The elastic constants of San Carlos olivine to 17 GPa

Journal of Geophysical Research 102, 12253-12263 DOI: 10.1029/97jb00682

Citation Report

#	Article	IF	CITATIONS
1	Ab Initio Investigation of the High Pressure Elasticity of Mg2SiO4 Forsterite and Ringwoodite. Materials Research Society Symposia Proceedings, 1997, 499, 15.	0.1	0
2	The elastic constants of an aluminous orthopyroxene to 12.5 GPa. Journal of Geophysical Research, 1997, 102, 14779-14785.	3.3	138
3	Elastic constants and anisotropy of forsterite at high pressure. Geophysical Research Letters, 1997, 24, 1963-1966.	4.0	40
4	Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Physics of the Earth and Planetary Interiors, 1998, 106, 275-298.	1.9	160
5	Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letters, 1998, 159, 25-33.	4.4	132
6	Impulsive stimulated scattering in ice VI and ice VII. Journal of Chemical Physics, 1998, 108, 4540-4544.	3.0	23
7	APPLICATIONS OFIMPULSIVESTIMULATEDSCATTERING IN THEEARTH ANDPLANETARYSCIENCES. Annual Review of Physical Chemistry, 1999, 50, 279-313.	10.8	46
8	Computer simulation of the Mg2SiO4 phases with application to the 410 km seismic discontinuity. Physics of the Earth and Planetary Interiors, 1999, 116, 9-18.	1.9	23
9	The Seismic anisotropy of the Earth's mantle: From single crystal to polycrystal. Geophysical Monograph Series, 2000, , 237-264.	0.1	164
10	High-Pressure Structural Phase Transitions. Reviews in Mineralogy and Geochemistry, 2000, 39, 85-104.	4.8	21
11	Elasticity of mantle minerals (experimental studies). Geophysical Monograph Series, 2000, , 181-199.	0.1	16
12	Upper mantle deformation and seismic anisotropy in continental rifts. Physics and Chemistry of the Earth, 2000, 25, 111-117.	0.6	71
13	Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Physics of the Earth and Planetary Interiors, 2000, 120, 43-62.	1.9	223
14	Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth and Planetary Science Letters, 2001, 192, 235-249.	4.4	102
15	Anisotropy of thermal diffusivity in the upper mantle. Nature, 2001, 411, 783-786.	27.8	63
16	Redefinition of the mode Gruneisen parameter for polyatomic substances and thermodynamic implications. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 559-564.	7.1	74
17	Gigahertz ultrasonic interferometry at highPandT: new tools for obtaining a thermodynamic equation of state. Journal of Physics Condensed Matter, 2002, 14, 11525-11530.	1.8	22
18	Olivine [100] normal to foliation: lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Gagnone (Central Alps). Contributions To Mineralogy and Petrology, 2003, 145, 75-86.	3.1	64

ARTICLE IF CITATIONS # Thermal diffusivity of upper mantle rocks: Influence of temperature, pressure, and the deformation 19 3.363 fabric. Journal of Geophysical Research, 2003, 108, . Anisotropic seismic properties of the upper mantle beneath the Torre Alfina area (Northern Apennines,) Tj ETQq1 1,0,784314,rgBT /O Pressure derivatives of shear and bulk moduli from the thermal $Gr\tilde{A}^{1}/_{4}$ neisen parameter and 21 3.9 26 volume-pressure data. Geochimica Et Cosmochimica Acta, 2003, 67, 1215-1235. Chapter 15 Transport properties in deep depths and related condensed-matter phenomena. Developments in Geochemistry, 2004, 9, 1041-1203. Mantle-driven deformation of orogenic zones and clutch tectonics. Geological Society Special 23 1.3 18 Publication, 2004, 227, 41-64. Dual mode ultrasonic interferometry in multi-anvil high pressure apparatus using single-crystal olivine as the pressure standard. High Pressure Research, 2004, 24, 183-191. 1.2 Nanoscale waviness of low-angle grain boundaries. Proceedings of the National Academy of Sciences 25 7.1 42 of the United States of America, 2004, 101, 17936-17939. Influence of pressure and mineralogy on seismic velocities in oceanic gabbros: Implications for the 3.3 47 composition and state of the lower oceanic crust. Journal of Geophysical Research, 2004, 109, n/a-n/a. 27 Single-crystal elasticity of fayalite to 12 GPa. Journal of Geophysical Research, 2004, 109, . 3.3 59 Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia. Earth 4.4 and Planetary Science Letters, 2004, 227, 539-556. Ultrasonic measurements of the sound velocities in polycrystalline San Carlos olivine in multi-anvil, 29 1.9 37 high-pressure apparatus. Physics of the Earth and Planetary Interiors, 2004, 143-144, 19-31. Displacement and strain fields around a [100] dislocation in olivine measured to sub-angstrom accuracy. American Mineralogist, 2004, 89, 1374-1379. New type of olivine fabric from deformation experiments at modest water content and low stress. $\mathbf{31}$ 4.4 207 Geology, 2004, 32, 1045. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature, 27.8 242 2005, 433, 731-733. An investigation into thermodynamic consistency of data for the olivine, wadsleyite and ringwoodite 33 3.9 19 form of (Mg,Fe)2SiO4. Geochimica Et Cosmochimica Acta, 2005, 69, 4361-4375. Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: Insights from the Labait volcano xenoliths (Tanzania). Earth and Planetary Science Letters, 2005, 232, 120 295-314. The misorientation index: Development of a new method for calculating the strength of 35 2.2301 lattice-preferred orientation. Tectonophysics, 2005, 411, 157-167. Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophysical Research Letters, 2005, 32, . 101

