Systematic isolation of peptide signal molecules regulat and PW families

Proceedings of the National Academy of Sciences of the Unite 94, 1241-1246

DOI: 10.1073/pnas.94.4.1241

Citation Report

#	Article	IF	CITATIONS
1	3 Hydrozoa Metamorphosis and Pattern Formation. Current Topics in Developmental Biology, 1997, 38, 81-131.	1.0	33
2	Embryonic and Uterine Expression Patterns of Peptidylglycine α-Amidating Monooxygenase Transcripts Suggest a Widespread Role for Amidated Peptides in Development. Developmental Biology, 1997, 192, 375-391.	0.9	29
3	Metamorphosin A and Related Compounds: A Novel Family of Neuropeptides with Morphogenic Activitya. Annals of the New York Academy of Sciences, 1998, 839, 105-110.	1.8	17
4	The role of GLWamides in metamorphosis of Hydractinia echinata. Development Genes and Evolution, 1998, 208, 267-273.	0.4	73
5	Immunohistochemical studies of GLWamides in Cnidaria. Cell and Tissue Research, 1998, 294, 169-177.	1.5	27
6	The structure and expression of a preprohormone of a neuropeptide, Hym-176 inHydra magnipapillata. FEBS Letters, 1998, 439, 31-34.	1.3	42
7	Peptidergic Control of the Corpus Cardiacum-Corpora Allata Complex of Locusts. International Review of Cytology, 1998, 182, 249-302.	6.2	66
8	Isolation and Molecular Characterization of Serous and Mucous Gland Cells of the Porcine Airways. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 548-553.	1.4	3
9	Three different prohormones yield a variety of Hydra-RFamide (Arg-Phe-NH2) neuropeptides in Hydra magnipapillata. Biochemical Journal, 1998, 332, 403-412.	1.7	62
10	Identification of an astacin matrix metalloprotease as target gene for Hydra foot activator peptides. Development Genes and Evolution, 1999, 209, 601-607.	0.4	37
11	A novel neuropeptide, Hym-355, positively regulates neuron differentiation in Hydra. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124, S93.	0.8	7
12	Expression and Developmental Regulation of the Hydra-RFamide and Hydra-LWamide Preprohormone Genes inHydra:Evidence for Transient Phases of Head Formation. Developmental Biology, 1999, 207, 189-203.	0.9	51
13	Isolation and characterization of substance P-containing dense core vesicles from rabbit optic nerve and termini. Journal of Neuroscience Research, 2000, 62, 830-839.	1.3	35
14	New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cellular and Molecular Life Sciences, 2000, 57, 1236-1259.	2.4	408
15	Nervous system dynamics during fragmentation and regeneration in Enchytraeus japonensis (Oligochaeta, Annelida). Development Genes and Evolution, 2000, 210, 311-319.	0.4	66
16	Two-color double-labeling in situ hybridization of whole-mount Hydra using RNA probes for five different Hydra neuropeptide preprohormones: evidence for colocalization. Cell and Tissue Research, 2000, 301, 245-253.	1.5	49
17	Suppression of S-methylglutathione-induced Tentacle Ball Formation by Peptides and Nullification of the Suppression by TGF-beta in Hydra. Chemical Senses, 2000, 25, 173-180.	1.1	8
18	The novel peptide HEADY specifies apical fate in a simple radially symmetric metazoan. Genes and Development, 2000, 14, 2771-2777.	2.7	54

