Single-fiber and whole muscle analyses of MHC isoform and unloading

American Journal of Physiology - Cell Physiology 273, C944-C952

DOI: 10.1152/ajpcell.1997.273.3.c944

Citation Report

#	Article	IF	CITATIONS
1	Novel transitions in MHC isoforms: separate and combined effects of thyroid hormone and mechanical unloading. Journal of Applied Physiology, 1998, 85, 2237-2248.	1.2	114
2	Interaction of hyperthyroidism and hindlimb suspension on skeletal myosin heavy chain expression. Journal of Applied Physiology, 1998, 85, 2227-2236.	1.2	48
3	Hormone-related, muscle-specific changes in protein metabolism and fiber type profile after faba bean intake. Journal of Applied Physiology, 1999, 86, 852-859.	1.2	8
4	Myosin heavy chain profiles in regenerated fast and slow muscles innervated by the same motor nerve become nearly identical. The Histochemical Journal, 1999, 31, 277-283.	0.6	21
5	Muscle regeneration and fiber-type transformation during distraction osteogenesis. Journal of Orthopaedic Research, 1999, 17, 560-570.	1.2	45
6	Persistence of hybrid fibers in rat soleus after spinal cord transection. , 1999, 255, 188-201.		70
7	Testosterone Administration Preserves Protein Balance But Not Muscle Strength during 28 Days of Bed Rest1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 207-212.	1.8	31
8	Single-Fiber Myosin Heavy-Chain Isoform Composition of Rodent Laryngeal Muscle. JAMA Otolaryngology, 2000, 126, 874.	1.5	43
9	New Perspectives About Human Laryngeal Muscle. JAMA Otolaryngology, 2000, 126, 857.	1.5	60
10	Myosin heavy chain isoform expression following reduced neuromuscular activity: Potential regulatory mechanisms. , 2000, 23, 661-679.		247
11	Effects of hindlimb unloading on neuromuscular development of neonatal rats. Developmental Brain Research, 2000, 119, 169-178.	2.1	25
12	Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. American Journal of Physiology - Cell Physiology, 2000, 279, C1801-C1811.	2.1	92
13	MHC polymorphism in rodent plantaris muscle: effects of mechanical overload and hypothyroidism. American Journal of Physiology - Cell Physiology, 2000, 278, C709-C717.	2.1	38
14	MHC isoform composition and Ca ²⁺ - or Sr ²⁺ -activation properties of rat skeletal muscle fibers. American Journal of Physiology - Cell Physiology, 2000, 279, C1564-C1577.	2.1	63
15	Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1099-R1106.	0.9	26
16	Effects of spaceflight and thyroid deficiency on rat hindlimb development. II. Expression of MHC isoforms. Journal of Applied Physiology, 2000, 88, 904-916.	1.2	59
17	In vivo regulation of the β-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats. American Journal of Physiology - Cell Physiology, 2000, 278, C1153-C1161.	2.1	37
18	Are Hybrid Fibers a Common Motif of Canine Laryngeal Muscles?. JAMA Otolaryngology, 2000, 126, 865.	1.5	38

#	Article	IF	CITATIONS
19	Independent Signals Control Expression of the Calcineurin Inhibitory Proteins MCIP1 and MCIP2 in Striated Muscles. Circulation Research, 2000, 87, E61-8.	2.0	292
20	Invited Review: Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. Journal of Applied Physiology, 2001, 90, 345-357.	1.2	283
21	Maximal and submaximal forces of slow fibers in human soleus after bed rest. Journal of Applied Physiology, 2001, 91, 417-424.	1.2	63
22	Functional overload increases β-MHC promoter activity in rodent fast muscle via the proximal MCAT (βe3) site. American Journal of Physiology - Cell Physiology, 2002, 282, C518-C527.	2.1	20
23	Breakout Session 3: Issues Related to Muscle Growth, Atrophy, and Tissue Engineering. Clinical Orthopaedics and Related Research, 2002, 403, S252-S261.	0.7	5
24	Adaptations in Skeletal Muscle Disuse or Decreased-Use Atrophy. American Journal of Physical Medicine and Rehabilitation, 2002, 81, S127-S147.	0.7	85
25	Effects of hypothyroidism on maximum specific force in rat diaphragm muscle fibers. Journal of Applied Physiology, 2002, 92, 1506-1514.	1.2	40
26	Activity-independent neural influences on cat soleus motor unit phenotypes. Muscle and Nerve, 2002, 26, 252-264.	1.0	15
27	Plasticity of skeletal muscle phenotype: Mechanical consequences. Muscle and Nerve, 2002, 26, 740-768.	1.0	97
28	Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation. Journal of Muscle Research and Cell Motility, 2002, 23, 215-221.	0.9	43
29	Upregulation of HSP72 in Reloading Rat Soleus Muscle after Prolonged Hindlimb Unloading. The Japanese Journal of Physiology, 2003, 53, 281-286.	0.9	35
30	Single-fiber myosin heavy chain polymorphism: how many patterns and what proportions?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R570-R580.	0.9	74
31	Effect of cyclosporin A treatment on the in vivo regulation of type I MHC gene expression. Journal of Applied Physiology, 2004, 97, 475-483.	1.2	20
32	Consequences of thyroxine treatment on diaphragm and EDL of normal and dystrophic hamsters. Canadian Journal of Physiology and Pharmacology, 2004, 82, 345-352.	0.7	5
33	Assist–Control Mechanical Ventilation Attenuates Ventilator-induced Diaphragmatic Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 626-632.	2.5	286
34	Early effects of mechanical ventilation on isotonic contractile properties and MAF-box gene expression in the diaphragm. Journal of Applied Physiology, 2005, 99, 747-756.	1.2	33
35	Effect of unloading on type I myosin heavy chain gene regulation in rat soleus muscle. Journal of Applied Physiology, 2005, 98, 1185-1194.	1.2	24
36	Pathogenic accumulation of APP in fast twitch muscle of IBM patients and a transgenic model. Neurobiology of Aging, 2006, 27, 423-432.	1.5	43

