Crystal structure of horseradish peroxidase C at 2.15 ${ m \tilde{A}}$.r

Nature Structural Biology 4, 1032-1038 DOI: 10.1038/nsb1297-1032

Citation Report

#	Article	IF	CITATIONS
1	Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydrate Research, 1998, 311, 61-69.	1.1	56
2	Analysis of two incompletely spliced Arabidopsis cDNAs encoding novel types of peroxidase. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 149-154.	2.4	4
3	Proteins in electric fields and pressure fields: experimental results. BBA - Proteins and Proteomics, 1998, 1386, 289-303.	2.1	16
4	Intrinsic protein electric fields: basic non-covalent interactions and relationship to protein-induced Stark effects. BBA - Proteins and Proteomics, 1998, 1386, 305-330.	2.1	63
5	Fluorescence line narrowing applied to the study of proteins. BBA - Proteins and Proteomics, 1998, 1386, 331-351.	2.1	29
6	Understanding heme cavity structure of peroxidases: Comparison of electronic absorption and resonance Raman spectra with crystallographic results. , 1998, 4, S3-S17.		67
7	Characterization of soybean seed coat peroxidase: Resonance Raman evidence for a structure-based classification of plant peroxidases. , 1998, 4, 355-364.		35
8	Comparison of rotating disk and wall-jet electrode systems for studying the kinetics of direct and mediated electron transfer for horseradish peroxidase on a graphite electrode. Journal of Electroanalytical Chemistry, 1998, 458, 113-120.	1.9	58
9	Substrate binding and catalysis in heme peroxidases. Current Opinion in Chemical Biology, 1998, 2, 269-278.	2.8	165
10	Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase. FEBS Letters, 1998, 421, 234-236.	1.3	72
11	A study on reducing substrates of manganese-oxidizing peroxidases fromPleurotus eryngiiandBjerkandera adusta. FEBS Letters, 1998, 428, 141-146.	1.3	188
13	Detection of a Tryptophan Radical as an Intermediate Species in the Reaction of Horseradish Peroxidase Mutant (Phe-221 → Trp) and Hydrogen Peroxide. Journal of Biological Chemistry, 1998, 273, 14753-14760.	1.6	40
14	Variety in the Coupling of Mesoporphyrin IX to Apohorseradish Peroxidase C Studied by Energy Selected Fluorescence Excitation and Vibronic Hole Burning Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 5932-5940.	1.2	9
15	Detection of UV Resonance Raman Bands of the Distal Histidine in Cyanide-Bound Horseradish Peroxidase:Â Evidence for Two Hydrogen Bonding States of the Imidazolium Side Chain. Journal of the American Chemical Society, 1998, 120, 11012-11013.	6.6	21
16	A Theoretical Study of Benzhydroxamic Acid Binding Modes in Horseradish Peroxidase. Journal of the American Chemical Society, 1998, 120, 5168-5178.	6.6	14
17	New Insights into Horseradish Peroxidase Function in Benzene from Resonance Raman Spectroscopy. Journal of the American Chemical Society, 1998, 120, 10303-10309.	6.6	28
18	Effect of Calcium, Other Ions, and pH on the Reactions of Barley Peroxidase with Hydrogen Peroxide and Fluoride. Journal of Biological Chemistry, 1998, 273, 2232-2240.	1.6	32
19	Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation. Biochemical Journal, 1998, 336, 395-404.	1.7	68

#	Article	IF	CITATIONS
20	Redox- and anion-linked protonation sites in horseradish peroxidase: analysis of distal haem pocket mutants. Biochemical Journal, 1998, 330, 303-309.	1.7	14
21	Haem propionates control oxidative and reductive activities of horseradish peroxidase by maintaining the correct orientation of the haem. Biochemical Journal, 1998, 334, 51-56.	1.7	16
22	Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proceedings of the United States of America, 1999, 96, 1989-1994.	3.3	88
23	Effects of the Location of Distal Histidine in the Reaction of Myoglobin with Hydrogen Peroxide. Journal of Biological Chemistry, 1999, 274, 2838-2844.	1.6	162
24	Description of a Versatile Peroxidase Involved in the Natural Degradation of Lignin That Has Both Manganese Peroxidase and Lignin Peroxidase Substrate Interaction Sites. Journal of Biological Chemistry, 1999, 274, 10324-10330.	1.6	326
25	Direct electron transfer catalysed by recombinant forms of horseradish peroxidase: insight into the mechanism. Electrochemistry Communications, 1999, 1, 171-175.	2.3	70
26	Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Molecular Microbiology, 1999, 31, 223-235.	1.2	203
27	Linear free-energy relationships and inverted Marcus region in the horseradish peroxidase-catalyzed oxidation of ferrocenes by hydrogen peroxide. Journal of Organometallic Chemistry, 1999, 589, 85-91.	0.8	16
28	Functional Expression of Horseradish Peroxidase in E. coli by Directed Evolution. Biotechnology Progress, 1999, 15, 467-471.	1.3	68
29	Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Analytica Chimica Acta, 1999, 400, 91-108.	2.6	508
30	The Nature and Function of Lignins. , 1999, , 617-745.		72
31	Catechol(amine)s as probes of lactoperoxidase catalytic site structure: spectroscopic and modeling studies. Journal of Biological Inorganic Chemistry, 1999, 4, 12-20.	1.1	21
32	Oxidative 4-dechlorination of 2,4,6-trichlorophenol catalyzed by horseradish peroxidase. Journal of Biological Inorganic Chemistry, 1999, 4, 232-237.	1.1	62
33	Horseradish peroxidase monitored by infrared spectroscopy: effect of temperature, substrate and calcium. BBA - Proteins and Proteomics, 1999, 1435, 41-50.	2.1	31
34	Recent biotechnological developments in the use of peroxidases. Trends in Biotechnology, 1999, 17, 163-168.	4.9	229
35	Investigations with respect to stabilization of screen-printed enzyme electrodes. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 67-76.	1.8	19
36	Structural changes of horseradish peroxidase in presence of low concentrations of urea. FEBS Journal, 1999, 259, 269-274.	0.2	27
37	Controlled layer-by-layer immobilization of horseradish peroxidase. , 1999, 65, 389-396.		77

#	Article	IF	CITATIONS
38	Influence of protein environment on magnetic circular dichroism spectral properties of ferric and ferric and ferric be and ferric be and ferric be and ferric be and the set of		11
39	Electrostatic Immobilization of Glucose Oxidase in a Weak Acid, Polyelectrolyte Hyperbranched Ultrathin Film on Gold:Â Fabrication, Characterization, and Enzymatic Activity. Analytical Chemistry, 1999, 71, 3133-3139.	3.2	122
40	The Structures of the Horseradish Peroxidase C-Ferulic Acid Complex and the Ternary Complex with Cyanide Suggest How Peroxidases Oxidize Small Phenolic Substrates. Journal of Biological Chemistry, 1999, 274, 35005-35011.	1.6	197
41	New Approaches for Functional Expression of Recombinant Horseradish Peroxidase C In <i>Escherichia Coli</i> . Biocatalysis and Biotransformation, 1999, 17, 359-379.	1.1	39
42	Striking activation of oxidative enzymes suspended in nonaqueous media. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9475-9478.	3.3	104
43	Molecular evolution of thyroid peroxidase**Adapted from Taurog A., Wall M., Thyroid 8 (1998) 185–191, with permission from the publisher, Mary Ann Liebert, Inc Biochimie, 1999, 81, 557-562.	1.3	73
44	The Quantum Mixed-Spin Heme State of Barley Peroxidase:A Paradigm for Class III Peroxidases. Biophysical Journal, 1999, 77, 478-492.	0.2	76
45	Mechanisms of Sulfoxidation Catalyzed by High-Valent Intermediates of Heme Enzymes: Electron-Transfer vs Oxygen-Transfer Mechanism. Journal of the American Chemical Society, 1999, 121, 9497-9502.	6.6	166
46	Reaction Mechanism of Compound I Formation in Heme Peroxidases:Â A Density Functional Theory Study. Journal of the American Chemical Society, 1999, 121, 10178-10185.	6.6	132
47	The crystal structure of lignin peroxidase at 1.70 à resolution reveals a hydroxy group on the C β of tryptophan 171: A novel radical site formed during the redox cycle 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 286, 809-827.	2.0	187
48	The Primary and Higher Order Structures of Sea Urchin Ovoperoxidase as Determined by cDNA Cloning and Predicted by Homology Modeling. Archives of Biochemistry and Biophysics, 1999, 367, 173-184.	1.4	16
49	Disulfide Bond Formation and Folding of Plant Peroxidases Expressed as Inclusion Body Protein inEscherichia coliThioredoxin Reductase Negative Strains. Protein Expression and Purification, 1999, 15, 77-82.	0.6	17
50	Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem. Biochemical Journal, 1999, 344, 237-244.	1.7	45
51	Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure. Biochemical Journal, 1999, 340, 579-583.	1.7	72
52	Structure and enzymology of two bacterial diheme enzymes: Cytochrome cd1 nitrite reductase and cytochrome c peroxidase. Advances in Inorganic Chemistry, 2000, 51, 163-204.	0.4	36
53	Redox equilibria of manganese peroxidase from Phanerochaetes chrysosporium: functional role of residues on the proximal side of the haem pocket. Biochemical Journal, 2000, 349, 85.	1.7	11
54	Preparation, morphological characterization, and activity of thin films of horseradish peroxidase. , 2000, 68, 488-495.		49
55	3D structure of microperoxidase-11 by NMR and molecular dynamic studies. Magnetic Resonance in Chemistry, 2000, 38, 229-240	1.1	13

# 56	ARTICLE Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. Journal of Molecular Recognition, 2000, 13, 325-351.	IF 1.1	CITATIONS 215
57	Nuclear magnetic relaxation of methyl protons in a paramagnetic protein: cross-correlation effects. Chemical Physics Letters, 2000, 320, 269-276.	1.2	9
58	Arabidopsis thalianaperoxidase N: structure of a novel neutral peroxidase. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 372-375.	2.5	27
59	Reagentless biosensors based on self-deposited redox polyelectrolyte-oxidoreductases architectures. Biosensors and Bioelectronics, 2000, 15, 43-52.	5.3	105
60	Selective oxygen transfer catalysed by heme peroxidases: synthetic and mechanistic aspects. Current Opinion in Biotechnology, 2000, 11, 554-564.	3.3	199
61	Effect of low temperature on soybean peroxidase: spectroscopic characterization of the quantum-mechanically admixed spin state. Journal of Inorganic Biochemistry, 2000, 79, 269-274.	1.5	22
62	Anion- and pH-linked conformational transition in horseradish peroxidase. Journal of Inorganic Biochemistry, 2000, 79, 25-30.	1.5	7
63	Engineering a Disulfide Bond in Recombinant Manganese Peroxidase Results in Increased Thermostability. Biotechnology Progress, 2000, 16, 326-333.	1.3	44
64	Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosensors and Bioelectronics, 2000, 15, 491-497.	5.3	130
65	Rational molecular design of a catalytic site: engineering of catalytic functions to the myoglobin active site framework. Coordination Chemistry Reviews, 2000, 198, 39-59.	9.5	81
66	Ionic strength and pH effect on the Fe(III)-imidazolate bond in the heme pocket of horseradish peroxidase: an EPR and UV–visible combined approach. Journal of Inorganic Biochemistry, 2000, 81, 259-266.	1.5	21
67	Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Molecular Biology, 2000, 44, 231-243.	2.0	149
68	Metal coordination influences substrate binding in horseradish peroxidase. European Biophysics Journal, 2000, 29, 429-438.	1.2	13
69	Enzymatic method for the determination of phenols with the use of peanut peroxidase. Journal of Analytical Chemistry, 2000, 55, 82-89.	0.4	4
70	Formation of two types of low-spin heme in horseradish peroxidase isoenzyme A2 at low temperature. Journal of Biological Inorganic Chemistry, 2000, 5, 227-235.	1.1	34
71	Heme Peroxidases: Structure, Function, Mechanism and Involvement in Activation of Carcinogens. A Review. Collection of Czechoslovak Chemical Communications, 2000, 65, 297-325.	1.0	21
72	Peroxidase-Catalyzed Oxidation of Ascorbate Structural, Spectroscopic and Mechanistic Correlations in Ascorbate Peroxidase. Sub-Cellular Biochemistry, 2000, 35, 317-349.	1.0	41
73	Active Iron-Oxo and Iron-Peroxo Species in Cytochromes P450 and Peroxidases; Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. , 2000, , 1-35.		75

