Total Body Irradiation and Acute Graft-Versus-Host Dis Damage and Inflammatory Cytokines

Blood 90, 3204-3213

DOI: 10.1182/blood.v90.8.3204

Citation Report

#	Article	IF	CITATIONS
1	Cytokine Dysregulation in Acute Graft-versus-Host Disease. Hematology, 1997, 2, 423-434.	0.7	15
2	Les cytokines: outils et cibles privilégiés dans l'immuno-surveillance du cancer. Annales De L'Institut Pasteur / Actualités, 1998, 9, 121-130.	0.1	0
3	Host Reactive Donor T Cells Are Associated With Lung Injury After Experimental Allogeneic Bone Marrow Transplantation. Blood, 1998, 92, 2571-2580.	0.6	114
4	Influence of Intestinal Bacterial Decontamination Using Metronidazole and Ciprofloxacin or Ciprofloxacin Alone on the Development of Acute Graft-Versus-Host Disease After Marrow Transplantation in Patients With Hematologic Malignancies: Final Results and Long-Term Follow-Up of an Open-Label Prospective Randomized Trial. Blood. 1999, 93, 3267-3275.	0.6	248
5	Granulocyte Colony-Stimulating Factor–Mobilized Allogeneic Stem Cell Transplantation Maintains Graft-Versus-Leukemia Effects Through a Perforin-Dependent Pathway While Preventing Graft-Versus-Host Disease. Blood, 1999, 93, 4071-4078.	0.6	108
6	Keratinocyte Growth Factor Separates Graft-Versus-Leukemia Effects From Graft-Versus-Host Disease. Blood, 1999, 94, 825-831.	0.6	168
7	Idiopathic Pneumonia Syndrome after Allogeneic Bone Marrow Transplantation in Mice. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 1116-1124.	1.4	46
8	Inability of Activated Cord Blood T Lymphocytes to Perform Th1-like and Th2-like Responses: Implications for Transplantation. Journal of Hematotherapy and Stem Cell Research, 1999, 8, 381-385.	1.8	16
9	New strategies for preventing graft-versus-host disease. Current Opinion in Immunology, 1999, 11, 509-515.	2.4	76
10	Treatment of acute graft-versus-host disease with PUVA (psoralen and ultraviolet irradiation): results of a pilot study. Bone Marrow Transplantation, 1999, 23, 151-155.	1.3	41
11	A metalloproteinase inhibitor prevents acute graft-versus-host disease in mice after bone marrow transplantation. Bone Marrow Transplantation, 1999, 23, 1283-1289.	1.3	10
12	Early predictors of transplant-related mortality (TRM) after allogeneic bone marrow transplants (BMT): blood urea nitrogen (BUN) and bilirubin. Bone Marrow Transplantation, 1999, 24, 653-659.	1.3	34
13	Pathophysiologic mechanisms of acute graft-vshost disease. Biology of Blood and Marrow Transplantation, 1999, 5, 347-356.	2.0	317
14	Reduced dose intravenous immunoglobulin does not decrease transplant-related complications in adults given related donor marrow allografts. Biology of Blood and Marrow Transplantation, 1999, 5, 369-378.	2.0	31
15	ALLOGENEIC HEMATOPOIETIC TRANSPLANTATION AS ADOPTIVE IMMUNOTHERAPY. Hematology/Oncology Clinics of North America, 1999, 13, 1041-1057.	0.9	44
16	Gastrointestinal Manifestations of Graf t-versus-Host Disease: Diagnosis and Management. AACN Advanced Critical Care, 1999, 10, 500-506.	1.9	4
17	Graft-versus-host disease: facts and thoughts on recent developments. Current Opinion in Organ Transplantation, 2000, 5, 352-357.	0.8	1
18	CHARACTERIZATION OF GRAFT-VERSUS-HOST DISEASE IN SCID MICE AND PREVENTION BY PHYSICOCHEMICAL STRESSORS. Transplantation, 2000, 70, 1683-1693.	0.5	7

#	Article	IF	CITATIONS
19	Mucosal barrier injury: biology, pathology, clinical counterparts and consequences of intensive treatment for haematological malignancy: an overview. Bone Marrow Transplantation, 2000, 25, 1269-1278.	1.3	226
20	Clostridium difficile infection in allogeneic stem cell transplant recipients is associated with severe graft-versus-host disease and non-relapse mortality. Bone Marrow Transplantation, 2000, 26, 871-876.	1.3	122
21	A randomized placebo-controlled trial of lisofylline in HLA-identical, sibling-donor, allogeneic bone marrow transplant recipients. Bone Marrow Transplantation, 2000, 25, 283-291.	1.3	24
22	Mini-allografts: ongoing trials in humans. Bone Marrow Transplantation, 2000, 25, 345-350.	1.3	204
23	Immunotherapy of hematologic malignancies and metastatic solid tumors in experimental animals and man. Bone Marrow Transplantation, 2000, 25, S54-S57.	1.3	12
24	Harnessing graftâ€versusâ€malignancy: nonâ€myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. British Journal of Haematology, 2000, 111, 18-29.	1.2	6
25	Allogeneic hematopoietic transplantation for acute and chronic myeloid leukemia: Non-myeloablative preparative regimens and induction of the graft-versus-leukemia effect. Current Oncology Reports, 2000, 2, 132-139.	1.8	19
26	The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood, 2000, 95, 2754-2759.	0.6	643
27	Activation of macrophage cytostatic effector mechanisms during acute graft-versus-host disease: release of intracellular iron and nitric oxide–mediated cytostasis. Blood, 2000, 96, 1836-1843.	0.6	41
28	Hyporesponsiveness of Donor Cells to Lipopolysaccharide Stimulation Reduces the Severity of Experimental Idiopathic Pneumonia Syndrome: Potential Role for a Gut-Lung Axis of Inflammation. Journal of Immunology, 2000, 165, 6612-6619.	0.4	73
29	Pathogenesis of Acute Graft-Versus-Host Disease: Cytokines and Cellular Effectors. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 299-306.	1.8	144
30	Autologous Stem Cell Transplantation As Post-Remission Therapy in Adult Acute Myelogenous Leukemia: Does Platelet Contamination of Peripheral Blood Mobilized Stem Cell Grafts Influence the Risk of Leukemia Relapse?. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 433-443.	1.8	13
31	The p55 TNF-α Receptor Plays a Critical Role in T Cell Alloreactivity. Journal of Immunology, 2000, 164, 656-663.	0.4	130
32	Differential Survival of Naive CD4 and CD8 T Cells. Journal of Immunology, 2000, 165, 3689-3694.	0.4	88
33	Fas-DeficientlprMice Are More Susceptible to Graft-Versus-Host Disease. Journal of Immunology, 2000, 164, 469-480.	0.4	70
34	Allogeneic stem cell transplantation for the non-Hodgkin's lymphomas and Hodgkin's disease. Cancer Treatment Reviews, 2000, 26, 411-427.	3.4	9
35	Comparison of granulocyte colony-stimulating factor (G-CSF)mobilized peripheral blood progenitor cells and G-CSFstimulated bone marrow as a source of stem cells in HLA-matched sibling transplantation. Biology of Blood and Marrow Transplantation, 2000, 6, 434-440.	2.0	71
36	Effect of ursodeoxycholic acid on expression of Fas ligand and tumor necrosis factor-alpha in the liver of mice with acute graft-versus-host disease. Current Therapeutic Research, 2000, 61, 825-836.	0.5	0

#	Article	IF	Citations
37	Th2 and Tc2 Cells in the Regulation of GVHD, GVL, and Graft Rejection: Considerations for the Allogeneic Transplantation Therapy of Leukemia and Lymphoma. Leukemia and Lymphoma, 2000, 38, 221-234.	0.6	117
38	Genes Highly Expressed in the Early Phase of Murine Graft-versus-Host Reaction. Biochemical and Biophysical Research Communications, 2001, 282, 200-206.	1.0	4
39	Antibodies to CD40 induce a lethal cytokine cascade after syngeneic bone marrow transplantation. Biology of Blood and Marrow Transplantation, 2001, 7, 136-143.	2.0	27
40	Association of TLR4 mutations and the risk for acute GVHD after HLA-matched-sibling hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 2001, 7, 384-387.	2.0	98
41	Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia. Biology of Blood and Marrow Transplantation, 2001, 7, 665-673.	2.0	291
42	Low incidence of transplantation-related acute complications in patients with chronic myeloid leukemia undergoing allogeneic stem cell transplantation with a low-dose (550 cGy) total body irradiation conditioning regimen. Biology of Blood and Marrow Transplantation, 2001, 7, 352-358.	2.0	35
43	Bone Marrow Cell Graft Engineering: From Bench to Bedside. Leukemia and Lymphoma, 2001, 41, 19-34.	0.6	9
44	Type I Interferon Is the Primary Regulator of Inducible Ly-6C Expression on T Cells. Journal of Interferon and Cytokine Research, 2001, 21, 621-629.	0.5	29
45	Small Bowel Review: Part II. Canadian Journal of Gastroenterology & Hepatology, 2001, 15, 446-466.	1.8	8
46	Interleukin-18 Regulates Acute Graft-Versus-Host Disease by Enhancing Fas-mediated Donor T Cell Apoptosis. Journal of Experimental Medicine, 2001, 194, 1433-1440.	4.2	161
47	Intravenous injection of apoptotic leukocytes enhances bone marrow engraftment across major histocompatibility barriers. Blood, 2001, 98, 224-230.	0.6	134
48	Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell–depleted SCT. Blood, 2001, 98, 972-978.	0.6	342
49	Treatment of steroid-refractory acute graft-versus-host disease with anti-CD147 monoclonal antibody ABX-CBL. Blood, 2001, 98, 2052-2058.	0.6	93
50	Early and late elevation of plasma atrial and brain natriuretic peptides in patients after bone marrow transplantation. Annals of Hematology, 2001, 80, 460-465.	0.8	12
51	Cytokines in Graft-Versus-Host Disease and the Graft-Versus-Leukemia Reaction. International Journal of Hematology, 2001, 74, 26-32.	0.7	32
52	Factors influencing haematological recovery after allogeneic haemopoietic stem cell transplants: graft-versus-host disease, donor type, cytomegalovirus infections and cell dose. British Journal of Haematology, 2001, 112, 219-227.	1.2	137
53	Introduction to the Series. Scandinavian Journal of Immunology, 2001, 54, 2-3.	1.3	33
54	The role of donor T cells for target organ injuries in acute and chronic graft-versus-host disease. Immunology, 2001, 103, 310-318.	2.0	57

#	ARTICLE	IF	Citations
55	Nonmyeloablative preparative regimens for allogeneic hematopoietic transplantation. Bone Marrow Transplantation, 2001, 27, S13-S22.	1.3	32
56	The gut mucosa barrier is preserved during allogeneic, haemopoietic stem cell transplantation with reduced intensity conditioning. Bone Marrow Transplantation, 2001, 28, 737-742.	1.3	47
57	Non-myeloablative stem cell transplantation (NST): chimerism testing as guidance for immune-therapeutic manipulations. Leukemia, 2001, 15, 1967-1975.	3.3	45
58	p53-dependent radiation-induced crypt intestinal epithelial cells apoptosis is mediated in part through TNF-TNFR1 system. Oncogene, 2001, 20, 812-818.	2.6	27
59	Peritoneal B-cell development depends on strain, radiation, and time. Experimental Hematology, 2001, 29, 221-227.	0.2	5
60	Acute graft-vs-host disease Pathobiology and management. Experimental Hematology, 2001, 29, 259-277.	0.2	307
61	Advances in prevention and treatment of graft versus host disease. Expert Opinion on Therapeutic Patents, 2002, 12, 1385-1393.	2.4	0
62	Nonmyeloablative Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 243-263.	1.8	17
63	Role of Dendritic Cells in Graft-Versus-Host Disease. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 601-616.	1.8	14
64	Different contributions of thymopoiesis and homeostasis-driven proliferation to the reconstitution of naive and memory T cell compartments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2989-2994.	3.3	116
65	Role of the Passive Apoptotic Pathway in Graft-Versus-Host Disease. Journal of Immunology, 2002, 169, 1626-1633.	0.4	17
67	TNF- $\hat{l}\pm$ targeted therapeutic approaches in patients with hematologic malignancies. Expert Review of Anticancer Therapy, 2002, 2, 277-286.	1.1	32
68	Accelerated Onset and Increased Severity of Acute Graft-Versus-Host Disease Following Adoptive Transfer of DR6-Deficient T Cells. Journal of Immunology, 2002, 169, 3993-3998.	0.4	8
69	A phase I/II double-blind, placebo-controlled study of recombinant human interleukin-11 for mucositis and acute GVHD prevention in allogeneic stem cell transplantation. Bone Marrow Transplantation, 2002, 29, 373-377.	1.3	91
70	A two-phase pathogenesis of graft-versus-host disease in mice. Bone Marrow Transplantation, 2002, 29, 151-158.	1.3	23
71	Transplant-related toxicity and mortality: an AIEOP prospective study in 636 pediatric patients transplanted for acute leukemia. Bone Marrow Transplantation, 2002, 29, 93-100.	1.3	30
72	The Balance Between Donor T Cell Anergy and Suppression Versus Lethal Graft-Versus-Host Disease Is Determined by Host Conditioning. Journal of Immunology, 2002, 169, 5581-5589.	0.4	41
73	APCs in the Liver and Spleen Recruit Activated Allogeneic CD8+ T Cells to Elicit Hepatic Graft-Versus-Host Disease. Journal of Immunology, 2002, 169, 7111-7118.	0.4	134

#	ARTICLE	IF	CITATIONS
74	Commentary on "Summary of Symposium: The Future of Stem Cell Transplantation for Sickle Cell Disease― Journal of Pediatric Hematology/Oncology, 2002, 24, 515-517.	0.3	1
75	Low-dose total body irradiation followed by allogeneic lymphocyte infusion may induce remission in patients with refractory hematologic malignancy. Blood, 2002, 100, 442-450.	0.6	50
76	Activated eosinophils in upper gastrointestinal tract of patients with graft-versus-host disease. Blood, 2002, 99, 3033-3040.	0.6	72
77	Interleukin 18 preserves a perforin-dependent graft-versus-leukemia effect after allogeneic bone marrow transplantation. Blood, 2002, 100, 3429-3431.	0.6	37
78	Donor Lymphocyte Infusions to Treat Hematologic Malignancies in Relapse after Allogeneic Blood or Marrow Transplantation. Cancer Control, 2002, 9, 123-137.	0.7	87
79	The choice of allogeneic or autologous hematopoietic transplantation for NHL. Cytotherapy, 2002, 4, 259-269.	0.3	2
80	Low-dose (550 cGy), single-exposure total body irradiation and cyclophosphamide: Consistent, durable engraftment of related-donor peripheral blood stem cells with low treatment-related mortality and fatal organ toxicity. Biology of Blood and Marrow Transplantation, 2002, 8, 608-618.	2.0	27
81	Critical Factors in Optimizing Graft-Versus-Leukemia Effect for Relapsed Leukemias. Journal of Clinical Oncology, 2002, 20, 2756-2757.	0.8	4
82	Update on non-myeloablative stem cell transplantation for hematologic malignancies. International Journal of Hematology, 2002, 76, 176-183.	0.7	9
83	Cellular and cytokine effectors of acute graft versus host disease. International Journal of Hematology, 2002, 76, 195-198.	0.7	22
84	Critical review on non-myeloablative stem cell transplantation (NST). Critical Reviews in Oncology/Hematology, 2002, 44, 175-190.	2.0	11
85	Na \tilde{A}^{-} ve to memory T-cell differentiation during homeostasis-driven proliferation. Microbes and Infection, 2002, 4, 555-558.	1.0	25
86	High stem cell dose will not compensate for T cell depletion in allogeneic non-myeloablative stem cell transplantation. Bone Marrow Transplantation, 2002, 30, 267-271.	1.3	21
87	An early increase in serum levels of C-reactive protein is an independent risk factor for the occurrence of major complications and 100-day transplant-related mortality after allogeneic bone marrow transplantation. Bone Marrow Transplantation, 2002, 30, 441-446.	1.3	46
88	Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nature Medicine, 2002, 8, 575-581.	15.2	495
89	The Danger Model: A Renewed Sense of Self. Science, 2002, 296, 301-305.	6.0	3,706
90	The Pathophysiology of Acute Graft-versus-Host Disease. International Journal of Hematology, 2003, 78, 181-187.	0.7	185
91	Graft-versus-Host Disease, the Graft-versus-Leukemia Effect, and Mixed Chimerism following Nonmyeloablative Stem Cell Transplantation. International Journal of Hematology, 2003, 78, 195-207.	0.7	14

