The structure of the cytochrome p450BM-3 haem doma substrate, palmitoleic acid

Nature Structural Biology 4, 140-146 DOI: 10.1038/nsb0297-140

Citation Report

#	Article	IF	CITATIONS
1	The Domain Architecture of Cytochrome P450BM-3. Journal of Biological Chemistry, 1997, 272, 7915-7921.	3.4	43
2	Electron Transfer between the FMN and Heme Domains of Cytochrome P450BM-3. Journal of Biological Chemistry, 1997, 272, 7922-7926.	3.4	35
3	Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds. Biochemical Journal, 1997, 327, 537-544.	3.7	65
4	Decreased substrate affinity upon alteration of the substrate-docking region in cytochrome P450BM-3. FEBS Letters, 1997, 414, 213-218.	2.8	21
5	The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nature Structural Biology, 1997, 4, 1003-1009.	9.7	387
6	Engineering multi-domain redox proteins containing flavodoxin as bio-transformer: preparatory studies by rational design. Biosensors and Bioelectronics, 1998, 13, 675-685.	10.1	24
7	A Conserved Proline-rich Sequence between the N-terminal Signal-anchor and Catalytic Domains Is Required for Assembly of Functional Cytochrome P450 2C2. Archives of Biochemistry and Biophysics, 1998, 350, 233-238.	3.0	22
8	Fatty Acid-Induced Alteration of the Porphyrin Macrocycle of Cytochrome P450 BM3. Biophysical Journal, 1998, 74, 3241-3249.	0.5	13
9	Cloning, Expression in Yeast, and Functional Characterization of CYP81B1, a Plant Cytochrome P450 That Catalyzes In-chain Hydroxylation of Fatty Acids. Journal of Biological Chemistry, 1998, 273, 7260-7267.	3.4	89
10	The Catalytic Site of Cytochrome P4504A11 (CYP4A11) and Its L131F Mutant. Journal of Biological Chemistry, 1998, 273, 23055-23061.	3.4	31
11	The CYP2 family: models, mutants and interactions. Xenobiotica, 1998, 28, 617-661.	1.1	90
12	Molecular modelling of CYP2B6, the human CYP2B isoform, by homology with the substrate-bound CYP102 crystal structure: evaluation of CYP2B6 substrate characteristics, the cytochrome b5binding site and comparisons with CYP2B1 and CYP2B4. Xenobiotica, 1999, 29, 361-393.	1.1	66
13	Molecular modelling of CYP4A subfamily members based on sequence homology with CYP102. Xenobiotica, 1999, 29, 763-781.	1.1	32
14	The FMN to Heme Electron Transfer in Cytochrome P450BM-3. Journal of Biological Chemistry, 1999, 274, 36097-36106.	3.4	40
15	Molecular modelling of the human cytochrome P450 isoform CYP2A6 and investigations of CYP2A substrate selectivity. Toxicology, 1999, 133, 1-33.	4.2	51
16	Molecular modelling of CYP1 family enzymes CYP1A1, CYP1A2, CYP1A6 and CYP1B1 based on sequence homology with CYP102. Toxicology, 1999, 139, 53-79.	4.2	58
17	P450 monooxygenase in biotechnology. Journal of Chromatography A, 1999, 848, 149-159.	3.7	66
18	Homology modelling of human cytochromes P450 involved in xenobiotic metabolism and rationalization of substrate selectivity. Experimental and Toxicologic Pathology, 1999, 51, 369-374.	2.1	44

ATION RED

ARTICLE IF CITATIONS # A Continuous Spectrophotometric Assay for P450 BM-3, a Fatty Acid Hydroxylating Enzyme, and Its 2.4 143 19 Mutant F87A. Analytical Biochemistry, 1999, 269, 359-366. Homology modeling and substrate binding study of human CYP4A11 enzyme., 1999, 34, 403-415. Structure of a cytochrome P450-redox partner electron-transfer complex. Proceedings of the 21 7.1 484 National Academy of Sciences of the United States of America, 1999, 96, 1863-1868. Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450BM-3. 2.4 Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1441, 141-149. Molecular Dynamics Simulations of P450 BM3â€";Examination of Substrate-Induced Conformational 23 3.5 25 Change. Journal of Biomolecular Structure and Dynamics, 1999, 16, 1189-1203. Resonance Raman Studies of Cytochrome P450bm3and Its Complexes with Exogenous Ligandsâ€. Biochemistry, 1999, 38, 13699-13706. 2.5 P450BM-3: Absolute Configuration of the Primary Metabolites of Palmitic Acid. Archives of 25 3.0 43 Biochemistry and Biophysics, 1999, 366, 192-198. How Similar Are P450s and What Can Their Differences Teach Us?. Archives of Biochemistry and 26 192 Biophysics, 1999, 369, 24-29. Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential 27 messengers in plantâ€'pathogen interactions: enantioselectivity studies. Biochemical Journal, 1999, 342, 3.7 35 27. Roles of key active-site residues in flavocytochrome P450 BM3. Biochemical Journal, 1999, 339, 371-379. Structures of gas-generating heme enzymes: Nitric oxide synthase and heme oxygenase. Advances in 29 1.0 14 Inorganic Chemistry, 2000, 51, 243-294. Directed Evolution of the Fatty-Acid Hydroxylase P450 BM-3 into an Indole-Hydroxylating Catalyst. 3.3 49 Chemistry - A European Journal, 2000, 6, 1531-1536. Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. Journal of $\mathbf{31}$ 3.5 114 Inorganic Biochemistry, 2000, 81, 183-190. Crystal structures of cytochrome P450nor and its mutants (Ser286â†'Val, Thr) in the ferric resting state at cryogenic temperature: a comparative analysis with monooxygenase cytochrome P450s. Journal of 3.5 Inorganic Biochemistry, 2000, 81, 191-205. 33 Protein engineering of cytochromes P-450. BBA - Proteins and Proteomics, 2000, 1543, 383-407. 2.1 57 On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics. 34 171 Biochemical Pharmacology, 2000, 60, 293-306. Molecular modeling of mammalian cytochrome P450s. Cellular and Molecular Life Sciences, 2000, 57, 35 5.4 26 487-499. A 3D model of human P450c21: study of the putative effects of steroid 21-hydroxylase gene mutations. 3.8 Human Genetics, 2000, 106, 330-339.

#	Article	IF	CITATIONS
37	Flavocytochrome P450 BM3 Substrate Selectivity and Electron Transfer in a Model Cytochrome P450. Sub-Cellular Biochemistry, 2000, 35, 297-315.	2.4	3
38	Molecular modelling of human CYP2E1 by homology with the CYP102 haemoprotein domain: investigation of the interactions of substrates and inhibitors within the putative active site of the human CYP2E1 isoform. Xenobiotica, 2000, 30, 1-25.	1.1	32
39	Modelling Human Cytochromes P450 for Evaluating Drug Metabolism: An Update. Drug Metabolism and Drug Interactions, 2000, 16, 307-24.	0.3	16
40	Crystal Structure of a Thermophilic Cytochrome P450 from the Archaeon Sulfolobus solfataricus. Journal of Biological Chemistry, 2000, 275, 31086-31092.	3.4	176
41	Engineering Microsomal Cytochrome P450 2C5 to Be a Soluble, Monomeric Enzyme. Journal of Biological Chemistry, 2000, 275, 2545-2553.	3.4	154
42	The Importance of SRS-1 Residues in Catalytic Specificity of Human Cytochrome P450 3A4. Archives of Biochemistry and Biophysics, 2000, 374, 269-278.	3.0	66
43	Structural Similarities and Differences of the Heme Pockets of Various P450 Isoforms as Revealed by Resonance Raman Spectroscopy. Archives of Biochemistry and Biophysics, 2000, 383, 70-78.	3.0	23
44	Arginines 97 and 108 in CYP2C9 Are Important Determinants of the Catalytic Function. Biochemical and Biophysical Research Communications, 2000, 270, 983-987.	2.1	81
45	How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms 1 1Edited by J. Thornton. Journal of Molecular Biology, 2000, 303, 797-811.	4.2	316
46	How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways 1 1Edited by J. Thornton. Journal of Molecular Biology, 2000, 303, 813-830.	4.2	154
47	Quantitative structure–activity relationships in a series of endogenous and synthetic steroids exhibiting induction of CYP3A activity and hepatomegaly associated with increased DNA synthesis. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 179-185.	2.5	19
48	Mammalian Microsomal Cytochrome P450 Monooxygenase. Molecular Cell, 2000, 5, 121-131.	9.7	738
49	Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 353-374.	1.0	80
50	Rational re-design of the substrate binding site of flavocytochrome P450 BM3. FEBS Letters, 2000, 486, 173-177.	2.8	98
51	Cytochromes P450: a success story. Genome Biology, 2000, 1, reviews3003.1.	9.6	724
52	Mutations of phenylalanine-193 in the putative substrate access channel alter the substrate specificity of cytochrome P450cam. Israel Journal of Chemistry, 2000, 40, 55-62.	2.3	6
53	Electron transfer in the ruthenated heme domain of cytochrome P450BM-3. Israel Journal of Chemistry, 2000, 40, 47-53.	2.3	27
54	Metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin by human hepatic CYP isoforms: evidence for selectivity towards CYP3A4. Xenobiotica, 2001, 31, 187-204.	1.1	32