#	Article	IF	CITATIONS
74	Structural and Conformational Stability of Horseradish Peroxidase:  Effect of Temperature and pH. Biochemistry, 2000, 39, 263-270.	1.2	288
75	Direct Binding of Hydroxylamine to the Heme Iron ofArthromyces ramosus Peroxidase. Journal of Biological Chemistry, 2000, 275, 32919-32924.	1.6	19
76	Common phylogeny of catalase-peroxidases and ascorbate peroxidases. Gene, 2000, 256, 169-182.	1.0	47
77	Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Engineering, Design and Selection, 2000, 13, 377-384.	1.0	116
78	Probing the Role of Protein Environment in Compound I Formation of Chloroperoxidase (CPO). Journal of the American Chemical Society, 2000, 122, 3599-3605.	6.6	18
79	Imidazole-Ligated Compound I Intermediates:Â The Effects of Hydrogen Bonding. Journal of the American Chemical Society, 2000, 122, 9495-9499.	6.6	81
80	Benzohydroxamic Acidâ~'Peroxidase Complexes:Â Spectroscopic Characterization of a Novel Heme Spin Species. Journal of the American Chemical Society, 2000, 122, 7368-7376.	6.6	41
81	Role of Protein Environment in Horseradish Peroxidase Compound I Formation:Â Molecular Dynamics Simulations of Horseradish Peroxidaseâ^HOOH Complex. Journal of the American Chemical Society, 2000, 122, 18-25.	6.6	69
82	Direct and Mediated Electron Transfer Catalyzed by Anionic Tobacco Peroxidase: Effect of Calcium Ions. Applied Biochemistry and Biotechnology, 2000, 88, 321-334.	1.4	20
83	Horseradish peroxidase. Advances in Inorganic Chemistry, 2000, , 107-162.	0.4	149
84	Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Science, 2001, 10, 108-115.	3.1	122
85	Solution 1H NMR of the Molecular and Electronic Structure of the Heme Cavity and Substrate Binding Pocket of High-Spin Ferric Horseradish Peroxidase:  Effect of His42Ala Mutation. Journal of the American Chemical Society, 2001, 123, 4243-4254.	6.6	28
86	Investigations of the Roles of the Distal Heme Environment and the Proximal Heme Iron Ligand in Peroxide Activation by Heme Enzymes via Molecular Engineering of Myoglobin. Accounts of Chemical Research, 2001, 34, 818-825.	7.6	151
87	The Effects of the Site-Directed Removal of N-Glycosylation from Cationic Peanut Peroxidase on Its Function. Archives of Biochemistry and Biophysics, 2001, 386, 17-24.	1.4	69
88	In Vivo Conversion of a Glycan to Human Compatible Type by Transformed Tobacco Cells. Biochemical and Biophysical Research Communications, 2001, 289, 553-557.	1.0	26
89	Steady-State and Picosecond Time-Resolved Fluorescence Studies on Native and Apo Seed Coat Soybean Peroxidase. Biochemical and Biophysical Research Communications, 2001, 289, 427-433.	1.0	25
90	Influence of Static and Dynamic Disorder on the Visible and Infrared Absorption Spectra of Carbonmonoxy Horseradish Peroxidase. Biophysical Journal, 2001, 81, 3472-3482.	0.2	19
91	Energy Selection Is Not Correlated in the Qx and Qy Bands of a Mg-Porphyrin Embedded in a Protein. Biophysical Journal, 2001, 80, 498-504.	0.2	9

#	Article	IF	CITATIONS
92	Trehalose Effect on Low Temperature Protein Dynamics: Fluctuation and Relaxation Phenomena. Biophysical Journal, 2001, 80, 2011-2017.	0.2	41
94	The molecular peculiarities of catalase-peroxidases. FEBS Letters, 2001, 492, 177-182.	1.3	81
95	Horseradish Peroxidase Adsorption on Silica Surfaces as an Oscillatory Dynamical Behavior. Journal of Physical Chemistry B, 2001, 105, 6278-6280.	1.2	11
96	A Large Family of Class III Plant Peroxidases. Plant and Cell Physiology, 2001, 42, 462-468.	1.5	766
97	BEHAVIOUR OF HORSERADISH PEROXIDASE IN AOT REVERSED MICELLES. Biocatalysis and Biotransformation, 2001, 19, 213-233.	1.1	15
98	Photodissociation of the CO Complex of Horseradish Peroxidase Studied by Laser-Induced Optoacoustic Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 2638-2643.	1.2	10
100	Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2. Biochemical Journal, 2001, 354, 107.	1.7	86
101	Haem-linked interactions in horseradish peroxidase revealed by spectroscopic analysis of the Phe-221→Met mutant. Biochemical Journal, 2001, 353, 181.	1.7	6
102	Engineering the active site of ascorbate peroxidase. FEBS Journal, 2001, 268, 78-85.	0.2	24
103	Scots pine expresses short-root-specific peroxidases during development. FEBS Journal, 2001, 268, 86-93.	0.2	28
104	Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold. Biosensors and Bioelectronics, 2001, 16, 147-157.	5.3	164
105	Protein matrix local fluctuations and substrate binding in HRPC: A proposed dynamic electrostatic sampling method. International Journal of Quantum Chemistry, 2001, 84, 290-301.	1.0	6
106	Proximal ligand effects on electronic structure and spectra of compound I of peroxidases. Journal of Porphyrins and Phthalocyanines, 2001, 05, 334-344.	0.4	24
107	Functional expression and stabilization of horseradish peroxidase by directed evolution inSaccharomyces cerevisiae. Biotechnology and Bioengineering, 2001, 76, 99-107.	1.7	133
108	Mutation of residues critical for benzohydroxamic acid binding to horseradish peroxidase isoenzyme C. Biopolymers, 2001, 62, 261-267.	1.2	10
109	Direct Electron Transfer Observed for Peroxidase to Screen-Printed Graphite Electrodes. Electroanalysis, 2001, 13, 779-785.	1.5	9
110	P-chip and P-chip bienzyme electrodes based on recombinant forms of horseradish peroxidase immobilized on gold electrodes. Biochemistry (Moscow), 2001, 66, 832-839.	0.7	10
111	The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem: cDNA isolation, characterization and expression. Plant Molecular Biology, 2001, 47, 581-593.	2.0	46

ARTICLE IF CITATIONS # An essential role of active site arginine residue in iodide binding and histidine residue in electron transfer for iodide oxidation by horseradish peroxidase. Molecular and Cellular Biochemistry, 2001, 1.4 7 112 218, 1-11. Buffer-anion-dependent Ca2+ leaching from horseradish peroxidase at low pH. Journal of Biological 1.1 Inorganic Chemistry, 2001, 6, 348-358. The inactivation of horseradish peroxidase isoenzyme AZ by hydrogen peroxide: an example of partial 114 resistance due to the formation of a stable enzyme intermediate. Journal of Biological Inorganic 1.1 45 Chemistry, 2001, 6, 504-516. High-valent transition metal centers and noninnocent ligands in metalloporphyrins and related molecules: a broad overview based on quantum chemical calculations. Journal of Biological 1.1 Inorganic Chemistry, 2001, 6, 739-752 Kinetic evidence for surface residues influencing the active site of Coprinus cinereus peroxidase: analysis of the pH dependence of G154E, P90H and P90H–G154E substrate entrance mutants. BBA -116 2.1 3 Proteins and Proteomics, 2001, 1544, 18-27. Enzymatic properties of human hemalbumin. BBA - Proteins and Proteomics, 2001, 1547, 302-312. 2.1 Stability of free and immobilised peroxidase in aqueous–organic solvents mixtures. Journal of 118 1.8 78 Molecular Catalysis B: Enzymatic, 2001, 15, 147-153. The Critical Role of the Proximal Calcium Ion in the Structural Properties of Horseradish Peroxidase. 119 1.6 63 Journal of Biological Chemistry, 2001, 276, 40704-40711. Roles of Water in Heme Peroxidase and Catalase Mechanisms. Journal of Biological Chemistry, 2001, 120 1.6 51 276, 13791-13796. Identification of a Ca2+-Pectate Binding Site on an Apoplastic Peroxidase. Plant Cell, 2001, 13, 511-520. 3.1 Rapid Deposition of Extensin during the Elicitation of Grapevine Callus Cultures Is Specifically 122 2.382 Catalyzed by a 40-Kilodalton Peroxidase. Plant Physiology, 2001, 127, 1065-1076. Protein Oxidation of Cytochrome c by Reactive Halogen Species Enhances Its Peroxidase Activity. 1.6 99 Journal of Biological Chemistry, 2002, 277, 29781-29791 A Retrospective Look at the Cationic Peanut Peroxidase Structure. Critical Reviews in Biotechnology, 124 5.1 14 2002, 22, 335-354. Spectroscopic characterization of mutations at the Phe41 position in the distal haem pocket of horseradish peroxidase C: structural and functional consequences. Biochemical Journal, 2002, 363, 1.7 Analytical Chemistry related to Biofunctional Research. Immobilization of horseradish peroxidase on 126 nanometer-scale domains of phase-separated binary self-assembled monolayers formed by 0.1 8 coadsorption on Au(111).. Bunseki Kagaku, 2002, 51, 455-460. Aggregation and gel formation of proteins after combined pressuretemperature treatment. Progress 127 in Biotechnology, 2002, 19, 95-100. Mechanistic and Molecular Investigations on Stabilization of Horseradish Peroxidase C. Analytical 128 3.249 Chemistry, 2002, 74, 3037-3045. 13C NMR Signal Detection of Iron-Bound Cyanide Ions in Ferric Cyanide Complexes of Heme Proteins. 129 6.6 Journal of the American Chemical Society, 2002, 124, 5936-5937.

#	Article	IF	CITATIONS
130	Influence of the Distal His in Imparting Imidazolate Character to the Proximal His in Heme Peroxidase:Â1H NMR Spectroscopic Study of Cyanide-Inhibited His42→Ala Horseradish Peroxidase. Journal of the American Chemical Society, 2002, 124, 11029-11037.	6.6	25
131	Redox Thermodynamics of the Fe3+/Fe2+Couple in Horseradish Peroxidase and Its Cyanide Complex. Journal of the American Chemical Society, 2002, 124, 26-27.	6.6	63
132	Antiperoxidase Antibodies Enhance Refolding of Horseradish Peroxidase. Biochemical and Biophysical Research Communications, 2002, 291, 959-965.	1.0	11
133	Immobilization of Peroxidase Glycoprotein on Gold Electrodes Modified with Mixed Epoxy-Boronic Acid Monolayers. Journal of the American Chemical Society, 2002, 124, 12845-12853.	6.6	111
134	Raman Evidence that the Lyoprotectant Poly(ethylene glycol) Does Not Restore Nativity to the Heme Active Site of Horseradish Peroxidase Suspended in Organic Solvents. Biomacromolecules, 2002, 3, 846-849.	2.6	6
135	Activity and conformational changes of horseradish peroxidase in trifluoroethanol. Biochemistry and Cell Biology, 2002, 80, 205-213.	0.9	8
136	Photoswitching of peroxidase activity by position-specific incorporation of a photoisomerizable non-natural amino acid into horseradish peroxidase. FEBS Letters, 2002, 510, 10-12.	1.3	57
137	Characterization and tissue-regulated expression of genes involved in pineapple (Ananas comosus L.) root development. Plant Science, 2002, 163, 1021-1035.	1.7	33
138	Initial characterization of the ferric H175G cytochrome c peroxidase cavity mutant using magnetic circular dichroism spectroscopy: phosphate from the buffer as an axial ligand. International Congress Series, 2002, 1233, 25-35.	0.2	0
139	Non-Oxidative Decarboxylation of Glycine Derivatives by a Peroxidase. Journal of the American Chemical Society, 2002, 124, 10000-10001.	6.6	17
140	The structures of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins and Other Lipid Mediators, 2002, 68-69, 129-152.	1.0	121
141	Effect of dimethyl sulfoxide on the structure and the functional properties of horseradish peroxidase as observed by spectroscopy and cyclic voltammetry. BBA - Proteins and Proteomics, 2002, 1596, 225-233.	2.1	39
142	Veratryl alcohol binding sites of lignin peroxidase from Phanerochaete chrysosporium. Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 49-57.	1.8	24
143	Spectroscopic study on structure of horseradish peroxidase in water and dimethyl sulfoxide mixture. Biopolymers, 2002, 67, 107-112.	1.2	6
144	Enzyme-mediated catalytic asymmetric oxidations. Heteroatom Chemistry, 2002, 13, 467-473.	0.4	31
145	Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. Journal of Biological Inorganic Chemistry, 2002, 7, 273-283.	1.1	55
146	Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosensors and Bioelectronics, 2002, 17, 953-963.	5.3	75
147	Structural analysis of the two horseradish peroxidase catalytic residue variants H42E and R38S/H42E: implications for the catalytic cycle. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1803-1812.	2.5	13