#	Article	IF	CITATIONS
92	CD40 ligand-specific antibodies synergize with cyclophosphamide to promote long-term transplantation tolerance across MHC barriers but inhibit graft-vs-leukemia effects of transplanted cells. Experimental Hematology, 2003, 31, 81-88.	0.2	12
93	Intravenous busulfan-based conditioning prior to allogeneic hematopoietic stem cell transplantation: Myeloablation with reduced toxicity. Experimental Hematology, 2003, 31, 428-434.	0.2	24
94	Role of CXCR3-induced donor T-cell migration in acute GVHD. Experimental Hematology, 2003, 31, 897-902.	0.2	152
95	Pathophysiology of acute graft-versus-host disease. Hematological Oncology, 2003, 21, 149-161.	0.8	145
96	Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. International Journal of Cancer, 2003, 105, 444-453.	2.3	44
97	Immunotherapy of hematologic malignancies and metastatic solid tumors in experimental animals and man. Critical Reviews in Oncology/Hematology, 2003, 46, 139-163.	2.0	23
98	The role of interferon-gamma, nitric oxide and lipopolysaccharide in intestinal graft-versus-host disease developing in F1-hybrid mice. Immunology, 2003, 109, 440-449.	2.0	33
99	Analysis of risk factors for acute cutaneous graft-versus-host disease after allogeneic stem cell transplantation. British Journal of Dermatology, 2003, 148, 1129-1134.	1.4	25
100	Fractionated TBI correlates with less T cell mixed chimerism but increased risk of relapse compared to busulphan in patients with haematological malignancies after allogeneic stem cell transplantation. Bone Marrow Transplantation, 2003, 32, 477-483.	1.3	6
101	Proinflammatory cytokines and their role in the development of major transplant-related complications in the early phase after allogeneic bone marrow transplantation. Leukemia, 2003, 17, 1150-1156.	3.3	145
102	Immunobiology of acute graft-versus-host disease. Blood Reviews, 2003, 17, 187-194.	2.8	234
103	Interleukin-11-induced heat shock protein 25 confers intestinal epithelial-specific cytoprotection from oxidant stress. Gastroenterology, 2003, 124, 1358-1368.	0.6	88
104	Intestinal Graft-Versus-Host Disease. Drugs, 2003, 63, 1-15.	4.9	38
105	Repifermin (keratinocyte growth factor-2) reduces the severity of graft-versus-host disease while preserving a graft-versus-leukemia effect. Biology of Blood and Marrow Transplantation, 2003, 9, 592-603.	2.0	19
106	Effects of Total Body Irradiation and Cyclosporin A on the Lethality of Toxic Shock Syndrome Toxin–1 in a Rabbit Model of Toxic Shock Syndrome. Journal of Infectious Diseases, 2003, 188, 1142-1145.	1.9	11
107	Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood, 2003, 102, 756-762.	0.6	531
108	Durable Remissions of Myelodysplastic Syndrome and Acute Myeloid Leukemia After Reduced-Intensity Allografting. Journal of Clinical Oncology, 2003, 21, 3060-3065.	0.8	60
109	Update on nonmyeloablative stem cell transplantation for hematologic malignancies. Current Opinion in Organ Transplantation, 2003, 8, 118-124.	0.8	1

#	Article	IF	CITATIONS
110	Infections in Patients with Hematological Cancer: Recent Developments. Hematology American Society of Hematology Education Program, 2003, 2003, 438-472.	0.9	93
111	Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation. Blood, 2003, 101, 2033-2042.	0.6	64
112	Donor T cell–derived TNF is required for graft-versus-host disease and graft-versus-tumor activity after bone marrow transplantation. Blood, 2003, 101, 2440-2445.	0.6	127
113	Pretreatment of donors with interleukin-18 attenuates acute graft-versus-host disease via STAT6 and preserves graft-versus-leukemia effects. Blood, 2003, 101, 2877-2885.	0.6	65
114	Early changes in gene expression profiles of hepatic GVHD uncovered by oligonucleotide microarrays. Blood, 2003, 102, 763-771.	0.6	74
115	GITR Activation Induces an Opposite Effect on Alloreactive CD4+ and CD8+ T Cells in Graft-Versus-Host Disease. Journal of Experimental Medicine, 2004, 200, 149-157.	4.2	95
116	Pentostatin – pharmacology, immunology, and clinical effects in graft-versus-host disease. Expert Opinion on Pharmacotherapy, 2004, 5, 2605-2613.	0.9	8
117	Differential Roles for CCR5 Expression on Donor T Cells during Graft-versus-Host Disease Based on Pretransplant Conditioning. Journal of Immunology, 2004, 173, 845-854.	0.4	124
118	Clinical Implications of Minimal Residual Disease Monitoring for Stem Cell Transplantation after Reduced Intensity and Nonmyeloablative Conditioning. Acta Haematologica, 2004, 112, 93-104.	0.7	13
119	Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3921-3926.	3.3	278
120	Unexpected role of TNF-Â in graft versus host reaction (GVHR): donor-derived TNF-Â suppresses GVHR via inhibition of IFN-Â-dependent donor type-1 immunity. International Immunology, 2004, 16, 811-817.	1.8	8
121	Association of Helicobacter pylori with thrombotic thrombocytopenic purpura and hemolytic uremic syndrome after bone marrow transplantation. Clinical Transplantation, 2004, 18, 547-551.	0.8	13
122	Expression of TNF \hat{l} ± by CD3+ and F4/80+ cells following irradiation preconditioning and allogeneic spleen cell transplantation. Bone Marrow Transplantation, 2004, 33, 359-365.	1.3	8
123	Intestinal thrombotic microangiopathy after allogeneic bone marrow transplantation: a clinical imitator of acute enteric graft-versus-host disease. Bone Marrow Transplantation, 2004, 33, 1143-1150.	1.3	87
124	Acute lung injury after allogeneic stem cell transplantation: is the lung a target of acute graft-versus-host disease?. Bone Marrow Transplantation, 2004, 34, 753-765.	1.3	94
125	Thiotepa and fractionated TBI conditioning prior to allogeneic stem cell transplantation for advanced hematologic malignancies: a phase II single institution trial. Bone Marrow Transplantation, 2004, 34, 577-580.	1.3	7
126	Reduced-intensity conditioning using TBI (8 Gy), fludarabine, cyclophosphamide and ATG in elderly CML patients provides excellent results especially when performed in the early course of the disease. Bone Marrow Transplantation, 2004, 34, 1083-1088.	1.3	44
127	Treatment of relapsed acute myeloid leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a high incidence of isolated extramedullary relapse. Leukemia, 2004, 18, 1789-1797.	3.3	107

#	Article	IF	CITATIONS
128	Immunoablative reduced-intensity stem cell transplantation: potential role of donor Th2 and Tc2 cells. Seminars in Oncology, 2004, 31, 56-67.	0.8	14
129	Complete allogeneic hematopoietic chimerism achieved by in utero hematopoietic cell transplantation and cotransplantation of LLME-treated, MHC-sensitized donor lymphocytes. Experimental Hematology, 2004, 32, 290-299.	0.2	36
130	Depletion of donor-reactive cells as a new concept for improvement of mismatched bone marrow engraftment using reduced-intensity conditioning. Experimental Hematology, 2004, 32, 1110-1117.	0.2	13
131	Acute graft-versus-host disease: Pathophysiology, clinical manifestations, and management. Cancer, 2004, 101, 1936-1946.	2.0	195
132	Advances in the genomics of allogeneic haemopoietic stem cell transplantation. Drug Development Research, 2004, 62, 273-292.	1.4	9
133	Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood, 2004, 103, 4365-4367.	0.6	163
134	Recent Advances in the Treatment of Graft-Versus-Host Disease. Clinical Medicine and Research, 2004, 2, 243-252.	0.4	36
135	Enhancement of Allogeneic Hematopoietic Stem Cell Engraftment and Prevention of GvHD by Intra-Bone Marrow Bone Marrow Transplantation Plus Donor Lymphocyte Infusion. Stem Cells, 2004, 22, 125-134.	1.4	45
136	Clinical "cytokine storm―as revealed by monocyte intracellular flow cytometry: correlation of tumor necrosis factor α with severe gut graft-versus-host disease. Clinical Gastroenterology and Hepatology, 2004, 2, 237-245.	2.4	44
137	Acute and chronic graft-versus-host disease after ablative and nonmyeloablative conditioning for allogeneic hematopoietic transplantation. Biology of Blood and Marrow Transplantation, 2004, 10, 178-185.	2.0	192
138	Outcomes of adults with acute myelogenous leukemia in remission given 550 cGy of single-exposure total body irradiation, cyclophosphamide, and unrelated donor bone marrow transplants. Biology of Blood and Marrow Transplantation, 2004, 10, 310-319.	2.0	39
139	Chronic graft-versus-host disease after granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation: the role of donor T-cell dose and differentiation. Biology of Blood and Marrow Transplantation, 2004, 10, 373-385.	2.0	26
140	Increasing T-cell age reduces effector activity but preserves proliferative capacity in a murine allogeneic major histocompatibility complex-mismatched bone marrow transplant model. Biology of Blood and Marrow Transplantation, 2004, 10, 448-460.	2.0	8
141	Induction of heme oxygenase-1 before conditioning results in improved survival and reduced graft-versus-host disease after experimental allogeneic bone marrow transplantation. Biology of Blood and Marrow Transplantation, 2004, 10, 461-472.	2.0	34
142	Novel approaches to the therapy of steroid-resistant acute graft-versus-host disease. Biology of Blood and Marrow Transplantation, 2004, 10, 655-668.	2.0	71
144	An absence of CCR5 on donor cells results in acceleration of acute graft-vs-host disease. Experimental Hematology, 2004, 32, 318-324.	0.2	60
145	Prognostic value of apoptotic cells and infiltrating neutrophils in graft-versus-host disease of the gastrointestinal tract in humans: TNF and Fas expression. Blood, 2004, 103, 50-57.	0.6	107
146	Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood, 2004, 103, 3573-3581.	0.6	133

#	Article	IF	CITATIONS
147	Donor-derived TNF-α regulates pulmonary chemokine expression and the development of idiopathic pneumonia syndrome after allogeneic bone marrow transplantation. Blood, 2004, 104, 586-593.	0.6	85
148	Chronic graft-versus-host disease after reduced-intensity stem cell transplantation versus conventional hematopoietic stem cell transplantation. Hematology, 2005, 10, 1-10.	0.7	10
149	Alpha phenyl-tert-butyl nitrone (PBN) protects syngeneic marrow transplant recipients from the lethal cytokine syndrome occurring after agonistic CD40 antibody administration. Blood, 2005, 105, 428-431.	0.6	8
150	Donor-derived IL-15 is critical for acute allogeneic graft-versus-host disease. Blood, 2005, 105, 894-901.	0.6	7 5
151	Donor CD8+ T cells facilitate induction of chimerism and tolerance without GVHD in autoimmune NOD mice conditioned with anti-CD3 mAb. Blood, 2005, 105, 2180-2188.	0.6	43
152	Critical role of host γδT cells in experimental acute graft-versus-host disease. Blood, 2005, 106, 749-755.	0.6	67
153	Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood, 2005, 106, 3293-3299.	0.6	110
154	TGF-Î ² in allogeneic stem cell transplantation: friend or foe?. Blood, 2005, 106, 2206-2214.	0.6	136
155	Absence of inducible costimulator on alloreactive T cells reduces graft versus host disease and induces Th2 deviation. Blood, 2005, 106, 3285-3292.	0.6	44
156	CCR2 is required for CD8-induced graft-versus-host disease. Blood, 2005, 106, 3322-3330.	0.6	90
157	Variable Incidence of Cyclosporine and FK-506 Neurotoxicity in Hematopoeitic Malignancies and Marrow Conditions After Allogeneic Bone Marrow Transplantation. Neurocritical Care, 2005, 3, 033-045.	1.2	34
158	Rare Incorporation of Bone Marrow-Derived Cells Into Kidney After Folic Acid-Induced Injury. Stem Cells, 2005, 23, 44-54.	1.4	56
159	Acute lung injury after allogeneic stem cell transplantation: From the clinic, to the bench and back again. Pediatric Transplantation, 2005, 9, 25-36.	0.5	29
160	The Pathophysiology of Acute Graft-Versus-Host Disease. Scandinavian Journal of Immunology, 2005, 61, 398-409.	1.3	43
161	Prognostic relevance of 'early-onset' graft-versus-host disease following non-myeloablative haematopoietic cell transplantation. British Journal of Haematology, 2005, 129, 381-391.	1.2	41
162	Influence of the intensity of the conditioning regimen on the characteristics of acute and chronic graft-versus-host disease after allogeneic transplantation. British Journal of Haematology, 2005, 130, 394-403.	1.2	110
163	Impact of human leucocyte antigen mismatch on graft-versus-host disease and graft failure after reduced intensity conditioning allogeneic haematopoietic stem cell transplantation from related donors. British Journal of Haematology, 2005, 130, 575-587.	1.2	38
164	Survival after reduced-intensity conditioning is not inferior to standard high-dose conditioning before allogeneic haematopoietic cell transplantation in acute leukaemias. Bone Marrow Transplantation, 2005, 36, 683-689.	1.3	45

#	Article	IF	CITATIONS
165	Reduced p38 mitogen-activated protein kinase in donor grafts accelerates acute intestinal graft-versus-host disease in mice. European Journal of Immunology, 2005, 35, 2210-2221.	1.6	3
166	Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration. Cancer, 2005, 103, 191-199.	2.0	145
167	Evaluation of potential risk factors for early infectious complications after autologous peripheral blood stem cell transplantation in patients with lymphoproliferative diseases. Annals of Hematology, 2005, 84, 532-537.	0.8	14
168	Nonmyeloablative allogeneic stem cell transplantation in metastatic renal cell carcinoma: a new therapeutic option or just a clinical experiment?. World Journal of Urology, 2005, 23, 213-220.	1.2	3
169	Lacrimal Gland Involvement in Graft-Versus-Host Disease: A Murine Model., 2005, 46, 2692.		31
170	Absence of host tumor necrosis factor receptor 1 attenuates manifestations of idiopathic pneumonia syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L942-L949.	1.3	20
171	Heat Shock Protein 10 Inhibits Lipopolysaccharide-induced Inflammatory Mediator Production. Journal of Biological Chemistry, 2005, 280, 4037-4047.	1.6	158
172	Reduced-Intensity Conditioning Regimens for Hematologic Malignancies: What Have We Learned over the Last 10 Years?. Hematology American Society of Hematology Education Program, 2005, 2005, 384-389.	0.9	30
173	CD34?+ cell dose and outcome of patients undergoing reduced-intensity-conditioning allogeneic peripheral blood stem cell transplantation. Leukemia and Lymphoma, 2005, 46, 177-183.	0.6	24
174	Graft-vs-host disease after non-myeloablative hematopoietic cell transplantation. Leukemia and Lymphoma, 2005, 46, 1251-1260.	0.6	46
175	Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends in Immunology, 2005, 26, 111-117.	2.9	410
176	Gastrointestinal toxicity from the preparative regimen is associated with an increased risk of graft-versus-host disease. Biology of Blood and Marrow Transplantation, 2005, 11, 101-107.	2.0	39
177	Sequential Expression of Adhesion and Costimulatory Molecules in Graft-versus-Host Disease Target Organs after Murine Bone Marrow Transplantation across Minor Histocompatibility Antigen Barriers. Biology of Blood and Marrow Transplantation, 2005, 11, 371-382.	2.0	34
178	Reduced-Intensity Allogeneic Stem Cell Transplantation in Adults and Children with Malignant and Nonmalignant Diseases: End of the Beginning and Future Challenges. Biology of Blood and Marrow Transplantation, 2005, 11 , 403-422.	2.0	38
179	Pilot Trial on the Use of Etanercept and Methylprednisolone as Primary Treatment for Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2005, 11, 680-687.	2.0	89
180	Pathophysiology of Graft-Versus-Host Disease. Seminars in Hematology, 2006, 43, 3-10.	1.8	358
182	Increased intensity lymphodepletion and adoptive immunotherapyâ€"how far can we go?. Nature Clinical Practice Oncology, 2006, 3, 668-681.	4.3	318
183	Human 6-Sulfo LacNAc-Expressing Dendritic Cells Are Principal Producers of Early Interleukin-12 and Are Controlled by Erythrocytes. Immunity, 2006, 24, 767-777.	6.6	178