#	Article	IF	CITATIONS
55	A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. Journal of Biotechnology, 2001, 88, 167-171.	3.8	136
56	Structural Determinants of Active Site Binding Affinity and Metabolism by Cytochrome P450 BM-3. Archives of Biochemistry and Biophysics, 2001, 387, 117-124.	3.0	42
57	A Conservative Amino Acid Substitution Alters the Regiospecificity of CYP94A2, a Fatty Acid Hydroxylase from the Plant Vicia sativa. Archives of Biochemistry and Biophysics, 2001, 391, 180-187.	3.0	39
58	Site-Directed Mutagenesis of the Putative Distal Helix of Peroxygenase Cytochrome P450. Archives of Biochemistry and Biophysics, 2001, 394, 45-53.	3.0	68
59	Critical Role of the Residue Size at Position 87 in H2O2-Dependent Substrate Hydroxylation Activity and H2O2 Inactivation of Cytochrome P450BM-3. Biochemical and Biophysical Research Communications, 2001, 280, 1258-1261.	2.1	76
60	Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. Journal of Molecular Biology, 2001, 311, 101-110.	4.2	74
63	Substrate recognition sites in 14α-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. Journal of Inorganic Biochemistry, 2001, 87, 227-235.	3.5	65
64	Protein engineering ofBacillus megateriumCYP102. FEBS Journal, 2001, 268, 3117-3125.	0.2	210
65	Rational evolution of a medium chain-specific cytochrome P -450 BM-3 variant. BBA - Proteins and Proteomics, 2001, 1545, 114-121.	2.1	94
66	Carbamazepine: a 'blind' assessment of CYP-associated metabolism and interactions in human liver-derivedin vitrosystems. Xenobiotica, 2001, 31, 321-343.	1.1	57
67	Engineering Cytochrome P450 BM-3 for Oxidation of Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 2001, 67, 5735-5739.	3.1	151
68	Probing the open state of cytochrome P450cam with ruthenium-linker substrates. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12420-12425.	7.1	101
69	Crystal structure of cytochrome P450 14Â-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3068-3073.	7.1	502
70	Species differences in coumarin metabolism: a molecular modelling evaluation of CYP2A interactions. Xenobiotica, 2002, 32, 547-561.	1.1	32
71	Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Xenobiotica, 2002, 32, 305-323.	1.1	79
72	Genetic Polymorphisms of the HumanCYP2A13Gene: Identification of Single-Nucleotide Polymorphisms and Functional Characterization of an Arg257Cys Variant. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 416-423.	2.5	77
73	Molecular replacement in P450 crystal structure determinations. Methods in Enzymology, 2002, 357, 79-93.	1.0	4
74	CYP3A4 Gene Polymorphisms Influence Testosterone 6l²-hydroxylation. Drug Metabolism and Pharmacokinetics, 2002, 17, 150-156.	2.2	55

#	Article	IF	CITATIONS
75	Highly Terminal-Selective Epoxidation of Linolenic Acid with an Amphiphilic Iron Porphyrin Catalyst Casted in Bilayer Membranes. Chemistry Letters, 2002, 31, 162-163.	1.3	5
76	Comparative modelling of cytochromes P450. Advanced Drug Delivery Reviews, 2002, 54, 385-406.	13.7	47
77	P450 BM3: the very model of a modern flavocytochrome. Trends in Biochemical Sciences, 2002, 27, 250-257.	7.5	385
78	Regioselectivity of CYP2B6: homology modeling, molecular dynamics simulation, docking. Journal of Molecular Modeling, 2002, 8, 327-335.	1.8	41
79	Construction of heme enzymes: four approaches. Current Opinion in Chemical Biology, 2002, 6, 208-216.	6.1	42
80	Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase. Insect Molecular Biology, 2002, 11, 175-186.	2.0	50
81	Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by anEscherichia coliexpression system. FEBS Journal, 2002, 269, 2075-2082.	0.2	49
82	Thermophilic cytochrome P450 (CYP119) from Sulfolobus solfataricus: high resolution structure and functional properties. Journal of Inorganic Biochemistry, 2002, 91, 491-501.	3.5	116
83	Specific and non-specific effects of potassium cations on substrate–protein interactions in cytochromes P450cam and P450lin. Journal of Inorganic Biochemistry, 2002, 91, 597-606.	3.5	18
84	Catalytically functional flavocytochrome chimeras of P450 BM3 and nitric oxide synthase. Journal of Inorganic Biochemistry, 2002, 91, 515-526.	3.5	22
85	Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nature Biotechnology, 2002, 20, 1135-1139.	17.5	379
86	Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology. Biosensors and Bioelectronics, 2002, 17, 133-145.	10.1	98
87	Biotransformations using prokaryotic P450 monooxygenases. Current Opinion in Biotechnology, 2002, 13, 557-564.	6.6	100
88	Modelling human cytochromes P450 involved in drug metabolism from the CYP2C5 crystallographic template. Journal of Inorganic Biochemistry, 2002, 91, 502-514.	3.5	32
89	Resonance Raman scattering of cytochrome P450 BM3 and effect of imidazole inhibitors. Biopolymers, 2003, 70, 620-627.	2.4	21
90	Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. Homology model guided site-directed mutagenesis. FEBS Journal, 2003, 270, 3684-3695.	0.2	34
91	Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature, 2003, 424, 464-468.	27.8	808
92	Structure of a Substrate Complex of Mammalian Cytochrome P450 2C5 at 2.3 Ã Resolution:Â Evidence for Multiple Substrate Binding Modesâ€,â€j. Biochemistry, 2003, 42, 6370-6379.	2.5	210

	CITATION	Report	
# 93	ARTICLE FUNCTIONALGENOMICS OFP450S. Annual Review of Plant Biology, 2003, 54, 629-667.	IF 18.7	CITATIONS
94	Atomic Structure of Mycobacterium tuberculosis CYP121 to 1.06 Ã Reveals Novel Features of Cytochrome P450. Journal of Biological Chemistry, 2003, 278, 5141-5147.	3.4	126
95	Substrate Recognition and Molecular Mechanism of Fatty Acid Hydroxylation by Cytochrome P450 from Bacillus subtilis. Journal of Biological Chemistry, 2003, 278, 9761-9767.	3.4	198
96	Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Archives of Biochemistry and Biophysics, 2003, 409, 32-44.	3.0	50
97	Protein engineering of thromboxane synthase: conversion of membrane-bound to soluble form. Archives of Biochemistry and Biophysics, 2003, 416, 38-46.	3.0	11
98	Homology modelling of human CYP1A2 based on the CYP2C5 crystallographic template structure. Xenobiotica, 2003, 33, 239-254.	1.1	30
99	The biodiversity of microbial cytochromes P450. Advances in Microbial Physiology, 2003, 47, 131-186.	2.4	58
100	COMPARATIVE STUDIES ON THE CYTOCHROME P450-ASSOCIATED METABOLISM AND INTERACTION POTENTIAL OF SELEGILINE BETWEEN HUMAN LIVER-DERIVED IN VITRO SYSTEMS. Drug Metabolism and Disposition, 2003, 31, 1093-1102.	3.3	77
101	Engineering of a Water-Soluble Plant Cytochrome P450, CYP73A1, and NMR-Based Orientation of Natural and Alternate Substrates in the Active Site. Plant Physiology, 2003, 133, 1198-1208.	4.8	39
102	The 1.92-Ã Structure of Streptomyces coelicolor A3(2) CYP154C1. Journal of Biological Chemistry, 2003, 278, 12214-12221.	3.4	76
103	Preliminary Characterization and Crystal Structure of a Thermostable Cytochrome P450 from Thermus thermophilus. Journal of Biological Chemistry, 2003, 278, 608-616.	3.4	76
104	An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13196-13201.	7.1	362
105	Crystal Structures of Epothilone D-bound, Epothilone B-bound, and Substrate-free Forms of Cytochrome P450epoK. Journal of Biological Chemistry, 2003, 278, 44886-44893.	3.4	75
106	Cytochrome P450 flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13121-13122.	7.1	92
107	THE 2002 BERNARD B. BRODIE AWARD LECTURE. Drug Metabolism and Disposition, 2003, 31, 1532-1540.	3.3	38
108	P450 structures and oxidative metabolismof xenobiotics. Pharmacogenomics, 2003, 4, 387-395.	1.3	59
109	Introduction of P450, Peroxidase, and Catalase Activities into Myoglobin by Site-Directed Mutagenesis: Diverse Reactivities of Compound I. Bulletin of the Chemical Society of Japan, 2003, 76, 1309-1322.	3.2	39
110	Structural Models for Cytochrome P450�Mediated Catalysis. Scientific World Journal, The, 2003, 3, 536-545.	2.1	3