#	Article	IF	CITATIONS
148	Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. FEBS Journal, 2002, 269, 6063-6081.	0.2	239
149	Mechanisms of compound I formation in heme peroxidases. Journal of Inorganic Biochemistry, 2002, 91, 27-34.	1.5	134
150	Extremely high stability of African oil palm tree peroxidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1598, 108-114.	1.1	27
151	Enthalpy analysis of horseradish peroxidase in the presence of Ni2+: a stabilization study. Thermochimica Acta, 2002, 385, 33-39.	1.2	10
152	Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology, 2002, 30, 425-444.	1.6	358
153	The catalytic pathway of horseradish peroxidase at high resolution. Nature, 2002, 417, 463-468.	13.7	829
154	Conformation change of horseradish peroxidase in lipid membrane. Chemistry and Physics of Lipids, 2002, 120, 119-129.	1.5	31
155	Suicide Inactivation of Peroxidases and the Challenge of Engineering More Robust Enzymes. Chemistry and Biology, 2002, 9, 555-565.	6.2	310
156	Molecular mechanics and molecular dynamics simulations of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coordination Chemistry Reviews, 2002, 225, 123-158.	9.5	90
157	Comparative study of horseradish mutant forms by radioenzymology. Russian Chemical Bulletin, 2002, 51, 887-893.	0.4	1
158	Probing the role of active site histidine residues in the catalytic activity of lacrimal gland peroxidase. Molecular and Cellular Biochemistry, 2002, 237, 21-30.	1.4	3
159	Effect of Mn ²⁺ , Co ²⁺ , Ni ²⁺ , and Cu ²⁺ on Horseradish Peroxidase : Activation, Inhibition, and Denaturation Studies. Applied Biochemistry and Biotechnology, 2003, 104, 81-94.	1.4	32
160	The Structure of Mammalian Cyclooxygenases. Annual Review of Biophysics and Biomolecular Structure, 2003, 32, 183-206.	18.3	119
161	Adsorption and Activity of Proteins onto Mesoporous Silica. Catalysis Letters, 2003, 85, 19-23.	1.4	87
162	The Peroxidase Gene Family in Plants: A Phylogenetic Overview. Journal of Molecular Evolution, 2003, 57, 397-407.	0.8	129
163	Modulation of the NO trans effect in heme proteins: implications for the activation of soluble guanylate cyclase. Journal of Biological Inorganic Chemistry, 2003, 8, 595-600.	1.1	39
164	Relationship between heme vinyl conformation and the protein matrix in peroxidases. Journal of Raman Spectroscopy, 2003, 34, 725-736.	1.2	72
165	Resonance Raman spectroscopy study of change of iron spin state in horseradish peroxidase C induced by removal of calcium. Biopolymers, 2003, 72, 241-248.	1.2	9

#	Article	IF	CITATIONS
166	Effects of phthalic anhydride modification on horseradish peroxidase stability and activity. Biotechnology and Bioengineering, 2003, 81, 233-240.	1.7	36
167	A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry, 2003, 64, 163-176.	1.4	147
168	Activity, stability and conformational flexibility of seed coat soybean peroxidase. Journal of Inorganic Biochemistry, 2003, 94, 236-242.	1.5	73
169	Solvent dependent and independent motions of CO–horseradish peroxidase examined by infrared spectroscopy and molecular dynamics calculations. Biophysical Chemistry, 2003, 106, 1-14.	1.5	14
170	Amperometric hydrogen peroxide biosensor with sol–gel/chitosan network-like film as immobilization matrix. Biosensors and Bioelectronics, 2003, 18, 335-343.	5.3	201
171	Accessibility of oxygen with respect to the heme pocket in horseradish peroxidase. Proteins: Structure, Function and Bioinformatics, 2003, 53, 656-666.	1.5	25
172	A Density Functional Theory Study of Conformers in the Ferrous CO Complex of Horseradish Peroxidase with Distinct Feâ~'Câ~'O Configurations. Journal of Physical Chemistry B, 2003, 107, 1884-1892.	1.2	8
173	The Proximal Hydrogen-Bonded Residue Controls the Stability of the CompoundIIIntermediate of Peroxidases and Catalases. Journal of Physical Chemistry B, 2003, 107, 5300-5305.	1.2	29
174	Heme-peroxidases. , 2003, , 261-280.		5
175	Horseradish peroxidase: a valuable tool in biotechnology. Biotechnology Annual Review, 2003, 9, 199-247.	2.1	235
176	Heme and pH-dependent stability of an anionic horseradish peroxidase. Archives of Biochemistry and Biophysics, 2003, 415, 257-267.	1.4	52
177	Phospholipid assisted folding of a denatured heme protein: effect of phosphatidylethanolamine. Biochemical and Biophysical Research Communications, 2003, 301, 979-984.	1.0	9
178	Heme Structural Perturbation of PEG-Modified Horseradish Peroxidase C in Aromatic Organic Solvents Probed by Optical Absorption and Resonance Raman Dispersion Spectroscopy. Biophysical Journal, 2003, 84, 3285-3298.	0.2	9
179	The Endogenous Calcium Ions of Horseradish Peroxidase C Are Required to Maintain the Functional Nonplanarity of the Heme. Biophysical Journal, 2003, 84, 2542-2552.	0.2	44
180	Heterogeneous inhibition of horseradish peroxidase activity by cadmium. Biochimica Et Biophysica Acta - General Subjects, 2003, 1621, 140-148.	1.1	26
181	Autocatalytic Radical Reactions in Physiological Prosthetic Heme Modification. Chemical Reviews, 2003, 103, 2305-2332.	23.0	132
182	Protein relaxation in the photodissociation of myoglobin–CO complexes. Photochemical and Photobiological Sciences, 2003, 2, 730-740.	1.6	19
183	Kinetic and Spectroscopic Characterization of a Hydroperoxy Compound in the Reaction of Native Myoglobin with Hydrogen Peroxide. Journal of Biological Chemistry, 2003, 278, 41597-41606.	1.6	35

#	Article	IF	CITATIONS
184	Relationships of Ligand Binding, Redox Properties, and Protonation in Coprinus cinereus Peroxidase. Journal of Biological Chemistry, 2003, 278, 18730-18737.	1.6	7
185	Cytochrome c Nitrite Reductase from Desulfovibrio desulfuricans ATCC 27774. Journal of Biological Chemistry, 2003, 278, 17455-17465.	1.6	98
186	Two-dimensional NMR Study of the Heme Active Site Structure of Chloroperoxidase. Journal of Biological Chemistry, 2003, 278, 7765-7774.	1.6	26
187	A Biochemical and Molecular Characterization of LEP1, an Extensin Peroxidase from Lupin. Journal of Biological Chemistry, 2003, 278, 41389-41399.	1.6	50
188	Mechanism of horseradish peroxidase inactivation by benzhydrazide: a critical evaluation of arylhydrazides as peroxidase inhibitors. Biochemical Journal, 2003, 375, 613-621.	1.7	30
189	Introduction of P450, Peroxidase, and Catalase Activities into Myoglobin by Site-Directed Mutagenesis: Diverse Reactivities of Compound I. Bulletin of the Chemical Society of Japan, 2003, 76, 1309-1322.	2.0	39
191	Protein folding, unfolding and aggregation. Pressure induced intermediate states on the refolding pathway of horseradish peroxidase. Journal of Physics Condensed Matter, 2004, 16, S1053-S1058.	0.7	9
192	Identification of Crucial Histidines Involved in Carbon-Nitrogen Triple Bond Synthesis by Aldoxime Dehydratase. Journal of Biological Chemistry, 2004, 279, 47619-47625.	1.6	32
193	Controlling the texture of fruit and vegetables: the role of oxidising enzymes. , 2004, , 295-320.		1
194	Engineering peroxidase activity in myoglobin: the haem cavity structure and peroxide activation in the T67R/S92D mutant and its derivative reconstituted with protohaemin-l-histidine. Biochemical Journal, 2004, 377, 717-724.	1.7	38
195	Enzyme-catalyzed Mechanism of Isoniazid Activation in Class I and Class III Peroxidases. Journal of Biological Chemistry, 2004, 279, 39000-39009.	1.6	53
196	Crystal Structure of Mycobacterium tuberculosis Catalase-Peroxidase. Journal of Biological Chemistry, 2004, 279, 38991-38999.	1.6	174
197	TRANSITION METAL CHEMISTRY OF GLUCOSE OXIDASE, HORSERADISH PEROXIDASE, AND RELATED ENZYMES. Advances in Inorganic Chemistry, 2004, 55, 201-269.	0.4	37
198	Enhancement of enzymatic activity for myoglobins by modification of heme-propionate side chains. Journal of Porphyrins and Phthalocyanines, 2004, 08, 255-264.	0.4	7
199	Structural Basis for the Mechanism of Ca2+ Activation of the Di-Heme Cytochrome c Peroxidase from Pseudomonas nautica 617. Structure, 2004, 12, 961-973.	1.6	53
200	Protective mechanisms against peptide and protein peroxides generated by singlet oxygen. Free Radical Biology and Medicine, 2004, 36, 484-496.	1.3	76
201	Structural determinants of plant peroxidase function. Phytochemistry Reviews, 2004, 3, 3-18.	3.1	72
202	Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. Journal of Biological Inorganic Chemistry, 2004, 9, 385-395.	1.1	44

#	Article	IF	CITATIONS
203	The charge transfer band in horseradish peroxidase correlates with heme in-plane distortions induced by calcium removal. Biopolymers, 2004, 74, 41-45.	1.2	12
204	Conformational states of HRPA1 induced by thermal unfolding: Effect of low molecular weight solutes. Biopolymers, 2004, 75, 173-186.	1.2	9
205	Immobilization of Protein Molecules by Size-Selected Metal Clusters on Surfaces. Advanced Materials, 2004, 16, 223-226.	11.1	43
206	Engineering and Prostheticâ€Group Modification of Myoglobin: Peroxidase Activity, Chemical Stability and Unfolding Properties. European Journal of Inorganic Chemistry, 2004, 2004, 2203-2213.	1.0	18
207	Direct Peroxidase Bioelectrocatalysis on a Variety of Electrode Materials. Electroanalysis, 2004, 16, 1101-1112.	1.5	114
208	Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method. Journal of Computational Chemistry, 2004, 25, 2049-2064.	1.5	71
209	Surface nanostructures created by cluster-surface impact. Vacuum, 2004, 73, 123-129.	1.6	10
210	Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 2004, 65, 249-259.	1.4	1,101
211	Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 2004, 65, 1331-1342.	1.4	130
212	The class III peroxidase multigenic family in rice and its evolution in land plantsâ~†â~†â~†â~†. Phytochemistry, 2004, 65, 1879-1893.	1.4	347
213	Cloning and characterisation of a basic IAA oxidase associated with root induction in Vitis vinifera. Plant Physiology and Biochemistry, 2004, 42, 609-615.	2.8	31
214	Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes. Current Opinion in Chemical Biology, 2004, 8, 127-132.	2.8	57
215	Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosensors and Bioelectronics, 2004, 20, 294-304.	5.3	172
216	Peroxidase-Catalyzed Coupling of Phenol in the Presence of Model Inorganic and Organic Solid Phases. Environmental Science & Technology, 2004, 38, 5238-5245.	4.6	31
217	Water Channel of Horseradish Peroxidase Studied by the Charge-Transfer Absorption Band of Ferric Hemeâ€. Journal of Physical Chemistry B, 2004, 108, 10317-10324.	1.2	19
218	Heme Protein Assemblies. Chemical Reviews, 2004, 104, 617-650.	23.0	352
219	Real-Time Quantification of Methanol in Plants Using a Hybrid Alcohol Oxidaseâ^'Peroxidase Biosensor. Analytical Chemistry, 2004, 76, 1500-1506.	3.2	37
220	Characterization of the solution reactivity of a basic heme peroxidase from Cucumis sativus. Archives of Biochemistry and Biophysics, 2004, 423, 317-331.	1.4	15

#	Article	IF	CITATIONS
221	Bioorganometallic Chemistry of Ferrocene. Chemical Reviews, 2004, 104, 5931-5986.	23.0	1,209
222	Directed self-organisation of soluble proteins on surfaces. International Journal of Nanotechnology, 2005, 2, 169.	0.1	0
223	Formation of a misfolded conformation during refolding of HRPA1 in the presence of calcium. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1747, 99-107.	1.1	2
224	Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol–gel-derived tin oxide/gelatin composite films. Journal of Electroanalytical Chemistry, 2005, 580, 213-221.	1.9	95
225	Direct electron transfer of haemoglobin and myoglobin in methanol and ethanol at didodecyldimethylammonium bromide modified pyrolytic graphite electrodes. Electrochemistry Communications, 2005, 7, 323-327.	2.3	32
226	Effects of phthalic anhydride modification on horseradish peroxidase stability and structure. Enzyme and Microbial Technology, 2005, 36, 605-611.	1.6	34
227	Numerically Simulated pH-Induced Reactivation of Catalytic Activity of Horseradish Peroxidase. Annals of the New York Academy of Sciences, 2005, 1048, 457-460.	1.8	2
228	Direct Electrochemistry of Proteins and Enzymes. Perspectives in Bioanalysis, 2005, , 517-598.	0.3	50
229	Spectroscopic and kinetic properties of the horseradish peroxidase mutant T171S. Evidence for selective effects on the reduced state of the enzyme. FEBS Journal, 2005, 272, 5514-5521.	2.2	13
230	Non-planar heme deformations and excited state displacements in horseradish peroxidase detected by Raman spectroscopy at Soret excitation. Journal of Raman Spectroscopy, 2005, 36, 363-375.	1.2	21
231	A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin. Journal of Inorganic Biochemistry, 2005, 99, 852-863.	1.5	16
232	The mechanism of Compound I formation revisited. Journal of Inorganic Biochemistry, 2005, 99, 2292-2298.	1.5	70
233	Enzyme immobilization on poly(ethylene-co-acrylic acid) films studied by quartz crystal microbalance with dissipation monitoring. Journal of Colloid and Interface Science, 2005, 287, 35-42.	5.0	47
234	Axial ligation and polypeptide matrix effects on the reduction potential of heme proteins probed on their cyanide adducts. Journal of Biological Inorganic Chemistry, 2005, 10, 643-651.	1.1	22
235	Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture. Plant Molecular Biology, 2005, 58, 141-157.	2.0	49
236	Chapter 2 Third generation biosensors—integrating recognition and transduction in electrochemical sensors. Comprehensive Analytical Chemistry, 2005, 44, 65-130.	0.7	25
237	Profiling of Wheat Class III Peroxidase Genes Derived from Powdery Mildew-Attacked Epidermis Reveals Distinct Sequence-Associated Expression Patterns. Molecular Plant-Microbe Interactions, 2005, 18, 730-741.	1.4	65
238	A study of the horseradish peroxidase catalytic site by FTIR spectroscopy. Biochemical Society Transactions, 2005, 33, 886-889.	1.6	9