#	Article	IF	CITATIONS
184	Absence of \hat{l}^2 7 integrin results in less graft-versus-host disease because of decreased homing of alloreactive T cells to intestine. Blood, 2006, 107, 1703-1711.	0.6	106
185	NF- $\hat{\mathbb{P}}$ B as a target for the prevention of graft-versus-host disease: comparative efficacy of bortezomib and PS-1145. Blood, 2006, 107, 827-834.	0.6	109
186	G-CSF-treated granulocytes inhibit acute graft-versus-host disease. Blood, 2006, 107, 2192-2199.	0.6	33
187	Host B cells produce IL-10 following TBI and attenuate acute GVHD after allogeneic bone marrow transplantation. Blood, 2006, 108, 2485-2492.	0.6	121
188	Phase 1/2 randomized, placebo-control trial of palifermin to prevent graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Blood, 2006, 108, 3216-3222.	0.6	147
189	No Evidence of Association between NOD2/CARD15 Gene Polymorphism and Atherosclerotic Events after Renal Transplantation. Transplantation, 2006, 81, 1212-1215.	0.5	6
190	Intrinsic properties of human and murine memory B cells. Immunological Reviews, 2006, 211, 280-294.	2.8	47
191	Adoptive immunotherapy for cancer: building on success. Nature Reviews Immunology, 2006, 6, 383-393.	10.6	801
192	Differential effect of conditioning regimens on cytokine responses during allogeneic stem cell transplantation. Bone Marrow Transplantation, 2006, 37, 635-640.	1.3	20
193	Poor oral nutrition after allogeneic stem cell transplantation correlates significantly with severe graft-versus-host disease. Bone Marrow Transplantation, 2006, 38, 629-633.	1.3	87
194	Stem cell transplantation with reduced-intensity conditioning regimens: a review of ten years experience with new transplant concepts and new therapeutic agents. Leukemia, 2006, 20, 1661-1672.	3.3	112
195	Shared biology of GVHD and GVT effects: Potential methods of separation. Critical Reviews in Oncology/Hematology, 2006, 57, 225-244.	2.0	67
196	Long-term follow-up of allogeneic HSCT for CML reveals significant improvement in the outcome over the last decade. Annals of Hematology, 2006, 86, 127-132.	0.8	10
197	Key factors in experimental mouse hematopoietic stem cell transplantation. Archivum Immunologiae Et Therapiae Experimentalis, 2006, 54, 253-269.	1.0	8
198	Improved survival following induction of GVHD following lipopolysaccharide immunization. Experimental Hematology, 2006, 34, 549-553.	0.2	6
199	TRAIL-induced cell death cooperates with IFN- \hat{l}^3 activation in the graft-versus-tumor effect against colon tumors. International Journal of Cancer, 2006, 118, 2237-2246.	2.3	13
200	Analysis of serum granulysin in patients with hematopoietic stem-cell transplantation: Its usefulness as a marker of graft-versus-host reaction. American Journal of Hematology, 2006, 81, 340-348.	2.0	26
201	Palifermin: a keratinocyte growth factor that reduces oral mucositis after stem cell transplant for haematological malignancies. Expert Opinion on Pharmacotherapy, 2006, 7, 2287-2299.	0.9	19

#	Article	IF	CITATIONS
202	An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues. Journal of Experimental Medicine, 2006, 203, 2021-2031.	4.2	170
203	Severely Impaired Clonal Deletion of CD4+ T Cells in Low-Dose Irradiated Mice: Role of T Cell Antigen Receptor and IL-7 Receptor Signals. Journal of Immunology, 2006, 177, 8320-8330.	0.4	19
204	Host-Derived Langerhans Cells Persist after MHC-Matched Allografting Independent of Donor T Cells and Critically Influence the Alloresponses Mediated by Donor Lymphocyte Infusions. Journal of Immunology, 2006, 177, 4414-4425.	0.4	36
205	Donor CD8+ T Cells Mediate Graft-versus-Leukemia Activity without Clinical Signs of Graft-versus-Host Disease in Recipients Conditioned with Anti-CD3 Monoclonal Antibody. Journal of Immunology, 2007, 178, 838-850.	0.4	30
206	IFN- \hat{l}^3 and Fas Ligand Are Required for Graft-versus-Tumor Activity against Renal Cell Carcinoma in the Absence of Lethal Graft-versus-Host Disease. Journal of Immunology, 2007, 179, 1669-1680.	0.4	19
207	Allogeneic bone marrow transplantation for hepatocellular carcinoma: hepatocyte growth factor suppresses graft-vshost disease. American Journal of Physiology - Renal Physiology, 2007, 293, G1114-G1123.	1.6	8
208	Radiation protocols determine acute graft-versus-host disease incidence after allogeneic bone marrow transplantation in murine models. International Journal of Radiation Biology, 2007, 83, 625-636.	1.0	8
209	Toll-like Receptors in Tumor Immunotherapy. Clinical Cancer Research, 2007, 13, 5280-5289.	3.2	114
210	Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse. Blood, 2007, 109, 3115-3123.	0.6	139
211	Costimulatory molecule-targeted immunotherapy of cutaneous graft-versus-host disease. Blood, 2007, 110, 776-782.	0.6	34
212	The role of antigen-presenting cells in triggering graft-versus-host disease and graft-versus-leukemia. Blood, 2007, 110, 9-17.	0.6	150
213	IFN \hat{I}^3 differentially controls the development of idiopathic pneumonia syndrome and GVHD of the gastrointestinal tract. Blood, 2007, 110, 1064-1072.	0.6	159
214	Reduced-Intensity Stem Cell Transplantation for Hematological Malignancies: Current Status and the Future. Current Stem Cell Research and Therapy, 2007, 2, 149-162.	0.6	7
215	New Directions in the Genomics of Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2007, 13, 127-144.	2.0	40
216	The Synthetic Triterpenoid, CDDO, Suppresses Alloreactive T Cell Responses and Reduces Murine Early Acute Graft-versus-Host Disease Mortality. Biology of Blood and Marrow Transplantation, 2007, 13, 521-529.	2.0	13
217	Comparable Outcomes after Nonmyeloablative Hematopoietic Cell Transplantation with Unrelated and Related Donors. Biology of Blood and Marrow Transplantation, 2007, 13, 1499-1507.	2.0	39
218	DC homeostasis in hematopoietic stem cell transplantation. Cytotherapy, 2007, 9, 521-531.	0.3	8
219	Graft-Versus-Host Disease: Review and Nursing Implications. Clinical Journal of Oncology Nursing, 2007, 11, 325-328.	0.3	17

#	Article	IF	CITATIONS
220	The Effect of Palifermin on Chemotherapyand Radiation Therapy–Induced Mucositis: A Review of the Current Literature. Supportive Cancer Therapy, 2007, 4, 188-197.	0.3	24
221	Death Receptors and Apoptosis. Dermatologic Clinics, 2007, 25, 487-501.	1.0	28
222	Pathophysiology of acute graft-versus-host disease: recent advances. Translational Research, 2007, 150, 197-214.	2.2	110
223	Immunobiology of Allogeneic Hematopoietic Stem Cell Transplantation. Annual Review of Immunology, 2007, 25, 139-170.	9.5	454
224	Novel strategies for the treatment and diagnosis of graft-versus-host-disease. Best Practice and Research in Clinical Haematology, 2007, 20, 91-97.	0.7	36
225	Cobalt protoporphyrine IX-mediated heme oxygenase-I induction alters the inflammatory cytokine response, but not antigen presentation after experimental allogeneic bone marrow transplantation. International Journal of Molecular Medicine, 0, , .	1.8	5
226	Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. Journal of Clinical Investigation, 2007, 117, 2197-2204.	3.9	456
227	Graft-versus-host disease. Nature Reviews Immunology, 2007, 7, 340-352.	10.6	680
228	Infliximab for GVHD therapy in children. Bone Marrow Transplantation, 2007, 40, 473-480.	1.3	48
229	Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia, 2007, 21, 1992-1999.	3.3	167
230	Comparison between two fludarabine-based reduced-intensity conditioning regimens before allogeneic hematopoietic stem-cell transplantation: fludarabine/melphalan is associated with higher incidence of acute graft-versus-host disease and non-relapse mortality and lower incidence of relapse than fludarabine/busulfan. Leukemia, 2007, 21, 2109-2116.	3.3	98
231	Advances in the understanding of acute graftâ€ <i>versus</i> li>â€host disease. British Journal of Haematology, 2007, 137, 3-19.	1.2	44
232	Donor CD4+ T-cell production of tumor necrosis factor alpha significantly contributes to the early proinflammatory events of graft-versus-host disease. Experimental Hematology, 2007, 35, 155-163.	0.2	19
233	Changes in salivary proteome following allogeneic hematopoietic stem cell transplantation. Experimental Hematology, 2007, 35, 184-192.	0.2	63
234	Thymus repopulation after allogeneic reconstitution in hematological malignancies. Experimental Hematology, 2007, 35, 1891-1905.	0.2	9
235	Gut Toxicity During Hemopoietic Stem Cell Transplantation May Predict Acute Graft-Versus-Host Disease Severity in Patients. Digestive Diseases and Sciences, 2007, 52, 2340-2345.	1.1	49
236	The absence of donor-derived IL-13 exacerbates the severity of acute graft-versus-host disease following allogeneic bone marrow transplantation. Pediatric Blood and Cancer, 2008, 50, 911-914.	0.8	6
237	IFNâ€Î³ activation of mesenchymal stem cells for treatment and prevention of graft <i>versus</i> host disease. European Journal of Immunology, 2008, 38, 1745-1755.	1.6	528

#	Article	IF	CITATIONS
238	GVHD after chemotherapy conditioning in allogeneic transplanted mice. Bone Marrow Transplantation, 2008, 42, 807-818.	1.3	44
239	Tumor immunotherapy across MHC barriers using allogeneic T-cell precursors. Nature Biotechnology, 2008, 26, 453-461.	9.4	110
240	Therapeutic effect of CXCR3-expressing regulatory T cells on liver, lung and intestinal damages in a murine acute GVHD model. Gene Therapy, 2008, 15, 171-182.	2.3	79
241	Impact of cytokine gene polymorphisms on graftâ€ <i>vs</i> i>â€host disease. Tissue Antigens, 2008, 72, 507-516.	1.0	19
242	The potential role of lactoferrin and derivatives in the management of infectious and inflammatory complications of hematology patients receiving a hematopoietic stem cell transplantation. Transplant Infectious Disease, 2008, 10, 80-89.	0.7	14
243	Idiopathic pneumonia syndrome after bone marrow transplantation: the role of pre-transplant radiation conditioning and local cytokine dysregulation in promoting lung inflammation and fibrosis. International Journal of Experimental Pathology, 2008, 82, 101-113.	0.6	61
244	Combined Th2 cytokine deficiency in donor T cells aggravates experimental acute graft-vs-host disease. Experimental Hematology, 2008, 36, 988-996.	0.2	56
245	Human Immunodeficiency Virus-Related Microbial Translocation and Progression of Hepatitis C. Gastroenterology, 2008, 135, 226-233.	0.6	251
246	GVHD pathophysiology: is acute different from chronic?. Best Practice and Research in Clinical Haematology, 2008, 21, 101-117.	0.7	71
247	Chronic GVHD as an autoimmune disease. Best Practice and Research in Clinical Haematology, 2008, 21, 281-289.	0.7	47
248	Mouse Models of Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2008, 14, 129-135.	2.0	98
249	Plasma Elevations of Tumor Necrosis Factor-Receptor-1 at Day 7 Postallogeneic Transplant Correlate with Graft-versus-Host Disease Severity and Overall Survival in Pediatric Patients. Biology of Blood and Marrow Transplantation, 2008, 14, 759-765.	2.0	36
250	Influence of Polymorphism within the Heme Oxygenase-I Promoter on Overall Survival and Transplantation-Related Mortality after Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2008, 14, 1180-1189.	2.0	13
251	Role of dendritic cells and chemokines in acute graft-versus-host disease. Frontiers in Bioscience - Landmark, 2008, 13, 2065.	3.0	4
252	Posterior Reversible Encephalopathy Syndrome, Part 2: Controversies Surrounding Pathophysiology of Vasogenic Edema. American Journal of Neuroradiology, 2008, 29, 1043-1049.	1.2	914
253	The Host Environment Regulates the Function of CD8+ Graft-versus-Host-Reactive Effector Cells. Journal of Immunology, 2008, 181, 6820-6828.	0.4	29
254	Breaking of CD8+ T Cell Tolerance through In Vivo Ligation of CD40 Results in Inhibition of Chronic Graft-versus-Host Disease and Complete Donor Cell Engraftment. Journal of Immunology, 2008, 181, 7380-7389.	0.4	15
255	Critical Role of TLR9 in Acute Graft-versus-Host Disease. Journal of Immunology, 2008, 181, 6132-6139.	0.4	70

#	Article	IF	CITATIONS
256	Organ-derived dendritic cells have differential effects on alloreactive T cells. Blood, 2008, 111, 2929-2940.	0.6	28
257	Change in plasma tumor necrosis factor receptor 1 levels in the first week after myeloablative allogeneic transplantation correlates with severity and incidence of GVHD and survival. Blood, 2008, 112, 1539-1542.	0.6	128
258	Lipopolysaccharide binding protein promoter variants influence the risk for Gram-negative bacteremia and mortality after allogeneic hematopoietic cell transplantation. Blood, 2008, 111, 2462-2469.	0.6	42
259	Extracorporeal photopheresis reverses experimental graft-versus-host disease through regulatory T cells. Blood, 2008, 112, 1515-1521.	0.6	198
260	Protection from graft-versus-host disease with a novel B7 binding site–specific mouse anti–mouse CD28 monoclonal antibody. Blood, 2008, 112, 4328-4336.	0.6	27
261	Reduced Intensity Conditioning for Allogeneic Hematopoietic Stem-Cell Transplant Determines the Kinetics of Acute Graft-Versus-Host Disease. Transplantation, 2008, 86, 968-976.	0.5	29
262	Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice. Journal of Clinical Investigation, 2008, 118, 2562-73.	3.9	243
263	Role of Type II NKT Cells in the Suppression of Graft-versus-Host Disease. Critical Reviews in Immunology, 2008, 28, 249-267.	1.0	7
264	Pathobiology of graft-versus-host disease., 0,, 313-330.		0
265	Radiotherapeutic Principles of Hematopoietic Cell Transplantation. , 0, , 333-350.		0
266	$\hat{l}^3\hat{l}^*$ T Lymphocyte Homeostasis Is Negatively Regulated by \hat{l}^2 2-Microglobulin. Journal of Immunology, 2009, 182, 1892-1900.	0.4	11
267	Antibody to the dendritic cell surface activation antigen CD83 prevents acute graft-versus-host disease. Journal of Experimental Medicine, 2009, 206, 387-398.	4.2	68
268	Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. Journal of Experimental Medicine, 2009, 206, 371-385.	4.2	222
269	Tissue-Specific Homing and Expansion of Donor NK Cells in Allogeneic Bone Marrow Transplantation. Journal of Immunology, 2009, 183, 3219-3228.	0.4	52
270	Combination approaches to immunotherapy: the radiotherapy example. Immunotherapy, 2009, 1, 1025-1037.	1.0	29
271	Cryptococcosis in Solidâ€Organ, Hematopoietic Stem Cell, and Tissue Transplant Recipients: Evidenceâ€Based Evolving Trends. Clinical Infectious Diseases, 2009, 48, 1566-1576.	2.9	100
272	Myeloablative radioimmunotherapy in conditioning prior to haematological stem cell transplantation: closing the gap between benefit and toxicity?. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 484-498.	3.3	19
273	Adult thymus transplantation with allogeneic intraâ€bone marrow–bone marrow transplantation from same donor induces high thymopoiesis, mild graftâ€versusâ€host reaction and strong graftâ€versusâ€tumour effects. Immunology, 2009, 126, 552-564.	2.0	16

