The nutritional value of edible insects

Ecology of Food and Nutrition 36, 287-319 DOI: 10.1080/03670244.1997.9991521

Citation Report

#	Article	IF	CITATIONS
1	INSECTS AS FOOD: Why the Western Attitude Is Important. Annual Review of Entomology, 1999, 44, 21-50.	5.7	345
2	Edible insects of chiapas, Mexico. Ecology of Food and Nutrition, 2002, 41, 271-299.	0.8	37
3	Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 2002, 21, 269-285.	0.5	576
4	Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. Journal of Food Composition and Analysis, 2003, 16, 451-457.	1.9	41
5	Insects as Food in sub-Saharan Africa. International Journal of Tropical Insect Science, 2003, 23, 163-185.	0.4	114
6	Nutrient Composition of Bee Brood and its Potential as Human Food. Ecology of Food and Nutrition, 2005, 44, 257-270.	0.8	76
7	Human Gastric Juice Contains Chitinase That Can Degrade Chitin. Annals of Nutrition and Metabolism, 2007, 51, 244-251.	1.0	112
8	Insect cells for human food. Biotechnology Advances, 2007, 25, 198-202.	6.0	161
9	Natural Enemies Important in Biological Control. , 2008, , 2555-2567.		1
10	Neotropical Brown Stink Bug, Euschistus heros (F.) (Hemiptera: Heteroptera: Pentatomidae). , 2008, , 2585-2587.		0
11	Natatorial. , 2008, , 2546-2546.		0
12	Nutrient Content of Insects. , 2008, , 2623-2646.		2
13	Energy Supplied by Edible Insects from Mexico and their Nutritional and Ecological Importance. Ecology of Food and Nutrition, 2008, 47, 280-297.	0.8	87
14	Potential ecological implications of human entomophagy by subsistence groups of the Neotropics. Terrestrial Arthropod Reviews, 2008, 1, 81-93.	0.8	12
15	The Black Cutworm as a Potential Human Food. American Journal of Biochemistry and Biotechnology, 2009, 5, 210-220.	0.1	12
16	The Yellow Mealworm as a Novel Source of Protein. American Journal of Agricultural and Biological Science, 2009, 4, 319-331.	0.9	131
17	Food, Insects as. , 2009, , 376-381.		12
18	The Importance of Traditional Ecological Knowledge for Palm-weevil Cultivation in the Venezuelan Amazon. Journal of Ethnobiology, 2009, 29, 113-128.	0.8	28

#	Article	IF	CITATIONS
19	An exploratory analysis of the suitability of diets fed to a flightless insectivore, the North Island brown kiwi (Apteryx mantelli), in New Zealand. Zoo Biology, 2010, 29, 537-550.	0.5	8
20	Nutritional Value of the Maize Stalk Borer and American Bollworm as Unconventional Protein Sources. American Journal of Applied Sciences, 2010, 7, 1-12.	0.1	9
21	Edible Insects As Part of the Traditional Food System of the Popoloca Town of Los Reyes Metzontla, Mexico. Journal of Ethnobiology, 2011, 31, 150-169.	0.8	25
22	Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renewable and Sustainable Energy Reviews, 2011, 15, 4357-4360.	8.2	196
23	Entomophagy and human food security. International Journal of Tropical Insect Science, 2011, 31, 129-144.	0.4	136
24	Evaluation of nutritional status of an edible grasshopper, <i><scp>O</scp>xya <scp>C</scp>hinensis <scp>F</scp>ormosana</i> . Entomological Research, 2012, 42, 284-290.	0.6	18
25	Nutritional composition of actual and potential insect prey for the Kasekela chimpanzees of Gombe National Park, Tanzania. American Journal of Physical Anthropology, 2012, 149, 493-503.	2.1	30
26	Nutritional evaluation of protein from Clanis bilineata (Lepidoptera), an edible insect. Journal of the Science of Food and Agriculture, 2012, 92, 1479-1482.	1.7	26
27	Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biology, 2013, 32, 27-36.	0.5	325
28	Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Applied Entomology and Zoology, 2013, 48, 105-112.	0.6	49
29	Nutritional Ecology of Entomophagy in Humans and Other Primates. Annual Review of Entomology, 2013, 58, 141-160.	5.7	202
30	Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 2013, 17, 1-11.	2.7	532
31	Nutritional composition and safety aspects of edible insects. Molecular Nutrition and Food Research, 2013, 57, 802-823.	1.5	1,029
32	Eat or not eat: an analysis of the status of entomophagy in Botswana. Food Security, 2013, 5, 817-824.	2.4	45
33	Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology, 2013, 58, 563-583.	5.7	1,191
34	Insects as Human Food: Are They Really Tasty and Nutritious?. Journal of Agricultural and Food Information, 2013, 14, 264-271.	1.1	9
35	Entomophagy: A Panacea for Protein-Deficient-Malnutrition and Food Insecurity in Nigeria. Journal of Agricultural Science, 2013, 5, .	0.1	5
36	Socio Economic Analysis of Forest Edible Insects Species Consumed and Its Role in the Livelihood of People in Lagos State. Journal of Food Studies, 2014, 3, 104.	0.3	8

#	Article	IF	CITATIONS
37	Nutritional Composition and Protein Quality of the Edible Beetle Holotrichia parallela. Journal of Insect Science, 2014, 14, 139.	0.6	28
38	A Comprehensive Look at the Possibilities of Edible Insects as Food in Europe – A Review. Polish Journal of Food and Nutrition Sciences, 2014, 64, 147-157.	0.6	156

39 Effect of Diet Quality on Survival and Reproduction of AdultPaederus fuscipes(Coleoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662 Tc

