Experimental investigation of herpes simplex virus late

Clinical Microbiology Reviews 10, 419-443 DOI: 10.1128/cmr.10.3.419

Citation Report

IT.	٨т	10	NL	Dı	ED.	\sim	DT	

#	Article	IF	CITATIONS
1	Design of a Herpes Simplex Virus Type 2 Long Oligonucleotide-Based Microarray: Global Analysis of HSV-2 Transcript Abundance During Productive Infection. , 2005, 292, 423-448.		7
2	HOW DO ANIMAL DNA VIRUSES GET TO THE NUCLEUS?. Annual Review of Microbiology, 1998, 52, 627-686.	2.9	124
4	Alphaherpesvirus Latency: Its Role in Disease and Survival of the Virus in Nature. Advances in Virus Research, 1998, 51, 81-133.	0.9	171
5	Analysis of Factors Influencing Kinetics of Herpes Simplex Virus Transcription Utilizing Recombinant Virus. Methods, 1998, 16, 105-116.	1.9	20
6	Generation and Use of Recombinant Reporter Viruses for Study of Herpes Simplex Virus Infectionsin Vivo. Methods, 1998, 16, 117-125.	1.9	5
7	Molecular Aspects of Herpes Simplex Virus I Latency, Reactivation, and Recurrence. Critical Reviews in Oral Biology and Medicine, 1998, 9, 541-562.	4.4	67
8	Herpes simplex Virus Infection in Pregnancy: Diagnosis and Significance. Intervirology, 1998, 41, 185-190.	1.2	18
9	Latency of varicella zoster virus a persistently perplexing state. Frontiers in Bioscience - Landmark, 1999, 4, d200-211.	3.0	4
10	Association of Major Histocompatibility Complex Determinants with the Development of Symptomatic and Asymptomatic Genital Herpes Simplex Virus Type 2 Infections. Journal of Infectious Diseases, 1999, 179, 1077-1085.	1.9	52
11	Morphine reduces mortality in mice following ocular infection with HSV-1. Immunopharmacology, 1999, 41, 187-197.	2.0	18
12	The Polysulfonated Compound Suramin Blocks Adsorption and Lateral Difusion of Herpes Simplex Virus Type-1 in Vero Cells. Virology, 1999, 258, 141-151.	1.1	48
13	LAT Expression during an Acute HSV Infection in the Mouse. Virology, 1999, 262, 384-397.	1.1	12
14	Viral gene expression in rat trigeminal ganglia following neonatal infection with varicella-zoster virus. , 1999, 58, 286-290.		24
15	The Need for a Novel Generation of Vaccines. Immunobiology, 1999, 201, 272-282.	0.8	11
16	The Relationship between Interleukin-6 and Herpes Simplex Virus Type 1: Implications for Behavior and Immunopathology. Brain, Behavior, and Immunity, 1999, 13, 201-211.	2.0	29
17	Use of herpes simplex virus type 1 for transgene expression within the nervous system*. Clinical Science, 1999, 96, 533-541.	1.8	12
18	Use of herpes simplex virus type 1 for transgene expression within the nervous system*. Clinical Science, 1999, 96, 533.	1.8	7
19	HERPES SIMPLEX VIRUSES (HERPESVIRIDAE): Molecular Biology. , 1999, , 686-697.		4

ARTICLE IF CITATIONS # The HSV 1 genome in quiescently infected NGF differentiated PC12 cells can not be stimulated by HSV 20 1.0 18 superinfection. Journal of NeuroVirology, 2000, 6, 341-349. ICPO, a regulator of herpes simplex virus during lytic and latent infection. BioEssays, 2000, 22, 761-770. 1.2 Evidence for antigenic cross-reactivity between herpesvirus and the acetylcholine receptor. Journal 22 1.1 14 of Neuroimmunology, 2000, 105, 145-153. Establishment of Latent Herpes Simplex Virus Type 1 Infection in Resistant, Sensitive, and Immunodeficient Mouse Strains. Virology, 2000, 268, 17-28. Herpes Simplex Virus Type 1 Latency in the Murine Nervous System Is Associated with Oxidative Damage 24 1.1 73 to Neurons. Virology, 2000, 278, 309-321. Latent herpes simplex virus-1 infection in SCID mice transferred with immune CD4+T cells: a new model for latency. Archives of Virology, 2000, 145, 2259-2272. Pathogenesis of latency and reactivation., 2000, , 123-141. 26 15 Host response during latency and reactivation., 2000, , 157-168. Global Analysis of Herpes Simplex Virus Type 1 Transcription Using an Oligonucleotide-Based DNA 28 1.5 146 Microarray. Journal of Virology, 2000, 74, 9916-9927. Human herpesviruses in the cornea. British Journal of Ophthalmology, 2000, 84, 563-571. 2.1 Transactivation of Latent Marek's Disease Herpesvirus Genes in QT35, a Quail Fibroblast Cell Line, by 30 1.5 35 Herpesvirus of Turkeys. Journal of Virology, 2000, 74, 10176-10186. Long-Term Transgene Expression in Mice Infected with a Herpes Simplex Virus Type 1 Mutant Severely 1.5 46 Impaired for Immediate-Early Gene Expression. Journal of Virology, 2000, 74, 956-964. Persistence of Infectious Herpes Simplex Virus Type 2 in the Nervous System in Mice after Antiviral 32 1.4 8 Chemotherapy. Antimicrobial Agents and Chemotherapy, 2000, 44, 97-102. Olf-1, a Neuron-specific Transcription Factor, Can Activate the Herpes Simplex Virus Type 1-Infected Cell 1.6 Protein 0 Promoter. Journal of Biological Chemistry, 2000, 275, 77-81. Replication of Herpes Simplex Virus Type 1 within Trigeminal Ganglia Is Required for High Frequency 34 1.5 74 but Not High Viral Genome Copy Number Latency. Journal of Virology, 2000, 74, 965-974. ICPO Induces the Accumulation of Colocalizing Conjugated Ubiquitin. Journal of Virology, 2000, 74, 96 9994-10005. Virus-Induced Neuronal Apoptosis Blocked by the Herpes Simplex Virus Latency-Associated Transcript. 36 6.0 419 Science, 2000, 287, 1500-1503. Stress-associated immunomodulation and herpes simplex virus infections. Medical Hypotheses, 2001, 56, 348-356.

