CITATION REPORT List of articles citing

Fractional kinetic equations: solutions and applications

DOI: 10.1063/1.166272 Chaos, 1997, 7, 753-764.

Source: https://exaly.com/paper-pdf/28344751/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
666	Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations. 1998 , 227, 81-97		181
665	Quantum Lvy Processes and Fractional Kinetics. 1999 , 82, 1136-1139		222
664	Lvy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. 1999 , 59, 2736-2745		295
663	On strong anomalous diffusion. 1999 , 134, 75-93		178
662	Multidimensional advection and fractional dispersion. 1999 , 59, 5026-8		212
661	Scaling laws for fractional diffusion-wave equations with singular data. 2000, 48, 239-252		37
660	The random walk's guide to anomalous diffusion: a fractional dynamics approach. 2000 , 339, 1-77		5891
659	Wright functions as scale-invariant solutions of the diffusion-wave equation. <i>Journal of Computational and Applied Mathematics</i> , 2000 , 118, 175-191	2.4	216
658	Fractional calculus and continuous-time finance. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2000 , 284, 376-384	3.3	541
657	Fractional calculus and continuous-time finance II: the waiting-time distribution. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2000 , 287, 468-481	3.3	383
656	Linear relaxation processes governed by fractional symmetric kinetic equations. 2000 , 91, 635-651		38
655	Multifractional kinetics. Physica A: Statistical Mechanics and Its Applications, 2000, 288, 431-443	3.3	14
654	From continuous time random walks to the fractional fokker-planck equation. 2000 , 61, 132-8		523
653	Recent Developments in Dispersive Kinetics. 2000 , 25, 109-217		22
652	ac-driven phase-dependent directed diffusion. 2000 , 61, 7215-8		27
651	Enhanced diffusion in smoothly modulated superlattices. 2001 , 63, 011112		6
650	Quantitative study of amplitude noise effects on dynamical localization. 2000 , 62, 3461-75		56

(2001-2000)

649	Generalized chapman-kolmogorov equation: A unifying approach to the description of anomalous transport in external fields. 2000 , 62, 6233-45		77	
648	Fractional quantum mechanics. 2000 , 62, 3135-45		475	
647	Application of a fractional advection-dispersion equation. 2000 , 36, 1403-1412		808	
646	The fractional-order governing equation of Lvy Motion. 2000 , 36, 1413-1423		513	
645	Passive particle transport in three-vortex flow. 2000 , 61, 3777-92		47	•
644	Large-scale behavior of the tokamak density fluctuations. 2000 , 7, 3691-3698		48	
643	Simulating Scale-Dependent Solute Transport in Soils with the Fractional Advective Dispersive Equation. 2000 , 64, 1234-1243		97	
642	Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions. 2000 , 62, 2213-8		93	
641	Fractals and quantum mechanics. <i>Chaos</i> , 2000 , 10, 780-790	3.3	142	
640	Hierarchical structures in the phase space and fractional kinetics: I. Classical systems. <i>Chaos</i> , 2000 , 10, 135-146	3.3	49	
639	Fractional Kramers Equation 2000 , 104, 3866-3874		170	
638	Lvy Processes in the Physical Sciences. 2001 , 241-266		42	
637	Multidimensional solutions of spacefractional diffusion equations. 2001 , 457, 2993-3005		38	
636	Operator Lvy motion and multiscaling anomalous diffusion. 2001 , 63, 021112		89	
635	Fractional Fokker-Planck equation, solution, and application. 2001, 63, 046118		332	
634	IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics. 2001,		4	
633	Fractional Langevin equation. 2001 , 64, 051106		323	
632	Subordinated advection-dispersion equation for contaminant transport. 2001 , 37, 1543-1550		150	

631	Scale-Dependent Subsurface Dispersion: A Fractal-Based Stochastic Model. 2001, 6, 34-42		6
630	ASYMPTOTICS AND HIGH DIMENSIONAL APPROXIMATIONS FOR NONLINEAR PSEUDODIFFERENTIAL EQUATIONS INVOLVING LØY GENERATORS. 2001 , 34, 191-202		
629	Strongly and weakly self-similar diffusion. 2001 , 154, 111-137		101
628	Growing fractal interfaces in the presence of self-similar hopping surface diffusion. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 291, 159-183	3.3	46
627	The fractional Fick's law for non-local transport processes. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 293, 130-142	3.3	122
626	Properties of Lvy flights on an interval with absorbing boundaries. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 302, 148-161	3.3	57
625	L'vy meets Boltzmann: strange initial conditions for Brownian and fractional Fokker Planck equations. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2001 , 302, 290-296	3.3	11
624	Exotic stochastic processes from quantum chaotic environments. 2001 , 9, 436-442		1
623	Spectral Analysis of Fractional Kinetic Equations with Random Data. 2001 , 104, 1349-1387		133
622	Fractional Dispersion, Lvy Motion, and the MADE Tracer Tests. 2001, 42, 211-240		333
621	Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit. 2001, 171-180		101
620	Fractional transport equations for Lvy stable processes. 2001 , 86, 2208-11		36
619	Weak mixing and anomalous kinetics along filamented surfaces. <i>Chaos</i> , 2001 , 11, 295-305	3.3	59
618	A fractional diffusion equation for a marker in porous media. <i>Chaos</i> , 2001 , 11, 495-499	3.3	11
617	Directional fractional kinetics. <i>Chaos</i> , 2001 , 11, 384-396	3.3	11
616	Average time spent by Lvy flights and walks on an interval with absorbing boundaries. 2001 , 64, 041108	3	97
615	Chaos and flights in the atom-photon interaction in cavity QED. 2002, 66, 046222		27
614	Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models. 2002 , 66, 061104		134

(2003-2002)

613	Governing equations and solutions of anomalous random walk limits. 2002, 66, 060102		80
612	Superfast front propagation in reactive systems with non-Gaussian diffusion. 2002 , 60, 532-538		36
611	SCALING LAWS IN STOCHASTIC SYSTEMS WITH ANOMALOUS DIFFUSION. 2002 , 02, L273-L278		3
610	The fundamental solutions of the time-fractional diffusion equation. 2002,		13
609	Fractional Schräinger equation. 2002 , 66, 056108		844
608	Stochastic solution of space-time fractional diffusion equations. 2002 , 65, 041103		237
607	Multilimensional solutions of spacelimeliractional diffusion equations. 2002, 458, 429-450		80
606	Dispersion in Heterogeneous Geological Formations. 2002,		1
605	Waiting-times and returns in high-frequency financial data: an empirical study. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2002 , 314, 749-755	3.3	344
604	CTRW pathways to the fractional diffusion equation. 2002 , 284, 13-27		102
603	Space- and time-fractional diffusion and wave equations, fractional FokkerPlanck equations, and physical motivation. 2002 , 284, 67-90		164
602	Stationary states of non-linear oscillators driven by Lvy noise. 2002 , 284, 233-251		113
601	Discrete random walk models for spacetime fractional diffusion. 2002 , 284, 521-541		204
600	Multidimensional symmetric anomalous diffusion. 2002 , 284, 507-520		13
599	Anomalous Lvy decoherence. 2002 , 293, 123-128		5
598	Fractional diffusion: probability distributions and random walk models. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2002 , 305, 106-112	3.3	69
597	Time Fractional Diffusion: A Discrete Random Walk Approach. 2002 , 29, 129-143		265
596	Fractional diffusion model for force distribution in static granular media. 2003 , 68, 021302		5

595	Time fractional advection-dispersion equation. 2003 , 13, 233-245	175
594	Harmonic analysis of random fractional diffusion Wave equations. 2003 , 141, 77-85	28
593	Fractal scaling of fractional diffusion processes. 2003 , 83, 2397-2409	18
592	Self-organized criticality within fractional Lorenz scheme. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2003 , 323, 263-293	2 0
591	Fractional Poisson process. Communications in Nonlinear Science and Numerical Simulation, 2003, 8, 201-2,173	178
590	Some applications of fractional equations. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2003 , 8, 273-281	116
589	Asymptotic laws of superdiffusion. 2003 , 48, 801-806	1
588	Anomalous diffusion and fractional stable distributions. 2003 , 97, 810-825	43
587	Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. 2003 , 91, 018302	147
586	THE SPACE-FRACTIONAL TELEGRAPH EQUATION AND THE RELATED FRACTIONAL TELEGRAPH PROCESS. 2003 , 24, 45-56	49
585	Aging continuous time random walks. 2003 , 118, 6167-6178	121
584	Multiscaling fractional advection-dispersion equations and their solutions. 2003, 39,	101
583	Fractal mobile/immobile solute transport. 2003 , 39,	333
582	Fractional diffusion Processes: Probability Distributions and Continuous Time Random Walk. 2003 , 148-166	55
581	Anomalous transport of particle tracers in multidimensional cellular flows. 2003, 67, 026314	7
580	Fractional dynamics from the ordinary Langevin equation. 2003 , 67, 021111	37
579	REVISITING THE DERIVATION OF THE FRACTIONAL DIFFUSION EQUATION. 2003, 11, 281-289	44
578	Pseudochaotic Systems and Their Fractional Kinetics. 2003 , 17, 4149-4167	17