#	Article	IF	CITATIONS
37	Compositional dependence of the elastic wave velocities of mantle minerals: Implications for seismic properties of mantle rocks. Geophysical Monograph Series, 2005, , 301-320.	0.1	8
38	Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	251
39	Seismic anisotropy in the uppermost mantle, back-arc region of the northeast Japan arc: Petrophysical analyses of Ichinomegata peridotite xenoliths. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	26
40	Deformation of olivine-spinel aggregates in the system (Mg,Ni)2GeO4deformed to high strain in torsion: Implications for upper mantle anisotropy. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	8
41	Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave array analysis. Earth and Planetary Science Letters, 2006, 244, 590-605.	4.4	59
42	The effect of dynamic recrystallization on olivine fabric and seismic anisotropy: Insight from a ductile shear zone, Oman ophiolite. Earth and Planetary Science Letters, 2006, 244, 695-708.	4.4	83
43	Deformation and melt transport in a highly depleted peridotite massif from the Canadian Cordillera: Implications to seismic anisotropy above subduction zones. Earth and Planetary Science Letters, 2006, 252, 245-259.	4.4	60
44	Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. Journal of Geophysical Research, 2006, 111, .	3.3	135
45	European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Physics of the Earth and Planetary Interiors, 2006, 158, 264-280.	1.9	90
46	Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Physics of the Earth and Planetary Interiors, 2006, 157, 33-45.	1.9	135
47	Thermal equation of state of (Mg0.9Fe0.1)2SiO4 olivine. Physics of the Earth and Planetary Interiors, 2006, 157, 188-195.	1.9	69
48	Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 2006, 421, 1-22.	2.2	323
49	Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics, 2006, 421, 111-127.	2.2	65
50	Seismic properties of the upper mantle beneath Lanzarote (Canary Islands): Model predictions based on texture measurements by EBSD. Tectonophysics, 2006, 428, 65-85.	2.2	21
51	Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water. Contributions To Mineralogy and Petrology, 2006, 152, 43-51.	3.1	95
52	Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective. , 2007, , 437-491.		86
53	Energy dissipation of materials at high pressure and high temperature. Review of Scientific Instruments, 2007, 78, 053902.	1.3	23
54	Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9145-9150.	7.1	68

#	Article	IF	Citations
55	Continuation of the San Andreas fault system into the upper mantle: Evidence from spinel peridotite xenoliths in the Coyote Lake basalt, central California. Tectonophysics, 2007, 429, 1-20.	2.2	41
56	A composite geologic and seismic profile beneath the southern Rio Grande rift, New Mexico, based on xenolith mineralogy, temperature, and pressure. Tectonophysics, 2007, 442, 14-48.	2.2	15
57	The elastic properties of β-Mg2SiO4 from 295 to 660K and implications on the composition of Earth's upper mantle. Physics of the Earth and Planetary Interiors, 2007, 162, 22-31.	1.9	26
58	Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 2008, 451, 1094-1097.	27.8	201
59	Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 2008, 455, 1097-1100.	27.8	271
60	Resolving three-dimensional anisotropic structure with shear wave splitting tomography. Geophysical Journal International, 2008, 173, 859-886.	2.4	65
61	An integrated study of microstructural, geochemical, and seismic properties of the lithospheric mantle above the Kerguelen plume (Indian Ocean). Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	42
62	Influence of observed mantle anisotropy on isotropic tomographic models. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	17
63	Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA). Physics of the Earth and Planetary Interiors, 2008, 170, 156-169.	1.9	57
64	Single-crystal elasticity of wadsleyites, β-Mg2SiO4, containing 0.37–1.66Âwt.% H2O. Earth and Planetary Science Letters, 2008, 266, 78-89.	4.4	38
66	Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth and Planetary Science Letters, 2008, 272, 65-77.	4.4	104
67	B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab. Earth and Planetary Science Letters, 2008, 272, 747-757.	4.4	50
68	Structure Sensitivity and Elastic Anisotropy within Peridotites. Journal of Geography (Chigaku) Tj ETQq0 0 0 rgBT	Overlock	19 Tf 50 26
69	Studies of mineral properties at mantle condition using Deformation multi-anvil apparatus. Progress in Natural Science: Materials International, 2009, 19, 1467-1475.	4.4	5
70	Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle. Lithos, 2009, 109, 341-349.	1.4	42
71	Thermodynamic mixing properties of olivine derived from lattice vibrations. Physics and Chemistry of Minerals, 2009, 36, 365-389.	0.8	11
72	The preservation of seismic anisotropy in the Earth's mantle during diffusion creep. Geophysical Journal International, 2009, 178, 1723-1732.	2.4	45
73	Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 2009, 461, 1114-1117.	27.8	203