#	Article	IF	CITATIONS
19	Genomic Organization and Splicing Variants of a Peptidylglycine α-Hydroxylating Monooxygenase from Sea Anemones. Biochemical and Biophysical Research Communications, 2000, 277, 7-12.	1.0	28
20	Conserved and divergent genes in apex and axis development of cnidarians. Current Opinion in Genetics and Development, 2000, 10, 629-637.	1.5	51
21	The foot formation stimulating peptide pedibin is also involved in patterning of the head in hydra. Mechanisms of Development, 2001, 106, 37-45.	1.7	21
23	Developmental Signaling in Hydra: What Does It Take to Build a "Simple―Animal?. Developmental Biology, 2002, 248, 199-219.	0.9	129
24	Neuropeptides in cnidarians. Canadian Journal of Zoology, 2002, 80, 1690-1702.	0.4	114
25	Developmental neurobiology of hydra, a model animal of cnidarians. Canadian Journal of Zoology, 2002, 80, 1678-1689.	0.4	33
26	A cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs, 2002, 21, 127-129.	0.9	121
27	A new case of neuropeptide coexpression (RGamide and LWamides) in Hydra , found by whole-mount, two-color double-labeling in situ hybridization. Cell and Tissue Research, 2002, 308, 157-165.	1.5	31
28	Foot formation in Hydra: Commitment of the basal disk cells in the lower peduncle. Development Growth and Differentiation, 2002, 44, 517-526.	0.6	5
29	Control of head morphogenesis in an invertebrate asexually produced larva-like bud (Cassiopea) Tj ETQq1 1 0.78	4314 rgB1 0.4	[Qverlock 1(
30	Inhibition of metamorphosis by RFamide neuropeptides in planula larvae of Hydractinia echinata. Development Genes and Evolution, 2003, 213, 579-586.	0.4	43
31	Cloning of the HSP70 gene in barnacle larvae and its expression under hypoxic conditions. Marine Pollution Bulletin, 2003, 46, 665-671.	2.3	21
32	Peduncle ofHydra and the heart of higher organisms share a common ancestral origin. Genesis, 2003, 36, 182-186.	0.8	50
33	Head regeneration inHydra. Developmental Dynamics, 2003, 226, 225-236.	0.8	137
34	Cnidarians: An evolutionarily conserved model system for regeneration?. Developmental Dynamics, 2003, 226, 257-267.	0.8	198
35	Identification of a new member of the GLWamide peptide family: physiological activity and cellular localization in cnidarian polyps. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 135, 309-324.	0.7	47
36	Ancient signals: peptides and the interpretation of positional information in ancestral metazoans. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 136, 185-196.	0.7	23
37	Control of planula migration by LWamide and RFamide neuropeptides in Hydractinia echinata. Journal of Experimental Biology, 2004, 207, 1803-1810.	0.8	52

#	Article	IF	CITATIONS
38	Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review. Hydrobiologia, 2004, 530-531, 41-47.	1.0	23
39	Neuropeptides and photic behavior in Cnidaria. Hydrobiologia, 2004, 530-531, 49-57.	1.0	24
40	Control of foot differentiation in Hydra: in vitro evidence that the NK-2 homeobox factor CnNK-2 autoregulates its own expression and uses pedibin as target gene. Mechanisms of Development, 2004, 121, 195-204.	1.7	16
41	Manserin, a novel peptide from secretogranin II in the neuroendocrine system. NeuroReport, 2004, 15, 1755-1759.	0.6	31
42	Morphogens of hydra Hydra sp Journal of Evolutionary Biochemistry and Physiology, 2005, 41, 1-11.	0.2	0
43	Hym-301, a novel peptide, regulates the number of tentacles formed in hydra. Development (Cambridge), 2005, 132, 2225-2234.	1.2	35
44	Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry. Biochemical and Biophysical Research Communications, 2005, 335, 76-86.	1.0	119
45	Thypedin, the multi copy precursor for the hydra peptide pedin, is a β-thymosin repeat-like domain containing protein. Mechanisms of Development, 2005, 122, 1183-1193.	1.7	17
46	Foot formation in Hydra: A novel gene, anklet, is involved in basal disk formation. Mechanisms of Development, 2006, 123, 352-361.	1.7	19
47	The FXPRLamide (Pyrokinin/PBAN) Peptide Family. , 2006, , 207-212.		14
47 49	The FXPRLamide (Pyrokinin/PBAN) Peptide Family. , 2006, , 207-212. Trembley's polyps go transgenic. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6415-6416.	3.3	14 10
	Trembley's polyps go transgenic. Proceedings of the National Academy of Sciences of the United States	3.3 3.3	
49	Trembley's polyps go transgenic. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6415-6416. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of <i>Hydra</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007,		10
49 50	 Trembley's polyps go transgenic. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6415-6416. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of <i>Hydra</i>. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14735-14740. The Transition to Experiencing: I. Limited Learning and Limited Experiencing. Biological Theory, 2007, 2, 	3.3	10 83
49 50 51	 Trembley's polyps go transgenic. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6415-6416. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of <i>Hydra</i>. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14735-14740. The Transition to Experiencing: I. Limited Learning and Limited Experiencing. Biological Theory, 2007, 2, 218-230. Why polyps regenerate and we don't: Towards a cellular and molecular framework for Hydra 	3.3 0.8	10 83 57
49 50 51 52	 Trembley's polyps go transgenic. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6415-6416. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of <i>Hydra</i>, Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14735-14740. The Transition to Experiencing: I. Limited Learning and Limited Experiencing. Biological Theory, 2007, 2, 218-230. Why polyps regenerate and we don't: Towards a cellular and molecular framework for Hydra regeneration. Developmental Biology, 2007, 303, 421-433. Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling 	3.3 0.8 0.9	10 83 57 174
 49 50 51 52 53 	Trembley's polyps go transgenic. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6415-6416. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of (1) Hydra(1). Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14735-14740. The Transition to Experiencing: I. Limited Learning and Limited Experiencing. Biological Theory, 2007, 2, 218-230. Why polyps regenerate and we don't: Towards a cellular and molecular framework for Hydra regeneration. Developmental Biology, 2007, 303, 421-433. Transgenic stem cells in Hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Developmental Biology, 2007, 309, 32-44. A novel neuropeptide (FRamide) family identified by a peptidomic approach in <1>Hydra	3.3 0.8 0.9 0.9	10 83 57 174 113