#	Article	IF	CITATIONS
38	Herpes Simplex Virus Type 1 Promoter Activity during Latency Establishment, Maintenance, and Reactivation in Primary Dorsal Root Neurons In Vitro. Journal of Virology, 2001, 75, 3885-3895.	1.5	73
39	A Mutation in the Latency-Related Gene of Bovine Herpesvirus 1 Leads to Impaired Ocular Shedding in Acutely Infected Calves. Journal of Virology, 2001, 75, 8507-8515.	1.5	73
40	Replication-Competent Herpes Simplex Virus Vectors for Cancer Therapy. , 2001, 22, 1-45.		9
41	The Immune Response to Ocular Herpes Simplex Virus Type 1 Infection. Experimental Biology and Medicine, 2001, 226, 353-366.	1.1	71
42	Survival in a transgenic model of fals is independent of inos expression. Annals of Neurology, 2001, 50, 273-273.	2.8	25
43	Herpes simplex virus type 1-induced acute retinal necrosis. Annals of Neurology, 2001, 50, 273-274.	2.8	4
45	Interleukin-12p40 genotype plays a role in the susceptibility to multiple sclerosis. Annals of Neurology, 2001, 50, 275-275.	2.8	48
46	Polymorphism of the interleukin-1 gene complex in localization-related epilepsy. Annals of Neurology, 2001, 50, 275-276.	2.8	29
47	A cAMP Response Element within the Latency-Associated Transcript Promoter of HSV-1 Facilitates Induced Ocular Reactivation in a Mouse Hyperthermia Model. Virology, 2001, 284, 62-69.	1.1	18
48	Latency associated promoter transgene expression in the central nervous system after stereotaxic delivery of replication-defective HSV-1-based vectors. Gene Therapy, 2001, 8, 1057-1071.	2.3	24
49	Human Herpesvirus Latency. Brain Pathology, 2001, 11, 465-474.	2.1	55
50	Lack of effect of treatment with penciclovir or acyclovir on the establishment of latent HSV-1 in primary sensory neurons in culture. Antiviral Research, 2001, 52, 19-24.	1.9	15
51	Immune Checkpoints in Viral Latency. Annual Review of Microbiology, 2001, 55, 531-560.	2.9	21
52	Degradation of Nucleosome-associated Centromeric Histone H3-like Protein CENP-A Induced by Herpes Simplex Virus Type 1 Protein ICPO. Journal of Biological Chemistry, 2001, 276, 5829-5835.	1.6	144
53	Human Neuron-Committed Teratocarcinoma NT2 Cell Line Has Abnormal ND10 Structures and Is Poorly Infected by Herpes Simplex Virus Type 1. Journal of Virology, 2001, 75, 3819-3831.	1.5	19
54	Inducible Cyclic AMP Early Repressor Produces Reactivation of Latent Herpes Simplex Virus Type 1 in Neurons In Vitro. Journal of Virology, 2001, 75, 2912-2920.	1.5	40
55	The Transgenic ICP4 Promoter Is Activated in Schwann Cells in Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus Type 1. Journal of Virology, 2001, 75, 10401-10408.	1.5	16
56	Effect of Famciclovir on Herpes Simplex Virus Type 1 Corneal Disease and Establishment of Latency in Rabbits. Antimicrobial Agents and Chemotherapy, 2001, 45, 2044-2053.	1.4	27

