A local electrostatic change is the cause of the large-scal bacteriorhodopsin

Proceedings of the National Academy of Sciences of the Unite 94, 5040-5044

DOI: 10.1073/pnas.94.10.5040

Citation Report

		15	0
#	ARTICLE	IF	CITATIONS
1	Mechanism of Ion Transport across Membranes. Journal of Biological Chemistry, 1997, 272, 31209-31212.	1.6	176
2	The Last Phase of the Reprotonation Switch in Bacteriorhodopsin:Â The Transition between the M-Type and the N-Type Protein Conformation Depends on Hydrationâ€. Biochemistry, 1997, 36, 12282-12287.	1.2	60
3	The structure and mechanism of the family of retinal proteins from halophilic archaea. Current Opinion in Structural Biology, 1998, 8, 489-500.	2.6	270
4	Localization of Glycolipids in Membranes by In Vivo Labeling and Neutron Diffraction. Molecular Cell, 1998, 1, 411-419.	4.5	83
5	The local-access mechanism of proton transport by bacteriorhodopsin. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 17-22.	0.5	14
6	Local-Access Model for Proton Transfer in Bacteriorhodopsin. Biochemistry, 1998, 37, 3982-3993.	1.2	78
7	Kinetics of the Light-Induced Proton Translocation Associated with the pH-Dependent Formation of the Metarhodopsin I/II Equilibrium of Bovine Rhodopsin. Biochemistry, 1998, 37, 16888-16897.	1.2	27
8	Understanding Structure and Function in the Light-Driven Proton Pump Bacteriorhodopsin. Journal of Structural Biology, 1998, 124, 164-178.	1.3	114
9	Structural Characterization of the L-to-M Transition of the Bacteriorhodopsin Photocycle. Biophysical Journal, 1998, 75, 1446-1454.	0.2	41
10	Connectivity of the Retinal Schiff Base to Asp85 and Asp96 during the Bacteriorhodopsin Photocycle: The Local-Access Model. Biophysical Journal, 1998, 75, 1455-1465.	0.2	67
11	Evidence for Charge-Controlled Conformational Changes in the Photocycle of Bacteriorhodopsin. Biophysical Journal, 1998, 75, 399-405.	0.2	33
12	Partitioning of Free Energy Gain between the Photoisomerized Retinal and the Protein in Bacteriorhodopsin. Biochemistry, 1998, 37, 9889-9893.	1.2	45
13	Functionalized de Novo Designed Proteins:  Mechanism of Proton Coupling to Oxidation/Reduction in Heme Protein Maquettes. Biochemistry, 1998, 37, 16815-16827.	1.2	71
14	Light-induced denaturation of bacteriorhodopsin solubilized by octyl-β-glucoside. Protein Engineering, Design and Selection, 1999, 12, 755-759.	1.0	39
15	Interfacial photochemistry of retinal proteins. Progress in Surface Science, 1999, 62, 1-237.	3.8	63
16	Back photoreaction from intermediate M of bacteriorhodopsin photocycle. Journal of Photochemistry and Photobiology B: Biology, 1999, 49, 23-28.	1.7	19
17	Electric-Field Effects in 13-Demethyl-11,14-Epoxyretinal-Bacteriorhodopsin Films. Photochemistry and Photobiology, 1999, 70, 103-110.	1.3	3
18	Bacteriorhodopsin. International Review of Cytology, 1999, 187, 161-202.	6.2	49