577	Subordinated Brownian Motion and its Fractional Fokker P lanck Equation. 2003 , 67, 265-268		20
576	Limit theorems for coupled continuous time random walks. 2004 , 32, 730		75
575	Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. 2004 , 69, 011107		148
574	Fractional oscillator. 2004 , 70, 051103		61
573	Random walks with intermediate anomalous-diffusion asymptotics. 2004 , 99, 443-448		11
572	Macrokinetics of Chemical Processes on Porous Catalysts Having Regard to Anomalous Diffusion. 2004 , 40, 203-208		7
571	A fractional equation for anomalous diffusion in a randomly heterogeneous porous medium. <i>Chaos</i> , 2004 , 14, 982-7	3.3	16
570	Time-fractional telegraph equations and telegraph processes with brownian time. 2004 , 128, 141-160		169
569	Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion. 2004 , 38, 101-116		45
568	Spatial gliding, temporal trapping, and anomalous transport. 2004 , 187, 30-50		21
567	Fractional kinetics: from pseudochaotic dynamics to Maxwell Demon. 2004, 193, 128-147		52
566	Fractional radial diffusion in a cylinder. 2004 , 114, 147-151		48
565	On the relationship between Hamiltonian chaos and classical gravity. <i>Chaos, Solitons and Fractals</i> , 2004 , 20, 187-194	9.3	4
564	On a possible evidence for Cantorian spacellime in cosmic ray astrophysics. <i>Chaos, Solitons and Fractals</i> , 2004 , 20, 427-435	9.3	10
563	Fractional dynamics, Cantorian spacelime and the gauge hierarchy problem. <i>Chaos, Solitons and Fractals</i> , 2004 , 22, 513-520	9.3	34
562	Finite difference approximations for fractional advectiondispersion flow equations. <i>Journal of Computational and Applied Mathematics</i> , 2004 , 172, 65-77	2.4	996
561	Radial fractional-order dispersion through fractured rock. 2004 , 40,		35
560	Fractional diffusion in plasma turbulence. 2004 , 11, 3854-3864		195

 $\,\,559\,\,$ Random walks models with intermediate fractional diffusion asymptotics. 2004,

558	Limit theorems for continuous-time random walks with infinite mean waiting times. 2004 , 41, 623-638	270
557	Limit theorems for continuous-time random walks with infinite mean waiting times. 2004, 41, 623-638	168
556	Fractional kinetic equations driven by Gaussian or infinitely divisible noise. 2005 , 37, 366-392	6
555	Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws. 2005 , 11, 689	18
554	Fractional kinetic equations driven by Gaussian or infinitely divisible noise. 2005 , 37, 366-392	15
553	Fractional generalization of the Ginzburglandau equation: an unconventional approach to critical phenomena in complex media. 2005 , 337, 75-80	72
552	Models of anomalous diffusion: the subdiffusive case. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 349, 375-420	155
551	Fractional Ginzburg Landau equation for fractal media. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 354, 249-261	145
550	Simply and multiply scaled diffusion limits for continuous time random walks. 2005 , 7, 1-16	36
549	New possibilities for the mathematical modeling of turbulent transport processes in plasma. 2005 , 31, 57-74	6
548	A model of anomalous transport. 2005 , 101, 562-567	8
547	The space-time fractional diffusion equation with Caputo derivatives. 2005 , 19, 179-190	37
546	The fundamental solution of the space-time fractional advection-dispersion equation. 2005 , 18, 339-350	83
545	Transition of Multidimensional Jumplike Processes from Anomalous Diffusion to Linear Diffusion. 2005 , 143, 870-878	
544	Lvy, OrnsteinUhlenbeck, and Subordination: Spectral vs. Jump Description. 2005 , 119, 165-196	37
543	Lvy Stable Distribution and [0,2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media. 2005 , 22, 2601-2603	10
542	An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like. 2005 , 46, 113512	17

541	Negative superdiffusion due to inhomogeneous convection. 2005 , 71, 061101		32
540	Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations. 2005 , 71, 011111		40
539	Epidemic spreading with long-range infections and incubation times. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2005 , 2005, P09002-P09002	9	17
538	The time fractional diffusion equation and the advection-dispersion equation. 2005 , 46, 317-330		91
537	Fractional kinetic model for chaotic transport in nonintegrable Hamiltonian systems. 2005 , 72, 025204		
536	GENERALIZED WIENER PROCESS AND KOLMOGOROV'S EQUATION FOR DIFFUSION INDUCED BY NON-GAUSSIAN NOISE SOURCE. 2005 , 05, L267-L274		73
535	The Classical Special Functions. 2006 , 978-1429		
534	A speculative study of 23-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. <i>Chaos</i> , 2006 , 16, 023126	3	74
533	Chaotic and pseudochaotic attractors of perturbed fractional oscillator. <i>Chaos</i> , 2006 , 16, 013102	3	41
532	Nonholonomic constraints with fractional derivatives. 2006 , 39, 9797-9815		44
532 531	Nonholonomic constraints with fractional derivatives. 2006 , 39, 9797-9815 Continuous limit of discrete systems with long-range interaction. 2006 , 39, 14895-14910		125
531	Continuous limit of discrete systems with long-range interaction. 2006 , 39, 14895-14910		125
531	Continuous limit of discrete systems with long-range interaction. 2006 , 39, 14895-14910 FRACTIONAL CALCULUS AND THE SCHRDINGER EQUATION. 2006 , 39, 234-237		125
531 530 529	Continuous limit of discrete systems with long-range interaction. 2006 , 39, 14895-14910 FRACTIONAL CALCULUS AND THE SCHRDINGER EQUATION. 2006 , 39, 234-237 FRACTIONAL RELAXATION AND TIME-FRACTIONAL DIFFUSION OF DISTRIBUTED ORDER. 2006 , 39, 1-21		125
531 530 529 528	Continuous limit of discrete systems with long-range interaction. 2006, 39, 14895-14910 FRACTIONAL CALCULUS AND THE SCHRDINGER EQUATION. 2006, 39, 234-237 FRACTIONAL RELAXATION AND TIME-FRACTIONAL DIFFUSION OF DISTRIBUTED ORDER. 2006, 39, 1-21 A SPECULATIVE STUDY OF FRACTIONAL LAPLACIAN MODELING OF TURBULENCE. 2006, 39, 442-447	7	125 3 3
531 530 529 528	Continuous limit of discrete systems with long-range interaction. 2006, 39, 14895-14910 FRACTIONAL CALCULUS AND THE SCHRDINGER EQUATION. 2006, 39, 234-237 FRACTIONAL RELAXATION AND TIME-FRACTIONAL DIFFUSION OF DISTRIBUTED ORDER. 2006, 39, 1-21 A SPECULATIVE STUDY OF FRACTIONAL LAPLACIAN MODELING OF TURBULENCE. 2006, 39, 442-447 Numerical methods for some one-dimensional equations with fractional derivatives. 2006, 42, 967-973 Fractional dynamics of systems with long-range interaction. Communications in Nonlinear Science		125 3 3

523	Dynamics with low-level fractionality. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 368, 399	9-343 5	56
522	Nonlinear fractional dynamics on a lattice with long range interactions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 368, 38-54	3.3	90
521	Fractional vector calculus for fractional advectiondispersion. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 367, 181-190	3.3	133
520	Stochastic model for ultraslow diffusion. 2006 , 116, 1215-1235		71
519	Hamiltonian formalism of fractional systems. 2006 , 49, 93-101		36
518	Residence Time Statistics for Normal and Fractional Diffusion in a Force Field. 2006 , 123, 883-907		36
517	Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion. 2006 , 132, 614-628		9
516	New function of Mittagleffler type and its application in the fractional diffusion-wave equation. <i>Chaos, Solitons and Fractals</i> , 2006 , 30, 946-955	9.3	15
515	Fractional variations for dynamical systems: Hamilton and Lagrange approaches. 2006 , 39, 8409-8425		51
514	Psi-series solution of fractional Ginzburg[landau equation. 2006 , 39, 8395-8407		31
513	Fermi acceleration on the annular billiard. 2006 , 73, 066229		46
512	Fractional statistical mechanics. <i>Chaos</i> , 2006 , 16, 033108	3.3	36
511	TRANSPORT EQUATIONS FROM LIOUVILLE EQUATIONS FOR FRACTIONAL SYSTEMS. 2006, 20, 341-353	3	26
510	Fractional dynamics of coupled oscillators with long-range interaction. <i>Chaos</i> , 2006 , 16, 023110	3.3	113
509	Fractional Israel layers. 2006 , 47, 122501		3
508	Magnetohydrodynamics of fractal media. 2006 , 13, 052107		37
507	Map of discrete system into continuous. 2006 , 47, 092901		50
506	ELECTROMAGNETIC FIELDS ON FRACTALS. 2006 , 21, 1587-1600		62

(2007-2006)

505 Bibliography. **2006**, 204, 469-520

504	LIOUVILLE AND BOGOLIUBOV EQUATIONS WITH FRACTIONAL DERIVATIVES. 2007 , 21, 237-248		18
503	THE FRACTIONAL CHAPMANKOLMOGOROV EQUATION. 2007, 21, 163-174		6
502	Statistics of quantum transmission in one dimension with broad disorder. 2007 , 40, 14045-14067		8
501	Subdiffusive target problem: survival probability. 2007 , 76, 051114		39
500	Fluid limit of the continuous-time random walk with general Lvy jump distribution functions. 2007 , 76, 041105		136
499	Fractal properties of anomalous diffusion in intermittent maps. 2007 , 75, 036213		21
498	Mathematical Methods in Engineering. 2007,		5
497	Anomalous Stochastic Processes in the Fractional Dynamics Framework: Fokker-Planck Equation, Dispersive Transport, and Non-Exponential Relaxation. 2007 , 223-264		40
496	Non-equilibrium phase transitions with long-range interactions. <i>Journal of Statistical Mechanics:</i> Theory and Experiment, 2007 , 2007, P07006-P07006	1.9	40
495	Advances in Fractional Calculus. 2007,		744
494	Mean first passage time for a class of non-Markovian processes. <i>Chaos</i> , 2007 , 17, 033104	3.3	7
493	FRACTIONAL DERIVATIVE AS FRACTIONAL POWER OF DERIVATIVE. 2007 , 18, 281-299		37
492	Fractional Laplacian in bounded domains. 2007 , 76, 021116		149
491	Theory of earthquake recurrence times. 2007 , 112,		67
490	Scaling limit for trap models on Zd. 2007 , 35,		55
489	Coupled oscillators with power-law interaction and their fractional dynamics analogues. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2007 , 12, 1405-1417	3.7	52
488	Continuous-time random walk and parametric subordination in fractional diffusion. <i>Chaos, Solitons and Fractals</i> , 2007 , 34, 87-103	9.3	128