#	ARTICLE	IF	CITATIONS
57	Region of Herpes Simplex Virus Type 1 Latency-Associated Transcript Sufficient for Wild-Type Spontaneous Reactivation Promotes Cell Survival in Tissue Culture. Journal of Virology, 2001, 75, 3636-3646.	1.5	129
58	Herpes Simplex Virus Type 1 Latency-Associated Transcript Gene Promotes Neuronal Survival. Journal of Virology, 2001, 75, 6660-6675.	1.5	172
59	Intact Microtubules Support Adenovirus and Herpes Simplex Virus Infections. Journal of Virology, 2002, 76, 9962-9971.	1.5	143
60	Regulation of Caspase 8- and Caspase 9-Induced Apoptosis by the Herpes Simplex Virus Type 1 Latency-Associated Transcript. Journal of NeuroVirology, 2002, 8, 103-111.	1.0	88
61	Practical approaches to long oligonucleotide-based DNA microarray: Lessons from herpesviruses. Progress in Molecular Biology and Translational Science, 2002, 71, 445-491.	1.9	23
62	Function of Dynein and Dynactin in Herpes Simplex Virus Capsid Transport. Molecular Biology of the Cell, 2002, 13, 2795-2809.	0.9	293
63	A Mutation in the Latency-Related Gene of Bovine Herpesvirus 1 Disrupts the Latency Reactivation Cycle in Calves. Journal of Virology, 2002, 76, 6771-6779.	1.5	85
64	Fractionation of neurons and satellite cells from human sensory ganglia in order to study herpesvirus latency. Journal of Virological Methods, 2002, 104, 21-32.	1.0	17
65	Analysis of bovine trigeminal ganglia following infection with bovine herpesvirus 1. Veterinary Microbiology, 2002, 86, 139-155.	0.8	52
66	Herpes simplex type 1 infects and establishes latency in the brain and trigeminal ganglia during primary infection of the lip in cotton rats and mice. Archives of Virology, 2002, 147, 167-179.	0.9	51
67	Dimethyl sulfoxide blocks herpes simplex virus-1 productive infection in vitro acting at different stages with positive cooperativity. Application of micro-array analysis. BMC Infectious Diseases, 2002, 2, 9.	1.3	28
68	The Region of the HSV-1 Latency-Associated Transcript Required for Epinephrine-Induced Reactivation in the Rabbit Does Not Include the 2.0-kb Intron. Virology, 2002, 292, 59-69.	1.1	17
69	Herpes simplex virus type 1 encephalitis is associated with elevated levels of F 2 -isoprostanes and F 4 -neuroprostanes. Journal of NeuroVirology, 2002, 8, 295-305.	1.0	49
70	The Herpes Simplex Virus Type 1 ICPO Promoter is Activated by Viral Reactivation Stimuli in Trigeminal Ganglia Neurons of Transgenic Mice. Journal of NeuroVirology, 2003, 9, 336-345.	1.0	35
71	Caspase-3-Dependent Reactivation of Latent Herpes Simplex Virus Type 1 in Sensory Neuronal Cultures. Journal of NeuroVirology, 2003, 9, 390-398.	1.0	17
72	Establishment and maintenance of HSV latent infection is mediated through correct splicing of the LAT primary transcript. Virology, 2003, 312, 233-244.	1.1	29
73	The herpesvirus saimiri ORF 73 regulatory region provides long-term transgene expression in human carcinoma cell lines. Cancer Gene Therapy, 2003, 10, 49-56.	2.2	9
74	Herpes Simplex Virus Type 1 and Bovine Herpesvirus 1 Latency. Clinical Microbiology Reviews, 2003, 16, 79-95.	5.7	254

#	Article	IF	CITATIONS
75	Infection of Cattle with a Bovine Herpesvirus 1 Strain That Contains a Mutation in the Latency-Related Gene Leads to Increased Apoptosis in Trigeminal Ganglia during the Transition from Acute Infection to Latency. Journal of Virology, 2003, 77, 4848-4857.	1.5	77
76	Varicella-Zoster Virus DNA in Cells Isolated from Human Trigeminal Ganglia. Journal of Virology, 2003, 77, 6979-6987.	1.5	82
77	Capsaicin-induced reactivation of latent herpes simplex virus type 1 in sensory neurons in culture. Journal of General Virology, 2003, 84, 1071-1078.	1.3	17
78	Analysis of Herpes Simplex Virus ICPO Promoter Function in Sensory Neurons during Acute Infection, Establishment of Latency, and Reactivation In Vivo. Journal of Virology, 2003, 77, 12319-12330.	1.5	29
79	The Gene That Encodes the Herpes Simplex Virus Type 1 Latency-Associated Transcript Influences the Accumulation of Transcripts (Bcl-x L and Bcl-x S) That Encode Apoptotic Regulatory Proteins. Journal of Virology, 2003, 77, 10714-10718.	1.5	26
80	Nicotine Applied by Transdermal Patch Induced HSV-1 Reactivation and Ocular Shedding in Latently Infected Rabbits. Journal of Ocular Pharmacology and Therapeutics, 2003, 19, 121-133.	0.6	13
81	Herpesvirus saimiri: A potential gene delivery vector (Review). International Journal of Molecular Medicine, 2003, 11, 139.	1.8	2
82	Development of herpesvirus-based episomally maintained gene delivery vectors. Expert Opinion on Biological Therapy, 2004, 4, 493-505.	1.4	9
83	PCR Search for the Herpes Simplex Virus Type 1 Genome in Brain Sections of Patients with Familial Alzheimer's Disease. Journal of Clinical Microbiology, 2004, 42, 936-937.	1.8	7
84	Absence of tumour necrosis factor facilitates primary and recurrent herpes simplex virus-1 infections. Journal of General Virology, 2004, 85, 343-347.	1.3	35
85	Specific Histone Tail Modification and Not DNA Methylation Is a Determinant of Herpes Simplex Virus Type 1 Latent Gene Expression. Journal of Virology, 2004, 78, 1139-1149.	1.5	151
86	The neural F-box protein NFB42 mediates the nuclear export of the herpes simplex virus type 1 replication initiator protein (UL9 protein) after viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4036-4040.	3.3	25
87	Experimental Transmission of a Herpesvirus in Greek Tortoises (Testudo graeca). Veterinary Pathology, 2004, 41, 50-61.	0.8	66
88	Comparison of Herpes Simplex Virus Reactivation in Ganglia In Vivo and in Explants Demonstrates Quantitative and Qualitative Differences. Journal of Virology, 2004, 78, 7784-7794.	1.5	62
89	Immediate-Early Expression of the Herpes Simplex Virus Type 1 ICP27 Transcript Is Not Critical for Efficient Replication In Vitro or In Vivo. Journal of Virology, 2004, 78, 10470-10478.	1.5	17
90	Construction of a Herpes Simplex Virus Type 1 Mutant with Only a Three-Nucleotide Change in the Branchpoint Region of the Latency-Associated Transcript (LAT) and the Stability of Its Two-Kilobase LAT Intron. Journal of Virology, 2004, 78, 12097-12106.	1.5	9
91	Specific Detection and Identification of Herpes B Virus by a PCR-Microplate Hybridization Assay. Journal of Clinical Microbiology, 2004, 42, 1869-1874.	1.8	12
92	Herpes simplex virus type 1 infection of polarized epithelial cells requires microtubules and access to receptors present at cell–cell contact sites. Journal of General Virology, 2004, 85, 775-786.	1.3	46