#	Article	IF	CITATIONS
239	Probing the function of Mycobacterium tuberculosis catalase-peroxidase by site-directed mutagenesis. Dalton Transactions, 2005, , 3495.	1.6	4
240	Tweezing-Adsorptive Bubble Separation. Analytical Method for the Selective and High Enrichment of Metalloenzymes. Analytical Chemistry, 2005, 77, 6113-6117.	3.2	15
241	Preparing Catalytic Surfaces for Sensing Applications by Immobilizing Enzymes via Hydrophobin Layers. Analytical Chemistry, 2005, 77, 1622-1630.	3.2	67
242	Stepwise binding of nickel to horseradish peroxidase and inhibition of the enzymatic activity. Biochimica Et Biophysica Acta - General Subjects, 2005, 1722, 312-323.	1.1	13
243	New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochimica Et Biophysica Acta - General Subjects, 2005, 1723, 229-239.	1.1	45
244	Purification and characterization of peroxidases from Withania somnifera (AGB 002) and their ability to oxidize IAA. Plant Science, 2005, 169, 1014-1021.	1.7	40
245	Functionalization of Thioctic Acid-Capped Gold Nanoparticles for Specific Immobilization of Histidine-Tagged Proteins. Journal of the American Chemical Society, 2005, 127, 5689-5694.	6.6	248
246	An H 2 O 2 Biosensor Based on Immobilization of Horseradish Peroxidase Labeled Nanoâ€Au in Silica Solâ€Gel/Alginate Composite Film. Analytical Letters, 2005, 38, 1721-1734.	1.0	8
247	Inactivation of Horseradish Peroxidase by Phenoxyl Radical Attack. Journal of the American Chemical Society, 2005, 127, 1431-1437.	6.6	87
248	Specific Ion Effects at Protein Surfaces:Â A Molecular Dynamics Study of Bovine Pancreatic Trypsin Inhibitor and Horseradish Peroxidase in Selected Salt Solutions. Journal of Physical Chemistry B, 2006, 110, 7036-7043.	1.2	139
249	Water-Splitting Chemistry of Photosystem II. Chemical Reviews, 2006, 106, 4455-4483.	23.0	1,444
250	Synthetic Nanocrystalline Diamond as a Third-Generation Biosensor Support. Langmuir, 2006, 22, 5837-5842.	1.6	84
251	Infrared Absorption Study of the Heme Pocket Dynamics of Carbonmonoxyheme Proteins. Biophysical Journal, 2006, 91, 4191-4200.	0.2	7
252	Investigating the Local Flexibility of Functional Residues in Hemoproteins. Biophysical Journal, 2006, 90, 2706-2717.	0.2	92
253	An Interface Comprising Molecular Wires and Poly(ethylene glycol) Spacer Units Self-Assembled on Carbon Electrodes for Studies of Protein Electrochemistry. Langmuir, 2006, 22, 7421-7430.	1.6	148
254	Hydrophobic Distal Pocket Affects NOâ^'Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin. Journal of Physical Chemistry B, 2006, 110, 14483-14493.	1.2	13
255	Active site structure and catalytic mechanisms of human peroxidases. Archives of Biochemistry and Biophysics, 2006, 445, 199-213.	1.4	296
258	Microcantilevers Modified by Horseradish Peroxidase Intercalated Nano-Assembly for Hydrogen Peroxide Detection. Analytical Sciences, 2006, 22, 205-208.	0.8	18

#	Article	IF	CITATIONS
262	Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophysical Chemistry, 2006, 121, 163-170.	1.5	27
263	On the formation of Horseradish Peroxidase Compound I at high pH: New insights from ab initio molecular dynamics. Chemical Physics Letters, 2006, 428, 152-156.	1.2	9
264	Horseradish peroxidase thermostabilization: The combinatorial effects of the surface modification and the polyols. Enzyme and Microbial Technology, 2006, 38, 118-125.	1.6	47
265	Resonance Raman spectroscopy of oxoiron(IV) porphyrin π-cation radical and oxoiron(IV) hemes in peroxidase intermediates. Journal of Inorganic Biochemistry, 2006, 100, 480-501.	1.5	77
266	Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Molecular Biology, 2006, 61, 719-732.	2.0	40
267	Isolation and Characterization of the First Putative Peroxidase Gene from Oilseed Rape (Brassica) Tj ETQq1 1 0.78	84314 rgB1 1.1	「/Overlock」
268	Redox properties of the Fe3+/Fe2+ couple in Arthromyces ramosus class II peroxidase and its cyanide adduct. Journal of Biological Inorganic Chemistry, 2006, 11, 586-592.	1.1	21
269	Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 2006, 223, 965-974.	1.6	166
270	Structures of the high-valent metal-ion haem–oxygen intermediates in peroxidases, oxygenases and catalases. Journal of Inorganic Biochemistry, 2006, 100, 460-476.	1.5	152
271	Horseradish and soybean peroxidases: comparable tools for alternative niches?. Trends in Biotechnology, 2006, 24, 355-363.	4.9	134
272	Normal mode analysis of the horseradish peroxidase collective motions: Correlation with spectroscopically observed heme distortions. Biopolymers, 2006, 82, 425-429.	1.2	1
273	Effect of Mercury(II) Traces on Catalytic Activity of Peanut and Horseradish Peroxidases. Analytical Letters, 2006, 39, 521-541.	1.0	7
274	Plant Seed Peroxygenase Is an Original Heme-oxygenase with an EF-hand Calcium Binding Motif. Journal of Biological Chemistry, 2006, 281, 33140-33151.	1.6	131
275	Heme Protein Oxygen Affinity Regulation Exerted by Proximal Effects. Journal of the American Chemical Society, 2006, 128, 12455-12461.	6.6	91
276	Unique Peroxidase Reaction Mechanism in Prostaglandin Endoperoxide H Synthase-2. Journal of Biological Chemistry, 2007, 282, 16681-16690.	1.6	8
277	Glutamic acid-141: a heme â€~bodyguard' in anionic tobacco peroxidase. Biological Chemistry, 2007, 388, 373-380.	1.2	5
278	Substrate binding and protein conformational dynamics measured by 2D-IR vibrational echo spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2637-2642.	3.3	85
279	Arthromyces ramosus peroxidase produces two chlorinating species. Biochemical and Biophysical Research Communications, 2007, 355, 581-586.	1.0	8

ſ

#	Article	IF	CITATIONS
280	Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins. Gene, 2007, 398, 12-28.	1.0	29
281	Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: Activity, stability and co-immobilization. Journal of Biotechnology, 2007, 131, 111-120.	1.9	66
282	Biocatalytic properties of recombinant tobacco peroxidase in chemiluminescent reaction. Biocatalysis and Biotransformation, 2007, 25, 163-170.	1.1	1
283	Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Natural Product Reports, 2007, 24, 571-584.	5.2	95
284	The Janus nature of heme. Natural Product Reports, 2007, 24, 504.	5.2	66
285	Comparison of Protein Surface Attachment on Untreated and Plasma Immersion Ion Implantation Treated Polystyrene: Protein Islands and Carpet. Langmuir, 2007, 23, 2741-2746.	1.6	54
286	Unraveling the Reactive Species of a Functional Non-Heme Iron Monooxygenase Model Using Stopped-Flow UVâ^'Vis Spectroscopy. Inorganic Chemistry, 2007, 46, 10594-10606.	1.9	24
287	Radical Energies and the Regiochemistry of Addition to Heme Groups. Methylperoxy and Nitrite Radical Additions to the Heme of Horseradish Peroxidase. Journal of the American Chemical Society, 2007, 129, 1663-1672.	6.6	28
288	DyP, a Unique Dye-decolorizing Peroxidase, Represents a Novel Heme Peroxidase Family. Journal of Biological Chemistry, 2007, 282, 36652-36658.	1.6	184
289	Kinetic Evidence Supports the Existence of Two Halide Binding Sites that Have a Distinct Impact on the Heme Iron Microenvironment in Myeloperoxidaseâ€. Biochemistry, 2007, 46, 398-405.	1.2	25
290	Structural Stabilization and Functional Improvement of Horseradish Peroxidase upon Modification of Accessible Lysines: Experiments and Simulation. Biophysical Journal, 2007, 92, 1192-1203.	0.2	80
291	Converting Cytochrome c into a Peroxidase-Like Metalloenzyme by Molecular Design. ChemBioChem, 2007, 8, 607-609.	1.3	34
292	The pH dependence of the activity of dehaloperoxidase from Amphitrite ornata. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 121-130.	1.1	48
293	Purification, cloning and characterization of a novel peroxidase isozyme from sweetpotatoes (Ipomoea batatas). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1422-1430.	1.1	12
294	Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea) Tj ETQq0 0 0 780-783.	rgBT /Ovei 0.7	rlock 10 Tf 5 6
295	Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnology, 2007, 7, 23.	1.7	34
296	Arginine-to-lysine substitutions influence recombinant horseradish peroxidase stability and immobilisation effectiveness. BMC Biotechnology, 2007, 7, 86.	1.7	31
297	Locating the active sites of enzymes using mechanical properties. Proteins: Structure, Function and Bioinformatics, 2007, 67, 350-359.	1.5	96

#	Article	IF	CITATIONS
298	Flexibility in Proteins: Tuning the Sensitivity to O ₂ Diffusion by Varying the Lifetime of a Phosphorescent Sensor in Horseradish Peroxidase [¶] . Photochemistry and Photobiology, 2004, 80, 36-40.	1.3	0
299	The genome of the thermoacidophilic red microalga Galdieria sulphuraria encodes a small family of secreted class III peroxidases that might be involved in cell wall modification. Planta, 2007, 227, 353-362.	1.6	27
300	A Putative Peroxidase cDNA from Turnip and Analysis of the Encoded Protein Sequence. Plant Foods for Human Nutrition, 2008, 63, 157-162.	1.4	2
301	Effects of sodium phosphate buffer on horseradish peroxidase thermal stability. Journal of Thermal Analysis and Calorimetry, 2008, 93, 569-574.	2.0	29
302	Inhibition Mechanism of Tb ^{III} on Horseradish Peroxidase Activity. Chemistry and Biodiversity, 2008, 5, 2050-2059.	1.0	4
303	Kinetic stabilities of soybean and horseradish peroxidases. Biochemical Engineering Journal, 2008, 38, 110-114.	1.8	17
304	The structure of horseradish peroxidase C characterized as a molten globule state after Ca2+ depletion. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1965-1974.	1.1	12
305	Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: Characterization, direct electrochemistry, redox thermodynamics and biosensing. Electrochimica Acta, 2008, 53, 8238-8244.	2.6	22
306	Electrochemical biosensors based on horseradish peroxidase. Russian Journal of General Chemistry, 2008, 78, 2482-2488.	0.3	13
307	Mechanism and Role of Covalent Heme Binding in the CYP4 Family of P450 Enzymes and the Mammalian Peroxidases. Drug Metabolism Reviews, 2008, 40, 405-426.	1.5	50
308	Consensus mutagenesis reveals that non-helical regions influence thermal stability of horseradish peroxidase. Biochimie, 2008, 90, 1389-1396.	1.3	13
309	Effects of mutations in the helix G region of horseradish peroxidase. Biochimie, 2008, 90, 1414-1421.	1.3	11
310	Enhanced activity of horseradish peroxidase in Langmuir–Blodgett films of phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2291-2297.	1.4	78
311	Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability. Journal of Biotechnology, 2008, 133, 110-115.	1.9	31
312	Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling. Journal of Biotechnology, 2008, 135, 241-246.	1.9	23
313	Activation and Inactivation of Horseradish Peroxidase by Cobalt Ions. Journal of Biomolecular Structure and Dynamics, 2008, 26, 83-91.	2.0	8
314	Hydrogen Bonding Influence of 1,10-Phenanthroline on Five-Coordinate High-Spin Imidazole-Ligated Iron(II) Porphyrinates. Inorganic Chemistry, 2008, 47, 8884-8895.	1.9	21
315	Hydrogen Bonding Effects on the Electronic Configuration of Five-Coordinate High-Spin Iron(II) Porphyrinates, Journal of the American Chemical Society, 2008, 130, 3127-3136	6.6	35