487	Some aspects of fractional diffusion equations of single and distributed order. 2007 , 187, 295-305		120
486	Fractional dynamics of systems with long-range space interaction and temporal memory. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2007 , 383, 291-308	3.3	16
485	The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions. 2007 , 388, 418-434		33
484	On Hilfer's objection to the fractional time diffusion equation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2007 , 373, 231-236	3.3	6
483	Selfsimilarity and fractional kinetics of solar windthagnetosphere coupling. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2007 , 373, 11-20	3.3	7
482	Fractional differential kinetics of dispersive transport as the consequence of its self-similarity. 2007 , 86, 512-516		14
481	Fractional reproduction-dispersal equations and heavy tail dispersal kernels. 2007, 69, 2281-97		57
480	Asymptotic behavior of the supremum tail probability for anomalous diffusions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2008 , 387, 413-417	3.3	1
479	ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation. 2008 , 26, 295-311		40
478	Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. 2008 , 28, 147-164		11
477	Money Circulation Science Fractional Dynamics in Human Mobility. 459-483		2
476	Continuous Time Random Walk, Mittag-Leffler Waiting Time and Fractional Diffusion: Mathematical Aspects. 93-127		25
475	Stretched-exponential decay functions from a self-consistent model of dielectric relaxation. 2008 , 372, 2148-2154		19
474	On the solutions of certain fractional kinetic equations. 2008 , 199, 504-511		46
473	Multiscale behavior and fractional kinetics from the data of solar windshagnetosphere coupling. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2008 , 13, 314-330	3.7	7
472	Fractional theory for transport in disordered semiconductors. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2008 , 13, 715-727	3.7	41
471	Mathematical modeling of time fractional reaction diffusion systems. <i>Journal of Computational and Applied Mathematics</i> , 2008 , 220, 215-225	2.4	139
470	Simulation of the continuous time random walk of the space-fractional diffusion equations. <i>Journal of Computational and Applied Mathematics</i> , 2008 , 222, 274-283	2.4	16

(2009-2008)

469	Nonexistence results for a fractional problem arising in thermal diffusion in fractal media. <i>Chaos, Solitons and Fractals</i> , 2008 , 36, 1205-1214	9.3	9
468	Triangular array limits for continuous time random walks. 2008 , 118, 1606-1633		110
467	Fokker P lanck equation with fractional coordinate derivatives. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2008 , 387, 6505-6512	3.3	12
466	Anomalous diffusion and the structure of human transportation networks. 2008 , 157, 173-189		11
465	Generalized Fokker-Planck equation for a class of stochastic dynamical systems driven by additive Gaussian and Poissonian fractional white noises of order #Open Physics, 2008, 6,	1.3	1
464	Stochastic Models of Solute Transport in Highly Heterogeneous Geologic Media. 2008 , 7, 1207-1217		4
463	An Intuitive Study of Fractional Derivative Modeling and Fractional Quantum in Soft Matter. 2008 , 14, 1651-1657		32
462	LWY FLIGHT SUPERDIFFUSION: AN INTRODUCTION. 2008 , 18, 2649-2672		198
461	Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lvy flights. 2008 , 78, 021111		91
460	Time-fractional Diffusion of Distributed Order. 2008 , 14, 1267-1290		133
459	State of the Art and Novel Trends in Fluorescence Correlation Spectroscopy. 2008, 145-197		37
458	Winding number of fractional Brownian motion. 2008 , 41, 425001		1
457	. 2008,		298
456	Pseudochaos and low-frequency percolation scaling for turbulent diffusion in magnetized plasma. 2009 , 79, 046403		17
455	Dynamics of reaction-diffusion systems in a subdiffusive regime. 2009 , 79, 026109		12
454	Theory of thermoelasticity based on the space-time-fractional heat conduction equation. 2009 , T136, 014017		73
453	Generalized Sommerfeld problem for time fractional diffusion equation: analytical and numerical approach. 2009 , 17,		3
452	A generalized master equation approach to modelling anomalous transport in animal movement. 2009 , 42, 434004		24

451	Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. 2009 , 32, 561-581		234
450	A fractional calculus interpretation of the fractional volatility model. 2009 , 55, 395-399		46
449	Fractional generalization of the quantum Markovian master equation. 2009, 158, 179-195		19
448	Thermoelasticity that uses fractional heat conduction equation. 2009 , 162, 296-305		109
447	Unbounded functional calculus for bounded groups with applications. 2009 , 9, 171-195		16
446	Matrix approach to discrete fractional calculus II: Partial fractional differential equations. 2009 , 228, 3137-3153		289
445	A note on fractional diffusion equations. <i>Chaos, Solitons and Fractals</i> , 2009 , 42, 2074-2079	9.3	27
444	New approach to statistical description of fluctuating particle fluxes. 2009 , 35, 1-13		13
443	Anomalous diffusion: temporal non-Markovianity and weak ergodicity breaking. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P08025	1.9	7
442	Discriminating between normal and anomalous random walks. 2009 , 80, 061122		50
441	Lvy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P05004	1.9	35
440	Anomalous diffusion and generalized Sparre Andersen scaling. 2009 , 88, 10003		12
439	Some applications of the fractional Poisson probability distribution. 2009 , 50, 113513		37
438	A nonlocal theory of sediment buffering and bedrock channel evolution. 2009 , 114,		48
437	Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics. 2009 , 53, 594-609		38
436	Fractional diffusion equations and processes with randomly varying time. 2009, 37,		86
435	Bibliography. 2010 , 403-424		
434	References. 360-372		

(2010-2010)

433	Modelling solute transport in soil columns using advectived ispersive equations with fractional spatial derivatives. 2010 , 41, 4-8		14	
432	Finite domain anomalous spreading consistent with first and second laws. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2010 , 15, 3455-3470	3.7	2	
431	An approach via fractional analysis to non-linearity induced by coarse-graining in space. 2010 , 11, 535-54	6	51	
430	Fractional Non-Linear, Linear and Sublinear Death Processes. 2010 , 141, 68-93		17	
429	Application of Fractional Differential Equations for Modeling the Anomalous Diffusion of Contaminant from Fracture into Porous Rock Matrix with Bordering Alteration Zone. 2010 , 81, 187-205		46	
428	Human Mobility and Spatial Disease Dynamics. 2010 , 1-24		24	
427	Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. 2010 , 34, 200-218		387	
426	On the fractional derivative model of the transport of cosmic rays in the Galaxy. 2010 , 91, 105-109		19	
425	The -Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey. 2010 , 2010, 1-29		59	
424	Effects of diversity and procrastination in priority queuing theory: the different power law regimes. 2010 , 81, 016108		11	
423	Generalized elastic model yields a fractional Langevin equation description. 2010, 104, 160602		57	
422	BACK MATTER. 2010 , 155-347			
421	Computable extensions of generalized fractional kinetic equations in astrophysics. 2010 , 10, 22-32		9	
420	Partial fractional differential equations and some of their applications. 2010 , 30,		7	
419	Solutions of certain fractional kinetic equations and a fractional diffusion equation. 2010 , 51, 103506		16	
418	Can anomalous diffusion describe depositional fluvial profiles?. 2010 , 115,		35	
417	Anomalous diffusion on finite intervals. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2010 , 2010, P01011	1.9	7	
416	Approaching stationarity: competition between long jumps and long waiting times. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2010 , 2010, P03019	1.9	5	

415	Correlations in a generalized elastic model: fractional Langevin equation approach. 2010 , 82, 061104	17
414	Fractal pharmacokinetics. 2010 , 11, 161-84	49
413	Subordinated diffusion and continuous time random walk asymptotics. <i>Chaos</i> , 2010 , 20, 043129 3.3	27
412	ReactionII ransport Systems. 2010,	168
411	Boundary conditions of normal and anomalous diffusion from thermal equilibrium. 2011 , 83, 051113	25
410	Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions. 2011 , 33, 1159-1180	156
409	Equations of Mathematical Physics and Compositions of Brownian and Cauchy Processes. 2011 , 29, 551-569	9
408	Unusual response to a localized perturbation in a generalized elastic model. 2011 , 84, 021101	11
407	Convergence to fractional kinetics for random walks associated with unbounded conductances. 2011 , 149, 639-673	31
406	Non-Fickian mass transport in fractured porous media. 2011 , 34, 205-214	32
405	Relaxation to stationary states for anomalous diffusion. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2011 , 16, 4549-4557	10
404	Further solutions of fractional reaction diffusion equations in terms of the H-function. <i>Journal of Computational and Applied Mathematics</i> , 2011 , 235, 1311-1316	28
403	Solutions of the space-time fractional Cattaneo diffusion equation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2011 , 390, 1876-1883	83
402	Bibliography. 2011 , 279-288	
401	Two New Implicit Numerical Methods for the Fractional Cable Equation. 2011 , 6,	39
400	Spontaneous emission dynamics in an omnidirectional waveguide made of photonic crystals. 2011 , 23, 225301	3
399	Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: a fractional equation approach. 2012 , 86, 061120	22
398	BACK MATTER. 2012 , 355-400	

(2013-2012)