#	Article	IF	CITATIONS
93	Interplay between Alpha/Beta and Gamma Interferons with B, T, and Natural Killer Cells in the Defense against Herpes Simplex Virus Type 1. Journal of Virology, 2004, 78, 3846-3850.	1.5	77
94	Lytic Replication-Defective Kaposi's Sarcoma-Associated Herpesvirus: Potential Role in Infection and Malignant Transformation. Journal of Virology, 2004, 78, 11108-11120.	1.5	19
95	HSV LAT AND NEURONAL SURVIVAL. International Reviews of Immunology, 2004, 23, 187-198.	1.5	78
96	Functional Interaction between Class II Histone Deacetylases and ICPO of Herpes Simplex Virus Type 1. Journal of Virology, 2004, 78, 6744-6757.	1.5	102
97	Herpes simplex virus-based vectors. International Journal of Experimental Pathology, 2004, 85, 177-190.	0.6	48
98	A non-consensus branch point plays an important role in determining the stability of the 2-kb LAT intron during acute and latent infections of herpes simplex virus type-1. Virology, 2004, 324, 340-349.	1.1	11
99	Inhibition of the stress-activated kinase, p38, does not affect the virus transcriptional program of herpes simplex virus type 1. Virology, 2004, 329, 142-156.	1.1	27
100	Peculiarities of Herpes Simplex Virus (HSV) Transcription: An overview. Virus Genes, 2004, 28, 293-310.	0.7	83
101	Reactivation of HSV-1 in the brain of patients with familial Alzheimer's disease. Journal of Medical Virology, 2004, 73, 605-611.	2.5	59
102	Molecular Mimicry versus Bystander Activation: Herpetic Stromal Keratitis. Autoimmunity, 2004, 37, 393-397.	1.2	31
104	Workshop report: the effects of psychological variables on the progression of HIV-1 disease. Brain, Behavior, and Immunity, 2004, 18, 246-261.	2.0	54
105	Challenges and directions for the pathogen hypothesis of Alzheimer's disease. Neurobiology of Aging, 2004, 25, 629-637.	1.5	38
106	Early events in HSV keratitis—setting the stage for a blinding disease. Microbes and Infection, 2005, 7, 799-810.	1.0	169
107	Herpes virus proteins ICPO and BICPO can activate NF-κB by catalyzing IκBα ubiquitination. Cellular Signalling, 2005, 17, 217-229.	1.7	66
108	Complete genome sequence of cercopithecine herpesvirus 2 (SA8) and comparison with other simplexviruses. Virology, 2005, 331, 429-440.	1.1	41
109	Novel pan-neuronal Cre-transgenic line for conditional ablation of genes in the nervous system. Genesis, 2005, 42, 6-16.	0.8	14
110	β-Adrenoreceptors Reactivate Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication via PKA-Dependent Control of Viral RTA. Journal of Virology, 2005, 79, 13538-13547.	1.5	49
111	The Herpes Simplex Virus Type 1 Locus That Encodes the Latency-Associated Transcript Enhances the Frequency of Encephalitis in Male BALB/c Mice. Journal of Virology, 2005, 79, 14465-14469.	1.5	22