#	Article	IF	CITATIONS
111	Molecular modeling of mammalian cytochrome P450s. Frontiers in Bioscience - Landmark, 2004, 9, 2796.	3.0	4
112	Protein Engineering of the Cytochrome P450 Monooxygenase from Bacillus megaterium. Methods in Enzymology, 2004, 388, 208-224.	1.0	17
113	4-Cyanopyridine, a Versatile Spectroscopic Probe for Cytochrome P450 BM3. Journal of Biological Chemistry, 2004, 279, 48876-48882.	3.4	15
114	Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology. Journal of Lipid Research, 2004, 45, 2000-2007.	4.2	51
115	Molecular engineering of cytochrome P450 and myoglobin for selective oxygenations. Journal of Porphyrins and Phthalocyanines, 2004, 08, 279-289.	0.8	11
116	A Single Mutation in Cytochrome P450 BM3 Induces the Conformational Rearrangement Seen upon Substrate Binding in the Wild-type Enzyme. Journal of Biological Chemistry, 2004, 279, 23287-23293.	3.4	59
117	Leukotriene A4 Hydrolase. Journal of Biological Chemistry, 2004, 279, 27376-27382.	3.4	46
118	Radical Rebound Mechanism in Cytochrome P-450-catalyzed Hydroxylation of the Multifaceted Radical Clocks α- and β-Thujone. Journal of Biological Chemistry, 2004, 279, 39479-39484.	3.4	38
119	Flavocytochrome P450 BM3 Mutant A264E Undergoes Substrate-dependent Formation of a Novel Heme Iron Ligand Set. Journal of Biological Chemistry, 2004, 279, 23274-23286.	3.4	67
120	Structure of Mammalian Cytochrome P450 2B4 Complexed with 4-(4-Chlorophenyl)imidazole at 1.9-Ã Resolution. Journal of Biological Chemistry, 2004, 279, 27294-27301.	3.4	272
121	Structural Aspects of Ligand Binding to and Electron Transfer in Bacterial and Fungal P450s. Annual Review of Biochemistry, 2004, 73, 991-1018.	11.1	83
122	Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. FEBS Journal, 2004, 271, 1250-1257.	0.2	115
123	Characterization and evolution of furanocoumarin-inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Molecular Biology, 2004, 13, 603-613.	2.0	42
124	Arachidonic and eicosapentaenoic acid metabolism by human CYP1A1: highly stereoselective formation of 17(R),18(S)-epoxyeicosatetraenoic acid. Biochemical Pharmacology, 2004, 67, 1445-1457.	4.4	124
125	Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3. Tetrahedron, 2004, 60, 525-528.	1.9	106
126	Microbial P450 enzymes in biotechnology. Applied Microbiology and Biotechnology, 2004, 64, 317-325.	3.6	202
127	Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Applied Microbiology and Biotechnology, 2004, 66, 180-186.	3.6	56
128	Functional Evolution and Structural Conservation in Chimeric Cytochromes P450. Chemistry and Biology, 2004, 11, 309-318.	6.0	97

#	Article	IF	CITATIONS
129	Chimeragenesis of the Fatty Acid Binding Site of Cytochrome P450BM3. Replacement of Residues 73â^84 with the Homologous Residues from the Insect Cytochrome P450 CYP4C7. Biochemistry, 2004, 43, 1771-1780.	2.5	24
130	Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. Protein Science, 2004, 13, 255-268.	7.6	50
131	Three-Dimensional Models of Wild-Type and Mutated Forms of Cytochrome P450 14α-Sterol Demethylases from Aspergillus fumigatus and Candida albicans Provide Insights into Posaconazole Binding. Antimicrobial Agents and Chemotherapy, 2004, 48, 568-574.	3.2	246
132	Conformational States of Cytochrome P450cam Revealed by Trapping of Synthetic Molecular Wires. Journal of Molecular Biology, 2004, 344, 455-469.	4.2	50
133	Mutagenesis and molecular dynamics suggest structural and functional roles for residues in the N-terminal portion of the cytochrome P450 2B1 I helix. Archives of Biochemistry and Biophysics, 2004, 423, 266-276.	3.0	26
134	Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chemical Reviews, 2004, 104, 3947-3980.	47.7	2,048
135	A selective review of bacterial forms of cytochrome P450 enzymes. Enzyme and Microbial Technology, 2005, 36, 377-384.	3.2	40
136	Evaluation of alkoxyresorufins as fluorescent substrates for cytochrome P450 BM3 and site-directed mutants. Analytical Biochemistry, 2005, 341, 148-155.	2.4	55
137	Engineering the substrate specificity of cytochrome P450 CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals. New Biotechnology, 2005, 22, 81-88.	2.7	44
138	Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants. Advanced Synthesis and Catalysis, 2005, 347, 1090-1098.	4.3	97
139	Direct Conversion of Ethane to Ethanol by Engineered Cytochrome P450 BM3. ChemBioChem, 2005, 6, 1765-1768.	2.6	139
140	Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds. Applied Microbiology and Biotechnology, 2005, 67, 556-562.	3.6	56
141	Why Is Quinidine an Inhibitor of Cytochrome P450 2D6?. Journal of Biological Chemistry, 2005, 280, 38617-38624.	3.4	63
142	Differential Expression and Evolution of the Arabidopsis CYP86A Subfamily. Plant Physiology, 2005, 137, 1067-1081.	4.8	102
143	Monooxygenation of an Aromatic Ring by F43W/H64D/V68I Myoglobin Mutant and Hydrogen Peroxide. Journal of Biological Chemistry, 2005, 280, 12858-12866.	3.4	29
144	Congenital Adrenal Hyperplasia: The Molecular Basis of 21-Hydroxylase Deficiency in H-2aw18 Mice. Endocrinology, 2005, 146, 2563-2574.	2.8	23
145	Substrate Oxidation by Cytochrome P450 Enzymes. , 2005, , 183-245.		128
146	Switching Pyridine Nucleotide Specificity in P450 BM3. Journal of Biological Chemistry, 2005, 280, 17634-17644.	3.4	51

#	Article	IF	CITATIONS
147	Analysis of the interaction between human steroid 21-hydroxylase and various monoclonal antibodies using comparative structural modelling. European Journal of Endocrinology, 2005, 153, 949-961.	3.7	3
148	STRUCTURAL AND FUNCTIONAL DIVERSITY IN HEME MONOOXYGENASES. Drug Metabolism and Disposition, 2005, 33, 10-18.	3.3	49
149	Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochemical Society Transactions, 2005, 33, 747-753.	3.4	91
150	Structural biology of heme monooxygenases. Biochemical and Biophysical Research Communications, 2005, 338, 337-345.	2.1	70
151	Thermophilic cytochrome P450 enzymes. Biochemical and Biophysical Research Communications, 2005, 338, 437-445.	2.1	44
152	Roles of the threonine 407, aspartic acid 417, and threonine 419 residues in P450 2B1 in metabolism. Biochemical and Biophysical Research Communications, 2005, 338, 386-393.	2.1	4
153	Functional role of residues in the helix B′ region of cytochrome P450 2B1. Archives of Biochemistry and Biophysics, 2005, 435, 157-165.	3.0	37
154	Cholesterol Binding to Cytochrome P450 7A1, a Key Enzyme in Bile Acid Biosynthesisâ€. Biochemistry, 2005, 44, 3259-3271.	2.5	29
155	Structures of Cytochrome P450 Enzymes. , 2005, , 87-114.		54
156	Preparative use of isolated CYP102 monooxygenases—A critical appraisal. Journal of Biotechnology, 2006, 124, 662-669.	3.8	68
157	Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochemical and Biophysical Research Communications, 2006, 346, 810-818.	2.1	93
160	Mini Review: Cytochrome P450BM-3 in the Remediation of Semi-Volatile Fatty Acids Associated with Feedlot Odors. , 2006, , .		1
161	Flavocytochrome P450 BM3 and the origin of CYP102 fusion species. Biochemical Society Transactions, 2006, 34, 1173-1177.	3.4	37
162	Cytochrome P450 Cyp4x1 is a major P450 protein in mouse brain. FEBS Journal, 2006, 273, 936-947.	4.7	30
163	Homology modeling of plant cytochrome P450s. Phytochemistry Reviews, 2006, 5, 473-505.	6.5	41
164	Biotransformation of $\hat{1}^2$ -ionone by engineered cytochrome P450 BM-3. Applied Microbiology and Biotechnology, 2006, 70, 53-59.	3.6	80
165	Laboratory Evolution of P450 BM-3 for Mediated Electron Transfer. ChemBioChem, 2006, 7, 638-644.	2.6	41
166	Selective Hydroxylation of Highly Branched Fatty Acids and their Derivatives by CYP102A1 from Bacillus megaterium. ChemBioChem, 2006, 7, 789-794.	2.6	45