#	Article	IF	CITATIONS
74	Upper mantle seismic anisotropy resulting from pressure-induced slip transition inÂolivine. Nature Geoscience, 2009, 2, 73-77.	12.9	141
75	Deformation microstructures of olivine in peridotite from Spitsbergen, Svalbard and implications for seismic anisotropy. Journal of Metamorphic Geology, 2009, 27, 707-720.	3.4	21
76	Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs. Earth and Planetary Science Letters, 2009, 283, 75-86.	4.4	99
77	Deformation of olivine at 5GPa and 350–900°C. Physics of the Earth and Planetary Interiors, 2009, 172, 84-90.	1.9	8
78	Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth's deep interior. Physics of the Earth and Planetary Interiors, 2009, 174, 282-291.	1.9	35
79	Elasticity of (Mg0.87Fe0.13)2SiO4 wadsleyite to 12GPa and 1073K. Physics of the Earth and Planetary Interiors, 2009, 174, 98-104.	1.9	39
80	Seismic Anisotropy of Subduction Zone Minerals–Contribution of Hydrous Phases. Frontiers in Earth Sciences, 2009, , 63-84.	0.1	58
81	Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	52
82	A multiscale approach to model the anisotropic deformation of lithospheric plates. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	26
83	Rock seismic anisotropy of the lowâ€velocity zone beneath the volcanic front in the mantle wedge. Geophysical Research Letters, 2009, 36, .	4.0	17
84	Analysis of temperature dependence of thermal pressure of solids. Indian Journal of Physics, 2010, 84, 459-466.	1.8	2
85	Elastic behavior of (MgxFe1â^'x)2SiO4 olivine at high pressure from first-principles simulations. Journal of Physics and Chemistry of Solids, 2010, 71, 1094-1097.	4.0	8
86	Constraints on upper mantle anisotropy surrounding the Cocos slab from <i>SK</i> (<i>K</i>) <i>S</i> splitting. Journal of Geophysical Research, 2010, 115, .	3.3	39
87	Seismic properties of the supraâ€subduction mantle: Constraints from peridotite xenoliths from the Avacha volcano, southern Kamchatka. Geophysical Research Letters, 2010, 37, .	4.0	19
88	Fundamentals of elasticity of (Mg _{1â^'<i>x</i>} ,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 182 Td (Fe <su< td=""><td>ub><i>x<!--</td--><td>i>)<sub< td=""></sub<></td></i></td></su<>	ub> <i>x<!--</td--><td>i>)<sub< td=""></sub<></td></i>	i>) <sub< td=""></sub<>
89	Evolution of Titan's rocky core constrained by Cassini observations. Geophysical Research Letters, 2010, 37, .	4.0	82
90	Earthquakes and plastic deformation of anhydrous slab mantle in double Wadatiâ€Benioff zones. Geophysical Research Letters, 2010, 37, .	4.0	48
91	Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite. Journal of Petrology, 2010, 51, 495-512.	2.8	141