397	Fractional Brownian motion and anomalous diffusion in vibrated granular materials. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2012 , 2012, P01002	1.9	3	
396	FRACTIONAL DYNAMICS AT MULTIPLE TIMES. 2012 , 149, 578-886		10	
395	Stochastic solution to a time-fractional attenuated wave equation. 2012 , 70, 1273-1281		11	
394	Anomalous spatial diffusion and multifractality in optical lattices. 2012 , 108, 230601		26	
393	Weak subordination breaking for the quenched trap model. 2012 , 86, 041137		20	
392	Theories of thermal stresses based on spacelime-fractional telegraph equations. <i>Computers and Mathematics With Applications</i> , 2012 , 64, 3321-3328	2.7	40	
391	Data regularization for a backward time-fractional diffusion problem. <i>Computers and Mathematics With Applications</i> , 2012 , 64, 3613-3626	2.7	34	
390	Fractional Dynamics and Control. 2012 ,		211	
389	Theory of fractional Lvy kinetics for cold atoms diffusing in optical lattices. 2012 , 108, 230602		75	
388	New numerical methods for the Riesz space fractional partial differential equations. <i>Computers and Mathematics With Applications</i> , 2012 , 63, 1135-1146	2.7	36	
387	The residue harmonic balance for fractional order van der Pol like oscillators. 2012 , 331, 1115-1126		44	
386	Product rule for vector fractional derivatives. Fractional Calculus and Applied Analysis, 2012, 15,	2.7	6	
385	A diffusion approach to the statistical analysis of Kamchatka Seismicity. 2012 , 6, 116-125		O	
384	Fractional Derivatives for Physicists and Engineers. 2013 ,		290	
383	Variational principle for fractional kinetics and the Lvy Ansatz. 2013 , 88, 022142		4	
382	SpaceEime fractional diffusion equations and asymptotic behaviors of a coupled continuous time random walk model. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2013 , 392, 5801-5807	3.3	9	
381	Diffusion in multiscale spacetimes. 2013 , 87, 012123		43	
380	FRACTIONAL WAVE EQUATIONS WITH ATTENUATION. Fractional Calculus and Applied Analysis, 2013 , 16, 262-272	2.7	9	

379	INVERSE STABLE SUBORDINATORS. 2013 , 8, 1-16	84
378	Space-time velocity correlation function for random walks. 2013 , 110, 170604	27
377	Advances in the Theory and Applications of Non-integer Order Systems. 2013,	12
376	Mittag-Leffler Pattern in Anomalous Diffusion. 2013 , 141-146	
375	Fundamental Solutions to the Central Symmetric Space-Time Fractional Heat Conduction Equation and Associated Thermal Stresses. 2013 , 123-132	1
374	Optimal Random Search, Fractional Dynamics and Fractional Calculus. 2013,	
373	Numerical Algorithms for the Fractional Diffusion-Wave Equation with Reaction Term. 2013, 2013, 1-15	8
372	Application of Fuzzy Fractional Kinetic Equations to Modelling of the Acid Hydrolysis Reaction. 2013 , 2013, 1-19	21
371	A Finite Element Method for the Multiterm Time-Space Riesz Fractional Advection-Diffusion Equations in Finite Domain. 2013 , 2013, 1-15	7
370	Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response. 2013 , 8, 127-143	9
369	Fractional wave equation and damped waves. 2013 , 54, 031505	79
368	Total variation regularization for a backward time-fractional diffusion problem. 2013 , 29, 115013	28
367	ASYMPTOTIC DYNAMICS OF 2D FRACTIONAL COMPLEX GINZBURGEANDAU EQUATION. 2013 , 23, 1350202	21
366	On Solutions of Generalized Fractional Kinetic Equations. 2014 , 32, 181	13
365	Fractional Discrete Processes: Compound and Mixed Poisson Representations. 2014 , 51, 19-36	17
364	High-Order Algorithms for Riesz Derivative and Their Applications(I). 2014 , 2014, 1-17	23
363	Fractional Diffusion Equations for Lattice and Continuum: Grßwald-Letnikov Differences and Derivatives Approach. 2014 , 2014, 1-7	4
362	Geometric stable processes and related fractional differential equations. 2014 , 19,	5

361	RANDOM ATTRACTOR FOR FRACTIONAL GINZBURG-LANDAU EQUATION WITH MULTIPLICATIVE NOISE. 2014 , 18,	15
360	Integral transform method for solving time fractional systems and fractional heat equation 2014 , 32, 305	2
359	Time-Changed Processes Governed by Space-Time Fractional Telegraph Equations. 2014 , 32, 1009-1045	34
358	Mittag-Leffler Functions, Related Topics and Applications. 2014,	433
357	Sub-diffusive scaling with power-law trapping times. 2014 , 23, 070514	7
356	Self-similar stochastic models with stationary increments for symmetric space-time fractional diffusion. 2014 ,	1
355	Fundamental Solutions to Time-Fractional Advection Diffusion Equation in a Case of Two Space Variables. 2014 , 2014, 1-7	16
354	Pseudoprocesses Related to Space-Fractional Higher-Order Heat-Type Equations. 2014 , 32, 619-641	11
353	Numerical approach to unbiased and driven generalized elastic model. 2014 , 140, 024106	5
352	. 2014,	
35 ²	. 2014, From the Area under the Bessel Excursion to Anomalous Diffusion of Cold Atoms. 2014, 4,	60
		60
351	From the Area under the Bessel Excursion to Anomalous Diffusion of Cold Atoms. 2014 , 4, ANALYTICAL SOLUTIONS OF A FRACTIONAL DIFFUSION-ADVECTION EQUATION FOR SOLAR	
351 350	From the Area under the Bessel Excursion to Anomalous Diffusion of Cold Atoms. 2014 , 4, ANALYTICAL SOLUTIONS OF A FRACTIONAL DIFFUSION-ADVECTION EQUATION FOR SOLAR COSMIC-RAY TRANSPORT. 2014 , 796, 125	20
351 350 349	From the Area under the Bessel Excursion to Anomalous Diffusion of Cold Atoms. 2014, 4, ANALYTICAL SOLUTIONS OF A FRACTIONAL DIFFUSION-ADVECTION EQUATION FOR SOLAR COSMIC-RAY TRANSPORT. 2014, 796, 125 A fractional Fokker-Planck model for anomalous diffusion. 2014, 21, 122109 Improved and more feasible numerical methods for Riesz space fractional partial differential	20
351 350 349 348	From the Area under the Bessel Excursion to Anomalous Diffusion of Cold Atoms. 2014, 4, ANALYTICAL SOLUTIONS OF A FRACTIONAL DIFFUSION-ADVECTION EQUATION FOR SOLAR COSMIC-RAY TRANSPORT. 2014, 796, 125 A fractional Fokker-Planck model for anomalous diffusion. 2014, 21, 122109 Improved and more feasible numerical methods for Riesz space fractional partial differential equations. 2014, 237, 264-273 Matrix method for numerical solution of space-time fractional diffusion-wave equations with three	20 20 13
351 350 349 348 347	From the Area under the Bessel Excursion to Anomalous Diffusion of Cold Atoms. 2014, 4, ANALYTICAL SOLUTIONS OF A FRACTIONAL DIFFUSION-ADVECTION EQUATION FOR SOLAR COSMIC-RAY TRANSPORT. 2014, 796, 125 A fractional Fokker-Planck model for anomalous diffusion. 2014, 21, 122109 Improved and more feasible numerical methods for Riesz space fractional partial differential equations. 2014, 237, 264-273 Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables. 2014, 25, 161-181 Optimal random search, fractional dynamics and fractional calculus. Fractional Calculus and Applied	20 20 13

343	Large lattice fractional Fokker P lanck equation. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2014 , 2014, P09036	1.9	13
342	Riesz potential versus fractional Laplacian. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2014 , 2014, P09032	1.9	6
341	Coupled fractional nonlinear differential equations and exact Jacobian elliptic solutions for excitonphonon dynamics. 2014 , 378, 2509-2517		13
340	Characterizing anomalous diffusion by studying displacements. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2014 , 19, 2284-2293	3.7	7
339	Asymmetric Lvy flights in nonhomogeneous environments. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2014 , 2014, P05024	1.9	4
338	Transport and the First Passage Time Problem with Application to Cold Atoms in Optical Traps. 2014 , 502-531		
337	Fractional Discrete Processes: Compound and Mixed Poisson Representations. 2014 , 51, 19-36		8
336	Superdiffusive transport in laboratory and astrophysical plasmas. 2015 , 81,		29
335	Filtered fractional Poisson processes. 2015 , 26, 124-134		2
334	Optimal first-arrival times in Lvy flights with resetting. 2015 , 92, 052127		80
333	Transport of Water and Solutes in Soils as in Fractal Porous Media. 2015 , 51-75		1
332	A Numerical Method for Solving Fractional Differential Equations by Using Neural Network. 2015 , 2015, 1-12		11
331	Computational Challenge of Fractional Differential Equations and the Potential Solutions: A Survey. 2015 , 2015, 1-13		14
330	On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind. 2015 , 2015, 1-7		25
329	Space-Time-Fractional Advection Diffusion Equation in a Plane. 2015, 275-284		3
328	Lvy walks. 2015 , 87, 483-530		401
327	Implicit Difference Scheme of the Space-Time Fractional Advection Diffusion Equation. <i>Fractional Calculus and Applied Analysis</i> , 2015 , 18, 1452-1469	2.7	4
326	Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas. 2015 , 57, 123002		35