#	Article	IF	CITATIONS
167	Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnology and Bioengineering, 2006, 93, 494-499.	3.3	137
168	Engineering Cytochrome P450 BM3 for Terminal Alkane Hydroxylation. Advanced Synthesis and Catalysis, 2006, 348, 763-772.	4.3	115
169	Chapter 10 Cytochrome P450 Enzymes: Computational Approaches to Substrate Prediction. Annual Reports in Computational Chemistry, 2006, 2, 171-195.	1.7	3
170	Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450. PLoS Biology, 2006, 4, e112.	5.6	133
171	Structural and Spectroscopic Characterization of P450 BM3 Mutants with Unprecedented P450 Heme Iron Ligand Sets. Journal of Biological Chemistry, 2007, 282, 564-572.	3.4	64
172	Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11591-11596.	7.1	108
173	Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 847-863.	3.3	29
174	Possible Pathway(s) of Metyrapone Egress from the Active Site of Cytochrome P450 3A4: A Molecular Dynamics Simulation. Drug Metabolism and Disposition, 2007, 35, 689-696.	3.3	54
176	Structure, function and drug targeting in Mycobacterium tuberculosis cytochrome P450 systems. Archives of Biochemistry and Biophysics, 2007, 464, 228-240.	3.0	66
177	Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus. Archives of Biochemistry and Biophysics, 2007, 468, 32-43.	3.0	46
178	Cytochrome P450 systems—biological variations of electron transport chains. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 330-344.	2.4	633
179	Cytochrome P450–redox partner fusion enzymes. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 345-359.	2.4	180
180	FTIR studies of the redox partner interaction in cytochrome P450: The Pdx–P450cam couple. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 420-431.	2.4	15
181	What common structural features and variations of mammalian P450s are known to date?. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 376-389.	2.4	119
182	Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling). Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 360-375.	2.4	14
183	Filling a Hole in Cytochrome P450 BM3 Improves Substrate Binding and Catalytic Efficiency. Journal of Molecular Biology, 2007, 373, 633-651.	4.2	71
184	Interactions of Substrates at the Surface of P450s Can Greatly Enhance Substrate Potency,. Biochemistry, 2007, 46, 14010-14017.	2.5	30
185	Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Natural Product Reports, 2007, 24, 585-609.	10.3	256

#	Article	IF	Citations
187	Engineered Alkaneâ€Hydroxylating Cytochrome P450 _{BM3} Exhibiting Nativelike Catalytic Properties. Angewandte Chemie - International Edition, 2007, 46, 8414-8418.	13.8	221
189	A Virtual Screening Filter for Identification of Cytochrome P450 2C9 (CYP2C9) Inhibitors. QSAR and Combinatorial Science, 2007, 26, 618-628.	1.4	22
190	Molecular definitions of fatty acid hydroxylases in Arabidopsis thaliana. Proteins: Structure, Function and Bioinformatics, 2007, 68, 279-293.	2.6	40
191	Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library. Journal of Applied Microbiology, 2007, 102, 1392-1400.	3.1	33
192	Identification of covalent modifications in P450 2E1 by 1,2-epoxy-3-butene in vitro. Chemico-Biological Interactions, 2007, 166, 170-175.	4.0	17
193	The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities. Trends in Biotechnology, 2007, 25, 289-298.	9.3	84
194	Cytochrome P450 BM-3 in complex with its substrate: Temperature-dependent spin state equilibria in the oxidized and reduced states. Applied Magnetic Resonance, 2007, 31, 411-429.	1.2	4
195	Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes. Journal of Biological Inorganic Chemistry, 2007, 12, 313-323.	2.6	58
196	Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Applied Microbiology and Biotechnology, 2008, 79, 931-940.	3.6	59
197	The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. Journal of Biological Inorganic Chemistry, 2008, 13, 813-824.	2.6	29
198	Structural rationalization of novel drug metabolizing mutants of cytochrome P450 BM3. Proteins: Structure, Function and Bioinformatics, 2008, 71, 336-352.	2.6	39
199	Anchoring effects in a wide binding pocket: The molecular basis of regioselectivity in engineered cytochrome P450 monooxygenase from <i>B. megaterium</i> . Proteins: Structure, Function and Bioinformatics, 2008, 73, 597-607.	2.6	29
200	Defining resonance Raman spectral responses to substrate binding by cytochrome P450 from <i>Pseudomonas putida</i> . Biopolymers, 2008, 89, 1045-1053.	2.4	20
201	Rates, Kinetics, and Mechanisms of Epoxidation. , 2008, , 3-99.		42
202	Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13883-13888.	7.1	90
203	Evolutionary History of a Specialized P450 Propane Monooxygenase. Journal of Molecular Biology, 2008, 383, 1069-1080.	4.2	185
204	Crystal Structure of CYP199A2, a Para-Substituted Benzoic Acid Oxidizing Cytochrome P450 from Rhodopseudomonas palustris. Journal of Molecular Biology, 2008, 383, 561-574.	4.2	55
205	Comparison of Bacillus monooxygenase genes for unique fatty acid production. Progress in Lipid Research, 2008, 47, 1-14.	11.6	32

#	Article	IF	Citations
206	A single mutation in P450BM-3 enhances acyl homoserine lactone: Acyl homoserine substrate binding selectivity nearly 250-fold. Journal of Biotechnology, 2008, 135, 374-376.	3.8	11
207	Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options. Chemical Communications, 2008, , 966.	4.1	98
208	Ionic liquid effects on the activity of monooxygenase P450 BM-3. Green Chemistry, 2008, 10, 117-123.	9.0	46
209	Crystal Structure of Inhibitor-Bound P450BM-3 Reveals Open Conformation of Substrate Access Channel [,] . Biochemistry, 2008, 47, 3662-3670.	2.5	32
210	Crystal Structure of CYP105A1 (P450SU-1) in Complex with 1α,25-Dihydroxyvitamin D ₃ [,] . Biochemistry, 2008, 47, 4017-4027.	2.5	78
211	Drug-Drug Interactions, Second Edition. , 0, , .		8
212	Determinants of Cytochrome P450 2C8 Substrate Binding. Journal of Biological Chemistry, 2008, 283, 17227-17237.	3.4	143
213	Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450 _{Biol} ACP complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15696-15701.	7.1	134
214	Cooperative properties of cytochromes P450. , 2009, 124, 151-167.		97
215	A Diversified Library of Bacterial and Fungal Bifunctional Cytochrome P450 Enzymes for Drug Metabolite Synthesis. Advanced Synthesis and Catalysis, 2009, 351, 2140-2146.	4.3	46
216	A Highly Active Singleâ€Mutation Variant of P450 _{BM3} (CYP102A1). ChemBioChem, 2009, 10, 1654-1656.	2.6	72
217	Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metabolism Reviews, 2009, 41, 89-295.	3.6	671
218	Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: search for an Fe(i) oxidation state. Physical Chemistry Chemical Physics, 2009, 11, 10219.	2.8	28
219	Novel haem co-ordination variants of flavocytochrome P450 BM3. Biochemical Journal, 2009, 417, 65-80.	3.7	32
221	Selectivity in a barren landscape: the P450Biol–ACP complex. Biochemical Society Transactions, 2010, 38, 934-939.	3.4	15
222	New cytochrome P450 mechanisms: implications for understanding molecular basis for drug toxicity at the level of the cytochrome. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 1-15.	3.3	39
223	Molecular modeling study on orphan human protein CYP4A22 for identification of potential ligand binding site. Journal of Molecular Graphics and Modelling, 2010, 28, 524-532.	2.4	16
224	Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene ï‰-hydroxylase CYP4C7. Journal of Biological Inorganic Chemistry, 2010, 15, 159-174.	2.6	26