			_
#	ARTICLE	IF	CITATIONS
316	Theoretical Modeling of Enzyme Reactions:  The Thermodynamics of Formation of Compound 0 in Horseradish Peroxidase. Journal of Physical Chemistry B, 2008, 112, 3184-3192.	1.2	24
317	Time-resolved FTIR study of CO recombination with horseradish peroxidase. Biochemical Society Transactions, 2008, 36, 1165-1168.	1.6	2
318	Coherence Spectroscopy Investigations of the Low-Frequency Vibrations of Heme: Effects of Protein-Specific Perturbations. Journal of the American Chemical Society, 2008, 130, 5231-5244.	6.6	37
319	Binding Modes of Aromatic Ligands to Mammalian Heme Peroxidases with Associated Functional Implications. Journal of Biological Chemistry, 2009, 284, 20311-20318.	1.6	39
320	Positively Selected Disease Response Orthologous Gene Sets in the Cereals Identified Using Sorghum bicolor L. Moench Expression Profiles and Comparative Genomics. Molecular Biology and Evolution, 2009, 26, 2015-2030.	3.5	8
321	Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology, 2009, 2, 164-177.	2.0	434
322	Highâ€Quality Covalently Grafting Hemoglobin on Gold Electrodes: Characterization, Redox Thermodynamics and Bioâ€electrocatalysis. ChemPhysChem, 2009, 10, 3105-3111.	1.0	3
323	Novel Protocol for Covalent Immobilization of Horseradish Peroxidase on Gold Electrode Surface. Electroanalysis, 2009, 21, 696-700.	1.5	41
324	Bioelectrochemical Characterization of Horseradish and Soybean Peroxidases. Electroanalysis, 2009, 21, 2378-2386.	1.5	5
325	A Thirdâ€Generation Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Covalently Immobilized on Electrografted Organic Film on Screenâ€Printed Carbon Electrode. Electroanalysis, 2009, 21, 1624-1629.	1.5	24
326	Label-free impedimetric immunosensor for sensitive detection of ochratoxin A. Biosensors and Bioelectronics, 2009, 24, 1888-1892.	5.3	135
327	Stabilization of horseradish peroxidase in silk materials. Frontiers of Materials Science in China, 2009, 3, 367-373.	0.5	21
328	Quicklyâ€released peroxidase of moss in defense against fungal invaders. New Phytologist, 2009, 183, 432-443.	3.5	61
329	Enzyme activity of horseradish peroxidase immobilized in chitosan matrices in alternated layers. Materials Science and Engineering C, 2009, 29, 1889-1892.	3.8	17
330	Effects of compressed fluids on the activity and structure of horseradish peroxidase. Journal of Supercritical Fluids, 2009, 50, 162-168.	1.6	33
331	Adsorption and inactivation behavior of horseradish peroxidase on cellulosic fiber surfaces. Journal of Colloid and Interface Science, 2009, 338, 410-419.	5.0	34
332	Photothermal studies of CO photodissociation from peroxidases from horseradish and soybean. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1558-1565.	1.1	7
333	The role of Arginine 38 in horseradish peroxidase enzyme revisited: A computational investigation. Biophysical Chemistry, 2009, 141, 87-93.	1.5	19

#	Article	IF	CITATIONS
334	Mechanistic Aspects of Horseradish Peroxidase Elucidated through Single-Molecule Studies. Journal of the American Chemical Society, 2009, 131, 6277-6282.	6.6	129
335	Paramagnetic ¹³ C and ¹⁵ N NMR Analyses of Cyanide- (¹³ C ¹⁵ N-) Ligated Ferric Peroxidases: The Push Effect, Not Pull Effect, Modulates the Compound I Formation Rate. Biochemistry, 2009, 48, 898-905.	1.2	15
336	Localized Generation of Attoliter Protein Solution Droplets by Electrofocused Liquidâ^'Liquid Separation. Journal of Physical Chemistry B, 2009, 113, 7340-7346.	1.2	4
337	The Mechanism of Oxidative Halophenol Dehalogenation by <i>Amphitrite ornata</i> Dehaloperoxidase Is Initiated by H ₂ O ₂ Binding and Involves Two Consecutive One-Electron Steps: Role of Ferryl Intermediates. Biochemistry, 2009, 48, 4231-4238.	1.2	61
338	Stabilization of Enzymes in Silk Films. Biomacromolecules, 2009, 10, 1032-1042.	2.6	174
339	Metal Ion Facilitated Dissociation of Heme from b-Type Heme Proteins. Journal of the American Chemical Society, 2009, 131, 16976-16983.	6.6	8
340	Toward Multiprotein Nanoarrays Using Nanografting and DNA Directed Immobilization of Proteins. Nano Letters, 2009, 9, 2614-2618.	4.5	83
341	Tyrosine-67 in cytochrome c is a possible apoptotic trigger controlled by hydrogen bonds via a conformational transition. Chemical Communications, 2009, , 4512.	2.2	57
342	Temperature dependent electrochemistry—a versatile tool for investigations of biology related topics. Dalton Transactions, 2009, , 6683.	1.6	13
343	Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase. Journal of Biological Inorganic Chemistry, 2010, 15, 879-888.	1.1	57
344	Molecular and cellular mechanism of the effect of La(III) on horseradish peroxidase. Journal of Biological Inorganic Chemistry, 2010, 15, 1063-1069.	1.1	20
345	Ostensible Enzyme Promiscuity: Alkene Cleavage by Peroxidases. Chemistry - A European Journal, 2010, 16, 14142-14148.	1.7	17
346	Disruption of the H-bond network in the main access channel of catalase–peroxidase modulates enthalpy and entropy of Fe(III) reduction. Journal of Inorganic Biochemistry, 2010, 104, 648-656.	1.5	17
347	Compound I in horseradish peroxidase enzyme: Magnetic state assessment by quadratric configuration interaction calculations. International Journal of Quantum Chemistry, 2010, 110, 352-357.	1.0	2
348	Effect of electric field on horseradish peroxidase activity and its structure. , 2010, , .		1
349	Mode of Binding of the Tuberculosis Prodrug Isoniazid to Heme Peroxidases. Journal of Biological Chemistry, 2010, 285, 1569-1576.	1.6	45
350	Effect of electric field on activity index of Horseradish peroxidase. , 2010, , .		0
351	Interfacing Cluster Physics with Biology at the Nanoscale. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems, 2010, , 517-556.	0.6	3

# 352	ARTICLE Computational Study on Compound I Redox-Active Species in Horseradish Peroxydase Enzyme: Conformational Fluctuations and Solvation Effects. Journal of Physical Chemistry B, 2010, 114, 6817-6824.	IF 1.2	CITATIONS
353	Dynamics of a Myoglobin Mutant Enzyme: 2D IR Vibrational Echo Experiments and Simulations. Journal of the American Chemical Society, 2010, 132, 18367-18376.	6.6	64
354	Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory. Journal of Chemical Education, 2010, 87, 526-527.	1.1	47
355	Spectroscopic and Mechanistic Investigations of Dehaloperoxidase B from <i>Amphitrite ornata</i> . Biochemistry, 2010, 49, 6600-6616.	1.2	49
356	Unprecedented Peroxidase-like Activity of <i>Rhodnius prolixus</i> Nitrophorin 2: Identification of the [Fe ^{IV} â•O Por [•]] ⁺ and [Fe ^{IV} â•O Por](Tyr38 ^{•Intermediates and Their Role(s) in Substrate Oxidation. Biochemistry, 2010, 49, 8857-8872.}	u p.2)	14
357	Exploring Peptide Space for Enzyme Modulators. Journal of the American Chemical Society, 2010, 132, 6419-6424.	6.6	18
358	Enzyme Activity of Catalase Immobilized in Langmuirâ^'Blodgett Films of Phospholipids. Langmuir, 2010, 26, 11135-11139.	1.6	45
359	Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia). Journal of Structural Biology, 2010, 169, 226-242.	1.3	41
360	Thirty years of heme peroxidase structural biology. Archives of Biochemistry and Biophysics, 2010, 500, 3-12.	1.4	105
361	Redox properties of heme peroxidases. Archives of Biochemistry and Biophysics, 2010, 500, 21-36.	1.4	186
362	Long-range electron transfer in recombinant peroxidases anisotropically orientated on gold electrodes. Physical Chemistry Chemical Physics, 2010, 12, 10098.	1.3	36
363	On the catalytic role of structural fluctuations in enzyme reactions: computational evidence on the formation of compound 0 in horseradish peroxidase. Faraday Discussions, 0, 145, 107-119.	1.6	5
364	PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Chemical Communications, 2011, 47, 6464.	2.2	90
365	Enzyme-Controlled Self-Assembly and Transformation of Nanostructures in a Tetramethylbenzidine/Horseradish Peroxidase/H ₂ O ₂ System. ACS Nano, 2011, 5, 6736-6742.	7.3	53
366	A Heme Peroxidase with a Functional Role as an <scp>l</scp> -Tyrosine Hydroxylase in the Biosynthesis of Anthramycin. Biochemistry, 2011, 50, 8926-8936.	1.2	32
367	Reactivity of Deoxy- and Oxyferrous Dehaloperoxidase B from <i>Amphitrite ornata:</i> Identification of Compound II and Its Ferrous–Hydroperoxide Precursor. Biochemistry, 2011, 50, 5999-6011.	1.2	44
368	Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Analytical Chemistry, 2011, 83, 1673-1680.	3.2	168
369	Poly(2-hydroxyethyl methacrylate) for Enzyme Immobilization: Impact on Activity and Stability of Horseradish Peroxidase. Biomacromolecules, 2011, 12, 1822-1830.	2.6	54

#	Article	IF	CITATIONS
370	Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale, 2011, 3, 1894.	2.8	78
371	A Schiff-base porphyrin complex with double intramolecular hydrogen bonds. Journal of Coordination Chemistry, 2011, 64, 2101-2109.	0.8	9
376	Carbon-felt-based Bioelectrocatalytic Flow-detectors: Optimization of the Adsorption Conditions of Horseradish Peroxidase and Thionine onto Carbon-felt for Highly Sensitive Amperometric Determination of H2O2. Analytical Sciences, 2011, 27, 401.	0.8	15
377	Horseradish peroxidase: Modulation of properties by chemical modification of protein and heme. Biochemistry (Moscow), 2011, 76, 1391-1401.	0.7	19
378	Peroxidase-mediated removal of endocrine disrupting compound mixtures from water. Chemosphere, 2011, 85, 553-557.	4.2	23
379	Characterization of structure and activity of garlic peroxidase (POX1B). Journal of Biological Inorganic Chemistry, 2011, 16, 157-172.	1.1	5
380	Microbial enzymes for aromatic compound hydroxylation. Applied Microbiology and Biotechnology, 2011, 90, 1817-1827.	1.7	21
381	Cloning and characterization of two new Class III peroxidase genes from Catharanthus roseus. Plant Physiology and Biochemistry, 2011, 49, 404-412.	2.8	18
382	Predicting the functionally distinct residues in the heme, cation, and substrate-binding sites of peroxidase from stress-tolerant mangrove specie, Avicennia marina. Cell Stress and Chaperones, 2011, 16, 585-605.	1.2	0
383	Purification, crystallization and preliminary crystallographic analysis of peroxidase from the palm tree <i>Chamaerops excelsa</i> . Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1641-1644.	0.7	2
384	Assembly of horseradish peroxidase within supported cationic bilayers. Biotechnology Progress, 2011, 27, 1433-1441.	1.3	5
385	Time resolved thermodynamics associated with ligand photorelease in heme peroxidases and globins: Open access channels versus gated ligand release. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1065-1076.	1.1	4
386	Reduction potential of yeast cytochrome c peroxidase and three distal histidine mutants: Dependence on pH. Journal of Inorganic Biochemistry, 2011, 105, 532-537.	1.5	0
387	Molecular Cloning and Partial Characterization of a Peroxidase Gene Expressed in the Roots of <i>Portulaca oleracea</i> cv., One Potentially Useful in the Remediation of Phenolic Pollutants. Bioscience, Biotechnology and Biochemistry, 2011, 75, 882-890.	0.6	13
388	Crystal Structure of Leishmania major Peroxidase and Characterization of the Compound I Tryptophan Radical. Journal of Biological Chemistry, 2011, 286, 24608-24615.	1.6	32
389	Crystal Structure of H2O2-dependent Cytochrome P450SPα with Its Bound Fatty Acid Substrate. Journal of Biological Chemistry, 2011, 286, 29941-29950.	1.6	103
390	Alkene Cleavage Catalysed by Heme and Nonheme Enzymes: Reaction Mechanisms and Biocatalytic Applications. Bioinorganic Chemistry and Applications, 2012, 2012, 1-13.	1.8	25
391	Production and purification of horseradish peroxidase in Pakistan. International Journal of Physical Sciences, 2012, 7, .	0.1	3