#	ARTICLE	IF	CITATIONS
274	Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft- <i>versus</i> -host-like disease and the role of host major histocompatibility complex. Clinical and Experimental Immunology, 2009, 157, 104-118.	1.1	334
275	Gut protection by palifermin during autologous haematopoietic SCT. Bone Marrow Transplantation, 2009, 43, 807-811.	1.3	20
276	Cutaneous lymphocyte antigen-positive T cells may predict the development of acute GVHD: alterations and differences of CLA+ T- and NK-cell fractions. Bone Marrow Transplantation, 2009, 43, 863-873.	1.3	14
277	Systematic review and meta-analyses of studies of glutamine supplementation in haematopoietic stem cell transplantation. Bone Marrow Transplantation, 2009, 44, 413-425.	1.3	63
278	Induction of natural killer T cell–dependent alloreactivity by administration of granulocyte colony–stimulating factor after bone marrow transplantation. Nature Medicine, 2009, 15, 436-441.	15.2	64
279	Nutrition, anthropometry, gastrointestinal dysfunction, and circulating levels of tumour necrosis factor alpha receptor I and interleukin <scp>â€</scp> 1 receptor antagonist in children during stem cell transplantation. Pediatric Transplantation, 2009, 13, 182-187.	0.5	9
280	The Role of Innate Immunity in Graft-Versus-Host Disease and Complications following Allogeneic Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2009, 15, 59-61.	2.0	8
281	Regulatory Mechanisms in Graft-versus-Host Responses. Biology of Blood and Marrow Transplantation, 2009, 15, 2-6.	2.0	21
282	Inflammation and Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2009, 15, 139-141.	2.0	29
283	Induction of Lethal Graft-versus-Host Disease by Anti-CD137 Monoclonal Antibody in Mice Prone to Chronic Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2009, 15, 306-314.	2.0	19
284	Graft-versus-Host Disease Prophylaxis with Tacrolimus and Mycophenolate Mofetil in HLA-Matched Nonmyeloablative Transplant Recipients Is Associated with Very Low Incidence of GVHD and Nonrelapse Mortality. Biology of Blood and Marrow Transplantation, 2009, 15, 919-929.	2.0	40
285	The Pathophysiology of Graft-Versus-Host Disease. , 0, , 208-221.		2
286	Mouse models of graft-versus-host disease. Stembook, 2009, , .	0.3	15
287	Graft-versus-host disease. Lancet, The, 2009, 373, 1550-1561.	6.3	2,093
288	Plasmacytoid dendritic cells prime alloreactive T cells to mediate graft-versus-host disease as antigen-presenting cells. Blood, 2009, 113, 2088-2095.	0.6	92
289	Interleukin-23 secretion by donor antigen-presenting cells is critical for organ-specific pathology in graft-versus-host disease. Blood, 2009, 113, 2352-2362.	0.6	70
290	Invariant natural killer T cell–natural killer cell interactions dictate transplantation outcome after α-galactosylceramide administration. Blood, 2009, 113, 5999-6010.	0.6	28
291	Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood, 2009, 114, 3693-3706.	0.6	28

#	Article	IF	Citations
292	Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease. Blood, 2009, 114, 891-900.	0.6	257
293	Superagonistic CD28 stimulation of allogeneic T cells protects from acute graft-versus-host disease. Blood, 2009, 114, 4575-4582.	0.6	32
294	The Pathophysiology of Acute Graft versus Host Disease. , 0, , 8-16.		0
295	The Protective Role of Host Toll-Like Receptor-4 in Acute Graft-Versus-Host Disease. Transplantation, 2010, 90, 1063-1070.	0.5	34
296	Soluble lymphotoxin is an important effector molecule in GVHD and GVL. Blood, 2010, 115, 122-132.	0.6	49
297	Gas6 deficiency in recipient mice of allogeneic transplantation alleviates hepatic graft-versus-host disease. Blood, 2010, 115, 3390-3397.	0.6	9
298	Blockade of interleukin-23 signaling results in targeted protection of the colon and allows for separation of graft-versus-host and graft-versus-leukemia responses. Blood, 2010, 115, 5249-5258.	0.6	47
299	Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma. Blood, 2010, 116, 819-828.	0.6	139
300	Chemotherapy Foundation Symposium XXVIII Innovative Cancer Therapy For Tomorrow Abstracts 2010. Current Treatment Options in Oncology, 2010, 11, 1-104.	1.3	9
301	Leishmaniasis, contact hypersensitivity and graftâ€versusâ€host disease: understanding the role of dendritic cell subsets in balancing skin immunity and tolerance. Experimental Dermatology, 2010, 19, 760-771.	1.4	11
302	Influence of oral beclomethasone dipropionate on early non-infectious pulmonary outcomes after allogeneic hematopoietic cell transplantation: results from two randomized trials. Bone Marrow Transplantation, 2010, 45, 317-324.	1.3	6
303	Early thrombin generation and impaired fibrinolysis after SCT associate with acute GVHD. Bone Marrow Transplantation, 2010, 45, 730-737.	1.3	18
304	New perspectives on the biology of acute GVHD. Bone Marrow Transplantation, 2010, 45, 1-11.	1.3	158
305	<i>Clostridium difficile</i> à€associated disease in allogeneic hematopoietic stemâ€eell transplant recipients: risk associations, protective associations, and outcomes. Clinical Transplantation, 2010, 24, 192-198.	0.8	72
306	Hematopoietic stem cell transplantation for the management of follicular lymphoma. Stem Cells and Cloning: Advances and Applications, 2010, 3, 69.	2.3	0
307	Roles of Host Nonhematopoietic Cells in Autoimmunity and Donor Cell Engraftment in Graft-versus-host Disease. Immune Network, 2010, 10, 46.	1.6	3
308	A Role for IL-1 Receptor-Associated Kinase-M in Prostaglandin E2-Induced Immunosuppression Post-Bone Marrow Transplantation. Journal of Immunology, 2010, 184, 6299-6308.	0.4	47
309	Therapeutic Glucocorticoid-Induced TNF Receptor-Mediated Amplification of CD4+T Cell Responses Enhances Antiparasitic Immunity. Journal of Immunology, 2010, 184, 2583-2592.	0.4	17

#	Article	IF	CITATIONS
310	The CCL3/Macrophage Inflammatory Protein-1α–Binding Protein Evasin-1 Protects from Graft-versus-Host Disease but Does Not Modify Graft-versus-Leukemia in Mice. Journal of Immunology, 2010, 184, 2646-2654.	0.4	51
311	Expansion and Activation Kinetics of Immune Cells during Early Phase of GVHD in Mouse Model Based on Chemotherapy Conditioning. Clinical and Developmental Immunology, 2010, 2010, 1-13.	3.3	16
312	Inhibition of Neovascularization to Simultaneously Ameliorate Graft-vs-Host Disease and Decrease Tumor Growth. Journal of the National Cancer Institute, 2010, 102, 894-908.	3.0	53
313	Association between chronic liver and colon inflammation during the development of murine syngeneic graft-versus-host disease. American Journal of Physiology - Renal Physiology, 2010, 299, G602-G613.	1.6	6
314	The Chemokine System: A Possible Therapeutic Target in Acute Graft Versus Host Disease. Current Topics in Microbiology and Immunology, 2010, 341, 97-120.	0.7	19
315	Elevations of tumor necrosis factor receptor 1 at day 7 and acute graft-versus-host disease after allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. Bone Marrow Transplantation, 2010, 45, 1442-1448.	1.3	16
316	Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy, 2010, 2, 399-418.	1.0	36
317	Reduced intensity conditioning for hematopoietic stem cell transplantation: has it achieved all it set out to?. Cytotherapy, 2010, 12, 440-454.	0.3	6
318	Early and late-onset acute GvHD following hematopoietic cell transplantation: CT features of gastrointestinal involvement with clinical and pathological correlation. European Journal of Radiology, 2010, 73, 594-600.	1,2	39
319	Association of HMGB1 Polymorphisms with Outcome after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2010, 16, 239-252.	2.0	49
320	Tumor Necrosis Factor-α Gene Polymorphisms Are Associated with Severity of Acute Graft-Versus-Host Disease Following Matched Unrelated Donor Bone Marrow Transplantation in Children: A Pediatric Blood and Marrow Transplant Consortium Study. Biology of Blood and Marrow Transplantation, 2010, 16, 927-936.e1.	2.0	21
321	The Chemokine System in Experimental and Clinical Hematology. Current Topics in Microbiology and Immunology, 2010, , .	0.7	6
322	Human umbilical cord blood-derived stromal cells prevent graft-versus-host disease in mice following haplo-identical stem cell transplantation. Cytotherapy, 2011, 13, 83-91.	0.3	16
323	Effect of Solar Particle Event Radiation on Gastrointestinal Tract Bacterial Translocation and Immune Activation. Radiation Research, 2011, 175, 485-492.	0.7	16
324	Mouse models of graft-versus-host disease: advances and limitations. DMM Disease Models and Mechanisms, 2011, 4, 318-333.	1.2	238
325	Translational Research Efforts in Biomarkers and Biology of Early Transplant-Related Complications. Biology of Blood and Marrow Transplantation, 2011, 17, S101-S108.	2.0	5
326	Tocilizumab for the Treatment of Steroid Refractory Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2011, 17, 1862-1868.	2.0	109
327	Host Basophils Are Dispensable for Induction of Donor T Helper 2 Cell Differentiation and Severity of Experimental Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2011, 17, 1747-1753.	2.0	8

#	Article	IF	CITATIONS
328	Harnessing dendritic cells to improve allogeneic hematopoietic cell transplantation outcome. Seminars in Immunology, 2011, 23, 50-57.	2.7	13
329	Role of gut microbiota in graft-versus-host disease. Leukemia and Lymphoma, 2011, 52, 1844-1856.	0.6	47
330	HDAC Inhibition and Graft Versus Host Disease. Molecular Medicine, 2011, 17, 404-416.	1.9	71
331	Blockade of Vascular Endothelial Growth Factor (VEGF) Aggravates the Severity of Acute Graft-versus-host Disease (GVHD) after Experimental Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT). Immune Network, 2011, 11, 368.	1.6	7
332	Type I-IFNs control GVHD and GVL responses after transplantation. Blood, 2011, 118, 3399-3409.	0.6	64
333	Human peripheral blood CD4 T cell-engrafted non-obese diabetic- $\langle i \rangle$ scid IL2r $\langle i \rangle$ î $^3\langle i \rangle$ null H2-Ab1 tm1Gru $\langle i \rangle$ Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft- $\langle i \rangle$ versus $\langle i \rangle$ -host disease. Clinical and Experimental Immunology, 2011, 166, 269-280.	1.1	88
334	Comparative analysis of BU and CY versus CY and TBI in full intensity unrelated marrow donor transplantation for AML, CML and myelodysplasia. Bone Marrow Transplantation, 2011, 46, 34-43.	1.3	20
335	Steroid treatment alters adhesion molecule and chemokine expression in experimental acute graft-vshost disease of the intestinal tract. Experimental Hematology, 2011, 39, 238-249.e1.	0.2	30
336	The influence of pretransplantation conditioning on graft-vsleukemia effectÂin mice. Experimental Hematology, 2011, 39, 1018-1029.	0.2	7
337	Early expression of plasma CCL8 closely correlates with survival rate ofÂacuteÂgraft-vshost disease in mice. Experimental Hematology, 2011, 39, 1101-1112.	0.2	19
338	Implications of TNF- \hat{l}_{\pm} in the pathogenesis and management of GVHD. International Journal of Hematology, 2011, 93, 571-577.	0.7	70
339	Reduced-intensity conditioning by fludarabine/busulfan without additional irradiation or T-cell depletion leads to low non-relapse mortality in unrelated bone marrow transplantation. International Journal of Hematology, 2011, 93, 509-516.	0.7	8
340	Octreotide acetate is efficacious and safe in children for treating diarrhea due to chemotherapy but not acute graft versus host disease. Pediatric Blood and Cancer, 2011, 56, 45-49.	0.8	15
341	Galectinâ€9 ameliorates acute GVH disease through the induction of Tâ€cell apoptosis. European Journal of Immunology, 2011, 41, 67-75.	1.6	42
342	Regulatory T cells and IL-17-producing cells in graft-versus-host disease. Immunotherapy, 2011, 3, 833-852.	1.0	31
343	The therapeutic potential of targeting the glucagon-like peptide-2 receptor in gastrointestinal disease. Expert Opinion on Therapeutic Targets, 2011, 15, 637-646.	1.5	25
344	An Official American Thoracic Society Research Statement: Noninfectious Lung Injury after Hematopoietic Stem Cell Transplantation: Idiopathic Pneumonia Syndrome. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1262-1279.	2.5	271
345	Pentostatin for treatment of steroid-refractory acute GVHD: a retrospective single-center analysis. Bone Marrow Transplantation, 2011, 46, 580-585.	1.3	22

#	Article	IF	CITATIONS
346	Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. Journal of Experimental Medicine, 2011, 208, 1069-1082.	4.2	145
347	The Wnt agonist R-spondin1 regulates systemic graft-versus-host disease by protecting intestinal stem cells. Journal of Experimental Medicine, 2011, 208, 285-294.	4.2	129
348	$PI3K\hat{I}^3$ controls leukocyte recruitment, tissue injury, and lethality in a model of graft-versus-host disease in mice. Journal of Leukocyte Biology, 2011, 89, 955-964.	1.5	23
349	Manipulating the Bioenergetics of Alloreactive T Cells Causes Their Selective Apoptosis and Arrests Graft-Versus-Host Disease. Science Translational Medicine, 2011, 3, 67ra8.	5.8	153
350	Instability of Foxp3 Expression Limits the Ability of Induced Regulatory T Cells to Mitigate Graft versus Host Disease. Clinical Cancer Research, 2011, 17, 3969-3983.	3.2	81
351	Graft-versus-Host Disease Is Independent of Innate Signaling Pathways Triggered by Pathogens in Host Hematopoietic Cells. Journal of Immunology, 2011, 186, 230-241.	0.4	62
352	Accumulation of CD4+T cells in the colon of CsA-treated mice following myeloablative conditioning and bone marrow transplantation. American Journal of Physiology - Renal Physiology, 2011, 300, G843-G852.	1.6	3
353	Relationship between TNFA, TNFB and TNFRII gene polymorphisms and outcome after unrelated hematopoietic cell transplantation in a Chinese population. Bone Marrow Transplantation, 2011, 46, 400-407.	1.3	17
354	Ocular graft-versus-host disease. Current Opinion in Allergy and Clinical Immunology, 2012, 12, 540-547.	1.1	104
355	Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. Journal of Experimental Medicine, 2012, 209, 903-911.	4.2	552
356	Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of		125
	America, 2012, 109, 564-569.	3.3	
357	America, 2012, 109, 564-569. Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nature Medicine, 2012, 18, 135-142.	15.2	206
357 358	Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute		
	Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nature Medicine, 2012, 18, 135-142. Novel Role for Surfactant Protein A in Gastrointestinal Graft-versus-Host Disease. Journal of	15.2	206
358	Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nature Medicine, 2012, 18, 135-142. Novel Role for Surfactant Protein A in Gastrointestinal Graft-versus-Host Disease. Journal of Immunology, 2012, 188, 4897-4905. Th17 Mediated Alloreactivity Is Facilitated by the Pre-Transplant Microbial Burden of the Recipient.	15.2 0.4	206
358 359	Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nature Medicine, 2012, 18, 135-142. Novel Role for Surfactant Protein A in Gastrointestinal Graft-versus-Host Disease. Journal of Immunology, 2012, 188, 4897-4905. Th17 Mediated Alloreactivity Is Facilitated by the Pre-Transplant Microbial Burden of the Recipient. Bone Marrow Research, 2012, 2012, 1-5. Role of Cytokines in the Pathophysiology of Acute Graft-Versus-Host Disease (GVHD)– Are Serum/Plasma Cytokines Potential Biomarkers for Diagnosis of Acute GVHD Following Allogeneic Hematopoietic Cell Transplantation (Allo-HCT)?. Current Stem Cell Research and Therapy, 2012, 7,	15.2 0.4 1.7	206 9 24
358 359 360	Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nature Medicine, 2012, 18, 135-142. Novel Role for Surfactant Protein A in Gastrointestinal Graft-versus-Host Disease. Journal of Immunology, 2012, 188, 4897-4905. Th17 Mediated Alloreactivity Is Facilitated by the Pre-Transplant Microbial Burden of the Recipient. Bone Marrow Research, 2012, 2012, 1-5. Role of Cytokines in the Pathophysiology of Acute Graft-Versus-Host Disease (GVHD)– Are Serum/Plasma Cytokines Potential Biomarkers for Diagnosis of Acute GVHD Following Allogeneic Hematopoietic Cell Transplantation (Allo-HCT)?. Current Stem Cell Research and Therapy, 2012, 7, 229-239. Better Outcome of Patients Undergoing Enteral Tube Feeding After Myeloablative Conditioning for	15.2 0.4 1.7	206 9 24 37