#	Article	IF	CITATIONS
112	The Locus Encompassing the Latency-Associated Transcript of Herpes Simplex Virus Type 1 Interferes with and Delays Interferon Expression in Productively Infected Neuroblastoma Cells and Trigeminal Ganglia of Acutely Infected Mice. Journal of Virology, 2005, 79, 6162-6171.	1.5	44
113	Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Research, 2005, 111, 108-119.	1.1	88
114	Herpesvirus in Tortoises. , 2006, , 814-821.		7
115	Adrenergic inhibition of innate anti-viral response: PKA blockade of Type I interferon gene transcription mediates catecholamine support for HIV-1 replication. Brain, Behavior, and Immunity, 2006, 20, 552-563.	2.0	62
116	Vulnerability to Alzheimer's pathology in neocortex: The roles of plasticity and columnar organization. Journal of Alzheimer's Disease, 2006, 9, 79-89.	1.2	28
118	Latency of α-Herpes Viruses Is Accompanied by a Chronic Inflammation in Human Trigeminal Ganglia But Not in Dorsal Root Ganglia. Journal of Neuropathology and Experimental Neurology, 2006, 65, 1022-1030.	0.9	47
119	The effect of DNA priming-protein boosting on enhancing humoral immunity and protecting mice against lethal HSV infections. FEMS Immunology and Medical Microbiology, 2006, 46, 100-106.	2.7	14
120	Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Therapy, 2006, 13, 975-992.	2.2	132
121	Reactivation from quiescence does not coincide with a global induction of herpes simplex virus type 1 transactivators. Virus Genes, 2006, 33, 163-167.	0.7	13
122	The stable 2-kb LAT intron of herpes simplex stimulates the expression of heat shock proteins and protects cells from stress. Virology, 2006, 350, 26-33.	1.1	9
123	Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells. Virology, 2006, 356, 106-114.	1.1	11
124	Widespread Correction of Lysosomal Storage in the Mucopolysaccharidosis Type VII Mouse Brain with a Herpes Simplex Virus Type 1 Vector Expressing β-Clucuronidase. Molecular Therapy, 2006, 13, 859-869.	3.7	28
125	Pseudorabies Virus EPO Protein Counteracts an Interferon-Induced Antiviral State in a Species-Specific Manner. Journal of Virology, 2006, 80, 10871-10873.	1.5	31
126	Herpes Simplex Virus Type 1 Genomes Are Associated with ND10 Nuclear Substructures in Quiescently Infected Human Fibroblasts. Journal of Virology, 2007, 81, 10991-11004.	1.5	111
127	CTCF-Dependent Chromatin Boundary Element between the Latency-Associated Transcript and ICP0 Promoters in the Herpes Simplex Virus Type 1 Genome. Journal of Virology, 2007, 81, 5192-5201.	1.5	44
128	Reactivation of Expression from Quiescent Herpes Simplex Virus Type 1 Genomes in the Absence of Immediate-Early Protein ICPO. Journal of Virology, 2007, 81, 11781-11789.	1.5	19
129	Identification of Novel Rodent Herpesviruses, Including the First Gammaherpesvirus of Mus musculus. Journal of Virology, 2007, 81, 8091-8100.	1.5	89
131	Ultraviolet Light Induces Reactivation in a Murine Model of Cutaneous Herpes Simplex Virus-1 Infection¶. Photochemistry and Photobiology, 2007, 74, 108-114.	1.3	2

#	Article	IF	CITATIONS
132	Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1–encoded latency-associated transcript. Journal of NeuroVirology, 2008, 14, 41-52.	1.0	38
133	The in vitro immunomodulatory activity of a synthetic brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice. Journal of Steroid Biochemistry and Molecular Biology, 2008, 108, 164-170.	1.2	31
134	Anti-herpetic and anti-inflammatory activities of two new synthetic 22,23-dihydroxylated stigmastane derivatives. Journal of Steroid Biochemistry and Molecular Biology, 2008, 111, 111-116.	1.2	23
135	Replication of ICPO-Null Mutant Herpes Simplex Virus Type 1 Is Restricted by both PML and Sp100. Journal of Virology, 2008, 82, 2661-2672.	1.5	181
136	During Herpes Simplex Virus Type 1 Infection of Rabbits, the Ability To Express the Latency-Associated Transcript Increases Latent-Phase Transcription of Lytic Genes. Journal of Virology, 2008, 82, 6056-6060.	1.5	50
137	Herpes Simplex Viruses: Molecular Biology. , 2008, , 397-405.		4
138	Induction of Cellular Stress Overcomes the Requirement of Herpes Simplex Virus Type 1 for Immediate-Early Protein ICPO and Reactivates Expression from Quiescent Viral Genomes. Journal of Virology, 2008, 82, 11775-11783.	1.5	19
139	Introduction: retroviruses, DNA viruses, and prions. , 0, , 139-140.		1
140	The herpes simplex viruses. , 2008, , 212-224.		0
141	Herpesviruses: Latency. , 2008, , 436-442.		4
142	Identification of a novel herpes simplex virus type 1 transcript and protein (AL3) expressed during latency. Journal of General Virology, 2009, 90, 2342-2352.	1.3	14
143	Serological Diagnosis of Human Herpes Simplex Virus Type 1 and 2 Infections by Luciferase Immunoprecipitation System Assay. Vaccine Journal, 2009, 16, 366-371.	3.2	46
144	Role of viral chromatin structure in the regulation of herpes simplex virus 1 gene expression and replication. Future Microbiology, 2009, 4, 703-712.	1.0	7
145	Heat-Induced Reactivation of HSV-1 in Latent Mice: Upregulation in the TG of <i>CD83</i> and Other Immune Response Genes and Their LAT-ICPO Locus. , 2009, 50, 2855.		12
146	Two Small RNAs Encoded within the First 1.5 Kilobases of the Herpes Simplex Virus Type 1 Latency-Associated Transcript Can Inhibit Productive Infection and Cooperate To Inhibit Apoptosis. Journal of Virology, 2009, 83, 9131-9139.	1.5	72
147	Anti-VEGF monoclonal antibody-induced regression of corneal neovascularization and inflammation in a rabbit model of herpetic stromal keratitis. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 1409-1416.	1.0	28
148	Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript. Journal of NeuroVirology, 2009, 15, 439-448.	1.0	24
149	A limited innate immune response is induced by a replication-defective herpes simplex virus vector following delivery to the murine central nervous system. Journal of NeuroVirology, 2009, 15, 411-424.	1.0	8