#	Article	IF	CITATIONS
57	<i>Hydra</i> Peptide Project 1993–2007. Development Growth and Differentiation, 2008, 50, S257-68.	0.6	54
58	Physiological characterization of stolon regression in a colonial hydroid. Journal of Experimental Biology, 2008, 211, 731-740.	0.8	9
59	Neuropeptides and their functions in <i>Hydra</i> . Acta Biologica Hungarica, 2008, 59, 227-235.	0.7	24
60	More than just orphans: are taxonomically-restricted genes important in evolution?. Trends in Genetics, 2009, 25, 404-413.	2.9	399

CITATION REPORT

62	Important roles for epithelial cell peptides in hydra development. BioEssays, 2009, 31, 610-619.	1.2	19
63	Further characterization of the PW peptide family that inhibits neuron differentiation in Hydra. Development Genes and Evolution, 2009, 219, 119-129.	0.4	16
64	Immunohistochemical evidence for the existence of novel mammalian neuropeptides related to the Hydra GLW-amide neuropeptide family. Cell and Tissue Research, 2009, 337, 15-25.	1.5	8
65	Cnidarians and the evolutionary origin of the nervous system. Development Growth and Differentiation, 2009, 51, 167-183.	0.6	152
66	Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2009, 4, 268-289.	0.4	91
67	A hydra with many heads: Protein and polypeptide toxins from hydra and their biological roles. Toxicon, 2009, 54, 1148-1161.	0.8	29
68	Immortality and the base of multicellular life: Lessons from cnidarian stem cells. Seminars in Cell and Developmental Biology, 2009, 20, 1114-1125.	2.3	79
69	Origins of neurogenesis, a cnidarian view. Developmental Biology, 2009, 332, 2-24.	0.9	152
70	Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide. Coral Reefs, 2010, 29, 929-939.	0.9	52
71	Manserin, a secretogranin II-derived peptide, distributes in the rat endocrine pancreas colocalized with islet-cell specific manner. Histochemistry and Cell Biology, 2010, 134, 53-57.	0.8	13
72	Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa). Invertebrate Neuroscience, 2010, 10, 77-91.	1.8	35
73	Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation <i>in vitro</i> in the cnidarian <i>Renilla koellikeri</i> . Developmental Neurobiology, 2010, 70, 842-852.	1.5	18
74	The dynamic genome of Hydra. Nature, 2010, 464, 592-596.	13.7	743