ATION RE

#	Article	IF	CITATIONS
19	Arginine Activity in the Proton-Motive Photocycle of Bacteriorhodopsin:  Solid-State NMR Studies of the Wild-Type and D85N Proteins. Biochemistry, 1999, 38, 1562-1572.	1.2	53
20	Calculated Protein and Proton Motions Coupled to Electron Transfer:Â Electron Transfer from QA-to QBin Bacterial Photosynthetic Reaction Centersâ€. Biochemistry, 1999, 38, 8253-8270.	1.2	243
21	Protein conformational changes in the bacteriorhodopsin photocycle 1 1Edited by B. Honig. Journal of Molecular Biology, 1999, 287, 145-161.	2.0	244
22	Irreversible Conformational Change of Bacterio-opsin Induced by Binding of Retinal during Its Reconstitution to Bacteriorhodopsin, as Studied by 13NMR. Journal of Biochemistry, 2000, 127, 861-869.	0.9	36
23	Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature, 2000, 406, 653-657.	13.7	451
24	Time-resolved x-ray diffraction reveals multiple conformations in the M-N transition of the bacteriorhodopsin photocycle. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14278-14282.	3.3	45
25	Self-Regulation Phenomena in Bacterial Reaction Centers. I. General Theory. Biophysical Journal, 2000, 79, 1237-1252.	0.2	40
26	Protonation reactions and their coupling in bacteriorhodopsin. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 75-94.	0.5	162
27	Chemical and physical evidence for multiple functional steps comprising the M state of the bacteriorhodopsin photocycle. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 106-118.	0.5	32
28	Structures of photointermediates and their implications for the proton pump mechanism. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 166-176.	0.5	23
29	Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 204-219.	0.5	35
30	Proton transport by sensory rhodopsins and its modulation by transducer-binding. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1460, 230-239.	0.5	78
31	Alteration of Conformation and Dynamics of Bacteriorhodopsin Induced by Protonation of Asp 85 and Deprotonation of Schiff Base as Studied by 13C NMR. Biochemistry, 2000, 39, 14472-14480.	1.2	34
32	The role of retinal in the long-range protein-lipid interactions in bacteriorhodopsin-phosphatidylcholine vesicles. European Biophysics Journal, 2001, 29, 628-640.	1.2	6
33	Photochemical Reaction Cycle and Proton Transfers inNeurospora Rhodopsin. Journal of Biological Chemistry, 2001, 276, 32495-32505.	1.6	60
34	Conformational change of the E-F interhelical loop in the M photointermediate of bacteriorhodopsin. Journal of Molecular Biology, 2002, 317, 471-478.	2.0	32
35	High-throughput screening of bacteriorhodopsin mutants in whole cell pastes. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 91-98.	1.4	3
36	Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1565, 144-167.	1.4	204

CITATION REPORT

#	Article	IF	CITATIONS
37	Control of the Pump Cycle in Bacteriorhodopsin: Mechanisms Elucidated by Solid-State NMR of the D85N Mutant. Biophysical Journal, 2002, 82, 1017-1029.	0.2	30
38	Early Structural Rearrangements in the Photocycle of an Integral Membrane Sensory Receptor. Structure, 2002, 10, 473-482.	1.6	51
39	Sensory rhodopsin II: functional insights from structure. Current Opinion in Structural Biology, 2002, 12, 540-546.	2.6	99
40	Two processes lead to a stable all- trans and 13- cis isomer equilibrium in dark-adapted bacteriorhodopsin; effect of high pressure on bacteriorhodopsin, bacteriorhodopsin mutant D96N and fluoro-bacteriorhodopsin analogues. European Biophysics Journal, 2002, 31, 539-548.	1.2	12
41	Subdomains in the F and G helices of bacteriorhodopsin regulate the conformational transitions of the reprotonation mechanism. Proteins: Structure, Function and Bioinformatics, 2002, 48, 269-282.	1.5	5
42	Structural clues to the mechanism of ion pumping in bacteriorhodopsin. Advances in Protein Chemistry, 2003, 63, 111-130.	4.4	52
43	Significance of low-frequency local fluctuation motions in the transmembrane B and C ?-helices of bacteriorhodopsin, to facilitate efficient proton uptake from the cytoplasmic surface, as revealed by site-directed solid-state 13C NMR. European Biophysics Journal, 2004, 33, 580-588.	1.2	15
44	Structural Changes in the Photoactive Site of Proteorhodopsin during the Primary Photoreactionâ€. Biochemistry, 2004, 43, 9075-9083.	1.2	59
45	Molecular Information Technology. Critical Reviews in Solid State and Materials Sciences, 2005, 30, 33-69.	6.8	49
46	Structural Transition of Bacteriorhodopsin Is Preceded by Deprotonation of Schiff Base: Microsecond Time-Resolved X-Ray Diffraction Study of Purple Membrane. Biophysical Journal, 2005, 88, 436-442.	0.2	12
47	Propagating Structural Perturbation Inside Bacteriorhodopsin: Crystal Structures of the M State and the D96A and T46V Mutantsâ€. Biochemistry, 2006, 45, 12003-12010.	1.2	16
48	Conformation and dynamics changes of bacteriorhodopsin and its D85N mutant in the absence of 2D crystalline lattice as revealed by site-directed 13C NMR. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 181-189.	1.4	10
49	Proteins as data storage devices: insights from computer models. Journal of Physics: Conference Series, 2006, 34, 7-14.	0.3	1
51	Site-Directed Solid-State NMR on Membrane Proteins. Annual Reports on NMR Spectroscopy, 2006, 57, 99-175.	0.7	12
52	Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: A theoretical analysis of structural elements. Journal of Structural Biology, 2007, 157, 454-469.	1.3	42
53	Studies of the Bacteriorhodopsin Photocycle without the Use of Light: Clues to Proton Transfer Coupled Reactions. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 210-217.	1.0	12
54	Mutagenic Analysis of Membrane Protein Functional Mechanisms: Bacteriorhodopsin as a Model Example. Methods in Cell Biology, 2008, 84, 479-515.	0.5	1
55	Backbone Relaxation Coupled to the Ionization of Internal Groups in Proteins: A Self-Guided Langevin Dynamics Study. Biophysical Journal, 2008, 95, 4091-4101.	0.2	49