40	Influence of post-starvation extraction time and prey-specific diet in Tityus serrulatus scorpion venom composition and hyaluronidase activity. Toxicon, 2014, 90, 326-336.	0.8	38
41	Insects as Food for Insectivores. , 2014, , 583-616.		38
42	Insects for Human Consumption. , 2014, , 617-652.		49
43	The †other faunivory' revisited: Insectivory in human and non-human primates and the evolution of human diet. Journal of Human Evolution, 2014, 71, 4-11.	1.3	80
44	Macronutrient contributions of insects to the diets of hunter–gatherers: A geometric analysis. Journal of Human Evolution, 2014, 71, 70-76.	1.3	33
45	Evolutionary responses of solitary and social Hymenoptera to predation by primates and overwhelmingly powerful vertebrate predators. Journal of Human Evolution, 2014, 71, 12-19.	1.3	28
46	How then shall we eat? Insect-eating attitudes and sustainable foodways. Agriculture and Human Values, 2014, 31, 131-141.	1.7	264
47	The potential of various insect species for use as food for fish. Aquaculture, 2014, 422-423, 193-201.	1.7	370
48	State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 2014, 197, 1-33.	1.1	1,048
49	The energetic and nutritional yields from insectivory for Kasekela chimpanzees. Journal of Human Evolution, 2014, 71, 46-58.	1.3	27
50	Termites in the hominin diet: A meta-analysis of termite genera, species and castes as a dietary supplement for South African robust australopithecines. Journal of Human Evolution, 2014, 71, 94-104.	1.3	38
51	Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 2014, 62, 1087-1094.	2.9	203
52	Risk profile related to production and consumption of insects as food and feed. EFSA Journal, 2015, 13, 4257.	0.9	473
53	â€~Entomophagy': an evolving terminology in need of review. Journal of Insects As Food and Feed, 2015, 1, 293-305.	2.1	89
54	Mealworms for Food: A Water Footprint Perspective. Water (Switzerland), 2015, 7, 6190-6203.	1.2	126

#	Article	IF	CITATIONS
55	How and When Do Insects Rely on Endogenous Protein and Lipid Resources during Lethal Bouts of Starvation? A New Application for 13C-Breath testing. PLoS ONE, 2015, 10, e0140053.	1.1	35
56	The mineral composition of five insects as sold for human consumption in Southern Africa. African Journal of Biotechnology, 2015, 14, 2443-2448.	0.3	14
57	Risques et valorisation des insectes dans l'alimentation humaine et animale. Annales De La Societe Entomologique De France, 2015, 51, 215-258.	0.4	11
58	Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Quality and Preference, 2015, 42, 78-89.	2.3	349
59	Toxicological evaluation of genotoxicity and 28-day oral toxicity study on freeze-dried powder of Allomyrina dichotoma larvae. Journal of Asia-Pacific Entomology, 2015, 18, 807-813.	0.4	3
60	Selected species of edible insects as a source of nutrient composition. Food Research International, 2015, 77, 460-466.	2.9	267
61	Seasonal variation in diet of the golden jackal (Canis aureus) in Serbia. Mammal Research, 2015, 60, 309-317.	0.6	22
62	Bacteria Present in <i>Comadia redtenbacheri</i> Larvae (Lepidoptera: Cossidae). Journal of Medical Entomology, 2015, 52, 1150-1158.	0.9	18
63	Nutritional composition of the preferred prey of insectivorous birds: popularity reflects quality. Journal of Avian Biology, 2015, 46, 89-96.	0.6	55
64	Nutritional Composition and Microbiology of Some Edible Insects Commonly Eaten in Africa, Hurdles and Future Prospects: A Critical Review. Journal of Food Microbiology Safety & Hygiene, 2016, 01, .	0.4	12
65	Proximate composition and mineral content of five edible insects consumed in Korea. CYTA - Journal of Food, 0, , 1-4.	0.9	19
66	Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. Journal of Asia-Pacific Entomology, 2016, 19, 487-495.	0.4	84
67	The influence of product preparation, familiarity and individual traits on the consumer acceptance of insects as food. Food Quality and Preference, 2016, 52, 222-231.	2.3	161
68	Nutrient Content and Health Benefits of Insects. , 2016, , 61-84.		38
69	Edible Insects Farming: Efficiency and Impact on Family Livelihood, Food Security, and Environment Compared With Livestock and Crops. , 2016, , 85-111.		56
70	Transforming insect biomass into consumer wellness foods: A review. Food Research International, 2016, 89, 129-151.	2.9	117
71	Low Temperature Storage of Eggs Improve the Development and Reproduction of <i>Locusta migratoria</i> (Orthoptera: Acrididae). Journal of Economic Entomology, 2016, 109, 2061-2068.	0.8	0
72	La biodiversité entomologique comme source d'aliments à Kinshasa (République démocratique du) T	j ETQq1 1	0.784314 r

#	Article	IF	CITATIONS
73	Economic and Ecological Significance of Arthropods in Diversified Ecosystems. , 2016, , .		11
74	Insects as Human Food. , 2016, , 133-146.		6
75	North American entomophagy. Journal of Insects As Food and Feed, 2016, 2, 111-120.	2.1	18
76	Edible insects are the future?. Proceedings of the Nutrition Society, 2016, 75, 294-305.	0.4	202
77	A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends in Food Science and Technology, 2016, 47, 69-77.	7.8	157
78	Are edible insects more or less â€~healthy' than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. European Journal of Clinical Nutrition, 2016, 70, 285-291.	1.3	169
79	Reducing the global environmental impact of livestock production: the minilivestock option. Journal of Cleaner Production, 2016, 112, 1754-1766.	4.6	89
80	Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 2017, 140, 890-905.	4.6	297
81	Insects as Food. , 2017, , 413-434.		6
82	More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162126.	1.2	47
83	Nitrogen-to-Protein Conversion Factors for Three Edible Insects: <i>Tenebrio molitor</i> , <i>Alphitobius diaperinus</i> , and <i>Hermetia illucens</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 2275-2278.	2.4	442
84	Sustainable ruminant production to help feed the planet. Italian Journal of Animal Science, 2017, 16, 140-171.	0.8	56
85	Ecological diversity of edible insects and their potential contribution to household food security in Hautâ€Katanga Province, Democratic Republic of Congo. African Journal of Ecology, 2017, 55, 640-653.	0.4	22
86	Chemical evaluation of the <i>Rhynchophorus ferrugineus</i> larvae fed on different substrates as human food source. Food Science and Technology International, 2017, 23, 529-539.	1.1	14
87	New Sources of Animal Proteins: Edible Insects. , 2017, , 443-461.		10
88	Molecular characterization and expression analysis of heat shock protein 70 and 90 from Hermetia illucens reared in a food waste bioconversion pilot plant. Gene, 2017, 627, 15-25.	1.0	17
89	A model for composing meat replacers: Reducing the environmental impact of our food consumption pattern while retaining its nutritional value. Journal of Cleaner Production, 2017, 165, 930-950.	4.6	70
90	Could new information influence attitudes to foods supplemented with edible insects?. British Food Journal, 2017, 119, 2027-2039.	1.6	80