#	Article	IF	CITATIONS
75	Causes and consequences of stolon regression in a colonial hydroid. Journal of Experimental Biology, 2011, 214, 3197-3205.	0.8	10
76	The Importance of GLWamide Neuropeptides in Cnidarian Development and Physiology. Journal of Amino Acids, 2011, 2011, 1-8.	5.8	19
77	A twoâ€ s tep process in the emergence of neurogenesis. European Journal of Neuroscience, 2011, 34, 847-862.	1.2	56
78	A genomic view of 500 million years of cnidarian evolution. Trends in Genetics, 2011, 27, 7-13.	2.9	99
79	Coral larvae: From gametes to recruits. Journal of Experimental Marine Biology and Ecology, 2011, 408, 42-57.	0.7	95
80	Shotgun Protein Sequencing with Meta-contig Assembly. Molecular and Cellular Proteomics, 2012, 11, 1084-1096.	2.5	25
81	The Hydra genome: insights, puzzles and opportunities for Developmental Biologists. International Journal of Developmental Biology, 2012, 56, 535-542.	0.3	23
82	What Hydra can teach us about chemical ecology how a simple, soft organism survives in a hostile aqueous environment. International Journal of Developmental Biology, 2012, 56, 605-611.	0.3	15
83	Interstitial stem cells in Hydra: multipotency and decision-making. International Journal of Developmental Biology, 2012, 56, 489-497.	0.3	81
84	Hydra, a fruitful model system for 270 years. International Journal of Developmental Biology, 2012, 56, 411-423.	0.3	139
85	Molecular Signatures of the Three Stem Cell Lineages in Hydra and the Emergence of Stem Cell Function at the Base of Multicellularity. Molecular Biology and Evolution, 2012, 29, 3267-3280.	3.5	140
86	The cell biology of schistosomes: a window on the evolution of the early metazoa. Protoplasma, 2012, 249, 503-518.	1.0	15
87	Subcellular localization of the epitheliopeptide, Hym-301, in hydra. Cell and Tissue Research, 2013, 351, 419-424.	1.5	2
89	A small molecule screen identifies a novel compound that induces a homeotic transformation in <i>Hydra</i> . Development (Cambridge), 2013, 140, 4788-4796.	1.2	32
90	Understanding regeneration through proteomics. Proteomics, 2013, 13, 686-709.	1.3	29
91	Neuropeptides trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish <i>Cytaeis uchidae</i> . Molecular Reproduction and Development, 2013, 80, 223-232.	1.0	26
92	Hydra, a candidate for an alternative model in environmental genomics. Molecular and Cellular Toxicology, 2014, 10, 339-346.	0.8	18
93	FGFR-ERK signaling is an essential component of tissue separation. Developmental Biology, 2014, 395, 154-166.	0.9	8