ARTICLE IF CITATIONS # Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from 225 2.6 35 Bacillus subtilis. Journal of Biological Inorganic Chemistry, 2010, 15, 1331-1339. Probing possible egress channels for multiple ligands in human CYP3A4: A molecular modeling study. 1.8 28 Journal of Molecular Modeling, 2010, 16, 607-614. Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore 227 1.8 60 diameters. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 29-37. Structural Basis for the Properties of Two Singleâ€Site Proline Mutants of CYP102A1 (P450_{BM3}). ChemBioChem, 2010, 11, 2549-2556. Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological 229 227 3.8 applications. Journal of Biotechnology, 2010, 146, 9-24. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC 2.3 Structural Biology, 2010, 10, 34. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of 231 17.5 151 dopamine. Nature Biotechnology, 2010, 28, 264-270. Human Cytochrome P450 2E1 Structures with Fatty Acid Analogs Reveal a Previously Unobserved 3.4 Binding Mode. Journal of Biological Chemistry, 2010, 285, 22282-22290. Cytochrome P450 102A2 Catalyzes Efficient Oxidation of Sodium Dodecyl Sulphate: A Molecular Tool 233 1.8 5 fór Remediation. Enzyme Research, 2010, 2010, 1-7. Oxidative Biotransformation of Fatty Acids by Cytochromes P450: Predicted Key Structural Elements 234 Orchestrating Substrate Specificity, Regioselectivity and Catalytic Efficiency. Current Drug 1.2 Metabolism, 2010, 11, 85-104. Glutamate–haem ester bond formation is disfavoured in flavocytochrome P450 BM3: characterization of glutamate substitution mutants at the haem site of P450 BM3. Biochemical Journal, 2010, 427, 235 3.7 13 455-466. Intramolecular Heme Ligation of the Cytochrome P450 2C9 R108H Mutant Demonstrates Pronounced Conformational Flexibility of the Bâ°C Loop Region: Implications for Substrate Binding. Biochemistry, 2.5 24 2010, 49, 8700-8708. Stereoselective epoxidation of the last double bond of polyunsaturated fatty acids by human 237 4.2 71 cytochromes P450. Journal of Lipid Research, 2010, 51, 1125-1133. Crystal Structure of CYP24A1, a Mitochondrial Cytochrome P450 Involved in Vitamin D Metabolism. 4.2 Journal of Molecular Biology, 2010, 396, 441-451 239 Flavin-containing heme enzymes. Archives of Biochemistry and Biophysics, 2010, 493, 37-52. 3.0 30 P450cam Visits an Open Conformation in the Absence of Substrate[,]. Biochemistry, 2010, 49, 240 3412-3419. Conformational Plasticity and Structure/Function Relationships in Cytochromes P450. Antioxidants 241 5.4108 and Redox Signaling, 2010, 13, 1273-1296. Control of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using 242 2.4 structure-based mutagenesis. Metallomics, 2011, 3, 410.

#	Article	IF	CITATIONS
243	Structure, electronic properties and catalytic behaviour of an activity-enhancing CYP102A1 (P450BM3) variant. Dalton Transactions, 2011, 40, 10383.	3.3	40
244	Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy. Journal of the American Chemical Society, 2011, 133, 3995-4004.	13.7	60
245	Three Clusters of Conformational States in P450cam Reveal a Multistep Pathway for Closing of the Substrate Access Channel,. Biochemistry, 2011, 50, 693-703.	2.5	53
246	Three-dimensional models of 14α-sterol demethylase (Cyp51A) from Aspergillus lentulus and Aspergillus fumigatus: an insight into differences in voriconazole interaction. International Journal of Antimicrobial Agents, 2011, 38, 426-434.	2.5	22
247	Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. Archives of Biochemistry and Biophysics, 2011, 514, 33-43.	3.0	76
248	Genetic polymorphism of CYP4A11 and CYP4A22 genes and in silico insights from comparative 3D modelling in a French population. Gene, 2011, 487, 10-20.	2.2	15
249	Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3. Metallomics, 2011, 3, 369.	2.4	5
250	Cytochrome P450 BM3, NO binding and real-time NO detection. Nitric Oxide - Biology and Chemistry, 2011, 25, 89-94.	2.7	1
253	The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS Journal, 2011, 278, 206-221.	4.7	112
254	Insect cytochromes P450: Topology of structural elements predicted to govern catalytic versatility. Journal of Inorganic Biochemistry, 2011, 105, 1354-1364.	3.5	39
255	Homology modeling of the three membrane proteins of the dhurrin metabolon: Catalytic sites, membrane surface association and protein–protein interactions. Phytochemistry, 2011, 72, 2113-2123.	2.9	34
256	Potentially increasing the metabolic stability of drug candidates via computational site of metabolism prediction by CYP2C9: The utility of incorporating protein flexibility via an ensemble of structures. European Journal of Medicinal Chemistry, 2011, 46, 3953-3963.	5.5	25
257	A Single Active-Site Mutation of P450BM-3 Dramatically Enhances Substrate Binding and Rate of Product Formation. Biochemistry, 2011, 50, 8333-8341.	2.5	15
258	Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11. Journal of Biological Inorganic Chemistry, 2011, 16, 899-912.	2.6	44
259	Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca. Applied Microbiology and Biotechnology, 2011, 89, 1475-1485.	3.6	52
260	Bioconversion of substituted naphthalenes and β-eudesmol with the cytochrome P450 BM3 variant F87V. Applied Microbiology and Biotechnology, 2011, 90, 147-157.	3.6	23
261	Chain length-dependent cooperativity in fatty acid binding and oxidation by cytochrome P450BM3 (CYP102A1). Protein and Cell, 2011, 2, 656-671.	11.0	16
262	Characterization of diverse natural variants of CYP102A1 found within a species of Bacillus megaterium. AMB Express, 2011, 1, 1.	3.0	107

#	Article	IF	CITATIONS
264	Tuning a P450 Enzyme for Methane Oxidation. Angewandte Chemie - International Edition, 2011, 50, 2720-2724.	13.8	140
265	Improved productâ€perâ€glucose yields in P450â€dependent propane biotransformations using engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2011, 108, 500-510.	3.3	49
266	Tuning the Regio―and Stereoselectivity of CH Activation in <i>n</i> â€Octanes by Cytochrome P450 BMâ€3 with Fluorine Substituents: Evidence for Interactions Between a CF Bond and Aromatic π Systems. Chemistry - A European Journal, 2011, 17, 4774-4787.	3.3	17
267	An Efficient Route to Selective Bioâ€oxidation Catalysts: an Iterative Approach Comprising Modeling, Diversification, and Screening, Based on CYP102A1. ChemBioChem, 2011, 12, 1346-1351.	2.6	56
268	Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 249-256.	2.3	30
269	Efficient Screening of Cytochrome P450 BM3 Mutants for Their Metabolic Activity and Diversity toward a Wide Set of Drug-Like Molecules in Chemical Space. Drug Metabolism and Disposition, 2011, 39, 1568-1576.	3.3	38
270	Crystal Structure of H2O2-dependent Cytochrome P450SPα with Its Bound Fatty Acid Substrate. Journal of Biological Chemistry, 2011, 286, 29941-29950.	3.4	103
271	Double electron–electron resonance shows cytochrome P450cam undergoes a conformational change in solution upon binding substrate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12888-12893.	7.1	50
272	The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1013-1017.	0.7	23
273	P450 _{BM3} (CYP102A1): connecting the dots. Chemical Society Reviews, 2012, 41, 1218-1260.	38.1	576
274	Enzyme–Substrate Complementarity Governs Access to a Cationic Reaction Manifold in the P450 _{BM3} â€Catalysed Oxidation of Cyclopropyl Fatty Acids. Chemistry - A European Journal, 2012, 18, 15994-15999.	3.3	10
275	Fluorescence detection of ligand binding to labeled cytochrome P450BM3. Dalton Transactions, 2012, 41, 2018-2025.	3.3	13
276	AFM study of cytochrome CYP102A1 oligomeric state. Soft Matter, 2012, 8, 4602.	2.7	33
277	Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron, 2012, 68, 7530-7548.	1.9	32
278	Crystal Structures of Substrate-Free and Nitrosyl Cytochrome P450cin: Implications for O2 Activation. Biochemistry, 2012, 51, 6623-6631.	2.5	15
279	Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene. Microbial Cell Factories, 2012, 11, 95.	4.0	16
280	Tuning P450 Enzymes as Oxidation Catalysts. ACS Catalysis, 2012, 2, 647-666.	11.2	332
281	Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites. International Journal of Molecular Sciences, 2012, 13, 15901-15924.	4.1	80

