Towards the Development of a Bioartificial Pancreas: Ef Beads with BTC3 Cells

Cell Transplantation 6, 395-402 DOI: 10.1177/096368979700600406

Citation Report

#	Article	IF	CITATIONS
1	Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped βTC3 mouse insulinoma cells. Biomaterials, 1999, 20, 2019-2027.	5.7	65
2	Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomedical Microdevices, 1999, 1, 131-138.	1.4	85
3	Development of a bioartificial pancreas: I. Long-term propagation and basal and induced secretion from entrapped ?TC3 cell cultures. Biotechnology and Bioengineering, 1999, 66, 219-230.	1.7	56
4	Development of a bioartificial pancreas: II. Effects of oxygen on long-term entrapped ?TC3 cell cultures. Biotechnology and Bioengineering, 1999, 66, 231-237.	1.7	57
5	Article Commentary: Immunoisolation of Cells and Tissues for Transplantation. Cell Transplantation, 1999, 8, 577-579.	1.2	7
6	Effects of Short-Term Hypoxia on a Transformed Cell-Based Bioartificial Pancreatic Construct. Cell Transplantation, 2000, 9, 415-422.	1.2	27
7	In Vitro Monitoring of Total Choline Levels in a Bioartificial Pancreas: 1H NMR Spectroscopic Studies of Oxygen Level. Journal of Magnetic Resonance, 2000, 146, 49-57.	1.2	28
8	Hydrogel-Based Non-Autologous Cell and Tissue Therapy. BioTechniques, 2000, 29, 564-581.	0.8	87
9	Engineering Challenges in the Development of an Encapsulated Cell System for Treatment of Type 1 Diabetes. Diabetes Technology and Therapeutics, 2000, 2, 81-89.	2.4	13
10	Neuroprotective strategies for basal ganglia degeneration: Parkinson's and Huntington's diseases. Progress in Neurobiology, 2000, 60, 409-470.	2.8	251
11	The effects of alginate composition on encapsulated \hat{I}^2 TC3 cells. Biomaterials, 2001, 22, 1301-1310.	5.7	133
12	In Vitro Effects of Transcatheter Injection on Structure, Cell Viability, and Cell Metabolism in Fibroblast-impregnated Alginate Microspheres. Radiology, 2001, 220, 428-435.	3.6	12
13	Microencapsulation of Cells Producing Therapeutic Proteins: Optimizing Cell Growth and Secretion. Cell Transplantation, 2002, 11, 313-324.	1.2	79
14	Effects of Alginate Composition on the Growth and Overall Metabolic Activity of βTC3 Cells. Annals of the New York Academy of Sciences, 2002, 961, 130-133.	1.8	14
15	NMR properties of alginate microbeads. Biomaterials, 2003, 24, 4941-4948.	5.7	59
16	The Effects of Poly(Ethyleneimine) (PEI) Molecular Weight on Reinforcement of Alginate Hydrogels. Cell Transplantation, 2003, 12, 779-785.	1.2	48
17	Alginate as a Carrier for Cell Immobilisation. Focus on Biotechnology, 2004, , 33-51.	0.4	17
18	Intrasplenic Transplantation of Encapsulated Genetically Engineered Mouse Insulinoma Cells Reverses Streptozotocin-Induced Diabetes in Rats. Cell Transplantation, 2005, 14, 411-421.	1.2	23

CITATION REPORT

#	Article	IF	CITATIONS
19	Effects of growth regulation on conditionally-transformed alginate-entrapped insulin secreting cell lines in vitro. Biomaterials, 2005, 26, 4633-4641.	5.7	26
20	Cell Encapsulation Therapy for Malignant Gliomas. Focus on Biotechnology, 2005, , 211-227.	0.4	1
21	Alginate assessment by NMR microscopy. Journal of Materials Science: Materials in Medicine, 2005, 16, 511-514.	1.7	9
22	Nonâ€Invasive Monitoring of a Bioartificial Pancreas <i>in Vitro</i> and <i>in Vivo</i> . Annals of the New York Academy of Sciences, 2001, 944, 83-95.	1.8	8
23	Improved activity of streptozotocin-selected insulinoma cells following microencapsulation and transplantation into diabetic mice. Cell Biology International, 2006, 30, 138-143.	1.4	8
24	Biochemical consequences of alginate encapsulation: A NMR study of insulin-secreting cells. Biomaterials, 2006, 27, 2577-2586.	5.7	29
25	In vivo stability and biocompatibility of implanted calcium alginate disks. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1128-1137.	2.1	72
26	Non-invasive evaluation of alginate/poly-l-lysine/alginate microcapsules by magnetic resonance microscopy. Biomaterials, 2007, 28, 2438-2445.	5.7	27
27	Limited beneficial effects of perfluorocarbon emulsions on encapsulated cells in culture: Experimental and modeling studies. Journal of Biotechnology, 2010, 150, 232-239.	1.9	33
28	Alginate as an immobilization material for MAb production via encapsulated hybridoma cells. Critical Reviews in Biotechnology, 2010, 30, 145-159.	5.1	32
29	Bioconjugation via azide–Staudinger ligation: an overview. Chemical Society Reviews, 2011, 40, 4840.	18.7	271
30	Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsules to impart stability and permselectivity. Journal of Materials Chemistry B, 2014, 2, 8208-8219.	2.9	30
31	Microenvironmentâ€dependent respiration of Tâ€47D cells cultured in alginate biostructures. Cell Proliferation, 2015, 48, 318-329.	2.4	0
32	Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants. Journal of Biomedical Nanotechnology, 2016, 12, 1035-1047.	0.5	46
33	A 4.7 T/11.1 T NMR Compliant 50 nW Wirelessly Programmable Implant for Bioartificial Pancreas <i>In Vivo</i> Monitoring. IEEE Journal of Solid-State Circuits, 2016, 51, 473-483.	3.5	5
34	Preclinical characterization of alginateâ€poly‣″ysine encapsulated HepaRG for extracorporeal liver supply. Biotechnology and Bioengineering, 2021, 118, 453-464.	1.7	5