#	Article	IF	CITATIONS
94	Multi-functionality and plasticity characterize epithelial cells in <i>Hydra</i> . Tissue Barriers, 2015, 3, e1068908.	1.6	38
95	Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides. International Journal of Molecular Sciences, 2015, 16, 2610-2625.	1.8	49
96	Myoinhibitory peptide regulates feeding in the marine annelid Platynereis. Frontiers in Zoology, 2015, 12, 1.	0.9	116
97	Peptide-gated ion channels and the simple nervous system of <i>Hydra</i> . Journal of Experimental Biology, 2015, 218, 551-561.	0.8	50
98	The nerve ring in cnidarians: its presence and structure in hydrozoan medusae. Zoology, 2015, 118, 79-88.	0.6	31
99	Biologically Active Peptides in Invertebrates. Colloquium Series on Neuropeptides, 2015, 3, 1-76.	1.0	3
100	GLWamide. , 2016, , 483-e89-1.		0
101	Origin and Evolution of the Nervous System Considered from the Diffuse Nervous System of Cnidarians. , 2016, , 73-91.		11
102	Novel pentapeptide, PALAL, derived from a bony fish elicits contraction of the muscle in starfishPatiria pectinifera. Journal of Peptide Science, 2016, 22, 628-635.	0.8	1
103	Back Through Time: How Cnidarians and Basal Metazoans Shed Light on Ancient Nervous Systems. Diversity and Commonality in Animals, 2017, , 45-75.	0.7	7
104	Bud detachment in <i>hydra</i> requires activation of fibroblast growth factor receptor and a Rho–ROCK–myosin II signaling pathway to ensure formation of a basal constriction. Developmental Dynamics, 2017, 246, 502-516.	0.8	18
105	A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nature Communications, 2017, 8, 698.	5.8	101
106	Characterization of NvLWamide-like neurons reveals stereotypy in Nematostella nerve net development. Developmental Biology, 2017, 431, 336-346.	0.9	27
107	Evolution of neuropeptide signalling systems. Journal of Experimental Biology, 2018, 221, .	0.8	164
109	Roles of Germline Stem Cells and Somatic Multipotent Stem Cells in Hydra Sexual Reproduction. Diversity and Commonality in Animals, 2018, , 123-155.	0.7	6
110	A combined strategy of neuropeptide prediction and tandem mass spectrometry identifies evolutionarily conserved ancient neuropeptides in the sea anemone Nematostella vectensis. PLoS ONE, 2019, 14, e0215185.	1.1	44
111	Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea. Scientific Reports, 2019, 9, 2291.	1.6	26
112	De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission. BMC Genomics, 2019, 20, 175.	1.2	35

#	Article	IF	CITATIONS
113	Global Neuropeptide Annotations From the Genomes and Transcriptomes of Cubozoa, Scyphozoa, Staurozoa (Cnidaria: Medusozoa), and Octocorallia (Cnidaria: Anthozoa). Frontiers in Endocrinology, 2019, 10, 831.	1.5	31
114	Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis. Developmental Biology, 2019, 446, 56-67.	0.9	19
115	Involvement of GLWamide neuropeptides in polyp contraction of the adult stony coral Euphyllia ancora. Scientific Reports, 2020, 10, 9427.	1.6	7
116	A comparative genomics study of neuropeptide genes in the cnidarian subclasses Hexacorallia and Ceriantharia. BMC Genomics, 2020, 21, 666.	1.2	18
117	Comparative Aspects of Structure and Function of Cnidarian Neuropeptides. Frontiers in Endocrinology, 2020, 11, 339.	1.5	25
118	Function and Distribution of the Wamide Neuropeptide Superfamily in Metazoans. Frontiers in Endocrinology, 2020, 11, 344.	1.5	13
119	New insights on the function of plant acyl carrier proteins from comparative and evolutionary analysis. Genomics, 2021, 113, 1155-1165.	1.3	7
120	Hym-323. , 2021, , 773-775.		0
121	GLWamide. , 2021, , 863-865.		0
122	Hym-301. , 2021, , 869-870.		0
123	The chemical brain hypothesis for the origin of nervous systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190761.	1.8	52
123 124		1.8 2.3	52 19
	Royal Society B: Biological Sciences, 2021, 376, 20190761. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in <i>Hydra</i> . Cold		
124	Royal Society B: Biological Sciences, 2021, 376, 20190761. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in <i>Hydra</i> . Cold Spring Harbor Perspectives in Biology, 2021, 13, a040725.		19
124 125	Royal Society B: Biological Sciences, 2021, 376, 20190761. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in <i>Hydra</i> . Cold Spring Harbor Perspectives in Biology, 2021, 13, a040725. LF peptides. , 2021, , 769-770.		19 O
124 125 126	 Royal Society B: Biological Sciences, 2021, 376, 20190761. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in <i>Hydra</i> Cold Spring Harbor Perspectives in Biology, 2021, 13, a040725. LF peptides. , 2021, , 769-770. Neuropeptides and photic behavior in Cnidaria. , 2004, , 49-57. Peptidomic Approaches to the Identification and Characterization of Functional Peptides in Hydra. 	2.3	19 0 2
124 125 126 127	Royal Society B: Biological Sciences, 2021, 376, 20190761. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in <i>>Hydra</i> . Cold Spring Harbor Perspectives in Biology, 2021, 13, a040725. LF peptides. , 2021, , 769-770. Neuropeptides and photic behavior in Cnidaria. , 2004, , 49-57. Peptidomic Approaches to the Identification and Characterization of Functional Peptides in Hydra. Methods in Molecular Biology, 2010, 615, 275-292. Symmetry Breaking in Stem Cells of the Basal Metazoan Hydra. Progress in Molecular and Subcellular	2.3	19 0 2 3