#	ARTICLE	IF	CITATIONS
364	Nonalloreactive T Cells Prevent Donor Lymphocyte Infusion–Induced Graft-versus-Host Disease by Controlling Microbial Stimuli. Journal of Immunology, 2012, 189, 5572-5581.	0.4	9
365	Is Graft-versus-Leukemia More Effective Using Reduced-Intensity Conditioning Compared with Myeloablative Conditioning?. Biology of Blood and Marrow Transplantation, 2012, 18, 1615-1617.	2.0	2
366	TNF-Inhibition with Etanercept for Graft-versus-Host Disease Prevention in High-Risk HCT: Lower TNFR1 Levels Correlate with Better Outcomes. Biology of Blood and Marrow Transplantation, 2012, 18, 1525-1532.	2.0	50
367	Phase I Study of the Tolerability and Pharmacokinetics of Palifermin in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2012, 18, 1309-1314.	2.0	21
368	Graft-versus-host disease. Journal of the American Academy of Dermatology, 2012, 66, 515.e1-515.e18.	0.6	52
369	Host CD25+CD4+Foxp3+ Regulatory T Cells Primed by anti-CD137 mAbs Inhibit Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2012, 18, 44-54.	2.0	18
370	The IL-17 Differentiation Pathway and Its Role in Transplant Outcome. Biology of Blood and Marrow Transplantation, 2012, 18, S56-S61.	2.0	74
371	GVHD Prevention: An Ounce Is Better Than a Pound. Biology of Blood and Marrow Transplantation, 2012, 18, S17-S26.	2.0	10
372	Comparison of three humanized mouse models for adoptive T cell transfer. Journal of Gene Medicine, 2012, 14, 540-548.	1.4	4
373	Myeloablative Radioimmunotherapy in Conditioning of Acute Leukemia, MDS, and Multiple Myeloma Prior to Hematological Stem Cell Transplantation. Medical Radiology, 2012, , 669-683.	0.0	0
374	Rosiglitazone prevents graft-versus-host disease (GVHD). Transplant Immunology, 2012, 27, 128-137.	0.6	7
376	Radiation-Free Allogeneic Conditioning with Fludarabine, Carmustine, and Thiotepa for Acute Lymphoblastic Leukemia and Other Hematologic Malignancies Necessitating Enhanced Central Nervous System Activity. Biology of Blood and Marrow Transplantation, 2012, 18, 1430-1437.	2.0	15
377	Repertoire Enhancement with Adoptively Transferred Female Lymphocytes Controls the Growth of Pre-Implanted Murine Prostate Cancer. PLoS ONE, 2012, 7, e35222.	1.1	5
378	The Role of Chemokines in Mediating Graft Versus Host Disease: Opportunities for Novel Therapeutics. Frontiers in Pharmacology, 2012, 3, 23.	1.6	30
379	Emerging concepts in haematopoietic cell transplantation. Nature Reviews Immunology, 2012, 12, 403-416.	10.6	105
380	The interferon-dependent orchestration of innate and adaptive immunity after transplantation. Blood, 2012, 119, 5351-5358.	0.6	40
381	Immune insufficiency during GVHD is due to defective antigen presentation within dendritic cell subsets. Blood, 2012, 119, 5918-5930.	0.6	32
382	Identification and expansion of highly suppressive CD8+FoxP3+ regulatory T cells after experimental allogeneic bone marrow transplantation. Blood, 2012, 119, 5898-5908.	0.6	114

#	ARTICLE	IF	Citations
383	Bile acid malabsorption in patients with graftâ€versusâ€host disease of the gastrointestinal tract. British Journal of Haematology, 2012, 157, 403-407.	1.2	18
384	Early-phase GVHD gene expression profile in target versus non-target tissues: kidney, a possible target?. Bone Marrow Transplantation, 2013, 48, 284-293.	1.3	22
386	Hydrogen therapy may be an effective and specific novel treatment for Acute Graftâ€versusâ€host disease () Tj	ETQq0 0 0) rgBT /Overlo
387	Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology - a systematic review. BMC Veterinary Research, 2013, 9, 123.	0.7	181
388	Treatment of Graft-versus-Host Disease with Naturally Occurring T Regulatory Cells. BioDrugs, 2013, 27, 605-614.	2.2	35
389	Diagnosis and evaluation of intestinal graft-versus-host disease after allogeneic hematopoietic stem cell transplantation following reduced-intensity and myeloablative conditioning regimens. International Journal of Hematology, 2013, 97, 421-426.	0.7	3
390	Prevention of Acute Graft-versus-Host Disease in a Xenogeneic SCID Mouse Model by the Humanized Anti-CD74 Antagonistic Antibody Milatuzumab. Biology of Blood and Marrow Transplantation, 2013, 19, 28-39.	2.0	15
391	Ocular Graft-versus-Host Disease: A Review. Survey of Ophthalmology, 2013, 58, 233-251.	1.7	182
392	Induced Regulatory T Cells Promote Tolerance When Stabilized by Rapamycin and IL-2 In Vivo. Journal of Immunology, 2013, 191, 5291-5303.	0.4	101
393	Acute graft-versus-host disease: Are we close to bringing the bench to the bedside?. Best Practice and Research in Clinical Haematology, 2013, 26, 285-292.	0.7	19
394	Advances in the treatment of acute graftâ€versusâ€host disease. Journal of Cellular and Molecular Medicine, 2013, 17, 966-975.	1.6	40
395	Severe Hyperglycemia Immediately After Allogeneic Hematopoietic Stem-Cell Transplantation is Predictive of Acute Graft-Versus-Host Disease. Inflammation, 2013, 36, 177-185.	1.7	32
396	Successful Treatment of Both Acute Leukemia and Active Crohn's Disease After Allogeneic Hematopoietic Stem Cell Transplantation Using Reduced-Intensity Conditioning With Fludarabine and Busulfan: A Case Report. Transplantation Proceedings, 2013, 45, 2854-2857.	0.3	4
397	Migration and Activation of T Cells During Development of Graft-Versus-Host Disease in a Mouse Model. Transplantation Proceedings, 2013, 45, 713-718.	0.3	3
398	Tryptophan metabolite analog, N-(3,4-dimethoxycinnamonyl) anthranilic acid, ameliorates acute graft-versus-host disease through regulating T cell proliferation and polarization. International Immunopharmacology, 2013, 17, 601-607.	1.7	7
399	Glutamine protects mice from acute graft-versus-host disease (aGVHD). Biochemical and Biophysical Research Communications, 2013, 435, 94-99.	1.0	19
400	New ways to separate Graftâ€ <i>versus</i> å€Host Disease and Graftâ€ <i>versus</i> å€Tumour effects after allogeneic haematopoietic stem cell transplantation. British Journal of Haematology, 2013, 160, 133-145.	1.2	21
401	Dynamic Change and Impact of Myeloid-Derived Suppressor Cells in Allogeneic Bone Marrow Transplantation in Mice. Biology of Blood and Marrow Transplantation, 2013, 19, 692-702.	2.0	61

#	Article	IF	CITATIONS
402	Human mesenchymal stem cells suppress donor CD4+ T cell proliferation and reduce pathology in a humanized mouse model of acute graft- <i>versus</i> -host disease. Clinical and Experimental Immunology, 2013, 172, 333-348.	1.1	107
403	Impact of the conditioning regimen. , 2013, , 165-171.		О
404	Cytokines in graft-versus-host disease and graft-versus-leukemia., 2013,, 357-391.		0
405	Chemokines and graft-versus-host disease. , 2013, , 393-424.		6
406	Mesenchymal stromal cell supported umbilical cord blood ex vivo expansion enhances regulatory T cells and reduces graft versus host disease. Cytotherapy, 2013, 15, 610-619.	0.3	22
407	Pathways analysis of differential gene expression induced by engrafting doses of total body irradiation for allogeneic bone marrow transplantation in mice. Immunogenetics, 2013, 65, 597-607.	1.2	3
408	Microbial Translocation in the Pathogenesis of HIV Infection and AIDS. Clinical Microbiology Reviews, 2013, 26, 2-18.	5.7	404
409	Long-term survival after allogeneic haematopoietic cell transplantation for AML in remission: single-centre results after TBI-based myeloablative and non-myeloablative conditioning. Bone Marrow Transplantation, 2013, 48, 1185-1191.	1.3	8
411	Efficacy of azithromycin in preventing lethal graft- <i>versus</i> -host disease. Clinical and Experimental Immunology, 2013, 171, 338-345.	1.1	15
412	Clinical applications of palifermin: amelioration of oral mucositis and other potential indications. Journal of Cellular and Molecular Medicine, 2013, 17, 1371-1384.	1.6	51
413	IL-22 deficiency in donor T cells attenuates murine acute graft-versus-host disease mortality while sparing the graft-versus-leukemia effect. Leukemia, 2013, 27, 1527-1537.	3.3	77
414	Concise Review: Acute Graft-Versus-Host Disease: Immunobiology, Prevention, and Treatment. Stem Cells Translational Medicine, 2013, 2, 25-32.	1.6	119
416	Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood, 2013, 121, 3511-3520.	0.6	47
417	A critical role for the retinoic acid signaling pathway in the pathophysiology of gastrointestinal graft-versus-host disease. Blood, 2013, 121, 3970-3980.	0.6	27
418	Inhibiting retinoic acid signaling ameliorates graft-versus-host disease by modifying T-cell differentiation and intestinal migration. Blood, 2013, 122, 2125-2134.	0.6	47
419	Administration of Hydrogen-Rich Saline Protects Mice From Lethal Acute Graft-Versus-Host Disease (aGVHD). Transplantation, 2013, 95, 658-662.	0.5	18
420	Current data on IL-17 and Th17 cells and implications for graft versus host disease. Einstein (Sao Paulo,) Tj ETQq(0 0 0 rgBT 0.3	/Overlock 10 14
421	Pathobiology of graft-versus-host disease. , 0, , 297-310.		0

#	Article	IF	Citations
422	The Role of Regulatory T Cells in the Biology of Graft Versus Host Disease. Frontiers in Immunology, 2013, 4, 163.	2.2	100
423	Lithothamnion muelleri Controls Inflammatory Responses, Target Organ Injury and Lethality Associated with Graft-versus-Host Disease in Mice. Marine Drugs, 2013, 11, 2595-2615.	2.2	12
424	Anaplerotic Metabolism of Alloreactive T Cells Provides a Metabolic Approach To Treat Graft-Versus-Host Disease. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 298-307.	1.3	62
425	Allogeneic hematopoietic cell transplantation for myelofibrosis using fludarabine-, intravenous busulfan- and low-dose TBI-based conditioning. Bone Marrow Transplantation, 2014, 49, 1162-1169.	1.3	30
426	The roles of myeloid-derived suppressor cells in transplantation. Expert Review of Clinical Immunology, 2014, 10, 1385-1394.	1.3	35
427	Nutritional Support in Adult Patients Undergoing Allogeneic Stem Cell Transplantation Following Myeloablative Conditioning. , 2014, , 1-15.		0
428	Progressive Proximal-to-Distal Reduction in Expression of the Tight Junction Complex in Colonic Epithelium of Virally-Suppressed HIV+ Individuals. PLoS Pathogens, 2014, 10, e1004198.	2.1	61
429	The Role of Dendritic Cells in Graft-Versus-Tumor Effect. Frontiers in Immunology, 2014, 5, 66.	2.2	14
430	Pretransplant Câ€reactive Protein as A Prognostic Marker in Allogeneic Stem Cell Transplantation. Scandinavian Journal of Immunology, 2014, 79, 206-213.	1.3	17
431	Recipient NK cell inactivation and intestinal barrier loss are required for MHC-matched graft-versus-host disease. Science Translational Medicine, 2014, 6, 243ra87.	5.8	43
432	Total Body Irradiation and Cyclophosphamide Plus Antithymocyte Globulin Regimen Is Well Tolerated and Promotes Stable Engraftment as a Preparative Regimen before T Cell–Replete Haploidentical Transplantation for Acute Leukemia. Biology of Blood and Marrow Transplantation, 2014, 20, 1176-1182.	2.0	21
433	Immune activation and microbial translocation in liver disease progression in HIV/hepatitis co-infected patients: results from the Icona Foundation study. BMC Infectious Diseases, 2014, 14, 79.	1.3	23
434	Haploidentical Stem Cell Transplantation for Acute Leukemia Patients Who Experienced Early Relapse Within One Year After the First Transplantation. Transplantation Proceedings, 2014, 46, 3611-3615.	0.3	3
435	Bone marrow T-cell infiltration during acute GVHD is associated with delayed B-cell recovery and function after HSCT. Blood, 2014, 124, 963-972.	0.6	62
436	Mucosal barrier injury, fever and infection in neutropenic patients with cancer: introducing the paradigm febrile mucositis. British Journal of Haematology, 2014, 167, 441-452.	1.2	106
437	Mast cells are crucial in the resistance against <i>Toxoplasma gondii</i> oral infection. European Journal of Immunology, 2014, 44, 2949-2954.	1.6	12
438	Oral Combined Therapy with Probiotics and Alloantigen Induces B Cell–Dependent Long-Lasting Specific Tolerance. Journal of Immunology, 2014, 192, 1928-1937.	0.4	21
439	Administration of Anti-CD20 mAb Is Highly Effective in Preventing but Ineffective in Treating Chronic Graft-Versus-Host Disease While Preserving Strong Graft-Versus-Leukemia Effects. Biology of Blood and Marrow Transplantation, 2014, 20, 1089-1103.	2.0	30

#	Article	IF	CITATIONS
440	A paradoxical pattern of indoleamine 2,3-dioxygenase expression in the colon tissues of patients with acute graft-versus-host disease. Experimental Hematology, 2014, 42, 734-740.	0.2	7
441	Optimization of the therapeutic efficacy of human umbilical cord blood–mesenchymal stromal cells in an NSG mouse xenograft model of graft-versus-host disease. Cytotherapy, 2014, 16, 298-308.	0.3	32
442	Siglec-G–CD24 axis controls the severity of graft-versus-host disease in mice. Blood, 2014, 123, 3512-3523.	0.6	76
443	The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood, 2014, 124, 354-362.	0.6	153
445	GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood, 2015, 126, 1621-1628.	0.6	104
446	Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood, 2015, 125, 4085-4094.	0.6	101
447	Colonic complications following human bone marrow transplantation. Journal of Coloproctology, 2015, 35, 046-052.	0.1	2
448	Infusionâ€related febrile reaction after haploidentical stem cell transplantation in children is associated with higher rates of engraftment syndrome and acute graftâ€versusâ€host disease. Pediatric Transplantation, 2015, 19, 918-924.	0.5	11
449	Vascular abnormalities and biomarkers in patients with hematopoietic stem cell transplantation. Journal of Hematopoietic Cell Transplantation, 2015, 4, 57-65.	0.1	0
450	In vitro polyclonal activation of conventional TÂcells with a CD28 superagonist protects mice from acute graft versus host disease. European Journal of Immunology, 2015, 45, 1997-2007.	1.6	8
451	Administration of Hydrogen-Rich Saline in Mice with Allogeneic Hematopoietic Stem-Cell Transplantation. Medical Science Monitor, 2015, 21, 749-754.	0.5	9
452	Systemic LPS Translocation Activates Cross-Presenting Dendritic Cells but Is Dispensable for the Breakdown of CD8+ T Cell Peripheral Tolerance in Irradiated Mice. PLoS ONE, 2015, 10, e0130041.	1.1	4
453	Attenuation of Hepatic Graft-versus-host Disease in Allogeneic Recipients of MyD88-deficient Donor Bone Marrow. Immune Network, 2015, 15, 125.	1.6	4
454	The Role of Intestinal Microbiota in Acute Graft-versus-Host Disease. Journal of Immunology Research, 2015, 2015, 1-9.	0.9	26
455	Intestinal microbiota-related effects on graft-versus-host disease. International Journal of Hematology, 2015, 101, 428-437.	0.7	51
456	Lung parenchyma-derived IL-6 promotes IL-17A–dependent acute lung injury after allogeneic stem cell transplantation. Blood, 2015, 125, 2435-2444.	0.6	73
457	Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation. Frontiers in Immunology, 2015, 6, 14.	2.2	42
458	Increased Bacterial Infections after Transfusion of Leukoreduced Non-Irradiated Blood Products in Recipients of Allogeneic Stem Cell Transplants after Reduced-Intensity Conditioning. Biology of Blood and Marrow Transplantation, 2015, 21, 526-530.	2.0	7