			_
#	ARTICLE	IF	CITATIONS
91	Contributions to a Sustainable Production of Food of Animal Origin. , 2017, , 197-227.		2
92	Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 2017, 42, 293-308.	0.8	268
93	Antioxidant activity of predigested protein obtained from a range of farmed edible insects. International Journal of Food Science and Technology, 2017, 52, 306-312.	1.3	106
94	A Study on the Use of Insects as Food in Seven Tribal Communities in Nagaland, Northeast India. Journal of Human Ecology: International, Interdisciplinary Journal of Man-environment Relationship, 2017, 60, 42-53.	0.1	17
95	Consideration of insects as a source of dietary protein for human consumption. Nutrition Reviews, 2017, 75, 1035-1045.	2.6	109
97	Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens. Insects, 2017, 8, 102.	1.0	78
98	Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae. PLoS ONE, 2017, 12, e0189685.	1.1	30
99	Selected Edible Insects and Their Products in Traditional Medicine, Food and Pharmaceutical Industries in Africa: Utilisation and Prospects. , 0, , .		4
100	Use of house cricket to address food security in Kenya: Nutrient and chitin composition of farmed crickets as influenced by age. African Journal of Agricultural Research Vol Pp, 2017, 12, 3189-3197.	0.2	23
101	Termites and Sustainable Management. , 2018, , .		6
102	Termites as Food in Africa. , 2018, , 217-240.		6
103	Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science and Technology, 2018, 76, 82-89.	7.8	144
104	Effects of replacing soybean oil with selected insect fats on broilers. Animal Feed Science and Technology, 2018, 240, 170-183.	1.1	71
105	Can edible grasshoppers and silkworm pupae be tasted by humans when prevented to see and smell these insects?. Journal of Asia-Pacific Entomology, 2018, 21, 616-619.	0.4	26
106	Growing conditions and morphotypes of African palm weevil (Rhynchophorus phoenicis) larvae influence their lipophilic nutrient but not their amino acid compositions. Journal of Food Composition and Analysis, 2018, 69, 87-97.	1.9	14
107	Insects as an Alternative Protein Source. , 2018, , 263-288.		39
108	Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor. Journal of Insect Physiology, 2018, 107, 89-96.	0.9	71
109	Prospects for insects as food in Switzerland: A tobit regression. Food Quality and Preference, 2018, 64, 37-46.	2.3	93

	C	ITATION REPO	ORT	
#	Article	ſ	IF	CITATIONS
110	Characteristics of fermented seasoning sauces using Tenebrio molitor larvae. Innovative Food Science and Emerging Technologies, 2018, 45, 186-195.	:	2.7	40
111	Seasonal patterns of habitat selection in the insectivorous batâ€eared fox. African Journal of Ecology 2018, 56, 548-554.	,	0.4	3
112	The fatty acid composition of edible grasshopper <i>Ruspolia differens</i> (Serville) (Orthoptera:) Tj	ETQq0 0 0 rgB	T /Overlo 0.6	ck 10 Tf 50 24
113	Cryptic Diversity in Colombian Edible Leaf-Cutting Ants (Hymenoptera: Formicidae). Insects, 2018, 9	, 191.	1.0	3
114	Edible Insects and Other Chitin-Bearing Foods in Ethnic Peru: Accessibility, Nutritional Acceptance, and Food-Security Implications. Journal of Ethnobiology, 2018, 38, 424.		0.8	5
115	Artificial diets determine fatty acid composition in edible Ruspolia differens (Orthoptera:) Tj ETQq1 1	0.784314 rgB	T /Overlo 0.4	ck 10 Tf 50
116	Evaluation of a performic acid oxidation method for quantifying amino acids in freshwater species. Limnology and Oceanography: Methods, 2018, 16, 803-813.	:	1.0	8
117	What Governs Selection and Acceptance of Edible Insect Species?. , 2018, , 331-351.			22
118	The Role of Edible Insects in Diets and Nutrition in East Africa. , 2018, , 93-108.			11
119	Drone brood production in Danish apiaries and its potential for human consumption. Journal of Apicultural Research, 2018, 57, 331-336.		0.7	9
120	Protein value of two insects, subjected to various heat treatments, using growing rats and the protein digestibility-corrected amino acid score. Journal of Insects As Food and Feed, 2018, 4, 77-87.	:	2.1	39
121	Tree Sap as an Important Seasonal Food Resource for Woodpeckers: The Case of the Eurasian Three-Toed Woodpecker (<i>Picoides tridactylus</i>) in Southern Finland. Annales Zoologici Fennici, 2018, 55, 79-92.		0.2	11
122	Can a Repeated Opt-Out Reminder mitigate hypothetical bias in discrete choice experiments? An application to consumer valuation of novel food products. European Review of Agricultural Economics, 2018, 45, 749-782.	:	1.5	34
123	Insects (and Other Non-crustacean Arthropods) as Human Food. , 2019, , 416-421.			3
124	Edible Insects in the Food Sector. , 2019, , .			9
125	Insects to feed insects - feeding Aedes mosquitoes with flies for laboratory rearing. Scientific Reports, 2019, 9, 11403.		1.6	13