#	Article	IF	CITATIONS
56	Light- and pH-Dependent Conformational Changes in Protein Structure Induce Strong Bending of Purple Membranes—Active Membranes Studied by Cryo-SEM. Journal of Physical Chemistry B, 2008, 112, 13116-13120.	1.2	11
57	Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2. Photochemical and Photobiological Sciences, 2009, 8, 328-336.	1.6	55
58	Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 4329.	1.3	9
59	Crystallinity of Purple Membranes Comprising the Chloride-Pumping Bacteriorhodopsin Variant D85T and Its Modulation by pH and Salinity. Journal of Physical Chemistry B, 2010, 114, 15424-15428.	1.2	5
60	Curvature of Purple Membranes Comprising Permanently Wedge-Shaped Bacteriorhodopsin Molecules Is Regulated by Lipid Content. Journal of Physical Chemistry B, 2010, 114, 549-556.	1.2	7
61	Conformational Consequences of Ionization of Lys, Asp, and Clu Buried at Position 66 in Staphylococcal Nuclease. Biochemistry, 2010, 49, 4138-4146.	1.2	49
62	Conformational Relaxation and Water Penetration Coupled to Ionization of Internal Groups in Proteins. Journal of Physical Chemistry A, 2011, 115, 4042-4053.	1.1	41
63	Structural Changes in Bacteriorhodopsin Caused by Two-Photon-Induced Photobleaching. Journal of Physical Chemistry B, 2012, 116, 7455-7462.	1.2	15
64	8.10 Light Capture and Energy Transduction in Bacterial Rhodopsins and Related Proteins. , 2012, , 206-227.		2
65	Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chemical Reviews, 2014, 114, 126-163.	23.0	897
66	Mechanism of the light-driven proton pump of bacteriorhodopsin based on the consistency principle. Biophysics and Physicobiology, 2019, 16, 274-279.	0.5	5
67	Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor. Biophysical Journal, 2020, 118, 1838-1849.	0.2	9
68	Structural Dynamics of HIV-1 Envelope Gp120 Outer Domain with V3 Loop. PLoS ONE, 2012, 7, e37530.	1.1	42
69	Protein p <i>K</i> _a Prediction by Tree-Based Machine Learning. Journal of Chemical Theory and Computation, 2022, 18, 2673-2686.	2.3	13
70	Structural studies of bacteriorhodopsin in BC era. Biophysics and Physicobiology, 2023, , .	0.5	0