325	Fractional dispersive transport in inhomogeneous organic semiconductors. 2015 , 36, 1560008	2
324	A general form of the generalized Taylor formula with some applications. 2015 , 256, 851-859	63
323	Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. 2015 , 257, 52-65	63
322	Fractional time stochastic partial differential equations. 2015 , 125, 1470-1499	46
321	Convolution-Type Derivatives, Hitting-Times of Subordinators and Time-Changed C 0-semigroups. 2015 , 42, 115-140	44
320	Lvy mixing related to distributed order calculus, subordinators and slow diffusions. 2015 , 430, 1009-1036	10
319	Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection dispersion equation involving nonlocal space fractional derivatives. 2015 , 38, 2840-2849	27
318	Fractional Thermoelasticity. 2015 ,	163
317	The distributed-order fractional diffusion-wave equation of groundwater flow: Theory and application to pumping and slug tests. 2015 , 529, 1262-1273	55
316	Dynamics of the 3-D fractional complex Ginzburg[landau equation. 2015 , 259, 5276-5301	40
315	New Solution of DiffusionAdvection Equation for Cosmic-Ray Transport Using Ultradistributions. 2015 , 161, 986-1009	4
314	Asymptotic behavior of stochastic fractional power dissipative equations on Rn. 2015 , 128, 176-198	28
313	A series of high-order quasi-compact schemes for space fractional diffusion equations based on the superconvergent approximations for fractional derivatives. 2015 , 31, 1345-1381	32
312	Estimation of the smallest eigenvalue in fractional escape problems: Semi-analytics and fits. 2015 , 187, 29-37	14
311	Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart. 2015 , 282, 334-344	10
310	Wavediffusion dualism of the neutral-fractional processes. 2015 , 293, 40-52	30
309	Advances in Modelling and Control of Non-integer-Order Systems. 2015,	2
308	Review of methods and approaches for mechanical problem solutions based on fractional calculus. 2016 , 21, 595-620	25

307	Symmetric Fractional Diffusion and Entropy Production. 2016 , 18, 275	11
306	Entropy Production Rate of a One-Dimensional Alpha-Fractional Diffusion Process. 2016 , 5, 6	17
305	Kubo Fluctuation Relations in the Generalized Elastic Model. 2016, 2016, 1-16	1
304	About a Problem for Loaded Parabolic-Hyperbolic Type Equation with Fractional Derivatives. 2016 , 2016, 1-6	1
303	Continued-Fraction Expansion of Transport Coefficients with Fractional Calculus. <i>Mathematics</i> , 2. 3	2
302	Fractional calculus and application of generalized Struve function. 2016 , 5, 910	11
301	Stochastic responses of Van der Pol vibro-impact system with fractional derivative damping excited by Gaussian white noise. <i>Chaos</i> , 2016 , 26, 033110	3
300	BACK MATTER. 2016 , 405-448	
299	Generalized diffusion equation with fractional derivatives within Renyi statistics. 2016, 57, 093301	11
298	Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 453, 327-335	12
297	Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method. 2016 , 85, 1457-1467	34
296	A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation. <i>Fractional Calculus and Applied Analysis</i> , 2016 , 19, 408-440	23
295	Signal attenuation of PFG restricted anomalous diffusions in plate, sphere, and cylinder. 2016 , 272, 25-36	8
294	Certain fractional kinetic equations involving the product of generalized k-Bessel function. 2016 , 55, 3053-3059	14
293	Lattice Boltzmann method for the fractional advection-diffusion equation. 2016 , 93, 043310	10
292	Lvy flights in an infinite potential well as a hypersingular Fredholm problem. 2016 , 93, 052110	15
291	A Space-Time Fractional Optimal Control Problem: Analysis and Discretization. 2016 , 54, 1295-1328	37
290	Hard-Spring Bistability and Effect of System Parameters in a Two-Degree-of-Freedom Vibration System with Damping Modeled by a Fractional Derivative. 2016 , 26, 1650078	2

289	Determination of Robin coefficient in a fractional diffusion problem. 2016 , 40, 7948-7961	17	,
288	WITHDRAWN: High-order numerical methods for the Riesz space fractional advection dispersion equations. <i>Computers and Mathematics With Applications</i> , 2016 ,	23	
287	General solution of a fractional diffusion divection equation for solar cosmic-ray transport. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 447, 402-410	9	
286	Generalized fractional kinetic equations involving generalized Struve function of the first kind. 2016 , 28, 167-171	26	í
285	Fundamental solutions of the fractional diffusion and the fractional FokkerPlanck equations. 2016 , 24, 337-347	2	
284	Necessary and sufficient optimality conditions for fractional nonhomogeneous Roesser model. 2016 , 37, 574-589	1	
283	Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation. 2016 , 39, 353-365	28	;
282	The fractional Boussinesq equation of groundwater flow and its applications. 2017 , 547, 403-412	11	
281	On the solutions of fractional order of evolution equations. 2017 , 132, 1	43	i
280	The stretched exponential behavior and its underlying dynamics. The phenomenological approach. Fractional Calculus and Applied Analysis, 2017 , 20,	5	
279	Evaluation of fundamental viscoelastic functions by a nonlinear viscoelastic model. 2017 , 57, 1389-1395	6	
278	Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection Diffusion Equation. 2017, 72, 957-985	71	
277	The continuous time random walk, still trendy: fifty-year history, state of art and outlook. 2017, 90, 1	62	!
276	Fractional integrals and solution of fractional kinetic equations involvingk-Mittag-Leffler function. 2017 , 171, 144-166	14	
275	Birth Death Stochastic Process of Optical Rogue Wave Described by Fractional Master Equation \Box Application of Confluent Heun Differential Equation \Box 2017, 86, 064001	2	
274	A fractional transient model for the viscoplastic response of polymers based on a micro-mechanism of free volume distribution. 2017 , 21, 643-656	1	
273	Influence of the finiteness of particle velocity on the energy spectrum of cosmic rays in an anomalous diffusion model with L ⁰ y flights. 2017 , 81, 446-449		
272	A novel finite volume method for the Riesz space distributed-order diffusion equation. <i>Computers and Mathematics With Applications</i> , 2017 , 74, 772-783	55	

271	Mellin integral transform approach to analyze the multidimensional diffusion-wave equations. <i>Chaos, Solitons and Fractals</i> , 2017 , 102, 127-134	9.3	19
270	Multi-dimensional Fractional diffusion wave equation and some properties of its fundamental solution. <i>Computers and Mathematics With Applications</i> , 2017 , 73, 2561-2572	2.7	18
269	The RC Circuit Described by Local Fractional Differential Equations. 2017, 151, 419-429		9
268	Probabilistic Representation of a Solution of the Cauchy Problem for Evolution Equations with RiemannLiouville Operators. 2017 , 61, 389-407		3
267	Bibliography. 2017 , 175-190		
266	Essentials of Fractional Calculus. 2017 , 1-37		
265	Continuous-time statistics and generalized relaxation equations. 2017 , 90, 1		
264	Kinetics of Catalytic Peroxide Oxidation of Phenol over Three-Dimensional Fractals. 2017 , 56, 12994-130	009	1
263	The transport dynamics in complex systems governing by anomalous diffusion modelled with Riesz fractional partial differential equations. 2017 , 40, 1637-1648		4
262	On dynamical systems perturbed by a null-recurrent motion: The general case. 2017 , 127, 1960-1997		1
261	High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions. 2017 , 71, 759-784		59
260	Kinetic properties of fractal stellar media. 2017 , 464, 2777-2783		1
259	Comments on the properties of Mittag-Leffler function. 2017 , 226, 3427-3443		5
258	From the Underdamped Generalized Elastic Model to the Single Particle Langevin Description. <i>Mathematics</i> , 2017 , 5, 3	2.3	
257	On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation. <i>Mathematics</i> , 2017 , 5, 76	2.3	15
256	Fractional Diffusion in a Solid with Mass Absorption. 2017 , 19, 203		5
255	Two Approaches to Obtaining the Space-Time Fractional Advection-Diffusion Equation. 2017 , 19, 297		13
254	Exact and Approximate Solutions of Fractional Partial Differential Equations for Water Movement in Soils. 2017 , 4, 8		2

Quantification of the evolution of firm size distributions due to mergers and acquisitions. 2017, 12, e0183627 2 253 A classification of skin lesion using fractional poisson for texture feature extraction. 2017, 252 Dynamic k-Struve Sumudu solutions for fractional kinetic equations. 2017, 2017, 251 3 Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type 250 19 harvesting. 2018, 298, 71-79 Fundamentals of Fractional Transport. 2018, 221-276 249 High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional 248 4 nonlinear Schrdinger-type equations. 2018, 51, 235201 Generalized Electrodiffusion Equation with Fractality of Space-Time: Experiment and Theory. 2018, 247 9 122, 4099-4110 A stable explicitly solvable numerical method for the Riesz fractional advection@ispersion 246 4 equations. 2018, 332, 209-227 General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch 5 245 3.3 equations. Physica A: Statistical Mechanics and Its Applications, 2018, 497, 86-100 Heat kernel estimates for time fractional equations. 2018, 30, 1163-1192 16 244 Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order 6 243 fractional sub-diffusion equations. 2018, 79, 1107-1130 PCG method with Strang® circulant preconditioner for Hermitian positive definite linear system in 242 Riesz space fractional advectiondispersion equations. **2018**, 37, 4554-4569 An a posteriori error analysis for an optimal control problem involving the fractional Laplacian. 241 9 2018, 38, 198-226 A block-centered finite difference method for the distributed-order time-fractional diffusion-wave 2.5 240 equation. Applied Numerical Mathematics, 2018, 131, 123-139 Certain fractional kinetic equations involving generalized k-Bessel function. 2018, 172, 559-570 6 239 Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform. 2018, 238 16 57, 1937-1942 Fractional Calculus and Special Functions. 2018, 105-164 237 The Spectral Method for Long-time Behavior of a Fractional Power Dissipative System. 2018, 22, 236 2