126	Taxonomic features and comparisons of the gut microbiome from two edible fungus-farming termites (Macrotermes falciger; M. natalensis) harvested in the Vhembe district of Limpopo, South Africa. BMC Microbiology, 2019, 19, 164.	1.3	17
127	Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Animal Feed Science and Technology, 2019, 255, 114215.	1.1	21

	Сітл	ation Report	
#	Article	IF	CITATIONS
128	Mealworms as Food Ingredient—Sensory Investigation of a Model System. Foods, 2019, 8, 319.	1.9	15
129	The Need for Alternative Insect Protein in Africa. Annals of the Entomological Society of America, 2019, 112, 566-575.	1.3	2
130	Delivery rates and prey use of Mountain Bluebirds in grassland and clear-cut habitats. Avian Conservation and Ecology, 2019, 14, .	0.3	4
131	Entomophagy: Nutritional, ecological, safety and legislation aspects. Food Research International, 2019, 126, 108672.	2.9	65
132	European consumers' readiness to adopt insects as food. A review. Food Research International, 2019, 122, 661-678.	2.9	164
133	Molecular physiology of chemical defenses in a poison frog. Journal of Experimental Biology, 2019, 222, .	0.8	26
134	Spatial and temporal variation in the use of supplementary food in an obligate termite specialist, the bat-eared fox. African Zoology, 2019, 54, 63-71.	0.2	7
135	Impact of heat processing on the nutritional content of <i>Gryllus bimaculatus</i> (black cricket). Nutrition Bulletin, 2019, 44, 116-122.	0.8	26
136	Effects of processing methods on nutritional composition and antioxidant activity of mealworm (<scp><i>Tenebrio molitor</i></scp>) larvae. Entomological Research, 2019, 49, 284-293.	0.6	29
137	Environmental temperature alters the overall digestive energetics and differentially affects dietary protein and lipid use in a lizard. Journal of Experimental Biology, 2019, 222, .	0.8	22
138	Iron-polyphenol complexes cause blackening upon grinding Hermetia illucens (black soldier fly) larvae. Scientific Reports, 2019, 9, 2967.	1.6	32
139	Edible caterpillars of Imbrasia truncata and Imbrasia epimethea contain lipids and proteins of high potential for nutrition. Journal of Food Composition and Analysis, 2019, 79, 70-79.	1.9	21
140	Edible larvae and pupae of honey bee (Apis mellifera): Odor and nutritional characterization as a function of diet. Food Chemistry, 2019, 292, 197-203.	4.2	45
141	Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor) Tj E	TQq1 1 0.784314 rg 1.0	BT _/ Overloc
142	Protein, amino acid and mineral composition of some edible insects from Thailand. Journal of Asia-Pacific Entomology, 2019, 22, 372-378.	0.4	118
143	13: Novel protein sources in animal nutrition: considerations and examples. , 2019, , 279-305.		5
144	Edible insects as a food source: a review. Food Production Processing and Nutrition, 2019, 1, .	1.1	90
145	Life Cycle Assessment of fish fed with insect meal: Case study of mealworm inclusion in trout feed, in France. Aquaculture, 2019, 500, 82-91.	1.7	36

	CITATION R	CITATION REPORT	
# 146	ARTICLE The contribution of wild harvested edible insects (Eulepida mashona and Henicus whellani) to nutrition security in Zimbabwe. Journal of Food Composition and Analysis, 2019, 75, 17-25.	IF 1.9	Citations 30
147	Locusts as a Source of Lipids and Proteins and Consumer Acceptance. , 2019, , 167-172.		2
148	Insects as human food; from farm to fork. Journal of the Science of Food and Agriculture, 2020, 100, 5017-5022.	1.7	37
149	The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: a review. Tropical Animal Health and Production, 2020, 52, 7-16.	0.5	42
150	African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components. , 2020, , .		15
151	Functionality of Cricket and Mealworm Hydrolysates Generated after Pretreatment of Meals with High Hydrostatic Pressures. Molecules, 2020, 25, 5366.	1.7	25
152	Black Soldier Fly (Hermetia illucens) Meal as a Promising Feed Ingredient for Poultry: A Comprehensive Review. Agriculture (Switzerland), 2020, 10, 339.	1.4	82
153	Edible Oxya chinensis sinuosa—Derived Protein as a Potential Nutraceutical for Anticancer Immunity Improvement. Nutrients, 2020, 12, 3236.	1.7	7
154	The Effect of Labelling and Visual Properties on the Acceptance of Foods Containing Insects. Nutrients, 2020, 12, 2498.	1.7	24
155	Nutritional Composition of Edible Insects Consumed in Africa: A Systematic Review. Nutrients, 2020, 12, 2786.	1.7	54
156	Insects Used as Food and Feed: Isn't That What We All Need?. Foods, 2020, 9, 1003.	1.9	21
157	Dietary Insect Powder Protein Sources Improve Protein Utilization by Regulation on Intestinal Amino Acid-Chemosensing System. Animals, 2020, 10, 1590.	1.0	8
158	Why for feed and not for human consumption? The black soldier fly larvae. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2747-2763.	5.9	52
159	Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation. Foods, 2020, 9, 1427.	1.9	19
160	Food frontiers: Insects as food, is the future already here?. Mediterranean Journal of Nutrition and Metabolism, 2020, 13, 43-52.	0.2	2
161	Insects' contribution to the bioeconomy and the reduction of food waste. Heliyon, 2020, 6, e03934.	1.4	18
162	Trophic ecology and metabolism of two species of nonnative freshwater stingray (Chondrichthyes:) Tj ETQq0 0 () rgBT /Ove 1.0	erlock 10 Tf 5

163	Beneficial Effects of Insect Extracts on Nonalcoholic Fatty Liver Disease. Journal of Medicinal Food, 2020, 23, 760-771.	0.8	4
-----	--	-----	---

