Determinants of work produced by skeletal muscle: pot relaxation

American Journal of Physiology - Cell Physiology 273, C1049-C1056

DOI: 10.1152/ajpcell.1997.273.3.c1049

Citation Report

#	Article	IF	CITATIONS
1	Which factors determine the optimal pedaling rate in sprint cycling?. Medicine and Science in Sports and Exercise, 2000, 32, 1927-1934.	0.2	73
2	A governing relationship for repetitive muscular contraction. Journal of Biomechanics, 2000, 33, 969-974.	0.9	34
3	The Neuromuscular Transform: The Dynamic, Nonlinear Link Between Motor Neuron Firing Patterns and Muscle Contraction in Rhythmic Behaviors. Journal of Neurophysiology, 2000, 83, 207-231.	0.9	85
4	The Neuromuscular Transform Constrains the Production of Functional Rhythmic Behaviors. Journal of Neurophysiology, 2000, 83, 232-259.	0.9	32
5	Muscle Activation and Deactivation Dynamics: The Governing Properties in Fast Cyclical Human Movement Performance?. Exercise and Sport Sciences Reviews, 2001, 29, 76-81.	1.6	54
6	Pedal trajectory alters maximal single-leg cycling power. Medicine and Science in Sports and Exercise, 2002, 34, 1332-1336.	0.2	21
7	Plasticity of skeletal muscle phenotype: Mechanical consequences. Muscle and Nerve, 2002, 26, 740-768.	1.0	97
8	Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R916-R926.	0.9	13
9	Force–velocity properties of two avian hindlimb muscles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 137, 711-721.	0.8	63
10	Contractile abilities of normal and "mini―triceps surae muscles from mice (Mus domesticus) selectively bred for high voluntary wheel running. Journal of Applied Physiology, 2005, 99, 1308-1316.	1.2	52
11	Functional Properties of Skeletal Muscle. Fish Physiology, 2005, 23, 179-240.	0.2	20
12	Understanding Sprint-Cycling Performance: The Integration of Muscle Power, Resistance, and Modeling. International Journal of Sports Physiology and Performance, 2007, 2, 5-21.	1.1	71
13	Scaling of contractile properties of catfish feeding muscles. Journal of Experimental Biology, 2007, 210, 1183-1193.	0.8	41
14	Force-Velocity and Power-Velocity Relationships during Maximal Short-Term Rowing Ergometry. Medicine and Science in Sports and Exercise, 2007, 39, 358-364.	0.2	15
15	Muscle Power. Exercise and Sport Sciences Reviews, 2007, 35, 74-81.	1.6	12
17	Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children. European Journal of Applied Physiology, 2007, 101, 313-320.	1.2	15
18	Explosive Jumping: Extreme Morphological and Physiological Specializations of Australian Rocket Frogs (<i>Litoria nasuta</i>). Physiological and Biochemical Zoology, 2008, 81, 176-185.	0.6	41
19	Plasticity of muscle function in a thermoregulating ectotherm (<i>Crocodylus porosus</i>): biomechanics and metabolism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology. 2008, 294, R1024-R1032.	0.9	22

CITATION REPORT

#	Article	IF	CITATIONS
20	Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline. Journal of Experimental Biology, 2008, 211, 1882-1892.	0.8	36
21	Effect of stimulation frequency on force, net power output, and fatigue in mouse soleus muscle in vitro. Canadian Journal of Physiology and Pharmacology, 2009, 87, 203-210.	0.7	15
22	Frequency-dependent power output and skeletal muscle design. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152, 407-417.	0.8	13
23	Influence of crank length and crank width on maximal hand cycling power and cadence. European Journal of Applied Physiology, 2009, 106, 749-757.	1.2	25
24	Motor unit recruitment for dynamic tasks: current understanding and future directions. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 57-66.	0.7	101
25	Joint-specific power production and fatigue during maximal cycling. Journal of Biomechanics, 2009, 42, 474-479.	0.9	101
26	Limitations of relaxation kinetics on muscular work. Acta Physiologica, 2010, 198, 191-198.	1.8	8
27	The effects on extremities' muscles while cycling with different speed and gradients. , 2010, , .		Ο
28	Shifts in a single muscle's control potential of body dynamics are determined by mechanical feedback. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1606-1620.	1.8	33
29	HOW MUSCLES FUNCTION – THE WORK LOOP TECHNIQUE. Journal of Experimental Biology, 2012, 215, 1051-1052.	0.8	20
30	Musculoskeletal shoulder models: A technical review and proposals for research foci. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227, 1041-1057.	1.0	26
31	Early deactivation of slower muscle fibres at high movement frequencies. Journal of Experimental Biology, 2014, 217, 3528-34.	0.8	14
32	Effect of chainring ovality on joint power during cycling at different workloads and cadences. Sports Biomechanics, 2014, 13, 97-108.	0.8	15
33	Joint-Specific Power-Pedaling Rate Relationships During Maximal Cycling. Journal of Applied Biomechanics, 2014, 30, 423-430.	0.3	36
34	Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5891-8.	3.3	30
35	Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions. Journal of Experimental Biology, 2015, 218, 3150-9.	0.8	32
36	Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling. Medicine and Science in Sports and Exercise, 2016, 48, 705-713.	0.2	15
37	The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling. Medicine and Science in Sports and Exercise, 2016, 48, 869-878.	0.2	15

CITATION REPORT

#	Article	IF	CITATIONS
38	Maximal Force-Velocity and Power-Velocity Characteristics in Cycling: Assessment and Relevance. , 2018, , 7-31.		6
39	Does a two-element muscle model offer advantages when estimating ankle plantar flexor forces during human cycling?. Journal of Biomechanics, 2018, 68, 6-13.	0.9	12
40	Simulated work-loops predict maximal human cycling power. Journal of Experimental Biology, 2018, 221, .	0.8	10
41	A modelling approach for exploring muscle dynamics during cyclic contractions. PLoS Computational Biology, 2018, 14, e1006123.	1.5	16
42	Heavy and Explosive Training Differentially Affect Modeled Cyclic Muscle Power. Medicine and Science in Sports and Exercise, 2020, 52, 1068-1075.	0.2	3
43	Added mass in rat plantaris muscle causes a reduction in mechanical work. Journal of Experimental Biology, 2020, 223, .	0.8	9
44	The combined effects of ocean acidification and warming on a habitat-forming shell-crushing predatory crab. Science of the Total Environment, 2021, 758, 143587.	3.9	26
45	Maximal muscular power: lessons from sprint cycling. Sports Medicine - Open, 2021, 7, 48.	1.3	23
46	Dissecting muscle power output. Journal of Experimental Biology, 1999, 202, 3369-3375.	0.8	112
47	A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. Journal of Experimental Biology, 2002, 205, 379-389.	0.8	101
48	Muscle Activation and Deactivation Dynamics: The Governing Properties in Fast Cyclical Human Movement Performance?. Exercise and Sport Sciences Reviews, 2001, 29, 76-81.	1.6	9
49	Effects of anaerobic power in warm-up revolutions per minute on WAnT. Exercise Science, 2008, 17, 77-84.	0.1	0
52	Influence of weighted downhill running training on serial sarcomere number and work loop performance in the rat soleus. Biology Open, 2022, 11, .	0.6	6