235	Chernoff approximation for semigroups generated by killed Feller processes and Feynman formulae for time-fractional FokkerPlanckKolmogorov equations. <i>Fractional Calculus and Applied Analysis</i> , 2018 , 21, 1203-1237	2.7	4
234	New Extension of Beta Function and Its Applications. 2018 , 2018, 1-25		3
233	On fractional kinetic equations k-Struve functions based solutions. 2018 , 57, 3249-3254		2
232	Transition from the Wave Equation to Either the Heat or the Transport Equations through Fractional Differential Expressions. <i>Symmetry</i> , 2018 , 10, 524	2.7	6
231	Non-Linear Diffusion and Power Law Properties of Heterogeneous Systems: Application to Financial Time Series. 2018 , 20,		3
230	Spectral Analysis and Multigrid Methods for Finite Volume Approximations of Space-Fractional Diffusion Equations. 2018 , 40, A4007-A4039		17
229	An application of q-Sumudu transform for fractional q-kinetic equation. 2018, 42,		4
228	Fractional Linear Birth-Death Stochastic ProcessAn Application of Heun's Differential Equation. 2018 , 82, 1-20		1
227	Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process. 2018 , 8, 015118		4
226	Modeling transport across the running-sandpile cellular automaton by means of fractional transport equations. 2018 , 97, 052123		1
225	A Survey on Fractional Derivative Modeling of Power-Law Frequency-Dependent Viscous Dissipative and Scattering Attenuation in Acoustic Wave Propagation. 2018 , 70,		25
224	Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches. <i>Mathematics</i> , 2018 , 6, 17	2.3	2
223	A direct discontinuous Galerkin method for fractional convection-diffusion and Schräinger-type equations. 2018 , 133, 1		6
222	A RungeKutta Gegenbauer spectral method for nonlinear fractional differential equations with Riesz fractional derivatives. 2019 , 96, 417-435		2
221	Application of Laplace Transform on Fractional Kinetic Equation Pertaining to the Generalized Galu'Type Struve Function. 2019 , 2019, 1-8		8
220	Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag[leffler non-singular kernel. <i>Chaos, Solitons and Fractals</i> , 2019 , 127, 389-399	9.3	29
219	Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittagleffler non-singular kernel. <i>Chaos, Solitons and Fractals</i> , 2019 , 127, 400-407	9.3	27
218	Certain fractional kinetic equations involving generalized K-functions. 2019 , 39, 65-70		3

217	Fractional equations via convergence of forms. <i>Fractional Calculus and Applied Analysis</i> , 2019 , 22, 844-87 <u>0</u> .7	7
216	Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mbox{$m$}$ noise $\mbox{$m$}$ noise on $\mbox{$m$}$ noise on $\mbox{$m$}$ noise \mbox	38
215	Computable solution of fractional kinetic equations using Mathieu-type series. 2019, 2019,	8
214	Subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation. 2019 , 98, 127-147	14
213	Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial Volterra integro-differential equations. 2019 , 42, 1870-1893	15
212	Error Analysis of Fully Discrete Finite Element Approximations to an Optimal Control Problem Governed by a Time-Fractional PDE. 2019 , 57, 241-263	6
211	Anomalous Grain Boundary Diffusion: Fractional Calculus Approach. 2019 , 2019, 1-9	7
210	Analytic approaches of the anomalous diffusion: A review. <i>Chaos, Solitons and Fractals</i> , 2019 , 124, 86-96 9.3	23
209	Numerical approximations for the Riesz space fractional advection-dispersion equations via radial basis functions. <i>Applied Numerical Mathematics</i> , 2019 , 144, 59-82	4
208	Subordination Approach to Space-Time Fractional Diffusion. <i>Mathematics</i> , 2019 , 7, 415 2.3	6
207	Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application. Mathematics, 2019, 7, 1230	3
206	Solutions of fractional kinetic equation and the generalized Galu'type Struve function. 2019 , 22, 1167-1184	4
205	Tempered Fractional Equations for Quantum Transport in Mesoscopic One-Dimensional Systems with Fractal Disorder. <i>Fractal and Fractional</i> , 2019 , 3, 47	9
204	Entropy Production Rates of the Multi-Dimensional Fractional Diffusion Processes. 2019 , 21, 973	4
203	Mathematical Analysis and Applications. 2019,	1
202	Stochastic classical solutions for spacelime fractional evolution equations on a bounded domain. 2019 , 469, 594-622	4
201	Fractional calculus via Laplace transform and its application in relaxation processes. Communications in Nonlinear Science and Numerical Simulation, 2019 , 69, 58-72 3-7	13
200	Generalized transport equation with nonlocality of spacelime. Zubarev® NSO method. <i>Physica A:</i> Statistical Mechanics and Its Applications, 2019 , 514, 63-70 3-3	5

199	Describe NMR relaxation by anomalous rotational or translational diffusion. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 72, 232-239	3.7	3
198	An Analytical Study of Fractional Klein Kramers Approximations for Describing Anomalous Diffusion of Energetic Particles. 2019 , 174, 830-845		8
197	The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations. 2019 , 27, 1029-	1046	6
196	A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reactiondiffusion equations. 2019 , 346, 452-464		39
195	On the solution of hyperbolic two-dimensional fractional systems via discrete variational schemes of high order of accuracy. <i>Journal of Computational and Applied Mathematics</i> , 2019 , 354, 612-622	2.4	11
194	A block-centred finite difference method for the distributed-order differential equation with Neumann boundary condition. 2019 , 96, 622-639		4
193	General linear and spectral Galerkin methods for the Riesz space fractional diffusion equation. 2020 , 364, 124664		1
192	An adaptive numerical approach for the solutions of fractional advectiondiffusion and dispersion equations in singular case under Rieszd derivative operator. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2020 , 540, 123257	3.3	41
191	Stochastic representation of solution to nonlocal-in-time diffusion. 2020 , 130, 2058-2085		8
190	Fourier spectral method with an adaptive time strategy for nonlinear fractional Schräinger equation. 2020 , 36, 823-838		1
189	Fractional heat semigroups on metric measure spaces with finite densities and applications to fractional dissipative equations. 2020 , 195, 111722		1
188	Trade duration risk in subdiffusive financial models. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2020 , 541, 123694	3.3	2
187	Continuous time random walk and diffusion with generalized fractional Poisson process. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2020 , 545, 123294	3.3	11
186	Efficient Algorithms for Computing Multidimensional Integral Fractional Laplacians via Spherical Means. 2020 , 42, A2910-A2942		
185	Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation. 2020 , 386, 125505		3
184	Certain Image Formulae and Fractional Kinetic Equations of Generalized (mathtt {k})-Bessel Functions via the Sumudu Transform. 2020 , 6, 1		1
183	Biased Continuous-Time Random Walks with Mittag-Leffler Jumps. Fractal and Fractional, 2020, 4, 51	3	7
182	Fractal Generalization of the ScherMontroll Model for Anomalous Transit-Time Dispersion in Disordered Solids. <i>Mathematics</i> , 2020 , 8, 1991	2.3	2

181	Similarity solutions for a class of Fractional Reaction-Diffusion equation. 2020, 68, 723-734		2
180	Neural network method for fractional-order partial differential equations. 2020 , 414, 225-237		7
179	On the Generalized Riesz Derivative. <i>Mathematics</i> , 2020 , 8, 1089	2.3	1
178	Homotopy Analysis Method for Three Types of Fractional Partial Differential Equations. 2020 , 2020, 1-13		3
177	Fractional-in-Time Semilinear Parabolic Equations and Applications. 2020,		14
176	Averaging Principle for Multiscale Stochastic Fractional Schrdingerkorteweg-de Vries System. 2020 , 181, 1781-1816		2
175	Fractional Advection-Diffusion-Asymmetry Equation. 2020 , 125, 240606		13
174	Symmetries, Explicit Solutions and Conservation Laws for Some Time Space Fractional Nonlinear Systems. 2020 , 86, 139-156		1
173	Identifying Arguments of Space-Time Fractional Diffusion: Data-Driven Approach. 2020, 6,		6
172	Fractional Kinetic Equations Associated with Incomplete I-Functions. <i>Fractal and Fractional</i> , 2020 , 4, 19	3	5
171	A Simple Solver for the Fractional Laplacian in Multiple Dimensions. 2020 , 42, A878-A900		15
170	The Four-Parameters Wright Function of the Second kind and its Applications in FC. <i>Mathematics</i> , 2020 , 8, 970	2.3	4
169	Dual-phase-lag in the balance: Sufficiency bounds for the class of Jeffreys Lequations to furnish physical solutions. 2020 , 158, 119742		8
168	Asymptotic behavior of solutions to anisotropic conservation laws in two-dimensional space. 2020 , 43, 1278-1291		
167	Construction of new generating function based on linear barycentric rational interpolation for numerical solution of fractional differential equations. <i>Journal of Computational and Applied Mathematics</i> , 2020 , 375, 112799	2.4	2
166	Implicit Runge K utta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation. 2020 , 39, 1		5
165	Mathematical modelling of multi-mutation and drug resistance model with fractional derivative. 2020 , 59, 2291-2304		9
164	Discontinuous Galerkin methods for fractional elliptic problems. 2020 , 39, 1		2