#	Article	IF	CITATIONS
164	A Practical Approach on the Combination of GC-MS and Chemometric Tools to Study Australian Edible Green Ants. Food Analytical Methods, 2020, 13, 1475-1481.	1.3	3
165	Diversification of mopane caterpillars (Gonimbrasia belina) edible forms for improved livelihoods and food security. Journal of Arid Environments, 2020, 177, 104148.	1.2	15
166	Consumer Acceptance of Biscuits Supplemented with a Sorghum–Insect Meal. Nutrients, 2020, 12, 895.	1.7	23
168	Production of protein hydrolysate from Protaetia brevitarsis seulensis (Kolbe) larvae by enzyme treatment under high pressure. Food Science and Biotechnology, 2020, 29, 1187-1194.	1.2	4
169	Bioactive Compounds from Hermetia Illucens Larvae as Natural Ingredients for Cosmetic Application. Biomolecules, 2020, 10, 976.	1.8	35
170	An OLED-based genosensor for the detection of Hermetia illucens in feeds. Food Control, 2020, 113, 107179.	2.8	8
171	Transcriptome analysis of life stages of the house cricket, Acheta domesticus, to improve insect crop production. Scientific Reports, 2020, 10, 3471.	1.6	20
172	Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Global Food Security, 2020, 25, 100348.	4.0	40
173	Nutritional content of edible grasshopper (<i>Sphenarium purpurascens</i>) fed on alfalfa (<i>Medicago sativa</i>) and maize (<i>Zea mays</i>). CYTA - Journal of Food, 2020, 18, 257-263.	0.9	24
174	Evaluating the nutritional content of an insect-fortified food for the child complementary diet in Ghana. BMC Nutrition, 2020, 6, 7.	0.6	17
175	Cafeteria-Type Feeding of Chickens Indicates a Preference for Insect (Tenebrio molitor) Larvae Meal. Animals, 2020, 10, 627.	1.0	11
176	Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annual Review of Animal Biosciences, 2021, 9, 333-354.	3.6	80
177	Nutritional value of insects and ways to manipulate their composition. Journal of Insects As Food and Feed, 2021, 7, 639-659.	2.1	104
178	Edible insects, what about the perceptions of Belgian youngsters?. British Food Journal, 2021, 123, 1985-2002.	1.6	12
179	Evaluation of Consumers' Acceptance of Bread Supplemented with Insect Protein. Food Engineering Series, 2021, , 153-170.	0.3	4
180	Nutritional Properties of Edible Insects. , 2021, , 1187-1209.		0
181	Consumer acceptance of edible insect foods: an application of the extended theory of planned behavior. Nutrition Research and Practice, 2021, 15, 122.	0.7	10
182	Investigating edible insects as a sustainable food source: nutritional value and techno-functional and physiological properties. Food and Function, 2021, 12, 6309-6322.	2.1	12

#	Article	IF	CITATIONS
183	Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits—A Review. Frontiers in Nutrition, 2020, 7, 537915.	1.6	65
184	Effect of refrigerated storage on the technological characteristics of meat stick made of insect and pork •. Progress in Agricultural Engineering Sciences, 2021, 16, 117-125.	0.5	1
185	Nutritional composition of insect types most commonly consumed by the Olugboja Community of Ondo State, Nigeria. International Journal of Tropical Insect Science, 2021, 41, 2975-2982.	0.4	4
186	Nutrient and toxic heavy metal assessment of Tarbinskiellus portentosus and Schizodactylus monstrosus consumed by the Bodo tribe in Assam, India. International Journal of Tropical Insect Science, 2021, 41, 2001-2006.	0.4	6
187	Quality and Characteristics of the Yanggaeng Made with Mealworm Powder. Korean Journal of Human Ecology, 2021, 30, 169-179.	0.0	6
188	Future prospects of insects as a biological resource in India: Potential biological products utilizing insects with reference to the frontier countries. Entomological Research, 2021, 51, 209-229.	0.6	1
189	Physico-chemical and sensory quality evaluation of an extruded nutrient-dense termite (Macrotermes) Tj ETQq0 C Science, 2021, 41, 2059-2070.	0 rgBT /C 0.4	verlock 10 T 4
190	Effects of Protaetia brevitarsis seulensis powder dietary inclusion level on antioxidant activities of broiler breast meat during storage. Entomological Research, 2021, 51, 369-373.	0.6	3
191	Proximal chemical evaluation and fatty acid in the chicatana ant and jumile. Journal of Insects As Food and Feed, 2021, 7, 197-204.	2.1	0
192	Nutrient Composition of Cashew Stem Girdler Analeptes trifasciata (Coleoptera: Cerambycidae) and Its Suitability for Feed and as Food. African Entomology, 2021, 29, .	0.6	1
193	Potential use of a queen bee larvae meal (Apis mellifera ligustica Spin.) in animal nutrition: a nutritional and chemical-toxicological evaluation. Journal of Insects As Food and Feed, 2021, 7, 173-186.	2.1	3
194	Effect of Bombyx mori on the Liver Protection of Non-Alcoholic Fatty Liver Disease Based on In Vitro and In Vivo Models. Current Issues in Molecular Biology, 2021, 43, 21-35.	1.0	6
195	Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods, 2021, 10, 1036.	1.9	108
196	Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. American Journal of Clinical Nutrition, 2021, 114, 934-944.	2.2	47
197	Edible wild field cricket (Brachytrupes portentosus) trading in Bangladesh. Journal of Insects As Food and Feed, 2021, 7, 1255-1262.	2.1	3
199	Not as Bad as I Thought: Consumers' Positive Attitudes Toward Innovative Insect-Based Foods. Frontiers in Nutrition, 2021, 8, 631934.	1.6	9
200	Nutrient composition of Macrotermes species consumed in the Vhembe District, Limpopo Province, South Africa. Journal of Insects As Food and Feed, 2022, 8, 95-100.	2.1	3
201	Former foodstuff in mealworm farming: Effects on fatty acids profile, lipid metabolism and antioxidant molecules. LWT - Food Science and Technology, 2021, 147, 111644.	2.5	21