	СПАПО	N REPORT	
#	Article	IF	Citations
131	Comparative Aspects of Invertebrate Neuropeptides. Acta Biologica Hungarica, 2000, 51, 111-132.	0.7	34
132	The novel signal peptides, Pedibin and Hym-346, lower positional value thereby enhancing foot formation in hydra. Development (Cambridge), 1999, 126, 517-524.	1.2	52
133	Identification and characterization of hydra metalloproteinase 2 (HMP2): a meprin-like astacin metalloproteinase that functions in foot morphogenesis. Development (Cambridge), 2000, 127, 129-141.	1.2	72
134	A novel neuropeptide, Hym-355, positively regulates neuron differentiation in <i>Hydra</i> . Development (Cambridge), 2000, 127, 997-1005.	1.2	91
135	Enhancement of foot formation in <i>Hydra</i> by a novel epitheliopeptide, Hym-323. Development (Cambridge), 2001, 128, 437-446.	1.2	33
136	Molecular and functional evidence for early divergence of an endothelin-like system during metazoan evolution: analysis of the Cnidarian, hydra. Development (Cambridge), 2001, 128, 1607-1615.	1.2	31
137	Redox state, reactive oxygen species and adaptive growth in colonial hydroids. Journal of Experimental Biology, 2001, 204, 1845-1853.	0.8	29
138	A Novel Gene Family Controls Species-Specific Morphological Traits in Hydra. PLoS Biology, 2008, 6, e278.	2.6	85
139	Crustose Coralline Algae and a Cnidarian Neuropeptide Trigger Larval Settlement in Two Coral Reef Sponges. PLoS ONE, 2012, 7, e30386.	1.1	48
140	Peptide signaling in Hydra. International Journal of Developmental Biology, 2012, 56, 543-550.	0.3	33
141	Aboral localization of responsiveness to a metamorphic neuropeptide in the planula larva of Acropora tenuis. Galaxea, 2010, 12, 77-81.	0.2	3
142	Title is missing!. Sessile Organisms, 2002, 19, 111-120.	0.3	1
143	"A Key Innovation in Animal Evolution, the Emergence of Neurogenesis. , 2010, , 127-161.		2
144	ãf'ãf‰ãf©ã®ãfšãf—ãfãf‰æ€§ã,∙ã,°ãfŠãf«å^†åã«ã®"ã┥. Newsletter of Japan Society for Comparative E	ndocrin alo gy, 1	19 97, 23, 12
146	Hym-301. , 2016, , 487-e91-1.		0
147	LF Peptides. , 2016, , 425.		0
148	Hym-323. , 2016, , 428-e62B-1.		0
151	Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review. , 2004, , 41-47.		5

#	Article	IF	CITATIONS
152	An evolutionary genomics view on neuropeptide genes in Hydrozoa and Endocnidozoa (Myxozoa). BMC Genomics, 2021, 22, 862.	1.2	4
153	Evolution of synapses and neurotransmitter systems: The divide-and-conquer model for early neural cell-type evolution. Current Opinion in Neurobiology, 2021, 71, 127-138.	2.0	16
154	Gene expression alterations from reversible to irreversible stages during coral metamorphosis. Zoological Letters, 2022, 8, 4.	0.7	2
170	Regulated processing and secretion of a peptide precursor in cilia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
171	Review: The evolution of peptidergic signaling in Cnidaria and Placozoa, including a comparison with Bilateria. Frontiers in Endocrinology, 0, 13, .	1.5	8
173	Peptide-driven control of somersaulting in Hydra vulgaris. Current Biology, 2023, 33, 1893-1905.e4.	1.8	9