#	Article	IF	CITATIONS
37	Determinants of Disuse-Induced Skeletal Muscle Atrophy: Exercise and Nutrition Countermeasures to Prevent Protein Loss. Journal of Nutritional Science and Vitaminology, 2006, 52, 233-247.	0.2	42
38	Myosin Heavy Chain Composition and Fiber Size of the Cricopharyngeus Muscle in Patients with Achalasia and Normal Subjects. Annals of Otology, Rhinology and Laryngology, 2007, 116, 643-646.	0.6	7
39	Key signalling factors and pathways in the molecular determination of skeletal muscle phenotype. Animal, 2007, 1, 681-698.	1.3	29
40	Acute effects of highâ€dose methylprednisolone on diaphragm muscle function. Muscle and Nerve, 2008, 38, 1161-1172.	1.0	24
41	<i>Novel epigenetic regulation of skeletal muscle myosin heavy chain genes</i> . Focus on "Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloadingâ€. American Journal of Physiology - Cell Physiology, 2009, 297, C1-C3.	2.1	11
42	Effects of repeated lengthening contractions on skeletal muscle adaptations in female rats. Journal of Physiological Sciences, 2010, 60, 143-150.	0.9	6
43	Simulated microgravityâ€induced epigenetic changes in human lymphocytes. Journal of Cellular Biochemistry, 2010, 111, 123-129.	1.2	56
44	Effects of Elevated Thyroid Hormone on Adult Rabbit Extraocular Muscles. , 2010, 51, 183.		10
45	Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Frontiers in Physiology, 2013, 4, 284.	1.3	129
46	Dietary Fat Influences the Expression of Contractile and Metabolic Genes in Rat Skeletal Muscle. PLoS ONE, 2013, 8, e80152.	1.1	49
47	Cold exposure increases slowâ€type myosin heavy chain 1 (<scp>MyHC1</scp>) composition of soleus muscle in rats. Animal Science Journal, 2014, 85, 293-304.	0.6	14
48	Study on Regulation of Skeletal Muscle Fiber Type by Nutritional Components. Nihon EiyŕShokuryŕ Gakkai Shi = Nippon EiyŕShokuryŕGakkaishi = Journal of Japanese Society of Nutrition and Food Science, 2016, 69, 3-9.	0.2	0
49	Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases. PLoS ONE, 2016, 11, e0158630.	1.1	2
50	A One-Step Immunostaining Method to Visualize Rodent Muscle Fiber Type within a Single Specimen. PLoS ONE, 2016, 11, e0166080.	1.1	48
51	Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns. American Journal of Physiology - Cell Physiology, 2016, 311, C616-C629.	2.1	29
52	Effects of high EPA and high DHA fish oils on changes in signaling associated with protein metabolism induced by hindlimb suspension in rats. Physiological Reports, 2016, 4, e12958.	0.7	24
53	Heat shock transcription factor 1â€associated expression of slow myosin heavy chain in mouse soleus muscle in response to unloading with or without reloading. Acta Physiologica, 2016, 217, 325-337.	1.8	10
54	Differential effects of docoosahexaenoic and arachidonic acid on fatty acid composition and myosin heavy chain-related genes of slow- and fast-twitch skeletal muscle tissues. Molecular and Cellular Biochemistry, 2016, 415, 169-181.	1.4	14

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	The Evolution of Skeletal Muscle Plasticity in Response to Physical Activity and Inactivity. , 2019, , 347-377.		3
56	Muscle unloading: A comparison between spaceflight and groundâ€based models. Acta Physiologica, 2020, 228, e13431.	1.8	44
57	Individual, age and sex differences in fiber type composition of slow and fast muscles of adult Lewis rats: comparison with other rat strains. Physiological Research, 2010, 59, 783-801.	0.4	29
58	Effects of Long-Term Thyroid Hormone Level Alterations, n-3 Poly-unsaturated Fatty Acid Supplementation and Statin Administration in Rats. Physiological Research, 2014, 63, S119-S131.	0.4	10
59	Hyperglycemia Inhibits Recovery From Disuse-Induced Skeletal Muscle Atrophy in Rats. Physiological Research, 2014, 63, 465-474.	0.4	6
60	Proportions of Myosin Heavy Chain mRNAs, Protein Isoforms and Fiber Types in the Slow and Fast Skeletal Muscles Are Maintained After Alterations of Thyroid Status in Rats. Physiological Research, 2015, 64, 111-118.	0.4	4
61	Role of the T-System and the Na-K Pump on Fatigue Development in Phasic Skeletal Muscle. Advances in Experimental Medicine and Biology, 2003, 538, 543-555.	0.8	0
62	Efeitos da espironolactona sobre as alterações miocÃ;rdicas induzidas pelo hormônio tireoideano em ratos. Arquivos Brasileiros De Cardiologia, 2007, 89, 398-402.	0.3	3
63	Comparison of Morphological Changes of Muscle Fibers in Response to Dynamic Electrical Muscle Contraction and Dynamic Hydraulic Stimulation in a Rat Hindlimb Disuse Model. Physiological Research, 2017, 66, 519-530.	0.4	0
64	Muscle Plasticity and Variations in Myofibrillar Protein Composition of Mammalian Muscle Fibers. , 2006, , 213-264.		0
66	Factors mediating spaceflight-induced skeletal muscle atrophy. American Journal of Physiology - Cell Physiology, 2022, 322, C567-C580.	2.1	33