163	Fractional operator method on a multi-mutation and intrinsic resistance model. 2020 , 59, 1999-2013		13
162	Nonlinear Wave Dynamics of Materials and Structures. Advanced Structured Materials, 2020,	0.6	
161	Efficient numerical algorithms for Riesz-space fractional partial differential equations based on finite difference/operational matrix. <i>Applied Numerical Mathematics</i> , 2021 , 161, 244-274	2.5	4
160	Computable generalization of fractional kinetic equation with special functions. 2021 , 33, 101221		6
159	Numerical solutions for asymmetric L [®] vy flights. 2021 , 87, 967-999		
158	A meshless method to solve nonlinear variable-order time fractional 2D reaction diffusion equation involving Mittag-Leffler kernel. 2021 , 37, 731-743		11
157	A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. 2021 , 14, 2273		2
156	A Fractional Parabolic Inverse Problem Involving a Time-dependent Magnetic Potential. 2021 , 53, 435-4	52	2
155	Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of slexp(B) <i>Symmetry</i> , 2021 , 13, 354	2.7	3
154	Flexible models for overdispersed and underdispersed count data. 2021 , 62, 2969		2
153	Nonlocal Turbulent Diffusion Models. 2021 , 253, 573-582		1
152	Relation between generalized diffusion equations and subordination schemes. 2021 , 103, 032133		8
151	A new generalized Hilfer-type fractional derivative with applications to space-time diffusion equation. <i>Results in Physics</i> , 2021 , 22, 103953	3.7	4
150	Self-similar cauchy problems and generalized Mittag-Leffler functions. <i>Fractional Calculus and Applied Analysis</i> , 2021 , 24, 447-482	2.7	2
149	Fractal Fractional Operator Method on HER2+ Breast Cancer Dynamics. 2021 , 7, 1		3
148	On some computable solutions of unified families of fractional differential equations. 1		O
147	Non-Markovian process with variable memory functions. 1		
146	A multigrid-reduction-in-time solver with a new two-level convergence for unsteady fractional Laplacian problems. <i>Computers and Mathematics With Applications</i> , 2021 , 89, 57-67	2.7	

145	A meshless technique based on the moving least squares shape functions for nonlinear fractal-fractional advection-diffusion equation. 2021 , 127, 8-17		4
144	Slices of the Anomalous Phase Cube Depict Regions of Sub- and Super-Diffusion in the Fractional Diffusion Equation. <i>Mathematics</i> , 2021 , 9, 1481	2.3	3
143	Diffusion in Sephadex Gel Structures: Time Dependency Revealed by Multi-Sequence Acquisition over a Broad Diffusion Time Range. <i>Mathematics</i> , 2021 , 9,	2.3	О
142	Fast direct solver for CN-ADI-FV scheme to two-dimensional Riesz space-fractional diffusion equations. 2021 , 401, 126033		
141	Describing NMR relaxation by effective phase diffusion equation. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2021 , 99, 105825	3.7	1
140	Fractal Fractional Derivative Operator Method on MCF-7 Cell Line Dynamics. 2022, 319-339		1
139	Limit measures and ergodicity of fractional stochastic reaction diffusion equations on unbounded domains. 2140012		1
138	Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional. <i>Chaos, Solitons and Fractals,</i> 2021 , 151, 111279	9.3	3
137	Closed-form multi-dimensional solutions and asymptotic behaviors for subdiffusive processes with crossovers: I. Retarding case. <i>Chaos, Solitons and Fractals</i> , 2021 , 152, 111357	9.3	1
136	On the Solution of Kinetic Equation for Katugampola Type Fractional Differential Equations. 2021 , 19, 125-134		О
135	Boundary Mittag-Leffler Stabilization of a Class of Time Fractional Order Nonlinear Reaction-Diffusion Systems.		
134	Pseudochaos. 2003 , 421-443		4
133	Encyclopedia of Complexity and Systems Science. 2009 , 5218-5239		7
132	Sub-diffusion equations of fractional order and their fundamental solutions. 2007, 23-55		7
131	Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media. 2007 , 199-21	2	3
130	On the H-Function With Applications. 2010 , 1-43		7
129	Computational Complexity. 2012 , 1724-1745		3
128	Certain Fractional Integral and Differential Formulas Involving the Extended Incomplete Generalized Hypergeometric Functions. 2019 , 217-272		2

127	Fractional Heat Conduction and Related Theories of Thermoelasticity. 2015 , 13-33	2
126	Certain Fractional Integrals and Solutions of Fractional Kinetic Equations Involving the Product of S-Function. 2019 , 213-244	4
125	Fractional Statistical Mechanics. 2010 , 335-353	1
124	Fractional Dynamics of Media with Long-Range Interaction. 2010 , 153-214	3
123	Multi-index Mittag-Leffler Functions. 2014 , 129-164	3
122	Fractional Differential Equations: A Emergent Field in Applied and Mathematical Sciences. 2003 , 151-173	9
121	Fractional Dispersion, Lvy Motion, and the MADE Tracer Tests. 2001, 211-240	14
120	Numerical Solutions of Riesz Fractional Partial Differential Equations. 2020 , 119-154	1
119	Stochastic representation of fractional Bessel-Riesz motion. <i>Chaos, Solitons and Fractals</i> , 2017 , 102, 135- 43 ,9	5
118	Nanoconfinement-Induced DNA Reptating Motion and Analogy to Fluctuating Interfaces. 2020 , 53, 1001-1013	3 3
117	The method of fundamental solution for the inverse source problem for the space-fractional diffusion equation. 2018 , 26, 925-941	3
116	New Fractional Analytical Study of Three-Dimensional Evolution Equation Equipped With Three Memory Indices. 2019 , 14,	9
115	Solution of fractional kinetic equations involving class of functions and Sumudu transform. 2020 , 2020,	6
114	Pseudo-Processes Governed by Higher-Order Fractional Differential Equations. 2008, 13,	5
113	12014, 4(37), 22-32	2
112	Generalized fractional Poisson process and related stochastic dynamics. <i>Fractional Calculus and Applied Analysis</i> , 2020 , 23, 656-693	8
111	Fractional abstract Cauchy problem on complex interpolation scales. <i>Fractional Calculus and Applied Analysis</i> , 2020 , 23, 1125-1140	2
110	Studies on generalized Yule models. 2019 , 41-55	2

(2007-2005)

109	Difuső anfinala e equa f is generalizadas de difuső. 2005 , 27, 251-258		1
108	Advective D ispersive Equation with Spatial Fractional Derivatives Evaluated with Tracer Transport Data. 2009 , 8, 242-249		3
107	Exact results for a fractional derivative of elementary functions. 2018, 4,		3
106	Generalized CattaneoMaxwell diffusion equation with fractional derivatives. Dispersion relations. 2019 , 6, 58-68		6
105	Fractional Calculus involving (p, q)-Mathieu Type Series. 2020 , 5, 15-34		40
104	Self-similar anomalous diffusion and Levy-stable laws. <i>Uspekhi Fizicheskikh Nauk</i> , 2003 , 173, 847	0.5	46
103	Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. 2017 , 37, 2539-2564		11
102	Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2015 , 21, 575-590	1.3	2
101	11112004 , 138, 491-507		1
100	₩₩€TRW), II- ₩₩2008, 53, 684-703		4
99	11 12 12 13 13 13 13 1		4
98	Explicit Approximation Solutions and Proof of Convergence of the Space-Time Fractional Advection Dispersion Equations. 2013 , 04, 1427-1440		8
97	Fractality and the Kinetics of Chaos. 2000 , 291-314		
96	Projection Operators and Fractal Dispersion. 2001 , 427-438		
95	1200 - 12 002, 131, 162-176		
94	Non-equilibrium Statistical Mechanics of Classical and Quantum Systems. 2002 , 83-108		
93	2005 , 143, 455-464		
92	Fractional Kinetics in Pseudochaotic Systems and Its Applications. 2007 , 127-138		O

2009, 158, 214-233

90	Applications in Astrophysics Problems. 2010 , 159-203
89	An Alternative Method for Solving a Certain Class of Fractional Kinetic Equations. 2010 , 35-40
88	Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation. 2010 , 53-62
87	Formulations of Mechanics Problems for Materials with Self-Similar Multiscale Microstructure. 2009 , 31-56
86	Self-similarity, Stochasticity and Fractionality. 2010 , 27-81
85	Exciton Phonon Dynamics with Long-Range Interaction. 2012, 311-322
84	Numerical Solution of a Two-Dimensional Anomalous Diffusion Problem. 2012 , 249-261
83	Equations and Solutions. 2013, 257-327
82	Stochasticity. 2013 , 107-195
81	Long-Memory and Features of Fluctuation in A Fractional Generalized Cauchy Process. 2013 , 2013, 180-186 1
80	Mittag-Leffler Functions with Three Parameters. 2014 , 97-128
79	Applications to Deterministic Models. 2014 , 201-233
78	Introduction. 2014 , 1-6
77	The Two-Parametric Mittag-Leffler Function. 2014 , 55-96
76	Applications to Stochastic Models. 2014 , 235-268
75	The Classical Mittag-Leffler Function. 2014 , 17-54
74	Historical Overview of the Mittag-Leffler Functions. 2014 , 7-16