#	Article	IF	Citations
150	Evidence that herpes simplex virus DNA derived from quiescently infected cellsin vitro, and latently infected cellsin vivo, is physically damaged. Journal of NeuroVirology, 2010, 16, 384-398.	1.0	6
151	Towards an Understanding of the Herpes Simplex Virus Type 1 Latency-Reactivation Cycle. Interdisciplinary Perspectives on Infectious Diseases, 2010, 2010, 1-18.	0.6	107
152	Nature and Duration of Growth Factor Signaling through Receptor Tyrosine Kinases Regulates HSV-1 Latency in Neurons. Cell Host and Microbe, 2010, 8, 320-330.	5.1	140
153	Changes to Euchromatin on LAT and ICP4 Following Reactivation Are More Prevalent in an Efficiently Reactivating Strain of HSV-1. PLoS ONE, 2010, 5, e15416.	1.1	15
154	Expression of Herpes Simplex Virus 1-Encoded MicroRNAs in Human Trigeminal Ganglia and Their Relation to Local T-Cell Infiltrates. Journal of Virology, 2011, 85, 9680-9685.	1.5	43
155	Cross-Kingdom Actions of Phytohormones: A Functional Scaffold Exploration. Chemical Reviews, 2011, 111, 2734-2760.	23.0	39
156	Herpes simplex virus tipo 1 como factor de riesgo asociado con la enfermedad de Alzheimer. Revista Medica De Chile, 2011, 139, 779-786.	0.1	9
157	Chronic Progressive Deficits in Neuron Size, Density and Number in the Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus. Brain Pathology, 2011, 21, 583-593.	2.1	12
158	Herpes simplex virus infects most cell types in vitro: clues to its success. Virology Journal, 2011, 8, 481.	1.4	129
159	Control of HSV-1 latency in human trigeminal ganglia—current overview. Journal of NeuroVirology, 2011, 17, 518-527.	1.0	43
160	Cultured vestibular ganglion neurons demonstrate latent HSV1 reactivation. Laryngoscope, 2011, 121, 2268-2275.	1.1	24
161	An Epigenetic Approach Toward Understanding Ocular α-Herpesvirus Pathogenesis and Treatment. International Ophthalmology Clinics, 2011, 51, 117-133.	0.3	5
162	Influence of Galectin-9/Tim-3 Interaction on Herpes Simplex Virus-1 Latency. Journal of Immunology, 2011, 187, 5745-5755.	0.4	48
163	HSV-1 Genome Subnuclear Positioning and Associations with Host-Cell PML-NBs and Centromeres Regulate LAT Locus Transcription during Latency in Neurons. PLoS Pathogens, 2012, 8, e1002852.	2.1	74
164	Topical Use of Rapamycin in Herpetic Stromal Keratitis. Ocular Immunology and Inflammation, 2012, 20, 354-359.	1.0	13
165	Influence of Herpes Simplex Virus 1 Latency-Associated Transcripts on the Establishment and Maintenance of Latency in the ROSA26R Reporter Mouse Model. Journal of Virology, 2012, 86, 8848-8858.	1.5	24
166	CTCF Occupation of the Herpes Simplex Virus 1 Genome Is Disrupted at Early Times Postreactivation in a Transcription-Dependent Manner. Journal of Virology, 2012, 86, 12741-12759.	1.5	32
167	A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation. Journal of Visualized Experiments, 2012, , .	0.2	39

		CITATION RE	PORT	
#	Article		IF	Citations
168	A cultured affair: HSV latency and reactivation in neurons. Trends in Microbiology, 201	2, 20, 604-611.	3.5	130
169	Control of viral latency in neurons by axonal mTOR signaling and the 4E-BP translation Genes and Development, 2012, 26, 1527-1532.	repressor.	2.7	72
170	The potential link between PML NBs and ICPO in regulating lytic and latent infection of and Cell, 2012, 3, 372-382.	HSV-1. Protein	4.8	20
171	The molecular basis of herpes simplex virus latency. FEMS Microbiology Reviews, 2012	, 36, 684-705.	3.9	207
172	The half-life of the HSV-1 1.5-kb LAT intron is similar to the half-life of the 2.0-kb LAT int NeuroVirology, 2013, 19, 102-108.	tron. Journal of	1.0	5
173	Virus Infections in the Nervous System. Cell Host and Microbe, 2013, 13, 379-393.		5.1	465
174	Small non-coding RNAs encoded within the herpes simplex virus type 1 latency associa (LAT) cooperate with the retinoic acid inducible gene I (RIG-I) to induce beta-interferon activity and promote cell survival. Virus Research, 2013, 175, 101-109.	ted transcript promoter	1.1	26
175	Herpes Simplex Virus 1 Tropism for Human Sensory Ganglion Neurons in the Severe Co Immunodeficiency Mouse Model of Neuropathogenesis. Journal of Virology, 2013, 87,	ombined 2791-2802.	1.5	25
177	Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survi Infected Sensory Neurons, in Part by Inhibiting Apoptosis. Journal of Cell Death, 2013,	ival of Latently 6, JCD.S10803.	0.8	38
178	Complexity of Interferon- \hat{I}^3 Interactions with HSV-1. Frontiers in Immunology, 2014, 5,	15.	2.2	25
179	Lytic Gene Expression Is Frequent in HSV-1 Latent Infection and Correlates with the En Cell-Intrinsic Transcriptional Response. PLoS Pathogens, 2014, 10, e1004237.	gagement of a	2.1	70
180	Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues <i>In situ</i> Hybridization Combined with Immunostaining. Journal of Visualized Expe	s by Fluorescent riments, 2014, ,	0.2	7
181	Using Homogeneous Primary Neuron Cultures to Study Fundamental Aspects of HSV-1 Reactivation. Methods in Molecular Biology, 2014, 1144, 167-179.	Latency and	0.4	8
182	A Role for H/ACA and C/D Small Nucleolar RNAs in Viral Replication. Molecular Biotechr 56, 429-437.	nology, 2014,	1.3	24
183	A severe equine herpesvirus type 1 (EHV-1) abortion outbreak caused by a neuropatho breeding farm in northern Germany. Veterinary Microbiology, 2014, 172, 555-562.	genic strain at a	0.8	36
185	The Number of Alphaherpesvirus Particles Infecting Axons and the Axonal Protein Repe Determines the Outcome of Neuronal Infection. MBio, 2015, 6, .	rtoire	1.8	38
186	Herpes Simplex Virus 1 Reactivates from Autonomic Ciliary Ganglia Independently from Trigeminal Ganglia To Cause Recurrent Ocular Disease. Journal of Virology, 2015, 89, 8	1 Sensory 383-8391.	1.5	33
187	Convergent evolution of twintron-like configurations: One is never enough. RNA Biolog 1275-1288.	gy, 2015, 12,	1.5	25