#	Article	IF	CITATIONS
392	Purification, crystallization and preliminary crystallographic analysis of banyan peroxidase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 931-934.	0.7	1
393	Distal Heme Pocket Residues of B-type Dye-decolorizing Peroxidase. Journal of Biological Chemistry, 2012, 287, 10623-10630.	1.6	90
394	pH-switched HRP-catalyzed dimerization of resveratrol: a selective biomimetic synthesis. Green Chemistry, 2012, 14, 3281.	4.6	45
395	Nanomolar Hydrogen Peroxide Detection Using Horseradish Peroxidase Covalently Linked to Undoped Nanocrystalline Diamond Surfaces. Langmuir, 2012, 28, 587-592.	1.6	48
396	Effect of organic solvents on peroxidases from rice and horseradish: Prospects for enzyme based applications. Talanta, 2012, 97, 204-210.	2.9	28
397	Stimulation of KatG catalase activity by peroxidatic electron donors. Archives of Biochemistry and Biophysics, 2012, 525, 215-222.	1.4	13
398	Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochemical and Biophysical Research Communications, 2012, 417, 1041-1045.	1.0	24
399	Binding of Divalent Metal Ions to Calcium-Free Peroxidase: Thermodynamic and Kinetic Studies. Chemistry and Biodiversity, 2012, 9, 1806-1822.	1.0	0
400	The Role of the Distal Histidine in H2O2 Activation and Heme Protection in both Peroxidase and Globin Functions. Journal of Physical Chemistry B, 2012, 116, 12065-12077.	1.2	22
401	Crystal Structure of Two Anti-Porphyrin Antibodies with Peroxidase Activity. PLoS ONE, 2012, 7, e51128.	1.1	11
402	Sequence analysis and homology modeling of peroxidase from Medicago sativa. Bioinformation, 2012, 8, 974-979.	0.2	18
403	Novel Amperometric Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Azide Covalently Immobilized on Ethynylâ€Modified Screenâ€Printed Carbon Electrode via Click Chemistry. Electroanalysis, 2012, 24, 1446-1452.	1.5	27
404	The Effect of Chemical Modification with Pyromellitic Anhydride on Structure, Function, and Thermal Stability of Horseradish Peroxidase. Applied Biochemistry and Biotechnology, 2012, 167, 489-497.	1.4	9
405	Molecular cloning and characterization of seven class III peroxidases induced by overexpression of the agrobacterial rolB gene in Rubia cordifolia transgenic callus cultures. Plant Cell Reports, 2012, 31, 1009-1019.	2.8	20
406	Enhanced enzyme activity through electron transfer between single-walled carbon nanotubes and horseradish peroxidase. Carbon, 2012, 50, 1303-1310.	5.4	23
407	Isolation of a gene encoding for a class III peroxidase in female flower of Corylus avellana L Molecular Biology Reports, 2012, 39, 4997-5008.	1.0	14
408	Raman spectroscopy of proteins: a review. Journal of Raman Spectroscopy, 2013, 44, 1061-1076.	1.2	783
409	A strategy for efficient immobilization of laccase and horseradish peroxidase on singleâ€walled carbon nanotubes. Journal of Chemical Technology and Biotechnology, 2013, 88, 2227-2232.	1.6	22

#	Article	IF	Citations
411	Mutation of Val90 to His in the pseudoperoxidase from Leishmania major enhances peroxidase activity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 651-657.	1.1	4
412	Recent History of Heme-Containing Proteins: Advances in Structure, Functions, and Reaction Intermediate Determination. , 2013, , 65-102.		4
413	Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase. Chemical Papers, 2013, 67, .	1.0	24
414	Understanding the roles of strictly conserved tryptophan residues in O ₂ producing chlorite dismutases. Dalton Transactions, 2013, 42, 3156-3169.	1.6	19
415	Impacts of Dissolved Organic Matter on the Removal of 17β-Estradiol Using Horseradish Peroxidase. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	8
416	The (Not Completely Irreversible) Population of a Misfolded State of Cytochrome c under Folding Conditions. Biochemistry, 2013, 52, 1397-1408.	1.2	14
417	Multi-heme proteins: Nature's electronic multi-purpose tool. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 938-948.	0.5	82
418	Synthesis and Characterization of Iron(III) Complexes of 5â€(8 arboxyâ€1â€naphthyl)â€10, 15, 20â€ŧritolyl Porphyrin. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 952-959.	0.6	2
419	Apolar distal pocket mutants of yeast cytochrome c peroxidase: Hydrogen peroxide reactivity and cyanide binding of the TriAla, TriVal, and TriLeu variants. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 137-148.	1.1	6
420	Metal incorporated Horseradish Peroxidase (HRP) catalyzed oxidation of resveratrol: selective dimerization or decomposition. RSC Advances, 2013, 3, 22976.	1.7	7
421	The Regulatory Implications of Hydroquinone for the Multifunctional Enzyme Dehaloperoxidase-Hemoglobin from Amphitrite ornata. Journal of Physical Chemistry B, 2013, 117, 14615-14624.	1.2	14
422	Investigations of Ferric Heme Cyanide Photodissociation in Myoglobin and Horseradish Peroxidase. Journal of Physical Chemistry B, 2013, 117, 4042-4049.	1.2	13
423	Use of 113Cd NMR to Probe the Native Metal Binding Sites in Metalloproteins: An Overview. Metal Ions in Life Sciences, 2013, 11, 117-144.	2.8	24
424	Mechanisms of Horseradish Peroxidase and α-Chymotrypsin. Progress in Reaction Kinetics and Mechanism, 2013, 38, 119-129.	1.1	8
425	Production and purification of the multifunctional enzyme horseradish peroxidase. Pharmaceutical Bioprocessing, 2013, 1, 283-295.	0.8	45
426	Quantum Mechanical Modeling: A Tool for the Understanding of Enzyme Reactions. Biomolecules, 2013, 3, 662-702.	1.8	21
427	Fourier Transform Infrared Spectroscopic Investigation of the Binary and Ternary Cyanide Adducts of the Oxidized Horseradish Peroxidase: Identification of a Second Stretching Mode for the Carbon-Nitrogen Bond of the Bound Cyanide Ion. Spectroscopy Letters, 2014, 47, 281-291.	0.5	3
428	The 2.2â€Ã resolution structure of the catalase-peroxidase KatG fromSynechococcus elongatusPCC7942. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 288-293.	0.4	10

#	Article	IF	CITATIONS
429	Carbon Felt-Based Bioelectrocatalytic Flow-Through Detectors: 2,6-Dichlorophenol Indophenol and Peroxidase Coadsorbed Carbon-Felt for Flow-Amperometric Determination of Hydrogen Peroxide. Materials, 2014, 7, 1142-1154.	1.3	2
430	Amino Acid Sequence of Anionic Peroxidase from the Windmill Palm Tree <i>Trachycarpus fortunei</i> . Journal of Agricultural and Food Chemistry, 2014, 62, 11941-11948.	2.4	9
431	Clyco-variant library of the versatile enzyme horseradish peroxidase. Clycobiology, 2014, 24, 852-863.	1.3	21
432	Purification and basic biochemical characterization of 19 recombinant plant peroxidase isoenzymes produced in Pichia pastoris. Protein Expression and Purification, 2014, 95, 104-112.	0.6	40
433	Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG. Archives of Biochemistry and Biophysics, 2014, 544, 27-39.	1.4	32
434	Modification of Lysine Residues of Horseradish Peroxidase and Its Effect on Stability and Structure of the Enzyme. Applied Biochemistry and Biotechnology, 2014, 172, 3558-3569.	1.4	15
435	Peroxygenase reactions catalyzed by cytochromes P450. Journal of Biological Inorganic Chemistry, 2014, 19, 529-539.	1.1	120
436	Bioelectrochemical systems with oleylamine-stabilized gold nanostructures and horseradish peroxidase for hydrogen peroxide sensor. Biosensors and Bioelectronics, 2014, 57, 54-58.	5.3	55
437	Improved Cyclopropanation Activity of Histidine‣igated Cytochromeâ€P450 Enables the Enantioselective Formal Synthesis of Levomilnacipran. Angewandte Chemie - International Edition, 2014, 53, 6810-6813.	7.2	171
438	Correlation of Heme Binding Affinity and Enzyme Kinetics of Dehaloperoxidase. Biochemistry, 2014, 53, 6863-6877.	1.2	15
439	Electrocatalytic O ₂ reduction by a monolayer of hemin: the role of pK _a of distal and proximal oxygen of a Fe ^{III} –OOH species in determining reactivity. Chemical Communications, 2014, 50, 12304-12307.	2.2	30
440	Reconstitution of peroxidase onto hemin-terminated alkanethiol self-assembled monolayers on gold. Journal of Electroanalytical Chemistry, 2014, 728, 18-25.	1.9	23
441	Insights into the impact of deep eutectic solvents on horseradish peroxidase: Activity, stability and structure. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 101-107.	1.8	133
444	Stability properties of an ancient plant peroxidase. Biochimie, 2014, 104, 156-159.	1.3	7
445	Combined Experimental and Theoretical Study on the Reactivity of Compounds I and II in Horseradish Peroxidase Biomimetics. Chemistry - A European Journal, 2014, 20, 14437-14450.	1.7	33
446	Surface modification of a gold-coated microcantilever and application in biomarker detection. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 045018.	0.7	0
447	Comparative Study of Nanostructured Matrices Employed in the Development of Biosensors Based on HRP Enzyme for Determination of Phenolic Compounds. Electroanalysis, 2015, 27, 1572-1578.	1.5	5
448	An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Applied Microbiology and Biotechnology, 2015, 99, 1611-1625.	1.7	163

#	Article	IF	CITATIONS
449	Crystal structure analysis of peroxidase from the palm tree Chamaerops excelsa. Biochimie, 2015, 111, 58-69.	1.3	20
450	Modeling of Enhanced Catalysis in Multienzyme Nanostructures: Effect of Molecular Scaffolds, Spatial Organization, and Concentration. Journal of Chemical Theory and Computation, 2015, 11, 286-292.	2.3	37
451	Biological and medical applications. , 2015, , 185-216.		2
452	Monooxygenation of Small Hydrocarbons Catalyzed by Bacterial Cytochrome P450s. Advances in Experimental Medicine and Biology, 2015, 851, 189-208.	0.8	2
453	FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles. Cell and Tissue Research, 2015, 360, 61-70.	1.5	39
454	Recombinant horseradish peroxidase: Production and analytical applications. Biochemistry (Moscow), 2015, 80, 408-416.	0.7	12
455	Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites. Biotechnology and Bioengineering, 2015, 112, 668-676.	1.7	11
456	Characterization of Dye-decolorizing Peroxidase (DyP) from Thermomonospora curvata Reveals Unique Catalytic Properties of A-type DyPs. Journal of Biological Chemistry, 2015, 290, 23447-23463.	1.6	101
457	Regulating the Coordination State of a Heme Protein by a Designed Distal Hydrogenâ€Bonding Network. ChemistryOpen, 2015, 4, 97-101.	0.9	27
458	Revisiting the Non-Animal Peroxidase Superfamily. Trends in Plant Science, 2015, 20, 807-813.	4.3	27
459	Novel signal amplification approach for HRP-based colorimetric genosensors using DNA binding protein tags. Biosensors and Bioelectronics, 2015, 74, 1005-1010.	5.3	11
460	Investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities. Journal of Biological Inorganic Chemistry, 2015, 20, 1135-1146.	1.1	15
461	Heme and I. Journal of Biological Chemistry, 2015, 290, 21833-21844.	1.6	2
462	Bacterial and algal orthologs of prostaglandin H2 synthase: novel insights into the evolution of an integral membrane protein. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 83-94.	1.4	4
463	Stability and structural changes of horseradish peroxidase: Microwave versus conventional heating treatment. Enzyme and Microbial Technology, 2015, 69, 10-18.	1.6	55
464	Ultrafast infrared spectroscopy reveals water-mediated coherent dynamics in an enzyme active site. Chemical Science, 2015, 6, 505-516.	3.7	32
465	Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 367-371.	1.8	8
466	Thin bacteria/Layered Double Hydroxide films using a layer-by-layer approach. Journal of Colloid and Interface Science, 2016, 474, 151-158.	5.0	10