#	Article	IF	CITATIONS
202	Biological activity and processing technologies of edible insects: a review. Food Science and Biotechnology, 2021, 30, 1003-1023.	1.2	36
203	From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Frontiers in Nutrition, 2021, 8, 704002.	1.6	18
204	Nutritional profile of the wild harvested armoured cricket (<i>Acanthoplus discoidalis</i>) (Orthoptera: <i>Tettigoniidae</i>) in northern region of Zimbabwe. Journal of Insects As Food and Feed, 2022, 8, 417-425.	2.1	3
205	Nutritional Composition of Honey Bee Drones of Two Subspecies Relative to Their Pupal Developmental Stages. Insects, 2021, 12, 759.	1.0	7
206	Protein quality evaluation in vivo of cricket flour (Gryllus assimilis) reared in Brazil. Journal of Insects As Food and Feed, 2022, 8, 409-416.	2.1	5
207	A survey of willingness to consume insects and a measure of college student perceptions of insect consumption using Q methodology. Future Foods, 2021, 4, 100046.	2.4	7
208	Comadia redtenbacheri (Lepidoptera: Cossidae) and Aegiale hesperiaris (Lepidoptera: Hesperiidae), two important edible insects of Agave salmiana (Asparagales: Asparagaceae): a review. International Journal of Tropical Insect Science, 2021, 41, 1977-1988.	0.4	6
209	Evaluation of Proximate and Heavy Metals in Twelve Edible Freshwater Macroinvertebrates of Poba Reserve Forest Assam, India Biosciences, Biotechnology Research Asia, 2021, 17, 819-829.	0.2	1
210	Insects as Food in the Global North $\hat{a} \in$ " The Evolution of the Entomophagy Movement. , 2019, , 11-26.		19
211	Nutritional Composition of African Edible Acridians. , 2020, , 169-193.		6
212	Edible insects - species suitable for entomophagy under condition of Czech Republic. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 61, 587-593.	0.2	66
214	Properties of Aqueous Extract of Protaetia Brevitarsis Larva and Mountain Ginseng Fermented by <i>Lactobacillus brevis</i> . Han'gug Sigpum Wi'saeng Anjeonseong Haghoeji, 2018, 33, 369-374.	0.1	4
215	Safety Investigation on Foodborne Pathogens and Mycotoxins in Honeybee Drone Pupas. Han'gug Sigpum Wi'saeng Anjeonseong Haghoeji, 2018, 33, 399-403.	0.1	1
216	Pest control in German forests: General patterns of biodiversity and possible impacts of Btk, diflubenzuron and lambda-Cyhalothrin on non-target arthropods, birds and bats – a literature review. Journal of Forest and Landscape Research, 2019, 4, 1-26.	0.3	4
217	The Stone Marten and the Red Fox consumed predominantly fruits all year round: a case study. Acta Zoologica Academiae Scientiarum Hungaricae, 2019, 65, 45-62.	0.1	4
218	Effect of Food Thermal Processing on Allergenicity Proteins in Bombay Locust (Patanga Succincta). International Journal of Electrical Energy, 2015, , .	0.4	12
219	The Proximate Composition of Edible Insects: Which Way Forward?. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 3033-3036.	0.0	1
220	Erciyes Üniversitesinde Entomofaji Hakkında Bir Kamuoyu Araştırması. Uluslararası Tarım Ve Yaban Bilimleri Dergisi, 2018, 4, 203-208.	Hayatı	7

#	Article	IF	CITATIONS
221	Comparative Analysis of Nutritional and Harmful Components in Korean and Chinese Mealworms (Tenebrio molitor). Journal of the Korean Society of Food Science and Nutrition, 2013, 42, 249-254.	0.2	58
222	Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae. Preventive Nutrition and Food Science, 2013, 18, 150-156.	0.7	41
223	The Use of Insects as Human Food in Zambia. OnLine Journal of Biological Sciences, 2009, 9, 93-104.	0.2	22
224	Edible insects of Northern Angola. African Invertebrates, 2017, 58, 55-82.	0.5	19
225	The bush coconut (scale insect gall) as food at Kiwirrkurra, Western Australia. Journal of Insects As Food and Feed, 2016, 2, 293-299.	2.1	2
226	Bioconversion of sorghum and cowpea by black soldier fly (Hermetia illucens (L.)) larvae for alternative protein production. Journal of Insects As Food and Feed, 2017, 3, 121-130.	2.1	31
227	The nutritional role of insects as food: a case study of â€̃chitoumou' (Cirina butyrospermi), an edible caterpillar in rural Burkina Faso. Journal of Insects As Food and Feed, 2020, 6, 69-80.	2.1	7
228	Bug Delicacies: Insects as a Powerful Food Resource for a Troubled World. Entomology, Ornithology, & Herpetology: Current Research, 2014, 04, .	0.1	1
229	Invited review: Resource inputs and land, water and carbon footprints from the production of edible protein of animal origin. Archives Animal Breeding, 2018, 61, 17-36.	0.5	17
230	Nutritional valuse of edible coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf
231	Determination of Nutritional Composition of Encosternum delegorguei Caught in Nerumedzo Community of Bikita, Zimbabwe. International Journal of Biology, 2015, 7, .	0.1	4
232	Status of meat alternatives and their potential role in the future meat market — A review. Asian-Australasian Journal of Animal Sciences, 2020, 33, 1533-1543.	2.4	117
233	Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Science of Animal Resources, 2019, 39, 521-540.	1.7	224
234	Aroma Characteristics of Raw and Cooked Tenebrio molitor Larvae (Mealworms). Food Science of Animal Resources, 2020, 40, 649-658.	1.7	13
236	Insect Meal as a Source of Protein in Animal Diet. Animal Nutrition and Feed Technology, 2016, 16, 527.	0.1	13
237	Transcriptome and gene expression analysis of Rhynchophorus ferrugineus (Coleoptera:) Tj ETQq1 1 0.784314 rg	gBT /Overlo 	ock 10 Tf 50
238	Studies on Oxidative Stability of Tenebrio molitor Larvae During Cold Storage. Korean Journal of Food and Cookery Science, 2015, 31, 62-71.	0.2	15
239	Physical and Sensory Evaluation of Tenebrio molitor Larvae Cooked by Various Cooking Methods. Korean Journal of Food and Cookery Science, 2015, 31, 534-543.	0.2	12