#	ARTICLE	IF	CITATIONS
459	Glucocorticoids attenuate acute graft-versus-host disease by suppressing the cytotoxic capacity of CD8 ⁺ T cells. Journal of Pathology, 2015, 235, 646-655.	2.1	33
460	Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Molecular Immunology, 2015, 67, 46-57.	1.0	100
461	ATM Gene Single Nucleotide Polymorphisms Predict Regimen-Related Gastrointestinal Toxicity in Patients Allografted after Reduced Conditioning. Biology of Blood and Marrow Transplantation, 2015, 21, 1136-1140.	2.0	5
462	Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. Journal of Experimental Medicine, 2015, 212, 1303-1321.	4.2	85
463	Impact of conditioning intensity and TBI on acute GVHD after hematopoietic cell transplantation. Bone Marrow Transplantation, 2015, 50, 559-565.	1.3	56
464	Rapid Functional Decline of Activated and Memory Graft-versus-Host–Reactive T Cells Encountering Host Antigens in the Absence of Inflammation. Journal of Immunology, 2015, 195, 1282-1292.	0.4	5
465	Valproic Acid Ameliorates Graft-versus-Host Disease by Downregulating Th1 and Th17 Cells. Journal of Immunology, 2015, 195, 1849-1857.	0.4	23
466	Mature T cell responses are controlled by microRNA-142. Journal of Clinical Investigation, 2015, 125, 2825-2840.	3.9	81
467	Cytokines in Graft-versus-Host Disease. Journal of Immunology, 2015, 194, 4604-4612.	0.4	156
468	Therapeutic benefits targeting B-cells in chronic graft-versus-host disease. International Journal of Hematology, 2015, 101, 438-451.	0.7	22
469	The Microbiome and Graft Versus Host Disease. Current Stem Cell Reports, 2015, 1, 39-47.	0.7	14
470	Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunology, 2015, 8, 720-730.	2.7	106
471	State-of-the-art acute and chronic GVHD treatment. International Journal of Hematology, 2015, 101, 452-466.	0.7	72
472	Emerging Influence of the Intestinal Microbiota during Allogeneic Hematopoietic Cell Transplantation: Control the Gut and the Body Will Follow. Biology of Blood and Marrow Transplantation, 2015, 21, 1360-1366.	2.0	42
473	A review of graft versus host disease. Journal of Pediatric Intensive Care, 2015, 03, 103-113.	0.4	0
474	Effect of the order of TBI and cyclophosphamide administration on the outcome of allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2015, 50, 1476-1479.	1.3	1
475	IL-35 inhibits acute graft-versus-host disease in a mouse model. International Immunopharmacology, 2015, 29, 383-392.	1.7	11
476	Cytokine serum levels during post-transplant adverse events in 61 pediatric patients after hematopoietic stem cell transplantation. BMC Cancer, 2015, 15, 607.	1.1	12

#	Article	IF	Citations
477	ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease. Science Translational Medicine, 2015, 7, 308ra160.	5.8	131
478	Toll-Like Receptor Polymorphisms in Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 259-265.	2.0	11
479	Autophagy and haematopoietic stem cell transplantation. Immunology and Cell Biology, 2015, 93, 43-50.	1.0	8
480	IL-35 mitigates murine acute graft-versus-host disease with retention of graft-versus-leukemia effects. Leukemia, 2015, 29, 939-946.	3.3	41
481	A Radio-Resistant Perforin-Expressing Lymphoid Population Controls Allogeneic T Cell Engraftment, Activation, and Onset of Graft-versus-Host Disease in Mice. Biology of Blood and Marrow Transplantation, 2015, 21, 242-249.	2.0	3
482	Biology of chronic graft- <i>vs</i> -host disease: Immune mechanisms and progress in biomarker discovery. World Journal of Transplantation, 2016, 6, 608.	0.6	30
483	Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight, $2016,1,e86850.$	2.3	43
484	Therapeutics for Graft-versus-Host Disease: From Conventional Therapies to Novel Virotherapeutic Strategies. Viruses, 2016, 8, 85.	1.5	8
485	The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Frontiers in Immunology, 2016, 7, 333.	2.2	44
486	Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. Journal of Clinical Investigation, 2016, 126, 1413-1424.	3.9	355
487	Mathematical modeling of erythrocyte chimerism informs genetic intervention strategies for sickle cell disease. American Journal of Hematology, 2016, 91, 931-937.	2.0	24
488	Discarded Human Thymus Is a Novel Source of Stable and Long-Lived Therapeutic Regulatory T Cells. American Journal of Transplantation, 2016, 16, 58-71.	2.6	84
489	Role of the intestinal mucosa in acute gastrointestinal GVHD. Hematology American Society of Hematology Education Program, 2016, 2016, 119-127.	0.9	6
490	Profile of Inflammation-Associated Proteins in Early Post-Transplant Samples of Patients After Allogeneic Hematopoietic Stem Cell Transplantation: a Preliminary Study. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 55-61.	1.0	3
491	Allospecific Tregs Expanded After Anergization Remain Suppressive in Inflammatory Conditions but Lack Expression of Gut-homing Molecules. Molecular Therapy, 2016, 24, 1126-1134.	3.7	1
492	Controlled, Randomized, Open-Label Trial of Risk-Stratified Corticosteroid Prevention of Acute Graft-Versus-Host Disease After Haploidentical Transplantation. Journal of Clinical Oncology, 2016, 34, 1855-1863.	0.8	100
493	Therapeutic targets and emerging treatment options in gastrointestinal acute graft-versus-host disease. Expert Opinion on Orphan Drugs, 2016, 4, 469-484.	0.5	4
494	Immune-Mediated Complications after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 1368-1375.	2.0	51

#	Article	IF	CITATIONS
495	Peritransplant Serum Albumin Decline Predicts Subsequent Severe Acute Graft-versus-Host Disease after Mucotoxic Myeloablative Conditioning. Biology of Blood and Marrow Transplantation, 2016, 22, 1137-1141.	2.0	11
496	Ruxolitinib treatment for GvHD in patients with myelofibrosis. Bone Marrow Transplantation, 2016, 51, 1584-1587.	1.3	30
497	Allogeneic hematopoietic stem cell transplantation for nonmalignant hematologic disorders using chemotherapy-only cytoreductive regimens and T-cell-depleted grafts from human leukocyte antigen–matched or –mismatched donors. Pediatric Hematology and Oncology, 2016, 33, 347-358.	0.3	3
498	Immunosuppressive therapy alleviates murine cytomegalovirus recurrence by reducing TNF- $\hat{l}\pm$ post cell transplantation with lethal GVHD. Antiviral Research, 2016, 133, 130-139.	1.9	4
502	Attenuation of graftâ€versusâ€hostâ€disease in NOD scid ILâ€2Rγ ^{â^²/â^²} (NSG) mice by ex vivo modulation of human CD4 ⁺ T cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 803-815.	1.1	16
503	Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood, 2016, 128, 2395-2402.	0.6	39
504	Pathology of Transplantation. , 2016, , .		1
505	Hematopoietic Stem Cell Transplantation. , 2016, , 401-449.		8
506	Evaluation of interleukin 12 and CD56+ lymphocyte cells in pediatric hematopoietic stem cell transplantation for early diagnosis of acute graft versus host disease. Transplant Immunology, 2016, 39, 25-29.	0.6	3
507	Cytosine-Phosphorothionate-Guanine Oligodeoxynucleotides Exacerbates Hemophagocytosis by Inducing Tumor Necrosis Factor–Alpha Production in Mice after Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 627-636.	2.0	3
508	Soluble heat shock protein 70 members in patients undergoing allogeneic hematopoietic cell transplantation. Transplant Immunology, 2016, 36, 25-31.	0.6	5
509	Atorvastatin for the Prophylaxis of Acute Graft-versus-Host Disease in Patients Undergoing HLA-Matched Related Donor Allogeneic Hematopoietic Stem Cell Transplantation (allo-HCT). Biology of Blood and Marrow Transplantation, 2016, 22, 71-79.	2.0	11
510	Ferritin as an early marker of graft rejection after allogeneic hematopoietic stem cell transplantation in pediatric patients. Annals of Hematology, 2016, 95, 311-323.	0.8	13
511	A preclinical acute GVHD mouse model based on chemotherapy conditioning and MHC-matched transplantation. Bone Marrow Transplantation, 2016, 51, 410-417.	1.3	37
512	MyD88 in donor bone marrow cells is critical for protection from acute intestinal graft-vshost disease. Mucosal Immunology, 2016, 9, 730-743.	2.7	14
513	Simvastatin ameliorates graft-vs-host disease by regulating angiopoietin-1 and angiopoietin-2 in a murine model. Leukemia Research, 2017, 55, 49-54.	0.4	6
514	Association between C-reactive protein levels in the first $1\hat{a} \in 3$ days post-transplant and allogeneic immune reactions. Biomarkers in Medicine, 2017, 11, 117-124.	0.6	1
515	Regulatory B cells promote graft-versus-host disease prevention and maintain graft-versus-leukemia activity following allogeneic bone marrow transplantation. Oncolmmunology, 2017, 6, e1284721.	2.1	28

#	Article	IF	CITATIONS
516	Acute graft-versus-host disease is regulated by an IL-17â€"sensitive microbiome. Blood, 2017, 129, 2172-2185.	0.6	63
517	Citrulline and Monocyte-Derived Macrophage Reactivity before Conditioning Predict Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2017, 23, 913-921.	2.0	13
518	Renal Clearable Luminescent WSe ₂ for Radioprotection of Nontargeted Tissues during Radiotherapy. Particle and Particle Systems Characterization, 2017, 34, 1700035.	1.2	24
519	Reduced-Intensity Conditioning with Busulfan, Fludarabine, and Antithymocyte Globulin for Hematopoietic Cell Transplantation from Unrelated or Haploidentical Family Donors in Patients with Acute Myeloid Leukemia in Remission. Biology of Blood and Marrow Transplantation, 2017, 23, 1555-1566.	2.0	21
520	Eomesodermin promotes the development of type 1 regulatory T (T $<$ sub $>$ R $<$ /sub $>$ 1) cells. Science Immunology, 2017, 2, .	5.6	118
521	GVHD prevents NK-cell–dependent leukemia and virus-specific innate immunity. Blood, 2017, 129, 630-642.	0.6	32
522	Harnessing bone marrow resident regulatory T cells to improve allogeneic stem cell transplant outcomes. International Journal of Hematology, 2017, 105, 153-161.	0.7	8
523	Low-dose post-transplant cyclophosphamide can mitigate GVHD and enhance the G-CSF/ATG induced GVHD protective activity and improve haploidentical transplant outcomes. Oncolmmunology, 2017, 6, e1356152.	2.1	28
524	A20 deletion in TÂcells modulates acute graftâ€versusâ€host disease in mice. European Journal of Immunology, 2017, 47, 1982-1988.	1.6	9
525	Dynamics of M1 macrophages in oral mucosal lesions during the development of acute graft- <i>versus</i> -host disease in rats. Clinical and Experimental Immunology, 2017, 190, 315-327.	1.1	10
526	CTLA4-CD28 chimera gene modification of T cells enhances the therapeutic efficacy of donor lymphocyte infusion for hematological malignancy. Experimental and Molecular Medicine, 2017, 49, e360-e360.	3.2	8
527	Differential T cell subsets and cytokine profile between steady-state and G-CSF-primed bone marrow and its association with graft-versus-host disease. Leukemia Research, 2017, 63, 47-52.	0.4	2
528	STAT3 Expression in Host Myeloid Cells Controls Graft-versus-Host Disease Severity. Biology of Blood and Marrow Transplantation, 2017, 23, 1622-1630.	2.0	7
529	Association between single nucleotide polymorphisms of tumor necrosis factor gene and grade II–IV acute GvHD: a systematic review and meta-analysis. Bone Marrow Transplantation, 2017, 52, 1423-1427.	1.3	4
530	Inhibition of acute lethal pulmonary inflammation by the IDO–AhR pathway. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5881-E5890.	3.3	58
531	6-Shogaol ameliorates injury to the intestinal mucosa and increases survival after high-dose abdominal irradiation. Journal of Functional Foods, 2017, 36, 63-71.	1.6	12
532	B Lymphocyte Chemoattractant (CXCL13) Is an Indicator of Acute Gastrointestinal GVHD in Murine Model. Inflammation, 2017, 40, 1678-1687.	1.7	3
533	$HIF-1\hat{l}\pm$ inhibitor echinomycin reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Journal of Translational Medicine, 2017, 15, 28.	1.8	19

#	Article	IF	CITATIONS
534	Pre-Transplantation Blockade of TNF-α-Mediated Oxygen Species Accumulation Protects Hematopoietic Stem Cells. Stem Cells, 2017, 35, 989-1002.	1.4	23
535	Cutaneous manifestations of graftâ€versusâ€host disease: role of the dermatologist. International Journal of Dermatology, 2017, 56, 131-140.	0.5	28
536	Impact of total body irradiation on successful neutrophil engraftment in unrelated bone marrow or cord blood transplantation. American Journal of Hematology, 2017, 92, 171-178.	2.0	38
537	An early-biomarker algorithm predicts lethal graft-versus-host disease and survival. JCI Insight, 2017, 2, e89798.	2.3	166
538	TLR/MyD88-mediated Innate Immunity in Intestinal Graft-versus-Host Disease. Immune Network, 2017, 17, 144.	1.6	26
539	Pathophysiology of GvHD and Other HSCT-Related Major Complications. Frontiers in Immunology, 2017, 8, 79.	2.2	166
540	Protection of Mice from Acute Graft-versus-Host Disease Requires CD28 Co-stimulation on Donor CD4+ Foxp3+ Regulatory T Cells. Frontiers in Immunology, 2017, 8, 721.	2.2	1
541	Is It Time to Reconsider the Lipopolysaccharide Paradigm in Acute Graft-Versus-Host Disease?. Frontiers in Immunology, 2017, 8, 952.	2.2	9
542	Pilot study of lithium to restore intestinal barrier function in severe graft-versus-host disease. PLoS ONE, 2017, 12, e0183284.	1.1	13
543	Gastrointestinal toxicity of immune checkpoint inhibitors: from mechanisms to management. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 222-234.	8.2	82
544	Tocilizumab, tacrolimus and methotrexate for the prevention of acute graft- <i>versus</i> -host disease: low incidence of lower gastrointestinal tract disease. Haematologica, 2018, 103, 717-727.	1.7	38
545	IL-2 and Beyond in Cancer Immunotherapy. Journal of Interferon and Cytokine Research, 2018, 38, 45-68.	0.5	83
546	Involvement of TLR3-Dependent PGES Expression in Immunosuppression by Human Bone Marrow Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2018, 14, 286-293.	5.6	18
547	MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function. Journal of Immunology, 2018, 200, 4170-4179.	0.4	24
548	Graft-Derived Reconstitution of Mucosal-Associated Invariant T Cells after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 242-251.	2.0	70
549	A critical role for donor-derived IL-22 in cutaneous chronic GVHD. American Journal of Transplantation, 2018, 18, 810-820.	2.6	45
550	New Insights into Graft-Versus-Host Disease and Graft Rejection. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 219-245.	9.6	55
551	Regulation of GVHD and GVL Activity via PD-L1 Interaction With PD-1 and CD80. Frontiers in Immunology, 2018, 9, 3061.	2.2	28