#	Article	IF	CITATIONS
188	Animal models of herpes simplex virus immunity and pathogenesis. Journal of NeuroVirology, 2015, 21, 8-23.	1.0	80
189	Herpes Simplex Encephalitis in Childhood. Journal of Infectious Disease and Therapy, 2016, 04, .	0.1	1
190	Lytic Promoters Express Protein during Herpes Simplex Virus Latency. PLoS Pathogens, 2016, 12, e1005729.	2.1	27
192	Linear Multiepitope (Glyco)peptides for Type-Specific Serology of Herpes Simplex Virus (HSV) Infections. ACS Infectious Diseases, 2017, 3, 360-367.	1.8	8
193	HSV1 latent transcription and non-coding RNA: A critical retrospective. Journal of Neuroimmunology, 2017, 308, 65-101.	1.1	57
194	An Immortalized Human Dorsal Root Ganglion Cell Line Provides a Novel Context To Study Herpes Simplex Virus 1 Latency and Reactivation. Journal of Virology, 2017, 91, .	1.5	23
195	Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. Journal of Zhejiang University: Science B, 2017, 18, 277-288.	1.3	47
196	First demonstration of equid gammaherpesviruses within the gastric mucosal epithelium of horses. Virus Research, 2017, 242, 30-36.	1.1	10
197	Limitations on the Multiplicity of Cellular Infection During Human Alphaherpesvirus Disease. Current Clinical Microbiology Reports, 2017, 4, 167-174.	1.8	2
198	Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63. Virology, 2017, 512, 124-131.	1.1	5
199	Neutralizing human recombinant antibodies against herpes simplex virus type 1 glycoproteins B from a phage-displayed scFv antibody library. Life Sciences, 2017, 169, 1-5.	2.0	7
200	Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons. Pathogens, 2017, 6, 24.	1.2	42
201	Herpes Simplex Virus Establishment, Maintenance, and Reactivation: In Vitro Modeling of Latency. Pathogens, 2017, 6, 28.	1.2	46
202	The potential of currently unavailable herpes virus vaccines. Expert Review of Vaccines, 2018, 17, 239-248.	2.0	19
203	Latent versus productive infection: the alpha herpesvirus switch. Future Virology, 2018, 13, 431-443.	0.9	36
204	Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease—A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses, 2019, 11, 966.	1.5	28
205	Herpes Simplex Virus 1 Induces Brain Inflammation and Multifocal Demyelination in the Cotton Rat Sigmodon hispidus. Journal of Virology, 2019, 94, .	1.5	19
206	Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency In Vitro. Journal of Virology, 2019, 93, .	1.5	39

#	Article	IF	CITATIONS
208	Herpes Simplex Virus 1 Strains 17 syn + and KOS(M) Differ Greatly in Their Ability To Reactivate from Human Neurons In Vitro. Journal of Virology, 2020, 94, .	1.5	10
209	MicroRNA Involvement in Signaling Pathways During Viral Infection. Frontiers in Cell and Developmental Biology, 2020, 8, 143.	1.8	98
210	Cold Nanoparticles Crossing Blood-Brain Barrier Prevent HSV-1 Infection and Reduce Herpes Associated Amyloid-βsecretion. Journal of Clinical Medicine, 2020, 9, 155.	1.0	25
211	Herpesviral Latency—Common Themes. Pathogens, 2020, 9, 125.	1.2	38
212	Deletion of Herpes Simplex Virus 1 MicroRNAs miR-H1 and miR-H6 Impairs Reactivation. Journal of Virology, 2020, 94, .	1.5	16
213	Latent pseudorabies virus infection in medulla oblongata from quarantined pigs. Transboundary and Emerging Diseases, 2021, 68, 543-551.	1.3	13
214	MicroRNAs: Harbingers and shapers of periodontal inflammation. Seminars in Cell and Developmental Biology, 2022, 124, 85-98.	2.3	17
215	Herpes Simplex Virus Mutant Generation and Dual-Detection Methods for Gaining Insight into Latent/Lytic Cycles In Vivo. Methods in Molecular Biology, 2014, 1144, 129-147.	0.4	5
216	Development of Oncolytic Replication-Competent Herpes Simplex Virus Vectors. , 2005, , 199-210.		2
217	Neuronal Latency in Human and Animal Herpesvirus Infections. Current Topics in Microbiology and Immunology, 2001, 253, 61-94.	0.7	4
218	Advances in Diagnosis and Management of Herpetic Uveitis. International Ophthalmology Clinics, 2000, 40, 85-109.	0.3	50
219	Repression of viral transcription during herpes simplex virus latency. Microbiology (United Kingdom), 2000, 81, 1-19.	0.7	133
220	Expression from the herpes simplex virus type 1 latency-associated promoter in the murine central nervous system. Journal of General Virology, 2000, 81, 649-662.	1.3	29
221	The latency-related gene of bovine herpesvirus-1 can inhibit the ability of bICP0 to activate productive infection. Journal of General Virology, 2002, 83, 2965-2971.	1.3	37
222	Analyses of herpes simplex virus type 1 latency and reactivation at the single cell level using fluorescent reporter mice. Journal of General Virology, 2016, 97, 767-777.	1.3	11
223	An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. Journal of General Virology, 2011, 92, 2575-2585.	1.3	29
224	Roles of conserved residues within the pre-NH2-terminal domain of herpes simplex virus 1 DNA polymerase in replication and latency in mice. Journal of General Virology, 2014, 95, 940-947.	1.3	8
225	A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. Journal of General Virology, 2008, 89, 2965-2974.	1.3	59