#	Article	IF	CITATIONS
240	Changes in Food Composition of Tenebrio molitor by Life Stage. Korean Journal of Food and Cookery Science, 2016, 32, 656-663.	0.2	5
241	Manufacture and Quality Evaluation of Cookies prepared with Mealworm (Tenebrio molitor) Powder. The Korean Journal of Food and Nutrition, 2016, 29, 12-18.	0.3	21
242	Study on the Oxidative and Microbial Stabilities of Four Edible Insects during Cold Storage after Sacrificing with Blanching Methods. The Korean Journal of Food and Nutrition, 2016, 29, 849-859.	0.3	4
243	Relationship between Acceptance of Insects as an Alternative to Meat and Willingness to Consume Insect-Based Food—A Study on a Representative Sample of the Polish Population. Foods, 2021, 10, 2420.	1.9	18
244	Quality Characteristics of Pasta with addition of Mealworm(Tenebrio molitor). FoodService Industry Journal, 2014, 10, 55-64.	0.1	11
245	Preferences and Purchase Intention of Tenebrio molitor (Mealworm) according to Cooking Method. Culinary Science & Hospitality Research, 2015, 21, 100-115.	0.1	5
246	Preferences and Purchase Intention of Tenebrio molitor (Mealworm) according to Cooking Method. Culinary Science & Hospitality Research, 2015, 21, 100-115.	0.1	5
247	Edible Insects as tribal food among the Rabhas of Assam. IRA-International Journal of Management & Social Sciences (ISSN 2455-2267), 2016, 3, .	0.1	0
248	Alternatywne źródÅ,a biaÅ,ka w żywieniu czÅ,owieka. Zeszyty Naukowe SGGW W Warszawie - Problemy Rolnictwa Åšwiatowego, 2017, 17(32), 49-59.	0.0	5
249	Development and Quality Characterization of Stock using Edible Insects. FoodService Industry Journal, 2018, 14, 67-82.	0.1	2
250	Perception and Selection Attributes of Edible Insects Intake in Adults in Daejeon and Chungnam Area. Culinary Science & Hospitality Research, 2018, 24, 170-182.	0.1	1
251	Quality Characteristics of Chalddukpie Prepared with Different Levels of Defatted Mealworm Powder. Korean Journal of Food and Cookery Science, 2018, 34, 504-511.	0.2	3
252	Physico-chemical and Affective Properties of Bagel Made with Mealworm (Tenebrio molitor L.) Powder. Korean Journal of Food and Cookery Science, 2018, 34, 569-575.	0.2	4
253	The potential of insect meal in improving food security in Malawi: an alternative of soybean and fishmeal in livestock feed. Journal of Insects As Food and Feed, 2018, 4, 301-312.	2.1	4
254	Human Use of Insects as Food – Food Security. , 2019, , 618-628.		0
255	Nutritional Properties of Edible Insects. Advances in Business Strategy and Competitive Advantage Book Series, 2019, , 143-165.	0.2	0
256	Opportunities and the Policy Challenges to the Circular Agri-Food System. Palgrave Advances in Bioeconomy: Economics and Policies, 2019, , 293-318.	0.3	1
258	Quality characteristics of tea of Tenebrio molitor larvae according to manufacturing methods. Korean Journal of Food Preservation, 2019, 26, 179-184.	0.2	1

#	ARTICLE	IF	CITATIONS
259	Insects as a source of nutrients in animal feed. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego, 2019, 15, 25-37.	0.2	0
260	Nutrient Composition and Bioactive Components of Mopane Worm (Gonimbrasia belina). , 2020, , 241-256.		8
261	Nutrient Composition of Termites. , 2020, , 281-291.		3
262	Alternative and New Protein Sources. , 2020, , 109-137.		5
263	Edible insects as future food: chances and challenges. Journal of Future Foods, 2021, 1, 38-46.	2.0	82
264	Diversity of edible insects in a Natural World Heritage Site of India: entomophagy attitudes and implications for food security in the region. PeerJ, 2020, 8, e10248.	0.9	9
265	Mineral profile of cricket powders, some edible insect species and their implication for gastronomy. Journal of Food Composition and Analysis, 2022, 107, 104340.	1.9	16
266	Edible Aquatic Insects: Diversities, Nutrition, and Safety. Foods, 2021, 10, 3033.	1.9	8
267	Contribution of edible insects to improved food and nutrition security: A review. International Journal of Food Science and Technology, 2022, 57, 6257-6269.	1.3	8
268	The Nutritional Quality and Structural Analysis of Black Soldier Fly Larvae Flour before and after Defatting. Insects, 2022, 13, 168.	1.0	16
269	Weighing the importance of animal body size in traditional food systems. Facets, 2022, 7, 286-318.	1.1	2
270	Pulp Fiction: Why Some Populations of Ripe-Fruit Specialists Ateles chamek and A. marginatus Prefer Insect-Infested Foods. International Journal of Primatology, 0, , 1.	0.9	4
271	Potential of edible insects as source of functional foods: biotechnological approaches for improving functionality. Systems Microbiology and Biomanufacturing, 2022, 2, 461-472.	1.5	9
272	Evaluation of the Immunological Activity of <i>Gryllus bimaculatus</i> Water Extract. Preventive Nutrition and Food Science, 2022, 27, 99-107.	0.7	1
273	Editorial: Insects as Food and Feed. Frontiers in Veterinary Science, 2022, 9, 873765.	0.9	3
274	Arthropod prey vary among orders in their nutrient and exoskeleton content. Ecology and Evolution, 2021, 11, 17774-17785.	0.8	12
275	Development of Nutraceutical Ice Creams Using Flour Yellow Worm Larvae (Tenebrio molitor), Chia (Salvia hispanica), and Quinoa (Chenopodium quinoa). Frontiers in Veterinary Science, 2021, 8, 629180.	0.9	2
276	Insects as a food source for indigenous communities in Colombia: a review and research perspectives. Journal of Insects As Food and Feed, 2022, 8, 593-603.	2.1	4