#	ARTICLE	IF	Citations
552	IL-17C Mitigates Murine Acute Graft-vsHost Disease by Promoting Intestinal Barrier Functions and Treg Differentiation. Frontiers in Immunology, 2018, 9, 2724.	2.2	5
553	Notch Signaling in Graft-Versus-Host Disease. , 2018, , 175-197.		0
554	Cucurbitacin E ameliorates acute graft-versus-host disease by modulating Th17 cell subsets and inhibiting STAT3 activation. Immunology Letters, 2018, 203, 62-69.	1.1	9
555	Stabilization of Foxp3 by Targeting JAK2 Enhances Efficacy of CD8 Induced Regulatory T Cells in the Prevention of Graft-versus-Host Disease. Journal of Immunology, 2018, 201, 2812-2823.	0.4	26
556	During acute graft versus host disease CD28 deletion in donor CD8+, but not CD4+, Tâcells maintain antileukemia responses in mice. European Journal of Immunology, 2018, 48, 2055-2067.	1.6	2
557	The impact of cytokine gene polymorphisms on the outcome of HLA matched sibling hematopoietic stem cell transplantation. Cytokine, 2018, 110, 404-411.	1.4	8
558	Pretransplant Serum Citrulline Predicts Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2018, 24, 2190-2196.	2.0	10
559	Proinflammatory Cytokine and Adipokine Levels in Adult Unrelated Marrow Donors Are Not Associated with Hematopoietic Cell Transplantation Outcomes. Biology of Blood and Marrow Transplantation, 2019, 25, 12-18.	2.0	4
560	MAGIC biomarkers of acute graft-versus-host disease: Biology and clinical application. Best Practice and Research in Clinical Haematology, 2019, 32, 101111.	0.7	13
561	Caspase-11 signaling enhances graft-versus-host disease. Nature Communications, 2019, 10, 4044.	5.8	19
562	Cytokines in GVHD and GVL. , 2019, , 293-322.		2
563	Chemokines and Graft-Versus-Host Disease. , 2019, , 323-347.		0
564	Altered donor P2X7 activity in human leukocytes correlates with P2RX7 genotype but does not affect the development of graft-versus-host disease in humanised mice. Purinergic Signalling, 2019, 15, 177-192.	1.1	17
565	Inflammatory Cytokine Networks in Gastrointestinal Tract Graft vs. Host Disease. Frontiers in Immunology, 2019, 10, 163.	2.2	29
566	The primacy of gastrointestinal tract antigen-presenting cells in lethal graft-versus-host disease. Blood, 2019, 134, 2139-2148.	0.6	55
567	IL-6 dysregulation originates in dendritic cells and mediates graft-versus-host disease via classical signaling. Blood, 2019, 134, 2092-2106.	0.6	29
568	FL/GCSF/AMD3100-mobilized Hematopoietic Stem Cells Induce Mixed Chimerism With Nonmyeloablative Conditioning and Transplantation Tolerance. Transplantation, 2019, 103, 1360-1371.	0.5	2
569	Associations between febrile neutropenia-related parameters and the risk of acute GVHD or non-relapse mortality after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2019, 54, 707-716.	1.3	3

#	ARTICLE	IF	Citations
570	Notch inhibition enhances graft-versus-leukemia while reducing graft-versus-host disease. European Journal of Pharmacology, 2019, 843, 226-232.	1.7	6
571	Hybrid resistance to parental bone marrow grafts in nonlethally irradiated mice. American Journal of Transplantation, 2019, 19, 591-596.	2.6	10
572	Host MyD88 signaling protects against acute graft-versus-host disease after allogeneic bone marrow transplantation. Clinical and Experimental Immunology, 2019, 195, 121-131.	1.1	4
57 3	Radiation and host retinoic acid signaling promote the induction of gutâ€homing donor T cells after allogeneic hematopoietic stem cell transplantation. American Journal of Transplantation, 2020, 20, 64-74.	2.6	2
574	Myeloid differentiation factor 88 signaling in donor T cells accelerates graft- <i>versus</i> host disease. Haematologica, 2020, 105, 226-234.	1.7	12
575	Tyrosine supplement ameliorates murine aGVHD by modulation of gut microbiome and metabolome. EBioMedicine, 2020, 61, 103048.	2.7	17
576	The safety and effectiveness of genetically corrected iPSCs derived from \hat{l}^2 -thalassaemia patients in nonmyeloablative \hat{l}^2 -thalassaemic mice. Stem Cell Research and Therapy, 2020, 11, 288.	2.4	4
577	Short chain fatty acids: Postbiotics/metabolites and graft versus host disease colitis. Seminars in Hematology, 2020, 57, 1-6.	1.8	24
578	Survival, Nonrelapse Mortality, and Relapse-Related Mortality After Allogeneic Hematopoietic Cell Transplantation: Comparing 2003–2007 Versus 2013–2017 Cohorts. Annals of Internal Medicine, 2020, 172, 229.	2.0	157
579	The Prolyl Hydroxylase Inhibitor Dimethyl Oxalyl Glycine Decreases Early Gastrointestinal GVHD in Experimental Allogeneic Hematopoietic Cell Transplantation. Transplantation, 2020, 104, 2507-2515.	0.5	5
580	CD4+CD8+ T-Lymphocytes in Xenogeneic and Human Graft-versus-Host Disease. Frontiers in Immunology, 2020, 11, 579776.	2.2	9
581	Targeting Interleukin-2-Inducible T-Cell Kinase (ITK) Differentiates GVL and GVHD in Allo-HSCT. Frontiers in Immunology, 2020, 11, 593863.	2.2	21
582	Treating From the Inside Out: Relevance of Fecal Microbiota Transplantation to Counteract Gut Damage in GVHD and HIV Infection. Frontiers in Medicine, 2020, 7, 421.	1.2	17
583	Carnitine Profile Changes in Pediatric Hematopoietic Stem Cell Transplant: New Role for Carnitine?. Journal of Pediatric Hematology/Oncology, 2020, 42, e321-e327.	0.3	1
584	Steroidâ€refractory acute graftâ€versusâ€host disease graded IIIâ€IV in pediatric patients. A monoâ€institutional experience with a longâ€term followâ€up. Pediatric Transplantation, 2020, 24, e13806.	0.5	2
585	Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Science Translational Medicine, 2020, 12, .	5.8	89
586	Donor's graft <i>ex vivo</i> Tâ€cell depletion with fludarabine reduces graftâ€versusâ€host disease signs and improves survival after intestinal transplantation – an experimental study. Transplant International, 2020, 33, 1302-1311.	0.8	4
587	Cytokines and costimulation in acute graft-versus-host disease. Blood, 2020, 136, 418-428.	0.6	66

#	Article	IF	Citations
588	Defibrotide inhibits donor leucocyteâ€endothelial interactions and protects against acute graftâ€versusâ€host disease. Journal of Cellular and Molecular Medicine, 2020, 24, 8031-8044.	1.6	23
589	Insights into the role of the JAK/STAT signaling pathway in graft- <i>versus</i> -host disease. Therapeutic Advances in Hematology, 2020, 11, 204062072091448.	1.1	19
590	Tissue mast cell counts may be associated with decreased severity of gastrointestinal acute GVHD and nonrelapse mortality. Blood Advances, 2020, 4, 2317-2324.	2.5	1
591	Prevention of acute graft-versus-host-disease by Withaferin a via suppression of AKT/mTOR pathway. International Immunopharmacology, 2020, 84, 106575.	1.7	8
592	Ruxolitinib for the treatment of graft-versus-host disease. Expert Review of Clinical Immunology, 2020, 16, 347-359.	1.3	15
593	GCNT1-Mediated <i>O</i> -Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. Journal of Immunology, 2020, 204, 1674-1688.	0.4	17
594	Paving the way towards universal treatment with allogenic T cells. Immunologic Research, 2020, 68, 63-70.	1.3	20
595	Berberine combined with cyclosporine A alleviates acute graft-versus-host disease in murine models. International Immunopharmacology, 2020, 81, 106205.	1.7	6
596	Continuous pre- and post-transplant exposure to a disease-associated gut microbiome promotes hyper-acute graft-versus-host disease in wild-type mice. Gut Microbes, 2020, 11, 754-770.	4.3	17
597	Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Reports, 2020, 21, e48052.	2.0	129
598	Repurposing a novel anti-cancer RXR agonist to attenuate murine acute GVHD and maintain graft-versus-leukemia responses. Blood, 2021, 137, 1090-1103.	0.6	8
599	Retinoic acid–responsive CD8 effector T cells are selectively increased in IL-23–rich tissue in gastrointestinal GVHD. Blood, 2021, 137, 702-717.	0.6	6
600	Graft-Versus-Host Disease (GvHD) Prophylaxis. , 2021, , 153-186.		0
601	Functional Contributions of Antigen Presenting Cells in Chronic Graft-Versus-Host Disease. Frontiers in Immunology, 2021, 12, 614183.	2.2	4
602	Comparison of myeloablative and reduced intensity conditioning unrelated donor allogeneic peripheral blood stem cell transplant outcomes for AML using thymoglobulin for GVHD prophylaxis. Annals of Hematology, 2021, 100, 969-978.	0.8	0
603	Case Series: Development of Polyps as a Late Effect After Total Body Irradiation-based Hematopoietic Cell Transplantation in Children With High-risk Leukemia. Journal of Pediatric Hematology/Oncology, 2021, 43, e1159-e1163.	0.3	2
604	The Role of Myeloid-Derived Suppressor Cells (MDSCs) in Graft-versus-Host Disease (GVHD). Journal of Clinical Medicine, 2021, 10, 2050.	1.0	23
605	IL-17-producing $\hat{I}^3\hat{I}$ T cells ameliorate intestinal acute graft-versus-host disease by recruitment of Gr-1+CD11b+ myeloid-derived suppressor cells. Bone Marrow Transplantation, 2021, 56, 2389-2399.	1.3	1

#	Article	IF	Citations
606	DNAM-1 regulates Foxp3 expression in regulatory T cells by interfering with TIGIT under inflammatory conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	24
607	LYG1 Deficiency Attenuates the Severity of Acute Graft-Versus-Host Disease via Skewing Allogeneic T Cells Polarization Towards Treg Cells. Frontiers in Immunology, 2021, 12, 647894.	2.2	3
608	Advances in Intestinal Barrier Preservation and Restoration in the Allogeneic Hematopoietic Cell Transplantation Setting. Journal of Clinical Medicine, 2021, 10, 2508.	1.0	10
609	A phase 2 trial of the somatostatin analog pasireotide to prevent GI toxicity and acute GVHD in allogeneic hematopoietic stem cell transplant. PLoS ONE, 2021, 16, e0252995.	1.1	3
610	Interfering With Inflammation: Heterogeneous Effects of Interferons in Graft-Versus-Host Disease of the Gastrointestinal Tract and Inflammatory Bowel Disease. Frontiers in Immunology, 2021, 12, 705342.	2.2	4
611	Immunomodulatory Therapies for the Treatment of Graft-versus-host Disease. HemaSphere, 2021, 5, e581.	1.2	10
612	Native Spleen Preservation During Visceral Transplantation Inhibits Graft-Versus-Host-Disease Development. Annals of Surgery, 2023, 277, e235-e244.	2.1	5
613	Compound A Increases Cell Infiltration in Target Organs of Acute Graft-versus-Host Disease (aGVHD) in a Mouse Model. Molecules, 2021, 26, 4237.	1.7	0
614	Early remodeling of the colonic mucosa after allogeneic hematopoietic stem cells transplantation: An open″abel controlled pilot study on 19 patients. United European Gastroenterology Journal, 2021, 9, 955-963.	1.6	3
615	The Pathophysiology and Treatment of Graft-Versus-Host Disease: Lessons Learnt From Animal Models. Frontiers in Immunology, 2021, 12, 715424.	2.2	15
616	Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Frontiers in Cell and Developmental Biology, 2021, 9, 737880.	1.8	7
617	Donor bone marrow–derived macrophage MHC II drives neuroinflammation and altered behavior during chronic GVHD in mice. Blood, 2022, 139, 1389-1408.	0.6	14
618	Murine Models Provide New Insights Into Pathogenesis of Chronic Graft-Versus-Host Disease in Humans. Frontiers in Immunology, 2021, 12, 700857.	2.2	5
619	Platelet and Red Blood Cell Transfusions and Risk of Acute Graft-versus-Host Disease after Myeloablative Allogeneic Hematopoietic Cell Transplantation. Transplantation and Cellular Therapy, 2021, 27, 866.e1-866.e9.	0.6	2
620	First Multimodal, Three-Dimensional, Image-Guided Total Marrow Irradiation Model for Preclinical Bone Marrow Transplantation Studies. International Journal of Radiation Oncology Biology Physics, 2021, 111, 671-683.	0.4	8
621	Graft Versus Host Disease: Management of Acute and Chronic Disease. Organ and Tissue Transplantation, 2021, , 365-393.	0.0	0
622	The Pathophysiology of Graft-VsHost Disease. , 0, , 353-368.		18
623	Overview of Hematopoietic Cell Transplantation Immunology. , 0, , 16-30.		1

#	Article	IF	CITATIONS
624	The Yin and Yang of Adaptive Immunity in Allogeneic Hematopoietic Cell Transplantation: Donor Antigen-Presenting Cells Can Either Augment or Inhibit Donor T Cell Alloreactivity., 2007, 590, 69-87.		3
625	Endothelial and Epithelial Barriers in Graft-Versus-Host Disease. Advances in Experimental Medicine and Biology, 2013, 763, 105-131.	0.8	9
626	Nutritional Support in Adult Patients Undergoing Allogeneic Stem Cell Transplantation Following Myeloablative Conditioning., 2015,, 593-605.		3
627	Non-Myeloablative Hematopoietic Stem Cell Transplantation (NST) in the Treatment of Human Malignancies: From Animal Models to Clinical Practice. Cancer Treatment and Research, 2002, 110, 113-136.	0.2	7
628	Adoptive Immunotherapy Using Donor Leukocyte Infusions to Treat Relapsed Hematologic Malignancies after Allogeneic Bone Marrow Transplantation. Cancer Treatment and Research, 1999, 101, 233-266.	0.2	2
629	Non Myeloablative "Mini Transplants― Cancer Treatment and Research, 1999, , 97-108.	0.2	37
630	Nonmyeloablative Transplantation. , 2004, , 469-484.		1
631	Acute Graft-vs-Host Disease. , 2004, , 159-184.		2
632	Pathophysiology of Acute Graft-versus-Host Disease. , 2008, , 563-588.		1
633	Treatment of Acute Graft-vs-Host Disease. , 2010, , 747-765.		2
634	Cellular Therapy for Hematology Malignancies: Allogeneic Hematopoietic Stem Transplantation, Graft-Versus-Host Disease, and Graft Versus Leukemia Effects., 2012,, 303-366.		1
635	Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. British Journal of Haematology, 2000, 111, 18-29.	1.2	179
636	Reinventing bone marrow transplantation: reducing toxicity using nonmyeloablative, preparative regimens and induction of graft-versus-malignancy. Current Opinion in Oncology, 1999, 11, 87.	1.1	67
637	ACUTE INTESTINAL GRAFT-VERSUS-HOST DISEASE IN A SYNGENEIC BONE MARROW TRANSPLANT RECIPIENT. Transplantation, 1998, 66, 1251-1253.	0.5	11
638	PRETRANSPLANT CHEMOTHERAPY REDUCES INFLAMMATORY CYTOKINE PRODUCTION AND ACUTE GRAFT-VERSUS-HOST DISEASE AFTER ALLOGENEIC BONE MARROW TRANSPLANTATION. Transplantation, 1999, 67, 1478-1480.	0.5	25
641	Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in T regulatory cells. JCI Insight, 2019, 4, .	2.3	58
643	PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight, 2020, 5, .	2.3	25
644	Siglec-G represses DAMP-mediated effects on T cells. JCI Insight, 2017, 2, .	2.3	37