#	Article	IF	CITATIONS
467	Site-Specific <i>N</i> -Glycosylation Characterization of Windmill Palm Tree Peroxidase Using Novel Tools for Analysis of Plant Glycopeptide Mass Spectrometry Data. Journal of Proteome Research, 2016, 15, 2026-2038.	1.8	16
468	A substrate-binding-state mimic of H ₂ O ₂ -dependent cytochrome P450 produced by one-point mutagenesis and peroxygenation of non-native substrates. Catalysis Science and Technology, 2016, 6, 5806-5811.	2.1	49
469	Electrospun polyvinyl alcohol/bovine serum albumin biocomposite membranes for horseradish peroxidase immobilization. Enzyme and Microbial Technology, 2016, 93-94, 1-10.	1.6	26
470	Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris. Journal of Biotechnology, 2016, 233, 181-189.	1.9	23
471	Structural and spectroscopic characterisation of a heme peroxidase from sorghum. Journal of Biological Inorganic Chemistry, 2016, 21, 63-70.	1.1	18
472	Responsive hybrid inorganic-organic system derived from lanthanide luminescence. Materials Research Bulletin, 2016, 77, 166-170.	2.7	4
473	The biological effects of vanadyl curcumin and vanadyl diacetylcurcumin complexes: the effect on structure, function and oxidative stability of the peroxidase enzyme, antibacterial activity and cytotoxic effect. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1124-1131.	2.5	16
474	Horseradish peroxidase (HRP): a tool for catalyzing the formation of novel bicoumarins. Catalysis Science and Technology, 2016, 6, 3585-3593.	2.1	23
475	Interactions between plant proteins/enzymes and other food components, and their effects on food quality. Critical Reviews in Food Science and Nutrition, 2017, 57, 1718-1728.	5.4	19
476	Probing nitrite coordination in horseradish peroxidase by resonance Raman spectroscopy: Detection of two binding sites. Journal of Inorganic Biochemistry, 2017, 169, 79-85.	1.5	4
477	Structural analyses combined with small-angle X-ray scattering reveals that the retention of heme is critical for maintaining the structure of horseradish peroxidase under denaturing conditions. Amino Acids, 2017, 49, 715-723.	1.2	4
478	Cobalt tetradehydrocorrins coordinated by imidazolate-like histidine in the heme pocket of horseradish peroxidase. Journal of Biological Inorganic Chemistry, 2017, 22, 695-703.	1.1	6
479	Heme Proximal Hydrogen Bonding between His170 and Asp132 Plays an Essential Role in the Heme Degradation Reaction of HutZ from <i>Vibrio cholerae</i> . Biochemistry, 2017, 56, 2723-2734.	1.2	11
480	pH Dependence of Ferricytochrome <i>c</i> Conformational Transitions during Binding to Cardiolipin Membranes: Evidence for Histidine as the Distal Ligand at Neutral pH. Journal of Physical Chemistry Letters, 2017, 8, 1993-1998.	2.1	15
481	Pulsed light inactivation of horseradish peroxidase and associated structural changes. Food Chemistry, 2017, 237, 632-637.	4.2	49
482	Expression and Characterization of Windmill Palm Tree (<i>Trachycarpus fortunei</i>) Peroxidase by <i>Pichia pastoris</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 4676-4682.	2.4	8
483	Peroxidase activity of octaheme nitrite reductases from bacteria of the Thioalkalivibrio genus. Applied Biochemistry and Microbiology, 2017, 53, 157-164.	0.3	0
484	Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG. Journal of Inorganic Biochemistry, 2017, 167, 60-67.	1.5	4

#	Article	IF	CITATIONS
485	Polyvinylpyrrolidone (PVP)â€Capped Pt Nanocubes with Superior Peroxidase‣ike Activity. ChemNanoMat, 2017, 3, 33-38.	1.5	37
486	Enzymatic degradation of polyacrylamide in aqueous solution with peroxidase and H ₂ O ₂ . Journal of Applied Polymer Science, 2017, 134, .	1.3	22
487	Hemin-bound cysteinyl bolaamphiphile self-assembly as a horseradish peroxidase-mimetic catalyst. RSC Advances, 2017, 7, 38989-38997.	1.7	10
488	In silico locating the immune-reactive segments of Lepidium draba peroxidase and designing a less immune-reactive enzyme derivative. Computational Biology and Chemistry, 2017, 70, 21-30.	1.1	6
489	Monooxygenation of Nonnative Substrates Catalyzed by Bacterial Cytochrome P450s Facilitated by Decoy Molecules. Chemistry Letters, 2017, 46, 278-288.	0.7	26
490	Quartz crystal microbalance in the active mode as a tool to modify sensor surface for higher selectivity and sensitivity. Sensors and Actuators B: Chemical, 2017, 239, 494-500.	4.0	2
491	Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering. Protein Engineering, Design and Selection, 2017, 30, 743-751.	1.0	6
492	Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. Astrobiology, 2018, 18, 294-310.	1.5	26
493	Dualâ€Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase. Angewandte Chemie - International Edition, 2018, 57, 7628-7633.	7.2	72
494	Dualâ€Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase. Angewandte Chemie, 2018, 130, 7754-7759.	1.6	22
495	Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes. Biotechnology Journal, 2018, 13, 1700624.	1.8	2
496	In situ detection of microbial c-type cytochrome based on intrinsic peroxidase-like activity using screen-printed carbon electrode. Biosensors and Bioelectronics, 2018, 113, 52-57.	5.3	5
497	Peroxidase from jackfruit: Purification, characterization and thermal inactivation. International Journal of Biological Macromolecules, 2018, 114, 898-905.	3.6	18
498	Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability. Journal of Colloid and Interface Science, 2018, 524, 114-121.	5.0	23
499	Improved rate of substrate oxidation catalyzed by genetically-engineered myoglobin. Archives of Biochemistry and Biophysics, 2018, 639, 44-51.	1.4	5
500	Zo-peroxidase: Crystal structure and sequence of a highly-glycosylated peroxidase resistant to high concentrations of H2O2 from Japanese radish. Biochemistry and Biophysics Reports, 2018, 13, 32-38.	0.7	1
501	Hydrogen-Bonding Effects in Five-Coordinate High-Spin Imidazole-Ligated Iron(II) Porphyrinates. Inorganic Chemistry, 2018, 57, 793-803.	1.9	1
502	The Nature and Reactivity of Ferryl Heme in Compounds I and II. Accounts of Chemical Research, 2018, 51, 427-435.	7.6	112

#	Article	IF	CITATIONS
503	Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Critical Reviews in Food Science and Nutrition, 2018, 58, 689-699.	5.4	28
504	Conformation and activity alteration of horseradish peroxidase induced by the interaction with gene carrier polyethyleneimines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 90-98.	2.0	26
505	Generation of lignin polymer models via dehydrogenative polymerization of coniferyl alcohol and syringyl alcohol via several plant peroxidases involved in lignification and analysis of the resulting DHPs by MALDI-TOF analysis. Holzforschung, 2018, 72, 267-274.	0.9	9
506	A Simplified Method for the 3D Printing of Molecular Models for Chemical Education. Journal of Chemical Education, 2018, 95, 88-96.	1.1	44
507	An ultrathin iron-porphyrin based nanocapsule with high peroxidase-like activity for highly sensitive glucose detection. Nanoscale, 2018, 10, 22155-22160.	2.8	28
508	Screen, Design and Enzymatic Activity Determination of Artificial Microperoxidases. Chemical Research in Chinese Universities, 2018, 34, 934-938.	1.3	1
509	A novel thermophilic hemoprotein scaffold for rational design of biocatalysts. Journal of Biological Inorganic Chemistry, 2018, 23, 1295-1307.	1.1	3
510	A Method for Metal/Protein Stoichiometry Determination Using Thin-Film Energy Dispersive X-ray Fluorescence Spectroscopy. Analytical Chemistry, 2019, 91, 11502-11506.	3.2	8
511	Identification of Intermediates in Peroxidase Catalytic Cycle of a DNAzyme Possessing Heme. Bulletin of the Chemical Society of Japan, 2019, 92, 1729-1736.	2.0	17
512	Metal–Oxyl Species and Their Possible Roles in Chemical Oxidations. Inorganic Chemistry, 2019, 58, 9517-9542.	1.9	73
513	Changes in activity, structure and morphology of horseradish peroxidase induced by cold plasma. Food Chemistry, 2019, 301, 125240.	4.2	48
514	Iron Oxide Nanoparticles: An Inorganic Phosphatase. , 0, , .		9
515	Influence of the distal guanidine group on the rate and selectivity of O ₂ reduction by iron porphyrin. Chemical Science, 2019, 10, 9692-9698.	3.7	33
516	pH-Induced Switch between Different Modes of Cytochrome <i>c</i> Binding to Cardiolipin-Containing Liposomes. ACS Omega, 2019, 4, 1386-1400.	1.6	19
517	Strategies for Substrateâ€Regulated P450 Catalysis: From Substrate Engineering to Coâ€catalysis. Chemistry - A European Journal, 2019, 25, 6853-6863.	1.7	33
518	A simple, real-time assay of horseradish peroxidase using biolayer interferometry. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1822-1828.	0.6	3
519	Biomimetic design for enhancing the peroxidase mimicking activity of hemin. Nanoscale, 2019, 11, 12603-12609.	2.8	53
520	Periplasmic Nanobody-APEX2 Fusions Enable Facile Visualization of Ebola, Marburg, and Mĕnglà virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among Marburgvirus and Dianlovirus. Viruses, 2019, 11, 364.	1.5	12

#	Article	IF	CITATIONS
521	Induction of Enzyme-like Peroxidase Activity in an Iron Porphyrin Complex Using Second Sphere Interactions. Inorganic Chemistry, 2019, 58, 2954-2964.	1.9	27
522	Role of conserved arginine in the heme distal site of HutZ from Vibrio cholerae in the heme degradation reaction. Archives of Biochemistry and Biophysics, 2019, 677, 108165.	1.4	2
523	Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chemical Reviews, 2019, 119, 1456-1518.	23.0	80
524	An efficient methodology for the purification of date palm peroxidase: Stability comparison with horseradish peroxidase (HRP). Saudi Journal of Biological Sciences, 2019, 26, 301-307.	1.8	27
525	Magnetic biochar derived from biosolids via hydrothermal carbonization: Enzyme immobilization, immobilized-enzyme kinetics, environmental toxicity. Journal of Hazardous Materials, 2020, 384, 121272.	6.5	45
526	Heme Cofactorâ€Resembling Fe–N Single Site Embedded Graphene as Nanozymes to Selectively Detect H ₂ O ₂ with High Sensitivity. Advanced Functional Materials, 2020, 30, 1905410.	7.8	171
527	The evolution of the axonal transport toolkit. Traffic, 2020, 21, 13-33.	1.3	18
528	A subtle structural change in the distal haem pocket has a remarkable effect on tuning hydrogen peroxide reactivity in dye decolourising peroxidases from <i>Streptomyces lividans</i> . Dalton Transactions, 2020, 49, 1620-1636.	1.6	13
529	Inhibitors in Commercially Available 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonate) Affect Enzymatic Assays. Analytical Chemistry, 2020, 92, 1502-1510.	3.2	11
530	A Single Iron Porphyrin Shows pH Dependent Switch between "Push―and "Pull―Effects in Electrochemical Oxygen Reduction. Inorganic Chemistry, 2020, 59, 14564-14576.	1.9	12
531	Effect of Pendant Distal Residues on the Rate and Selectivity of Electrochemical Oxygen Reduction Reaction Catalyzed by Iron Porphyrin Complexes. ACS Catalysis, 2020, 10, 13136-13148.	5.5	30
532	Antibodyâ€free bioimprint aided sandwich ELISA technique for cell recognition and rapid screening for bacteria. Nano Select, 2020, 1, 673-688.	1.9	3
533	Insight of MOF Environment-Dependent Enzyme Activity via MOFs-in-Nanochannels Configuration. ACS Catalysis, 2020, 10, 5949-5958.	5.5	102
534	Influence of Varying Functionalization on the Peroxidase Activity of Nickel(II)–Pyridine Macrocycle Catalysts: Mechanistic Insights from Density Functional Theory. Computation, 2020, 8, 52.	1.0	1
535	Resonance Raman view of the active site architecture in bacterial DyP-type peroxidases. RSC Advances, 2020, 10, 11095-11104.	1.7	6
536	Antioxidant Materials Based on 2D Nanostructures: A Review on Recent Progresses. Crystals, 2020, 10, 148.	1.0	24
537	Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. Sensors, 2020, 20, 3692.	2.1	14
538	Activity adaptability of a DhHP-6 peroxidase-mimic in wide pH and temperature ranges and solvent media. Catalysis Science and Technology, 2020, 10, 1848-1857.	2.1	5