#	Article	IF	CITATIONS
282	Achieving Regio―and Enantioselectivity of P450â€Catalyzed Oxidative CH Activation of Small Functionalized Molecules by Structureâ€Guided Directed Evolution. ChemBioChem, 2012, 13, 1465-1473.	2.6	100
283	Identification of Mutant Asp251Gly/Gln307His of Cytochrome P450 BM3 for the Generation of Metabolites of Diclofenac, Ibuprofen and Tolbutamide. Chemistry - A European Journal, 2012, 18, 3582-3588.	3.3	28
284	The crystal structures of 4-methoxybenzoate bound CYP199A2 and CYP199A4: structural changes on substrate binding and the identification of an anion binding site. Dalton Transactions, 2012, 41, 8703.	3.3	48
285	Chiralâ€Substrateâ€Assisted Stereoselective Epoxidation Catalyzed by H ₂ O ₂ â€Dependent Cytochrome P450 _{SPα} . Chemistry - an Asian Journal, 2012, 7, 2286-2293.	3.3	26
286	The crystal structure of the FAD/NADPHâ€binding domain of flavocytochrome P450 BM3. FEBS Journal, 2012, 279, 1694-1706.	4.7	42
287	Metalloproteinâ€based MRI probes. FEBS Letters, 2013, 587, 1021-1029.	2.8	23
288	Structural Evidence: A Single Charged Residue Affects Substrate Binding in Cytochrome P450 BM-3. Biochemistry, 2013, 52, 6807-6815.	2.5	11
289	Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from <i>Coprinopsis cinerea</i> . Biotechnology and Bioengineering, 2013, 110, 2323-2332.	3.3	77
290	Production of long-chain hydroxy fatty acids by microbial conversion. Applied Microbiology and Biotechnology, 2013, 97, 3323-3331.	3.6	46
291	Regioselective Hydroxylation of C ₁₂ –C ₁₅ Fatty Acids with Fluorinated Substituents by Cytochromeâ€P450 BM3. Chemistry - A European Journal, 2013, 19, 13680-13691.	3.3	15
292	P450 BM3 crystal structures reveal the role of the charged surface residue Lys/Arg184 in inversion of enantioselective styrene epoxidation. Chemical Communications, 2013, 49, 4694.	4.1	21
293	The Conformation of P450cam in Complex with Putidaredoxin Is Dependent on Oxidation State. Journal of the American Chemical Society, 2013, 135, 11732-11735.	13.7	38
294	Constructing manmade enzymes for oxygen activation. Dalton Transactions, 2013, 42, 3136-3150.	3.3	22
295	A structural model of PpoA derived from SAXS-analysis—Implications for substrate conversion. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1449-1457.	2.4	9
296	Highly Selective Hydroxylation of Benzene to Phenol by Wildâ€ŧype Cytochrome P450BM3 Assisted by Decoy Molecules. Angewandte Chemie - International Edition, 2013, 52, 6606-6610.	13.8	129
297	Aluminumâ€substituted heme domain of P450BMâ€3 (<scp>BMP</scp>): Introducing a hemeâ€derived fluorescent probe for studies of substrate binding and protein–protein interactions in cytochromes P450. Biotechnology and Applied Biochemistry, 2013, 60, 41-51.	3.1	6
298	O2 Reduction Reaction by Biologically Relevant Anionic Ligand Bound Iron Porphyrin Complexes. Inorganic Chemistry, 2013, 52, 12963-12971.	4.0	60
299	Key Mutations Alter the Cytochrome P450 BM3 Conformational Landscape and Remove Inherent Substrate Bias. Journal of Biological Chemistry, 2013, 288, 25387-25399.	3.4	62

# 300	ARTICLE A Rapid Screening for Cytochrome P450 Catalysis on New Chemical Entities: Cytochrome P450 BM3 and 1,2,5-Oxadiazole Derivatives. Journal of Biomolecular Screening, 2013, 18, 211-218.	IF 2.6	CITATIONS
301	Dynamics and Flexibility of Human Aromatase Probed by FTIR and Time Resolved Fluorescence Spectroscopy. PLoS ONE, 2013, 8, e82118.	2.5	28
302	Structural Diversity of Eukaryotic Membrane Cytochrome P450s. Journal of Biological Chemistry, 2013, 288, 17082-17090.	3.4	92
304	Human P450-like oxidation of diverse proton pump inhibitor drugs by â€~gatekeeper' mutants of flavocytochrome P450 BM3. Biochemical Journal, 2014, 460, 247-259.	3.7	31
305	Exploring Prospects of Monooxygenase-Based Biocatalysts in Xenobiotics. , 2014, , 577-614.		7
306	Cytochrome P450 Dynamics. , 2014, , 75-94.		3
307	Controlled oxidation of aliphatic CH bonds in metallo-monooxygenases: Mechanistic insights derived from studies on deuterated and fluorinated hydrocarbons. Journal of Inorganic Biochemistry, 2014, 134, 118-133.	3.5	12
308	Cytochrome P450 Catalyzed Oxidative Hydroxylation of Achiral Organic Compounds with Simultaneous Creation of Two Chirality Centers in a Single CH Activation Step. Angewandte Chemie - International Edition, 2014, 53, 8659-8663.	13.8	63
309	Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid. Journal of Biotechnology, 2014, 184, 17-26.	3.8	23
310	The role of cytochrome P450 2B6 and 2B4 substrate access channel residues predicted based on crystal structures of the amlodipine complexes. Archives of Biochemistry and Biophysics, 2014, 545, 100-107.	3.0	15
311	Heme Enzyme Structure and Function. Chemical Reviews, 2014, 114, 3919-3962.	47.7	1,049
312	Correlating Structure and Function of Drug-Metabolizing Enzymes: Progress and Ongoing Challenges. Drug Metabolism and Disposition, 2014, 42, 9-22.	3.3	20
313	P450-Catalyzed Intramolecular sp ³ C–H Amination with Arylsulfonyl Azide Substrates. ACS Catalysis, 2014, 4, 546-552.	11.2	180
315	Fifty Years of Cytochrome P450 Research. , 2014, , .		17
316	Drug Oxidation by Cytochrome P450 _{BM3} : Metabolite Synthesis and Discovering New P450 Reaction Types. Chemistry - A European Journal, 2015, 21, 15039-15047.	3.3	72
317	Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology, 2015, , .	1.6	29
318	Quantum Mechanical/Molecular Mechanical Calculated Reactivity Networks Reveal How Cytochrome P450cam and Its T252A Mutant Select Their Oxidation Pathways. Journal of the American Chemical Society, 2015, 137, 7379-7390.	13.7	69
319	Shaking up ancient scents: Insights into santalol synthesis in engineered Escherichia coli. Process Biochemistry, 2015, 50, 1177-1183.	3.7	7

#	Article	IF	CITATIONS
320	Activation of Wild-Type Cytochrome P450BM3 by the Next Generation of Decoy Molecules: Enhanced Hydroxylation of Gaseous Alkanes and Crystallographic Evidence. ACS Catalysis, 2015, 5, 150-156.	11.2	73
321	Monooxygenation of Small Hydrocarbons Catalyzed by Bacterial Cytochrome P450s. Advances in Experimental Medicine and Biology, 2015, 851, 189-208.	1.6	2
322	Analysis of Cytochrome P450 CYP119 Ligand-dependent Conformational Dynamics by Two-dimensional NMR and X-ray Crystallography. Journal of Biological Chemistry, 2015, 290, 10000-10017.	3.4	28
323	Microbial Cytochromes P450. , 2015, , 261-407.		17
324	Structures of Cytochrome P450 Enzymes. , 2015, , 3-32.		26
325	Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chemical Communications, 2015, 51, 2208-2224.	4.1	135
326	Bringing out the Potential of Wildâ€ŧype Cytochrome P450s using Decoy Molecules: Oxygenation of Nonnative Substrates by Bacterial Cytochrome P450s. Israel Journal of Chemistry, 2015, 55, 32-39.	2.3	20
327	Drug metabolism in microorganisms. Biotechnology Letters, 2015, 37, 19-28.	2.2	46
328	Detection of substrate-dependent conformational changes in the P450 fold by nuclear magnetic resonance. Scientific Reports, 2016, 6, 22035.	3.3	37
329	Role of Leu188 in the Fatty Acid Hydroxylase Activity of CYP102A1 from Bacillus megaterium. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, 35-42.	1.8	6
330	Increasing the Activity and Efficiency of Stereoselective Oxidations by using Decoy Molecules in Combination with Rateâ€Enhancing Variants of P450Bm3. ChemCatChem, 2016, 8, 2789-2796.	3.7	22
331	Identification of Mechanism-Based Inactivation in P450-Catalyzed Cyclopropanation Facilitates Engineering of Improved Enzymes. Journal of the American Chemical Society, 2016, 138, 12527-12533.	13.7	58
332	Snapshots of encapsulated porphyrins and heme enzymes in metal-organic materials: A prevailing paradigm of heme mimicry. Coordination Chemistry Reviews, 2016, 326, 135-163.	18.8	24
333	Aldehyde and Ketone Synthesis by P450â€Catalyzed Oxidative Deamination of Alkyl Azides. ChemCatChem, 2016, 8, 2609-2613.	3.7	16
334	Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s. Scientific Reports, 2016, 6, 33099.	3.3	61
335	High-specificity synthesis of novel monomers by remodeled alcohol hydroxylase. BMC Biotechnology, 2016, 16, 61.	3.3	5
336	Insights into regioselective metabolism of mefenamic acid by cytochrome <scp>P</scp> 450 <scp>BM</scp> 3 mutants through crystallography, docking, molecular dynamics, and free energy calculations. Proteins: Structure, Function and Bioinformatics, 2016, 84, 383-396.	2.6	29
337	Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450 _{BM3} Variants. Biochemistry, 2016, 55, 3594-3606.	2.5	14