73 Thermoelasticity Based on Space-Time-Fractional Heat Conduction Equation. **2015**, 171-190

72	Non-local deformation effects in shear flows.		
71	Fractional Advection-Diffusion Equation and Associated Diffusive Stresses. 2015, 227-249		2
70	Quantification of the Evolution of Firm Size Distributions Due to Mergers and Acquisitions.		
69	Generalized electrodiffusion equation with fractality of space-time. 2016 , 3, 163-172		3
68	Anomalous Diffusion by the Fractional Fokker-Planck Equation and Lvy Stable Processes. 2018 , 77-92		1
67	Simulation of the SpaceII ime-Fractional Ultrasound Waves with Attenuation in Fractal Media. 2019 , 173-197		
66	Generalized Differential and Integral Operators. <i>Developments in Mathematics</i> , 2019 , 29-59	0.5	
65	Generalized SpaceTime Fractional Dynamics in Networks and Lattices. <i>Advanced Structured Materials</i> , 2020 , 221-249	0.6	
64	Dynamics of non-autonomous fractional reaction-diffusion equations on $\$ mathbb{R}^{N} $\$ driven by multiplicative noise. Discrete and Continuous Dynamical Systems - Series B, 2020 ,	1.3	
63	The Exact Solutions of Stochastic Fractional-Space Kuramoto-Sivashinsky Equation by Using (G?G)-Expansion Method. <i>Mathematics</i> , 2021 , 9, 2712	2.3	8
62	Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection dispersion equations. <i>Mathematics and Computers in Simulation</i> , 2021 , 193, 348-348	3.3	1
61	Matrix transfer technique for anomalous diffusion equation involving fractional Laplacian. <i>Applied Numerical Mathematics</i> , 2022 , 172, 242-258	2.5	1
60	Discovering Laws from Observations: A Data-Driven Approach. <i>Lecture Notes in Computer Science</i> , 2020 , 302-310	0.9	1
59	CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRDINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE. <i>Journal of Applied Analysis and Computation</i> , 2020 , 0-0	0.4	О
58	Time-Fractional Phase Field Model of Electrochemical Impedance. <i>Fractal and Fractional</i> , 2021 , 5, 191	3	3
57	New exact solutions of time conformable fractional Klein Kramer equation. <i>Optical and Quantum Electronics</i> , 2021 , 53, 1	2.4	О
56	An Entropy Paradox Free Fractional Diffusion Equation. Fractal and Fractional, 2021, 5, 236	3	O

55	Transient Chaos, Synchronization and Digital Image Enhancement Technique Based on a Novel 5D Fractional-Order Hyperchaotic Memristive System. <i>Circuits, Systems, and Signal Processing</i> , 2022 , 41, 226	56 ^{.2}	1
54	Nonlocal models of cosmic ray transport in the interstellar medium. <i>Uspekhi Fizicheskikh Nauk</i> ,	0.5	
53	A high-order scheme for time-space fractional diffusion equations with Caputo-Riesz derivatives. <i>Computers and Mathematics With Applications</i> , 2021 , 104, 34-43	2.7	О
52	Additive Noise Effects on the Stabilization of Fractional-Space Diffusion Equation Solutions. <i>Mathematics</i> , 2022 , 10, 130	2.3	5
51	A phenomenological approach to anomalous transport in complex or disordered media. <i>Canadian Journal of Physics</i> , 2022 , 100, 180-184	1.1	
50	Efficient numerical methods for Riesz space-fractional diffusion equations with fractional Neumann boundary conditions. <i>Applied Numerical Mathematics</i> , 2022 ,	2.5	О
49	The exact solutions of the stochastic fractional-space Allen©ahn equation. <i>Open Physics</i> , 2022 , 20, 23-29	1.3	6
48	CTRW modeling of quantum measurement and fractional equations of quantum stochastic filtering and control. <i>Fractional Calculus and Applied Analysis</i> , 2022 , 25, 128	2.7	
47	Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order. <i>Chaos, Solitons and Fractals,</i> 2022 , 156, 111856	9.3	1
46	Fractional Diffusion Model, Anomalous Statistics and Random Process. 2022 , 115-157		
45	Fractional Processes and Their Statistical Inference: An Overview. <i>Journal of the Indian Institute of Science</i> ,	2.4	
44	Subordination Formulae for Space-time Fractional Diffusion Processes via Mellin Convolution. <i>International Journal of Mathematical Models and Methods in Applied Sciences</i> , 2022 , 16, 71-76	Ο	
43	The case of the biased quenched trap model in two dimensions with diverging mean dwell times. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 033301	1.9	
42	Preconditioners for fractional diffusion equations based on the spectral symbol. <i>Numerical Linear Algebra With Applications</i> ,	1.6	О
41	Brownian motion effects on analytical solutions of a fractional-space longshort-wave interaction with conformable derivative. <i>Results in Physics</i> , 2022 , 35, 105371	3.7	2
40	A Tikhonov regularization method for solving a backward timeEpace fractional diffusion problem. Journal of Computational and Applied Mathematics, 2022, 411, 114236	2.4	2
39	High-order finite difference method based on linear barycentric rational interpolation for Caputo type sub-diffusion equation. <i>Mathematics and Computers in Simulation</i> , 2022 , 199, 60-80	3.3	
38	Fractional Integration and Solution of Generalized kinetic equation considering Generalized Lommel-Wright function. <i>The Punjab University Journal of Mathematics</i> , 2021 , 740-752		

37	On the generalized fractional Laplacian. Fractional Calculus and Applied Analysis, 2021, 24, 1797-1830	2.7	
36	Legendre Spectral Collocation Technique for Advection Dispersion Equations Included Riesz Fractional. <i>Fractal and Fractional</i> , 2022 , 6, 9	3	O
35	The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrödinger Equation. <i>Fractal and Fractional</i> , 2021 , 5, 262	3	6
34	Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation. <i>Lobachevskii Journal of Mathematics</i> , 2021 , 42, 3747-3760	0.9	O
33	Table_1.pdf. 2020 ,		
32	Brownian Motion Effects on the Stabilization of Stochastic Solutions to Fractional Diffusion Equations with Polynomials. <i>Mathematics</i> , 2022 , 10, 1458	2.3	3
31	On the correlation between Kappa and Lvy stable distributions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2022 , 127576	3.3	
30	A discussion on nonlocality: From fractional derivative model to peridynamic model. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2022 , 106604	3.7	1
29	Novel patterns in a class of fractional reaction diffusion models with the Riesz fractional derivative. <i>Mathematics and Computers in Simulation</i> , 2022 , 202, 149-163	3.3	0
28	Fractional Model of the Deformation Process. Fractal and Fractional, 2022, 6, 372	3	O
28	Fractional Model of the Deformation Process. <i>Fractal and Fractional</i> , 2022 , 6, 372 On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities. <i>Symmetry</i> , 2022 , 14, 1419	2.7	0
	On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential		
27	On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities. <i>Symmetry</i> , 2022 , 14, 1419		
27 26	On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities. <i>Symmetry</i> , 2022 , 14, 1419 Katugampola kinetic fractional equation with its solution. <i>Results in Nonlinear Analysis</i> , Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models	2.7	0
27 26 25	On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities. <i>Symmetry</i> , 2022 , 14, 1419 Katugampola kinetic fractional equation with its solution. <i>Results in Nonlinear Analysis</i> , Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology. <i>Chaos, Solitons and Fractals</i> , 2022 , 161, 112394 New fractional integral formulas and kinetic model associated with the hypergeometric	2.7	o 8
27 26 25 24	On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities. <i>Symmetry</i> , 2022 , 14, 1419 Katugampola kinetic fractional equation with its solution. <i>Results in Nonlinear Analysis</i> , Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology. <i>Chaos, Solitons and Fractals</i> , 2022 , 161, 112394 New fractional integral formulas and kinetic model associated with the hypergeometric superhyperbolic sine function.	2.7	o 8
27 26 25 24 23	On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities. <i>Symmetry</i> , 2022 , 14, 1419 Katugampola kinetic fractional equation with its solution. <i>Results in Nonlinear Analysis</i> , Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology. <i>Chaos, Solitons and Fractals</i> , 2022 , 161, 112394 New fractional integral formulas and kinetic model associated with the hypergeometric superhyperbolic sine function. Wellposedness and stability of fractional stochastic nonlinear heat equation in Hilbert space. Application of the Laplace Transform to a New Form of Fractional Kinetic Equation Involving the	2.7 9·3	o 8

19	Weak solutions to the time-fractional g-Bħard equations. 2022 , 2022,	О
18	Solutions of a Nonlinear Diffusion Equation with a Regularized Hyper-Bessel Operator. 2022 , 6, 530	O
17	Reconstruction of the initial function from the solution of the fractional wave equation measured in two geometric settings. 2022 , 30, 4436-4446	0
16	Level of noises and long time behavior of the solution for space-time fractional SPDE in bounded domains. 2022 , 0-0	O
15	Analysis and Control of Complex Variable Hyper-Chaotic Robinovich System with Fractional Derivative. 2022 , 8,	1
14	Nonlocal Probability Theory: General Fractional Calculus Approach. 2022 , 10, 3848	3
13	The large key space image encryption algorithm based on modulus synchronization between real and complex fractional-order dynamical systems.	0
12	Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations. 2023 , 166, 112901	O
11	Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. 2023 , 609, 128366	3
10	Some new kinetic equations of fractional order involving generalized Mittag-Leffler function. 2022,	O
9	On New Matrix Version Extension of the Incomplete Wright Hypergeometric Functions and Their Fractional Calculus. 2022 , 10, 4371	0
8	Fractional Approach to the Study of Damped Traveling Disturbances in a Vibrating Medium.	O
7	Approximation of the waiting times distribution laws for foreshocks based on a fractional model of deformation activity. 2022 , 137-152	O
6	Anomalous kinetic study of atenolol release from ATN@DNA a core-shell like structure. 2023, 13,	O
5	Derivation of the Fractional Fokker P lanck Equation for Stable Lvy with Financial Applications. 2023 , 11, 1102	0
4	Fractional Approach to the Study of Some Partial Differential and Integro-Differential Equations. 2023 , 2448, 012013	O
3	Non-Local Kinetics: Revisiting and Updates Emphasizing Fractional Calculus Applications. 2023 , 15, 632	1
2	An approximate solution for the time-fractional diffusion equation. 2022 , 2, 15-28	O

Numerical solution of two-dimensional nonlinear Riesz space-fractional reaction diffusion equation using fast compact implicit integration factor method.

О