ARTICLE IF CITATIONS # The Potential of Entomophagy Against Malnutrition and Ensuring Food Sustainability. SSRN 277 0.4 0 Electronic Journal, 0, , . Root-Associated Bacteria Are Biocontrol Agents for Multiple Plant Pests. Microorganisms, 2022, 10, 278 1.6 1053. Creepy crawlies or beauty queens? The effect of type of insect on the evaluation of foods containing 279 2.1 2 insects. Journal of Insects As Food and Feed, 2023, 9, 25-42. Determination of Moisture and Protein Content in Living Mealworm Larvae (Tenebrio molitor L.) 280 1.0 Using Near-Infrared Reflectance Spectroscopy (NIRS). Insects, 2022, 13, 560. Available for millions of years but discovered through the last decade: Insects as a source of 281 2.1 11 nutrients and energy in animal diets. Animal Nutrition, 2022, 11, 60-79. Determination of protein content in single black fly soldier (Hermetia illucens L.) larvae by near infrared hyperspectral imaging (NIR-HSI) and chemometrics. Food Control, 2023, 143, 109266. 2.8 284 Insects as food for insectivores., 2023, , 511-540. 24 Benefits and Risks of Consuming Edible Insects., 2020, 5, 35-48. 285 Role of Edible Insects as Food Source to Combat Food Security Challenges. Innovative and Traditional 286 0 Approaches., 0,,. Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as 1.0 Alternative Protein Sources in Animal Diets: A Review. Insects, 2022, 13, 831. Human Consumption of Insects in Sub-Saharan Africa: Lepidoptera and Potential Species for Breeding. 288 1.0 6 Insects, 2022, 13, 886. Nutritional Composition of Some Commonly Available Aquatic Edible Insects of Assam, India. Insects, 1.0 2022, 13, 976. Protein Content and Amino Acid Profiles of Selected Edible Insect Species from the Democratic 290 1.0 2 Republic of Congo Relevant for Transboundary Trade across Africa. Insects, 2022, 13, 994. Formulation of Protein-Rich Chocolate Chip Cookies Using Cricket (Acheta domesticus) Powder. 1.9 Foods, 2022, 11, 3275. A portable device as a paper test strip platform with smartphone application for detection of 292 4.2 4 branched-chain amino acids in edible insects. Food Chemistry, 2023, 405, 134560. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features 294 24 and modulation mechanisms. Food and Function, 2022, 13, 12510-12540. Consumers' Acceptability and Perception of Edible Insects as an Emerging Protein Source. 295 1.2 13 International Journal of Environmental Research and Public Health, 2022, 19, 15756. Evaluation of the Vitamin B Content of Edible Insects. Journal of the Korean Society of Food Science and Nutrition, 2022, 51, 1223-1231.

#	Article	IF	CITATIONS
297	Insects as Human Food. , 2023, , 65-106.		0
298	Qualités nutritionnelle, organoleptique et disposition à payer pour les alternatives à la viande : cas des analogues végétaux, de la « viande in vitro » et des insectes. INRA Productions Animales, 2022, 35, 217-236.	0.3	2
299	Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods, 2022, 11, 3961.	1.9	23
300	Potential contribution of edible insects to sustainable consumption and production. Frontiers in Sustainability, 0, 4, .	1.3	6
301	Evaluation of Rearing Factors Affecting Clanis bilineata tsingtauica Mell Larvae Fed by Susceptible Soybean Variety NN89-29 in Spring and Autumn Sowing. Insects, 2023, 14, 32.	1.0	2
302	Changes in the Physicochemical Properties and Biological Activity of Ethanol Extract from the Insect Jeotgal. Asian Journal of Beauty and Cosmetology, 2022, 20, 499-508.	0.2	0
303	Edible insects: Tendency or necessity (a review). EFood, 2023, 4, .	1.7	7
304	Is Generation Z Ready to Engage in Entomophagy? A Segmentation Analysis Study. Nutrients, 2023, 15, 525.	1.7	1
305	Edible insects: As traditional medicine for human wellness. Future Foods, 2023, 7, 100219.	2.4	6
306	Fruit abundance may fineâ€tune timing of reproduction of the Chilean Elaenia (<i>Elaenia chilensis</i>), a longâ€distance migratory bird in South America. Ibis, 0, , .	1.0	1
307	Analysis of the Composition of Different Instars of Tenebrio molitor Larvae using Near-Infrared Reflectance Spectroscopy for Prediction of Amino and Fatty Acid Content. Insects, 2023, 14, 310.	1.0	5
308	Food Safety Management of Insect-Based Foods. , 2023, , 223-233.		0
309	Nutritional aspects of an edible insect, Coridius sp. (Hemiptera: Dinidoridae) of Manipur. Journal of Agriculture and Ecology, 0, 14, 158-163.	0.1	0
310	Beans with bugs: Covert carnivory and infested seed selection by the redâ€nosed cuxiú monkey. Biotropica, 2023, 55, 579-593.	0.8	1
311	Minerals in edible insects: review of content and potential for sustainable sourcing. , 2023, , 1-18.		1
312	Environmental Sustainability: Relevance of Forensic Insects and Other Ecosystem Services in Africa. Sustainable Development and Biodiversity, 2023, , 603-634.	1.4	0
313	Sustainable Protein Sources: Insects, Algae and Yeast. , 2024, , 262-272.		0
316	Entomophagy and Its Application Through 3D Printing for Sustainable Food Development. , 2023, , 21-40.		0

#	Article	IF	CITATIONS
317	Inkjet-Based 3D Food Printing for Sustainable Insect Materials: A State-of-the-Art Review and Prospective Materials. , 2023, , 135-151.		0
327	Utilization of Edible Insects as Food and Feed with Emphasis on the Red Palm Weevil. , 2024, , 393-406.		0
329	Entomogastronomy, a step beyond just eating insects. , 2024, , 191-214.		0
330	Nutritional value of insects and derived ingredients. , 2024, , 31-45.		0