ARTICLE IF CITATIONS # Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme †active siteâ€m pocket plays a relatively â e passive role' in some 338 3.3 24 enzyme-substrate interactions. In Silico Pharmacology, 2016, 4, 2. Characterisation of two self-sufficient CYP102 family monooxygenases from Ktedonobacter racemifer DSM44963 which have new fatty acid alcohol product profiles. Biochimica Et Biophysica Acta - General 2.4 23 Subjects, 2016, 1860, 1149-1162. Molecular Dynamics and QM/MM Calculations Predict the Substrate-Induced Gating of Cytochrome 340 P450 BM3 and the Regio- and Stereoselectivity of Fatty Acid Hydroxylation. Journal of the American 13.7 85 Chemical Society, 2016, 138, 837-845. Subtle structural changes in the Asp251Gly/Gln307His P450 BM3 mutant responsible for new activity toward diclofenac, tolbutamide and ibuprofen. Archives of Biochemistry and Biophysics, 2016, 602, 106-115. Mimicking the Regulation Step of Feâ€Monooxygenases: Allosteric Modulation of Fe^{IV}â€Oxo 342 Formation by Guest Binding in a Dinuclear Zn^{II}â€"Fe^{II} Calix[6]areneâ€Based Funnel 3.3 4 Complex. Chemistry - A European Journal, 2017, 23, 2894-2906. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chemical 47.7 Reviews, 2017, 117, 8574-8621. In Silico ADME Techniques Used in Early-Phase Drug Discovery. AAPS Advances in the Pharmaceutical 344 0.6 15 Sciences Series, 2017, , 81-117. Enantioselective, intermolecular benzylic Câ€"H amination catalysed by an engineered iron-haem enzyme. 345 13.6 319 Nature Chemistry, 2017, 9, 629-634. MD simulations and QM/MM calculations show that single-site mutations of cytochrome 346 P450_{BM3} alter the active site's complexity and the chemoselectivity of oxidation without 7.4 33 changing the active species. Chemical Science, 2017, 8, 5335-5344. Substrate-Specific Screening for Mutational Hotspots Using Biased Molecular Dynamics Simulations. 347 11.2 ACS Catalysis, 2017, 7, 6786-6797. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on 348 0.4 0 the selectivity of n-octane oxidation to octanol regioisomers. AIP Conference Proceedings, 2017, , . Control of stereoselectivity of benzylic hydroxylation catalysed by wild-type cytochrome P450BM3 349 4.1 30 using decoy molecules. Catalysis Science and Technology, 2017, 7, 3332-3338. Structural insights into the function of steroidogenic cytochrome P450 17A1. Molecular and Cellular 350 3.2 27 Endocrinology, 2017, 441, 68-75. Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment. 4.1 Macromolecular Bioscience, 2017, 17, . Monooxygenation of Nonnative Substrates Catalyzed by Bacterial Cytochrome P450s Facilitated by 352 1.3 26 Decoy Molecules. Chemistry Letters, 2017, 46, 278-288. Choreography of the Reductase and P450_{BM3} Domains Toward Electron Transfer Is Instigated by the Substrate. Journal of the American Chemical Society, 2018, 140, 683-690. Use of bioconjugation with cytochrome P450 enzymes. Biochimica Et Biophysica Acta - Proteins and 354 2.315 Proteomics, 2018, 1866, 32-51. Protein engineering of CYP105s for their industrial uses. Biochimica Et Biophysica Acta - Proteins and 2.3 Proteomics, 2018, 1866, 23-31.

#	Article	IF	CITATIONS
356	Crystallographic insights into a cobalt (III) sepulchrate based alternative cofactor system of P450 BM3 monooxygenase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 134-140.	2.3	1
357	In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 60-67.	2.3	24
358	Determinants of thermostability in the cytochrome P450 fold. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 97-115.	2.3	14
359	Working at the membrane interface: Ligandâ€induced changes in dynamic conformation and oligomeric structure in human aromatase. Biotechnology and Applied Biochemistry, 2018, 65, 46-53.	3.1	16
360	Exploring PTDH–P450BM3 Variants for the Synthesis of Drug Metabolites. ChemBioChem, 2018, 19, 326-337.	2.6	14
361	A Distal Loop Controls Product Release and Chemo- and Regioselectivity in Cytochrome P450 Decarboxylases. Biochemistry, 2018, 57, 344-353.	2.5	26
362	Surfaceâ€Binding Peptide Facilitates Electricityâ€Driven NADPHâ€Free Cytochrome P450 Catalysis. ChemCatChem, 2018, 10, 525-530.	3.7	17
363	Resonance Raman studies of Bacillus megaterium cytochrome P450 BM3 and biotechnologically important mutants. Journal of Raman Spectroscopy, 2018, 49, 287-297.	2.5	3
364	Enzymatic Lateâ€Stage Oxidation of Lead Compounds with Solubilizing Biomimetic Docking/Protecting groups. Chemistry - A European Journal, 2018, 24, 17936-17947.	3.3	10
365	Comparative Analyses of Cytochrome P450s and Those Associated with Secondary Metabolism in Bacillus Species. International Journal of Molecular Sciences, 2018, 19, 3623.	4.1	19
366	Increased Phenacetin Oxidation upon the L382V Substitution in Cytochrome P450 1A2 is Associated with Altered Substrate Binding Orientation. International Journal of Molecular Sciences, 2018, 19, 1580.	4.1	3
368	Molecular Determinants of Substrate Affinity and Enzyme Activity of a Cytochrome P450BM3 Variant. Biophysical Journal, 2018, 115, 1251-1263.	0.5	5
369	A Comparative Review on the Catalytic Mechanism of Nonheme Iron Hydroxylases and Halogenases. Catalysts, 2018, 8, 314.	3.5	50
370	Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2018, 84, .	3.1	32
371	Chemoenzymatic Route to Oxyfunctionalized Cembranoids Facilitated by Substrate and Protein Engineering. Chemistry - A European Journal, 2018, 24, 12010-12021.	3.3	21
372	Structural insights into oxidation of medium-chain fatty acids and flavanone by myxobacterial cytochrome P450 CYP267B1. Biochemical Journal, 2018, 475, 2801-2817.	3.7	2
374	Crystal structure of bacterial CYP116B5 heme domain: New insights on class VII P450s structural flexibility and peroxygenase activity. International Journal of Biological Macromolecules, 2019, 140, 577-587.	7.5	23
375	Cytochrome P450—The Wonderful Nanomachine Revealed through Dynamic Simulations of the Catalytic Cycle. Accounts of Chemical Research, 2019, 52, 389-399.	15.6	116