#	Article	IF	Citations
645	Host interleukin 6 production regulates inflammation but not tryptophan metabolism in the brain during murine GVHD. JCl Insight, 2017, 2, .	2.3	12
646	Enhanced allostimulatory activity of host antigen-presenting cells in old mice intensifies acute graft-versus-host disease. Journal of Clinical Investigation, 2002, 109, 1249-1256.	3.9	76
647	Preterminal host dendritic cells in irradiated mice prime CD8+ T cell–mediated acute graft-versus-host disease. Journal of Clinical Investigation, 2002, 109, 1335-1344.	3.9	162
648	Hepatocyte growth factor ameliorates acute graft-versus-host disease and promotes hematopoietic function. Journal of Clinical Investigation, 2001, 107, 1365-1373.	3.9	104
649	LPS antagonism reduces graft-versus-host disease and preserves graft-versus-leukemia activity after experimental bone marrow transplantation. Journal of Clinical Investigation, 2001, 107, 1581-1589.	3.9	258
650	Preterminal host dendritic cells in irradiated mice prime CD8+ T cell–mediated acute graft-versus-host disease. Journal of Clinical Investigation, 2002, 109, 1335-1344.	3.9	97
651	Importance of minor histocompatibility antigen expression by nonhematopoietic tissues in a CD4+ T cell–mediated graft-versus-host disease model. Journal of Clinical Investigation, 2003, 112, 1880-1886.	3.9	63
652	NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. Journal of Clinical Investigation, 2005, 115, 3093-3103.	3.9	114
653	Interleukin-11 promotes T cell polarization and prevents acute graft-versus-host disease after allogeneic bone marrow transplantation Journal of Clinical Investigation, 1998, 102, 115-123.	3.9	256
654	Differential effects of the absence of interferon-gamma and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice Journal of Clinical Investigation, 1998, 102, 1742-1748.	3.9	201
655	Nonhematopoietic antigen blocks memory programming of alloreactive CD8+ T cells and drives their eventual exhaustion in mouse models of bone marrow transplantation. Journal of Clinical Investigation, 2010, 120, 3855-3868.	3.9	52
656	Tumor necrosis factor- alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease Journal of Clinical Investigation, 1998, 102, 1882-1891.	3.9	306
657	Differential roles of IL-1 and TNF- \hat{l}_{\pm} on graft-versus-host disease and graft versus leukemia. Journal of Clinical Investigation, 1999, 104, 459-467.	3.9	229
658	IL-11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation. Journal of Clinical Investigation, 1999, 104, 317-325.	3.9	159
659	CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease. Journal of Clinical Investigation, 2014, 124, 4266-4280.	3.9	173
660	A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease. Journal of Clinical Investigation, 2016, 126, 3541-3555.	3.9	30
661	Differential requirements for myeloid leukemia IFN- \hat{I}^3 conditioning determine graft-versus-leukemia resistance and sensitivity. Journal of Clinical Investigation, 2017, 127, 2765-2776.	3.9	18
662	Cytokine mediators of chronic graft-versus-host disease. Journal of Clinical Investigation, 2017, 127, 2452-2463.	3.9	74

#	Article	IF	CITATIONS
663	Host Reactive Donor T Cells Are Associated With Lung Injury After Experimental Allogeneic Bone Marrow Transplantation. Blood, 1998, 92, 2571-2580.	0.6	18
664	Keratinocyte Growth Factor Separates Graft-Versus-Leukemia Effects From Graft-Versus-Host Disease. Blood, 1999, 94, 825-831.	0.6	8
666	The Pathophysiology of Graft-vsHost Disease. , 2004, , 1-34.		4
667	Natural Killer Cell Mediated Missing-Self Recognition Can Protect Mice from Primary Chronic Myeloid Leukemia In Vivo. PLoS ONE, 2011, 6, e27639.	1.1	14
668	Thiol/Redox Metabolomic Profiling Implicates GSH Dysregulation in Early Experimental Graft versus Host Disease (GVHD). PLoS ONE, 2014, 9, e88868.	1,1	25
669	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	2.1	92
670	The glucocorticoid receptor in recipient cells keeps cytokine secretion in acute graft-versus-host disease at bay. Oncotarget, 2018, 9, 15437-15450.	0.8	14
671	Innate Immune Determinants of Graft-Versus-Host Disease and Bidirectional Immune Tolerance in Allogeneic Transplantation. OBM Transplantation, 2019, 3, 1-1.	0.2	2
672	Kinetics of IFN- \hat{I}^3 and IL-17 Production by CD4 and CD8 T Cells during Acute Graft-versus-Host Disease. Immune Network, 2014, 14, 89.	1.6	10
673	Decreased Risk of Acute Graft-versus-Host Disease Using Reduced Intensity Conditioning Compared to Myeloablative Conditioning is Independent of Donor-Recipient T-cell Chimerism. Journal of Transplantation Technologies & Research, 2014, 04, .	0.1	1
674	Enhancement of Graft-versus-leukemia Effects by Mesenchymal Stem Cells in Mixed Chimerisim after a Murine Non-myeloablative Hematopoietic Stem Cell Transplantation. The Korean Journal of Hematology, 2008, 43, 219.	0.7	2
675	Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury?. Clinics, 2016, 71, 544-549.	0.6	9
676	Cyclosporine A but Not Corticosteroids Support Efficacy of Ex Vivo Expanded, Adoptively Transferred Human Tregs in GvHD. Frontiers in Immunology, 2021, 12, 716629.	2.2	4
677	T Cell Subsets in Graft Versus Host Disease and Graft Versus Tumor. Frontiers in Immunology, 2021, 12, 761448.	2.2	42
678	New therapeutic targets and biomarkers for acute graft-versus-host disease (GVHD). Expert Opinion on Therapeutic Targets, 2021, 25, 761-771.	1.5	10
679	Inhibition of Bromodomain and Extra Terminal (BET) Domain Activity Modulates the IL-23R/IL-17 Axis and Suppresses Acute Graft-Versus-Host Disease. Frontiers in Oncology, 2021, 11, 760789.	1.3	7
680	Experimental Animal Models in the Study of GVL Reactions. , 2000, , .		0
681	Activation of macrophage cytostatic effector mechanisms during acute graft-versus-host disease: release of intracellular iron and nitric oxide–mediated cytostasis. Blood, 2000, 96, 1836-1843.	0.6	14

#	Article	IF	CITATIONS
682	ALLOJENEİK KÖK HÜCRE TRANSPLANTASYONU SONRASI Th1/Th2 SİTOKİNLER VE SOLUBL ADEZYON MOLEKÜLLERİ: KÖK HÜCRE KAYNAĞI VE DALTEPARİN KULLANIMININ ETKİLERİ. Ankara Üniversitesi Mecmuası, 2001, 54, 1.	TÄ≎±po FakÁ	Ă¼oltesi
683	Pathogenic mechanisms of Acute Graft versus Host Disease. Revista Brasileira De Hematologia E Hemoterapia, 2002, 24, .	0.7	1
684	In Vivo Models for the Study of Graft-vs-Host Disease and Graft-vs-Tumor Effects., 2003,, 373-386.		0
685	Pathophysiology of Lung Injury After Hematopoietic Stem Cell Transplantation. , 2004, , 271-295.		0
686	Pathophysiology of Acute Graft-vs-Host Disease. , 2004, , 135-157.		1
687	Chemokines and Graft-vsHost Disease. , 2004, , 125-153.		0
688	Graft-Versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation with Non-Myeloablative Conditioning: Experiences at a Single Center. The Korean Journal of Hematology, 2006, 41, 92.	0.7	0
689	Therapeutic Effect of CXCR3-Expressing Regulatory T Cells on Liver and Intestinal Damages in a Murine Acute GVHD Model Blood, 2007, 110, 2161-2161.	0.6	0
690	Lung Injury after Hematopoietic Stem Cell Transplantation. , 2008, , 495-536.		0
691	Adoptive Transfer of T-Bodies: Toward an Effective Cancer Immunotherapy. , 2009, , 285-299.		0
693	In Vivo Models of Allogeneic Hematopoietic Stem Cell Transplantation. , 2010, , 789-805.		0
694	Stem Cell Transplantation for Non-Hodgkin's Lymphomas. , 2013, , 371-402.		0
695	Macrophage Classical Activation. , 0, , 301-323.		0
696	Granulocyte Colony-Stimulating Factor–Mobilized Allogeneic Stem Cell Transplantation Maintains Graft-Versus-Leukemia Effects Through a Perforin-Dependent Pathway While Preventing Graft-Versus-Host Disease. Blood, 1999, 93, 4071-4078.	0.6	4
697	Graft Versus Host Disease (GVHD)., 2016,, 429-449.		0
698	Cell Death and Skin Disease. , 2017, , 201-217.		0
699	Allogeneic haematopoietic stem cell transplantation. , 2019, , 257-266.		0
700	Graft Versus Host Disease: Management of Acute and Chronic Disease. Organ and Tissue Transplantation, 2021, , 1-30.	0.0	0

#	Article	IF	CITATIONS
701	Graft-versus-host disease., 2020, , 114-117.e1.		1
703	Enhanced allostimulatory activity of host antigen-presenting cells in old mice intensifies acute graft-versus-host disease. Journal of Clinical Investigation, 2002, 109, 1249-1256.	3.9	36
704	Does Total Body Irradiation Have a Favorable Impact on Thrombocyte Engraftment as per Neutrophil Engraftment in Allogeneic Stem Cell Transplantation?. Cureus, 2021, 13, e19462.	0.2	1
705	CCL8 deficiency in the host abrogates early mortality of acute graft-versus-host disease in mice with dysregulated IL-6 expression. Experimental Hematology, 2022, 106, 47-57.	0.2	2
706	Translational Clinical Strategies for the Prevention of Gastrointestinal Tract Graft Versus Host Disease. Frontiers in Immunology, 2021, 12, 779076.	2.2	2
707	A Polymorphism of Bactericidal/Permeability-Increasing Protein Affects Its Neutralization Efficiency towards Lipopolysaccharide. International Journal of Molecular Sciences, 2022, 23, 1324.	1.8	5
708	Mouse models of graft-versus-host disease. Methods in Cell Biology, 2022, 168, 41-66.	0.5	1
709	High-density lipoprotein infusion protects from acute graft-versus-host disease in experimental allogeneic hematopoietic cell transplantation. American Journal of Transplantation, 2022, 22, 1350-1361.	2.6	6
710	mTOR Signaling Regulates the Development and Therapeutic Efficacy of PMN-MDSCs in Acute GVHD. Frontiers in Cell and Developmental Biology, 2021, 9, 741911.	1.8	2
711	Modeling acute graft-versus-host disease (aGVHD) in murine bone marrow transplantation (BMT) models with MHC disparity. Methods in Cell Biology, 2022, 168, 19-39.	0.5	1
712	Human Monocyte-Derived Suppressor Cell Supernatant Induces Immunoregulatory Effects and Mitigates xenoGvHD. Frontiers in Immunology, 2022, 13, 827712.	2.2	2
722	Nutritional Support of Hematopoietic Cell Recipients. , 0, , 883-893.		1
724	Aryl hydrocarbon receptor–targeted therapy for CD4+ T cell–mediated idiopathic pneumonia syndrome in mice. Blood, 2022, 139, 3325-3339.	0.6	6
725	Assessment of systemic and gastrointestinal tissue damage biomarkers for GVHD risk stratification. Blood Advances, 2022, 6, 3707-3715.	2.5	9
727	Bone marrow transplantation induces changes in the gut microbiota that chronically increase the cytokine response pattern of splenocytes. Scientific Reports, 2022, 12, 6883.	1.6	2
729	Reversing radiation-induced immunosuppression using a new therapeutic modality. Life Sciences in Space Research, 2022, 35, 127-139.	1.2	15
730	Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunology, 2022, 15, 605-619.	2.7	8
731	Characteristics of Graft-Versus-Host Disease (GvHD) After Post-Transplantation Cyclophosphamide Versus Conventional GvHD Prophylaxis. Transplantation and Cellular Therapy, 2022, 28, 681-693.	0.6	13

#	ARTICLE	IF	CITATIONS
732	Total marrow and lymphoid irradiation as conditioning in haploidentical transplant with posttransplant cyclophosphamide. Blood Advances, 2022, 6, 4098-4106.	2.5	9
733	Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Frontiers in Immunology, 0, 13 , .	2.2	10
735	Insights into mechanisms of graft-versus-host disease through humanised mouse models. Bioscience Reports, 2022, 42, .	1.1	7
736	Induction of syngeneic graftâ€versusâ€host disease in LPS hyporesponsive C3H/HeJ mice. Journal of Leukocyte Biology, 2001, 70, 873-880.	1.5	9
737	Glucocorticoid and glycolysis inhibitors cooperatively abrogate acute graft-versus-host disease. Science China Life Sciences, 2023, 66, 528-544.	2.3	3
738	Disturbances in microbial skin recolonization and cutaneous immune response following allogeneic stem cell transfer. Leukemia, 2022, 36, 2705-2714.	3.3	3
739	Enforced mesenchymal stem cell tissue colonization counteracts immunopathology. Npj Regenerative Medicine, 2022, 7, .	2.5	6
741	Controversies and expectations for the prevention of GVHD: A biological and clinical perspective. Frontiers in Immunology, $0,13,.$	2.2	5
742	Milestones in acute GVHD pathophysiology. Frontiers in Immunology, 0, 13, .	2.2	3
743	Long-term follow up of patients with hematological malignancies treated with total body irradiation using intensity modulated radiation therapy. Frontiers in Oncology, 0, 12 , .	1.3	2
744	EPC infusion ameliorates acute graft-versus-host disease-related endothelial injury after allogeneic bone marrow transplantation. Frontiers in Immunology, $0,13,.$	2.2	2
745	Impact of total marrow/lymphoid irradiation dose to the intestine on graft-versus-host disease in allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Frontiers in Oncology, 0, 12, .	1.3	1
746	Ex Vivo Anti-CD3 Antibody-Activated Donor T Cells Have a Reduced Ability to Cause Lethal Murine Graft-Versus-Host Disease but Retain Their Ability to Facilitate Alloengraftment. Journal of Immunology, 1998, 161, 2610-2619.	0.4	38
747	Visualization, Fate, and Pathogenicity of Antigen-Specific CD8+ T Cells in the Graft-Versus-Host Reaction. Journal of Immunology, 1999, 163, 4780-4787.	0.4	14
748	Role of Immunoregulatory Donor T Cells in Suppression of Graft-Versus-Host Disease Following Donor Leukocyte Infusion Therapy. Journal of Immunology, 1999, 163, 6479-6487.	0.4	48
749	Insights and strategies to promote immune tolerance in allogeneic hematopoietic stem cell transplantation recipients., 2023,, 329-360.		0
750	Cytokine profiling during conditioning in haploidentical stem cell transplantation and its prognostic impact on early transplant outcomes. Transplant Immunology, 2023, 78, 101830.	0.6	1
751	Advantages of Higher Busulfan Dose Intensity in Fludarabine-Combined Conditioning for Patients with Acute Myeloid Leukemia Undergoing Cord Blood Transplantation. Transplantation and Cellular Therapy, 2023, , .	0.6	0

#	Article	IF	CITATIONS
752	Enforced gut homing of murine regulatory T cells reduces early graft-versus-host disease severity. American Journal of Transplantation, 2023, , .	2.6	1
753	Impact of oral microbiota on pathophysiology of GVHD. Frontiers in Immunology, 0, 14, .	2.2	2
754	Effect of lethal total body irradiation on bone marrow chimerism, acute graft-versus-host disease, and tumor engraftment in mouse models: impact of different radiation techniques using low- and high-energy X-rays. Strahlentherapie Und Onkologie, 0, , .	1.0	1
755	The Benefits of the Post-Transplant Cyclophosphamide in Both Haploidentical and Mismatched Unrelated Donor Setting in Allogeneic Stem Cells Transplantation. International Journal of Molecular Sciences, 2023, 24, 5764.	1.8	3
756	Total marrow irradiation for second allogeneic hematopoietic stem cell transplantation in patients with advanced acute leukemia. Transplantation and Cellular Therapy, 2023, , .	0.6	0