IF

1.5

1.5

1.5

0.3

1.1

1.3

3.0

1.5

1.4

0.1

0.0

CITATIONS

2

23

50

24

5

21

17

10

0

0

- Herpes Simplex Encephalitis., 0,, 39-60. 226 Herpes simplex virus genome replication and transcription during induced reactivation in the rabbit eye. Journal of Virology, 1997, 71, 7039-7047. Alternative Splicing of the Latency-Related Transcript of Bovine Herpesvirus 1 Yields RNAs Containing 228 Unique Open Reading Frames. Journal of Virology, 1998, 72, 7294-7301. Expression of the Pseudorabies Virus Latency-Associated Transcript Gene during Productive Infection of Cultured Cells. Journal of Virology, 1999, 73, 9781-9788. Human Corneal Cells and Other Fibroblasts Can Stimulate the Appearance of Herpes Simplex Virus 230 from Quiescently Infected PC12 Cells. Journal of Virology, 1999, 73, 4171-4180. Ocular Iontophoresis., 2003,, 365-408. Biological and environmental factors associated with the detection of elephant endotheliotropic 232 herpesvirus in Asian elephants (<i>Elephas maximus</i>) in Thailand. Journal of Veterinary Medical Science, 2020, 82, 1808-1815. Centromere Architecture Breakdown Induced by the Viral E3 Ubiquitin Ligase ICPO Protein of Herpes 233 Simplex Virus Type 1. PLoS ONE, 2012, 7, e44227. Ultraviolet Light Induces Reactivation in a Murine Model of Cutaneous Herpes Simplex Virus-1 234 Infection¶. Photochemistry and Photobiology, 2001, 74, 108. High G+C Content of Herpes Simplex Virus DNA: Proposed Role in Protection Against Retrotransposon Insertion. The Open Biochemistry Journal, 2007, 1, 33-42. Latency of varicella zoster virus; a persistently perplexing state. Frontiers in Bioscience - Landmark, 236 1999, 4, d200. "Non-Essential―Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses, 2021, 13, 17. Modulating glutamine metabolism to control viral immuno-inflammatory lesions. Cellular 238 Immunology, 2021, 370, 104450. Viral persistence: immunologic and molecular-genetic aspects of pathogenesis. Bulletin of Siberian Medicine, 2003, 2, 113-120 Herpes Simplex Virus Drug Resistanceâ€"HSV Thymidine Kinase Mutants. Neurological Disease and 240 Therapy, 2005, , 397-414. MOLECULAR DETERMINANTS OF MICROBIAL PATHOGENESIS., 2009, , 2-21. 241
 - 242 Virus–cell interactions. , 2012, , 82-96.

Viruses with a Double-Stranded DNA Genome., 2013, , 625-873.

14

ARTICLE

#

#	Article	IF	CITATIONS
244	Genome Plasticity of Herpesviruses: Conservative yet Flexible. , 0, , 248-265.		0
245	HSV Mutant Generation and Dual Detection Methods for Gaining Insight into Latent/Lytic Cycles In Vivo. Methods in Molecular Biology, 2020, 2060, 219-239.	0.4	2
246	Using Primary SCG Neuron Cultures to Study Molecular Determinants of HSV-1 Latency and Reactivation. Methods in Molecular Biology, 2020, 2060, 263-277.	0.4	2
247	The Role, Mechanism and Transcriptional Regulation of LAT in Herpes Simplex Virus Latency and Reactivation. Yangtze Medicine, 2020, 04, 39-53.	0.1	0
248	Infektionsbedingte fetale SchÄ d igungen. , 2005, , 265-323.		1
254	Microarray analysis of host gene expression for comparison between naÃ ⁻ ve and HSV-1 latent rabbit trigeminal ganglia. Molecular Vision, 2008, 14, 1209-21.	1.1	13
255	Extreme susceptibility of African naked mole rats (Heterocephalus glaber) to experimental infection with herpes simplex virus type 1. Comparative Medicine, 2009, 59, 83-90.	0.4	24
256	Localization of herpes simplex virus type 1 DNA in latently infected BALB/c mice neurons using in situ polymerase chain reaction. Iranian Biomedical Journal, 2010, 14, 83-8.	0.4	Ο
257	Singleâ€cell transcriptomics identifies Gadd45b as a regulator of herpesvirusâ€reactivating neurons. EMBO Reports, 2022, 23, e53543.	2.0	16
258	Non-cytopathic herpes simplex virus type-1 isolated from acyclovir-treated patients with recurrent infections. Scientific Reports, 2022, 12, 1345.	1.6	5
259	Herpes simplex virus protein UL56 inhibits cGAS-Mediated DNA sensing to evade antiviral immunity. , 2022, 1, 100014.		6
262	Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Molecular Therapy - Oncolytics, 2023, 28, 334-348.	2.0	3