022, 09, 152-158.	0.4	1
1295	Na/K-ATPase Gene Expression in the Human Cochlea: A Study Using mRNA in situ Hybridization and Super-Resolution Structured Illumination Microscopy. Frontiers in Molecular Neuroscience, 2022, 15, 857216.	1.4	7
1296	Genetic testing for pediatric hearing loss: no time to waste. Human Genetics, 2022, 141, 315-317.	1.8	1
1297	Connexinplexity: the spatial and temporal expression of <i>connexin</i> genes during vertebrate organogenesis. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
1298	Comparison of the Mutation Spectrum of Common Deafness-Causing Genes in 509 Patients With Nonsyndromic Hearing Loss in 4 Different Areas of China by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry., 2021, 17, 492-499.		1
1299	Global Research on Hereditary Hearing Impairment Over the Last 40 Years: A Bibliometric Study. , 2021, 17, 482-491.		3
1300	Connexin Mutations and Hereditary Diseases. International Journal of Molecular Sciences, 2022, 23, 4255.	1.8	15
1303	A seminested PCR test for simultaneous detection of two common mutations (35delG and 167delT) in the connexin-26 gene. Molecular Diagnosis and Therapy, 2001, 6, 63-7.	1.3	6
1304	Supporting Cells and Their Potential Roles in Cisplatin-Induced Ototoxicity. Frontiers in Neuroscience, 2022, 16, 867034.	1.4	7
1305	Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 2022, 24, 1392-1406.	1.1	18
1307	Cingulin b Is Required for Zebrafish Lateral Line Development Through Regulation of Mitogen-Activated Protein Kinase and Cellular Senescence Signaling Pathways. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	5
1308	The views of people with a lived experience of deafness and the general public regarding genetic testing for deafness in the reproductive setting: AÂsystematic review. Genetics in Medicine, 2022, 24, 1803-1813.	1.1	6
1309	Population-scale analysis of common and rare genetic variation associated with hearing loss in adults. Communications Biology, 2022, 5, .	2.0	12
1310	Identification of homozygous missense variant in SIX5 gene underlying recessive nonsyndromic hearing impairment. PLoS ONE, 2022, 17, e0268078.	1.1	1

#	ARTICLE	IF	Citations
1311	The Genomics of Auditory Function and Disease. Annual Review of Genomics and Human Genetics, 2022, 23, 275-299.	2.5	10
1312	A Short Overview on Hearing Loss and Related Auditory Defects. , 0, , .		O
1313	Predictors of Early Language Outcomes in Children with Connexin 26 Hearing Loss across Three Countries. Children, 2022, 9, 990.	0.6	0
1314	Regeneration in the Auditory Organ in Cuban and African Dwarf Crocodiles (Crocodylus rhombifer) Tj ETQq $1\ 1\ 0.7$ in Cell and Developmental Biology, $0,\ 10,\ .$	84314 rgE 1.8	BT /Overlac 1
1315	Advances in Hearing Loss and Vestibular Disorders in Children., 0,,.		0
1316	ARNSHL gene identification: past, present and future. Molecular Genetics and Genomics, 2022, 297, 1185-1193.	1.0	4
1319	Emerging complexities of the mouse as a model for human hearing loss. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	2
1320	A Seminested PCR Test for Simultaneous Detection of Two Common Mutations (35delG and 167delT) in the Connexin-26 Gene. Molecular Diagnosis and Therapy, 2001, 6, 63-67.	1.3	1
1321	Current AAV-mediated gene therapy in sensorineural hearing loss. Fundamental Research, 2022, , .	1.6	5
1322	Recent insights into gap junction biogenesis in the cochlea. Developmental Dynamics, 2023, 252, 239-246.	0.8	4
1323	GJB2 and GJB6 gene transcripts in the human cochlea: A study using RNAscope, confocal, and super-resolution structured illumination microscopy. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4
1324	A case of hidrotic ectodermal dysplasia with developing eccrine syringofibroadenoma with heterozygous mutation of <scp>GJB6</scp> gene. Journal of Dermatology, 2022, 49, .	0.6	1
1325	The Frequency of Common Deafness-Associated Variants Among 3,555,336 Newborns in China and 141,456 Individuals Across Seven Populations Worldwide. Ear and Hearing, 2023, 44, 232-241.	1.0	7
1326	Comprehensive interpretation of single-nucleotide substitutions in GJB2 reveals the genetic and phenotypic landscape of GJB2-related hearing loss. Human Genetics, 2023, 142, 33-43.	1.8	4
1327	Insect Gap Junctions Could Be a Potential Target for Pest Management. Annals of the Entomological Society of America, 0, , .	1.3	1
1329	Audiological Evidence of Frequent Hereditary Mild, Moderate and Moderate-to-Severe Hearing Loss. Journal of Personalized Medicine, 2022, 12, 1843.	1.1	3
1331	The role of Connexin26 regulated by MiR-2114-3p in the pathogenesis of ovarian cancer. Biochemical and Biophysical Research Communications, 2023, 640, 105-116.	1.0	0
1332	Task force Guideline of Brazilian Society of Otology â€' hearing loss in children â€" Part I â€' Evaluation. Brazilian Journal of Otorhinolaryngology, 2023, 89, 159-189.	0.4	1

#	Article	IF	CITATIONS
1333	Biallelic mutations in pakistani families with autosomal recessive prelingual nonsyndromic hearing loss. Genes and Genomics, 0 , , .	0.5	0
1335	Hearing loss in neonates and infants. Clinical and Experimental Pediatrics, 0, , .	0.9	2
1336	Non-Syndromic Hearing Loss in a Romanian Population: Carrier Status and Frequent Variants in the GJB2 Gene. Genes, 2023, 14, 69.	1.0	2
1337	Towards the Clinical Application of Gene Therapy for Genetic Inner Ear Diseases. Journal of Clinical Medicine, 2023, 12, 1046.	1.0	8
1338	Molecular Mechanisms and Clinical Phenotypes of GJB2 Missense Variants. Biology, 2023, 12, 505.	1.3	4
1351	Hearing Loss in Neonates and Infants. , 2023, , 575-585.		O