#	Article	IF	CITATIONS
539	Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials, 2020, 237, 119782.	5.7	66
540	Nearâ€Infrared Fluorescence Hydrogen Peroxide Assay for Versatile Metabolite Biosensing in Whole Blood. Small, 2020, 16, e2000369.	5.2	12
541	Immobilization of Horseradish Peroxidase on Modified Cellulose Carriers via Hydrophobic Interactions: Catalytic Properties and Stability. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 55-63.	0.7	9
542	<scp>l</scp> â€Tryptophan Interactions with the Horseradish Peroxidaseâ€Catalyzed Generation of Triplet Acetone. Photochemistry and Photobiology, 2021, 97, 327-334.	1.3	3
543	Singletâ€Oxygen Generation by Peroxidases and Peroxygenases for Chemoenzymatic Synthesis. ChemBioChem, 2021, 22, 398-407.	1.3	13
544	Nanocomposite-based dual enzyme system for broad-spectrum scavenging of reactive oxygen species. Scientific Reports, 2021, 11, 4321.	1.6	14
545	PEG-Coated Large Mesoporous Silicas as Smart Platform for Protein Delivery and Their Use in a Collagen-Based Formulation for 3D Printing. International Journal of Molecular Sciences, 2021, 22, 1718.	1.8	15
546	Comparison of three palm tree peroxidases expressed by Escherichia coli: Uniqueness of African oil palm peroxidase. Protein Expression and Purification, 2021, 179, 105806.	0.6	5
548	Nanozyme-Powered Giant Unilamellar Vesicles for Mimicry and Modulation of Intracellular Oxidative Stress. ACS Applied Materials & amp; Interfaces, 2021, 13, 21087-21096.	4.0	15
549	Crystal Structure Analysis of Cationic Peroxidase from Proso Millet and Identification of Its Phosphatase Active Sites. Journal of Agricultural and Food Chemistry, 2021, 69, 6251-6259.	2.4	6
550	Co-immobilization of antioxidant enzymes on titania nanosheets for reduction of oxidative stress in colloid systems. Journal of Colloid and Interface Science, 2021, 590, 28-37.	5.0	19
551	Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coordination Chemistry Reviews, 2021, 434, 213774.	9.5	33
552	The modulation of structural stability of horseradish peroxidase as a consequence of macromolecular crowding. Journal of Molecular Recognition, 2021, 34, e2902.	1.1	2
553	Extensins: Self-Assembly, Crosslinking, and the Role of Peroxidases. Frontiers in Plant Science, 2021, 12, 664738.	1.7	21
554	Structure of a ternary complex of lactoperoxidase with iodide and hydrogen peroxide at 1.77ÂÃ resolution. Journal of Inorganic Biochemistry, 2021, 220, 111461.	1.5	9
555	Binding affinity-guided design of a highly sensitive noncompetitive immunoassay for small molecule detection. Food Chemistry, 2021, 351, 129270.	4.2	14
556	Effects of Heme Electronic Structure and Local Heme Environment on Catalytic Activity of a Peroxidase-Mimicking Heme–DNAzyme. Inorganic Chemistry, 2021, 60, 11206-11213.	1.9	9
557	Using cryo-EM to understand antimycobacterial resistance in the catalase-peroxidase (KatG) from Mycobacterium tuberculosis. Structure, 2021, 29, 899-912.e4.	1.6	13

#	Article	IF	CITATIONS
558	Rigidifying a <i>De Novo</i> Enzyme Increases Activity and Induces a Negative Activation Heat Capacity. ACS Catalysis, 2021, 11, 11532-11541.	5.5	15
559	Divergence of reactions to arsenic (As) toxicity in tobacco (Nicotiana benthamiana) plants: A lesson from peroxidase involvement. Journal of Hazardous Materials, 2021, 417, 126049.	6.5	12
560	Heminâ€Doped, Ionically Crosslinked Silicone Elastomers with Peroxidaseâ€Like Reactivity. Advanced Functional Materials, 2021, 31, 2105453.	7.8	8
561	Potential of unglycosylated horseradish peroxidase variants for enzyme prodrug cancer therapy. Biomedicine and Pharmacotherapy, 2021, 142, 112037.	2.5	13
562	Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots. Talanta, 2021, 235, 122753.	2.9	14
563	Biomimetic design of graphdiyne supported hemin for enhanced peroxidase-like activity. Journal of Colloid and Interface Science, 2022, 607, 470-478.	5.0	26
564	Giant nanotubes equipped with horseradish peroxidase active sites: a powerful nanozyme co-assembled from supramolecular amphiphiles for glucose detection. Chemical Engineering Journal, 2022, 429, 132592.	6.6	8
565	Mutational and structural analysis of an ancestral fungal dyeâ€decolorizing peroxidase. FEBS Journal, 2021, 288, 3602-3618.	2.2	13
566	Study of the Enzyme Activity Change due to Inkjet Printing for Biosensor Fabrication. ACS Biomaterials Science and Engineering, 2021, 7, 787-793.	2.6	7
567	A cationic copolymer as a cocatalyst for a peroxidase-mimicking heme-DNAzyme. Biomaterials Science, 2021, 9, 6142-6152.	2.6	5
568	Nickel–Platinum Nanoparticles as Peroxidase Mimics with a Record High Catalytic Efficiency. Journal of the American Chemical Society, 2021, 143, 2660-2664.	6.6	124
569	Understanding heme cavity structure of peroxidases: Comparison of electronic absorption and resonance Raman spectra with crystallographic results. Biospectroscopy, 1998, 4, S3-S17.	0.4	10
572	Catalytic Mechanisms of Heme Peroxidases. , 2010, , 79-107.		29
573	Potential Applications of Peroxidases in the Fine Chemical Industries. , 2010, , 111-153.		8
574	Biological and medical applications. , 2008, , 205-241.		2
575	Monitoring the kinetics of biocatalytic removal of the endocrine disrupting compound 17α-ethinylestradiol from differently polluted wastewater bodies. Journal of Environmental Chemical Engineering, 2017, 5, 1920-1926.	3.3	26
576	Haem iron-containing peroxidases. Essays in Biochemistry, 1999, 34, 51-69.	2.1	39
577	How Modification of Accessible Lysines to Phenylalanine Modulates the Structural and Functional Properties of Horseradish Peroxidase: A Simulation Study, PLoS ONF, 2014, 9, e109062.	1.1	5

#	Article	IF	CITATIONS
578	Flexibility in Proteins: Tuning the Sensitivity to O2 Diffusion by Varying the Lifetime of a Phosphorescent Sensor in Horseradish Peroxidase¶. Photochemistry and Photobiology, 2004, 80, 36.	1.3	8
580	The Structure and Function of Horseradish Peroxidase (HRP) under the Influence of the Faradarmani Consciousness Field (FCF). SSRN Electronic Journal, 0, , .	0.4	0
581	Sustained A1 Adenosine Receptor Antagonist Drug Release from Nanoparticles Functionalized by a Neural Tracing Protein. ACS Chemical Neuroscience, 2021, 12, 4438-4448.	1.7	5
582	Enantioselective Oxidations Catalyzed by Peroxidases and Monooxygenases. NATO Science Series Partnership Sub-series 1, Disarmament Technologies, 2000, , 133-160.	0.1	3
583	Enzymatic Removal of Aqueous Pentachlorophenol. Advances in Industrial and Hazardous Wastes Treatment Series, 2008, , 273-290.	0.0	0
584	Role of the distal phenylalanine 41 on the properties of horseradish peroxidase C. , 1999, , 149-150.		0
585	Calcium depletion of horseradish peroxidase generates a quantum mechanical mixed-spin heme state. , 1999, , 145-146.		1
586	Class III heme-containing peroxidases: evidence for a quantum-admixed spin state. , 1999, , 143-144.		0
587	Self-processing of Peroxidases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 1-30.	0.8	2
588	A review on plant peroxidases. Yaftah, 2019, 5, 428-437.	0.1	1
589	Analysis of the Partitioning Behavior of Horseradish Peroxidase to Phospholipid and Surfactant Membranes. Solvent Extraction Research and Development, 2020, 27, 113-123.	0.5	1
590	Entrapment of horseradish peroxidase into nanometer-scale metal–organic frameworks: a new nanocarrier for signal amplification in enzyme-linked immunosorbent assay. Mikrochimica Acta, 2021, 188, 409.	2.5	2
591	Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase. Plant Physiology, 2001, 127, 1065-76.	2.3	33
592	Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure. Biochemical Journal, 1999, 340 (Pt 3), 579-83.	1.7	20
593	Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem. Biochemical Journal, 1999, 344 Pt 1, 237-44.	1.7	13
594	Lactoperoxidase: structural insights into the function,ligand binding and inhibition. International Journal of Biochemistry and Molecular Biology, 2013, 4, 108-28.	0.1	49
595	Conformational changes of a chemically modified HRP: formation of a molten globule like structure at pH 5. EXCLI Journal, 2014, 13, 611-22.	0.5	3
596	Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase. Molecular Biology Research Communications, 2016, 5, 175-192.	0.2	Ο

#	Article	IF	CITATIONS
597	Development of polymer-based multifunctional composite particles of protease and peroxidase activities. Journal of Materials Chemistry B, 2022, 10, 2523-2533.	2.9	3
598	Recent developments of iron-based nanosystems as enzyme-mimicking surrogates of interest in tumor microenvironment treatment. , 2022, , 237-265.		0
599	Recombinant <i>Arthromyces ramosus</i> Peroxidase Has Similar Substrate Specificity Profiles as, but a Catalytic Efficiency up to 11-Fold Higher than, Horseradish Peroxidase. Journal of Agricultural and Food Chemistry, 2022, 70, 646-655.	2.4	5
600	Structural Characterization of Cytochrome c′βâ€Met from an Ammonia-Oxidizing Bacterium. Biochemistry, 2022, 61, 563-574.	1.2	4
601	A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants, 2022, 11, 529.	2.2	8
602	Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chemical Communications, 2022, 58, 5808-5828.	2.2	9
604	The Divergent Ph Dependence of Substrate Turnover in Dehaloperoxidases a and B. SSRN Electronic Journal, 0, , .	0.4	0
605	Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chemical Reviews, 2022, 122, 11974-12045.	23.0	54
606	Rutin as a coenzyme of Fe-doped silicon nanozyme with enhanced peroxidase-like activity for a colorimetric β-glucuronidase sensor. Microchemical Journal, 2022, 181, 107771.	2.3	1
607	Application of Quantum Cascade Laser-Infrared Spectroscopy and Chemometrics for In-Line Discrimination of Coeluting Proteins from Preparative Size Exclusion Chromatography. Analytical Chemistry, 2022, 94, 11192-11200.	3.2	7
608	Metal Sensing by a Glycine–Histidine Repeat Sequence Regulates the Heme Degradation Activity of PM0042 from <i>Pasteurella multocida</i> . Inorganic Chemistry, 2022, 61, 13543-13553.	1.9	0
609	Introductory Chapter: Incredible Spicy Iron Oxide Nanoparticles. , 0, , .		1
610	Protein sustained release from isobutyramide-grafted stellate mesoporous silica nanoparticles. International Journal of Pharmaceutics: X, 2022, 4, 100130.	1.2	0
611	Electron Transfer in Binary Hemin-Modified Alkanethiol Self-Assembled Monolayers on Gold: Hemin's Lateral and Interfacial Interactions. Langmuir, 2022, 38, 11180-11190.	1.6	3
613	The Effect of a Dodecahedron-Shaped Structure on the Properties of an Enzyme. Journal of Functional Biomaterials, 2022, 13, 166.	1.8	3
614	Structurally Characterized Non-Heme Fe(IV)Oxo Complexes: A Brief Overview. Asian Journal of Chemistry, 2022, 34, 2771-2785.	0.1	0
615	Atomic Force Microscopy Study of the Temperature and Storage Duration Dependencies of Horseradish Peroxidase Oligomeric State. Biomedicines, 2022, 10, 2645.	1.4	2
616	Bioelectrocatalytic activity of reconstituted peroxidase on hemin-terminated PQQ-modified electrodes. Sensors and Actuators Reports, 2022, 4, 100126.	2.3	1

#	Article	IF	CITATIONS
617	The divergent pH dependence of substrate turnover in dehaloperoxidases A and B. Journal of Inorganic Biochemistry, 2023, 238, 112029.	1.5	1
618	Efficient <i>O</i> -demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes. Chemical Communications, 2022, 58, 13321-13324.	2.2	9
619	The Effect of a Rotating Cone on Horseradish Peroxidase Aggregation on Mica Revealed by Atomic Force Microscopy. Micromachines, 2022, 13, 1947.	1.4	0
620	Artificial metalloenzyme with peroxidase-like activity based on periodic mesoporous organosilica with ionic-liquid framework. Microporous and Mesoporous Materials, 2023, 348, 112384.	2.2	0
624	Effect of a Conical Cellulose Structure on Horseradish Peroxidase Biomacromolecules. Applied Sciences (Switzerland), 2022, 12, 11994.	1.3	0
625	The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. Molecular Biomedicine, 2022, 3, .	1.7	4
626	Heme–Protein Interactions and Functional Relevant Heme Deformations: The Cytochrome c Case. Molecules, 2022, 27, 8751.	1.7	1
627	Confinement of Triple-Enzyme-Involved Antioxidant Cascade in Two-Dimensional Nanostructure. , 2023, 5, 565-573.		4
628	Enabling Peroxygenase Activity in Cytochrome P450 Monooxygenases by Engineering Hydrogen Peroxide Tunnels. Journal of the American Chemical Society, 2023, 145, 5506-5511.	6.6	13
629	Glycosylation increases active site rigidity leading to improved enzyme stability and turnover. FEBS Journal, 2023, 290, 3812-3827.	2.2	5
630	Improving the activity of horseradish peroxidase in betaine-based natural deep eutectic systems. , 2023, 1, 886-897.		3
633	Construction of "peptide-hemin/DNA―hybrid-complexes and their peroxidase activities. Chemical Communications, 2023, 59, 7811-7814.	2.2	1