#	Article	IF	Citations
 376	Production of metabolites of the anti-cancer drug noscapine using a P450BM3 mutant library. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00372.	4.4	12
377	Solar-driven biocatalytic C-hydroxylation through direct transfer of photoinduced electrons. Green Chemistry, 2019, 21, 515-525.	9.0	19
378	Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition. Accounts of Chemical Research, 2019, 52, 925-934.	15.6	41
379	Crystal structure of CYP76AH1 in 4-PI-bound state from Salvia miltiorrhiza. Biochemical and Biophysical Research Communications, 2019, 511, 813-819.	2.1	28
380	Substrateâ€induced conformational change in cytochrome P450 OleP. FASEB Journal, 2019, 33, 1787-1800.	0.5	14
381	Selective hydroxylation of 1,8- and 1,4-cineole using bacterial P450 variants. Archives of Biochemistry and Biophysics, 2019, 663, 54-63.	3.0	10
382	Peroxide-driven catalysis of the heme domain of A. radioresistens cytochrome P450 116B5 for sustainable aromatic rings oxidation and drug metabolites production. New Biotechnology, 2020, 54, 71-79.	4.4	20
383	A Modified Arrhenius Approach to Thermodynamically Study Regioselectivity in Cytochrome P450â€Catalyzed Substrate Conversion. ChemBioChem, 2020, 21, 1461-1472.	2.6	2
384	Impact of lifestyle on cytochrome P450 monooxygenase repertoire is clearly evident in the bacterial phylum Firmicutes. Scientific Reports, 2020, 10, 13982.	3.3	22
385	Double Electron–Electron Resonance Shows That the Substrate but Not the Inhibitors Causes Disorder in the F/G Loop of CYP119 in Solution. Biochemistry, 2020, 59, 1823-1831.	2.5	3
386	Crystals in Minutes: Instant On‣ite Microcrystallisation of Various Flavours of the CYP102A1 (P450BM3) Haem Domain. Angewandte Chemie - International Edition, 2020, 59, 7611-7618.	13.8	13
387	Artificial control of the multistep oxidation reactions catalyzed by the cytochrome P450 enzyme RosC. Applied Microbiology and Biotechnology, 2020, 104, 3403-3415.	3.6	4
388	DFT investigations of linear Zn3-type complex with compartmental N/O-donor Schiff base: Synthesis, characterizations, crystal structure, fluorescence and molecular docking. Journal of Molecular Structure, 2020, 1209, 127936.	3.6	26
389	Molecular Design and Regulation of Metalloenzyme Activities through Two Novel Approaches: Ferritin and P450s. Bulletin of the Chemical Society of Japan, 2020, 93, 379-392.	3.2	16
390	Characterization of a Self‣ufficient Cytochrome P450 Monooxygenase from <i>Deinococcus apachensis</i> for Enantioselective Benzylic Hydroxylation. ChemBioChem, 2020, 21, 1820-1825.	2.6	13
391	Methylene Oxidation of Alkyl Sulfates by Cytochrome P450BM-3and a Role for Conformational Selection in Substrate Recognition. ACS Catalysis, 2020, 10, 5008-5022.	11.2	10
392	Kristalle in Minutenschnelle: Sofortige Mikrokristallisation verschiedenster Varianten der CYP102A1â€(P450BM3)â€HÃ#ndomÃ#e. Angewandte Chemie, 2020, 132, 7681-7689.	2.0	6
393	Structure of Yak Lactoperoxidase at 1.55ÂÃ Resolution. Protein Journal, 2021, 40, 8-18.	1.6	5

#	Article	IF	CITATIONS
394	Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nature Communications, 2021, 12, 1621.	12.8	72
395	In Silico Analysis of P450s and Their Role in Secondary Metabolism in the Bacterial Class Gammaproteobacteria. Molecules, 2021, 26, 1538.	3.8	11
396	Comprehensive Structure–Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C–H Functionalization. ACS Central Science, 2021, 7, 841-857.	11.3	18
397	Steroidogenic cytochrome P450 17A1 structure and function. Molecular and Cellular Endocrinology, 2021, 528, 111261.	3.2	22
398	Reconciling conformational heterogeneity and substrate recognition in cytochrome P450. Biophysical Journal, 2021, 120, 1732-1745.	0.5	7
399	Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coordination Chemistry Reviews, 2021, 439, 213914.	18.8	41
401	Biocatalytic synthesis of non-vicinal aliphatic diols. Organic and Biomolecular Chemistry, 2021, 19, 439-445.	2.8	3
402	Directed Evolution of the Fatty-Acid Hydroxylase P450 BM-3 into an Indole-Hydroxylating Catalyst. Chemistry - A European Journal, 2000, 6, 1531-1536.	3.3	167
403	Mettoxâ"¢: A Suite of PredictiveIn silico andIn vitro Assays for Metabolic and Genotoxicological Profiling of Preclinical Drug Candidates. , 0, , 1603-1636.		2
404	Rational Design of P450 Enzymes for Biotechnology. Focus on Biotechnology, 2001, , 71-104.	0.4	5
405	Conjugates of Heme-Thiolate Enzymes with Photoactive Metal-Diimine Wires. Structure and Bonding, 2006, , 177-203.	1.0	2
406	Flavocytochromes: Nature's Electrical Transformers. , 1998, , 165-184.		2
407	Conformational Changes in Cytochrome P450cam and the Effector Role of Putidaredoxin. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 292-310.	0.8	2
408	Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis. , 0, , 163-179.		12
409	Molecular Modeling Used to Evaluate CYP2C9-Dependent Metabolism: Homology Modeling, Molecular Dynamics and Docking Simulations. Current Drug Metabolism, 2011, 12, 533-548.	1.2	8
410	Structure of the fungal hydroxylase, CYP505A30, and rational transfer of mutation data from CYP102A1 to alter regioselectivity. Catalysis Science and Technology, 2021, 11, 7359-7367.	4.1	5
411	A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism. International Journal of Molecular Sciences, 2021, 22, 11380.	4.1	12
413	Biocatalysts for the Epoxidation and Hydroxylation of Fatty Acids and Fatty Alcohols. , 2005, , 4-1-4-25.		0

#	Article	IF	CITATIONS
415	Coordination Chemistry in Protein Cages: From Heme Proteins to Organometallo-enzymes. Bulletin of Japan Society of Coordination Chemistry, 2012, 59, 11-25.	0.2	1
416	Oxygenation of Nonnative Substrates Using a Malfunction State of Cytochrome P450s. , 2014, , 107-124.		3
418	The catalytic cycle of cytochrome P450: a fascinating choreography. Trends in Chemistry, 2021, 3, 1027-1044.	8.5	27
419	Roles of key active-site residues in flavocytochrome P450 BM3. Biochemical Journal, 1999, 339 (Pt 2), 371-9.	3.7	57
420	Structural dynamics of the cooperative binding of small inhibitors in human cytochrome P450 2C9. Journal of Molecular Graphics and Modelling, 2022, 113, 108151.	2.4	2
421	Metabolism of non-steroidal anti-inflammatory drugs (NSAIDs) by Streptomyces griseolus CYP105A1 and its variants. Drug Metabolism and Pharmacokinetics, 2022, 45, 100455.	2.2	1
422	CYP153A71 from Alcanivorax dieselolei: Oxidation beyond Monoterminal Hydroxylation of n-Alkanes. Catalysts, 2022, 12, 1213.	3.5	1
423	A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: InsightÂinto the Stereoselectivity of P450 atalysed Oxidations. Angewandte Chemie, 0, , .	2.0	0
424	A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: Insight into the Stereoselectivity of P450 atalysed Oxidations. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
425	Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases. Nature Catalysis, 2023, 6, 152-160.	34.4	6
426	Selective carbon-hydrogen bond hydroxylation using an engineered cytochrome P450 peroxygenase. Journal of Inorganic Biochemistry, 2023, 244, 112209.	3.5	8
427	Engineering of a P450-based Kemp eliminase with a new mechanism. Chinese Journal of Catalysis, 2023, 47, 191-199.	14.0	1
428	Nanodisc-embedded cytochrome P450 P3A4 binds diverse ligands by distributing conformational dynamics to its flexible elements. Journal of Inorganic Biochemistry, 2023, 244, 112211.	3.5	3
429	Investigating the applicability of the CYP102A1-decoy-molecule system to other members of the CYP102A subfamily. Journal of Inorganic Biochemistry, 2023, 245, 112235.	3.5	1
430	Enhanced metabolism of 2,3′,4,4′,5-pentachlorobiphenyl (CB118) by bacterial cytochrome P450 monooxygenase mutants of Bacillus megaterium. Science of the Total Environment, 2023, 890, 164475.	8.0	1
431	Enhancing Substrate–Metal Catalyst Affinity via Hydrogen Bonding: Pd(II)-Catalyzed β-C(sp ³)–H Bromination of Free Carboxylic Acids. Journal of the American Chemical Society, 2023, 145, 16297-16304.	13.7	3
432	Computationally guided bioengineering of the active site, substrate access pathway, and water channels of thermostable cytochrome P450, CYP175A1, for catalyzing the alkane hydroxylation reaction. Chemical Science, 2023, 14, 14316-14326.	7.4	0
433	Small angle X-ray scattering analysis of thermophilic cytochrome P450 CYP119 and the effects of the N-terminal histidine tag. International Journal of Biological Macromolecules, 2024, 265, 131026.	7.5	Ο