#	Article	IF	CITATIONS
92	Relation between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju Island (South Korea): Evidence from olivine CPO and trace elements. Journal of Geodynamics, 2010, 50, 424-440.	1.6	26
93	Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth and Planetary Science Letters, 2010, 293, 250-258.	4.4	49
94	Systematic variation in anisotropy beneath the mantle wedge in the Java–Sumatra subduction system from shear-wave splitting. Physics of the Earth and Planetary Interiors, 2010, 178, 189-201.	1.9	61
95	The temperature dependence of the elasticity of Fe-bearing wadsleyite. Physics of the Earth and Planetary Interiors, 2010, 182, 107-112.	1.9	11
96	Stress relaxation experiments of olivine under conditions of subducted slab in Earth's deep upper mantle. Physics of the Earth and Planetary Interiors, 2010, 183, 164-174.	1.9	8
97	Seismic velocity in antigorite-bearing serpentinite mylonites. Geological Society Special Publication, 2011, 360, 97-112.	1.3	15
98	Three-dimensional structure of P-wave anisotropy in the presence of small-scale convection in the mantle wedge. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	25
99	Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa. American Mineralogist, 2011, 96, 1606-1612.	1.9	51
100	Direct evidence for upper mantle structure in the NW Pacific Plate: Microstructural analysis of a petit-spot peridotite xenolith. Earth and Planetary Science Letters, 2011, 302, 194-202.	4.4	28
101	Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth and Planetary Science Letters, 2011, 304, 71-84.	4.4	36
102	Seismic anisotropy produced by serpentine in mantle wedge. Earth and Planetary Science Letters, 2011, 307, 535-543.	4.4	111
103	Seismic anisotropy of the uppermost mantle beneath the Rio Grande rift: Evidence from Kilbourne Hole peridotite xenoliths, New Mexico. Earth and Planetary Science Letters, 2011, 311, 172-181.	4.4	24
104	Composition, textures, seismic and thermal anisotropies of xenoliths from a thin and hot lithospheric mantle (Summit Lake, southern Canadian Cordillera). Tectonophysics, 2011, 507, 1-15.	2.2	22
105	Fabric development in the mantle section of a paleotransform fault and its effect on ophiolite obduction, New Caledonia. Lithosphere, 2011, 3, 221-244.	1.4	26
106	Constraints on the seismic properties of the middle and lower continental crust. Geological Society Special Publication, 2011, 360, 7-32.	1.3	44
107	Contribution of crystallographic preferred orientation to seismic anisotropy across a surface analog of the continental Moho at Cabo Ortegal, Spain. Bulletin of the Geological Society of America, 2012, 124, 1495-1513.	3.3	31
108	Subduction Factory 5: Unusually low Poisson's ratios in subduction zones from elastic anisotropy of peridotite. Journal of Geophysical Research, 2012, 117, .	3.3	35
109	Seismic anisotropy above and below the subducting Nazca lithosphere in southern South America. Journal of Geophysical Research, 2012, 117, .	3.3	22

#	Article	IF	CITATIONS
110	The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation. Physics of the Earth and Planetary Interiors, 2012, 192-193, 81-89.	1.9	28
111	Activities of olivine slip systems in the upper mantle. Physics of the Earth and Planetary Interiors, 2012, 200-201, 105-112.	1.9	34
112	Change of olivine a-axis alignment induced by water: Origin of seismic anisotropy in subduction zones. Earth and Planetary Science Letters, 2012, 317-318, 111-119.	4.4	34
113	Mantle anisotropy beneath the Earth's mid-ocean ridges. Earth and Planetary Science Letters, 2012, 317-318, 56-67.	4.4	24
114	Sound velocities of hydrous ringwoodite to 16GPa and 673K. Earth and Planetary Science Letters, 2012, 331-332, 112-119.	4.4	66
115	Superplasticity in hydrous melt-bearing dunite: Implications for shear localization in Earth's upper mantle. Earth and Planetary Science Letters, 2012, 335-336, 59-71.	4.4	17
116	Thermoelastic properties of ringwoodite (Fex,Mg1â^'x)2SiO4: Its relationship to the 520km seismic discontinuity. Earth and Planetary Science Letters, 2012, 351-352, 115-122.	4.4	34
117	Contrasting seismic reflectivity of the lower crust and uppermost mantle between NE Japan and SW Japan as illustrated by petrophysical analyses of mafic and ultramafic xenoliths. Journal of Geophysical Research, 2012, 117, .	3.3	5
118	Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series. European Journal of Mineralogy, 2012, 24, 935-956.	1.3	51
119	Photophoresis of dust aggregates in protoplanetary disks. Astronomy and Astrophysics, 2012, 548, A96.	5.1	16
120	Seismic properties of peridotite xenoliths as a clue to imaging the lithospheric mantle beneath NE Tasmania, Australia. Tectonophysics, 2012, 522-523, 218-223.	2.2	9
121	Faults (shear zones) in the Earth's mantle. Tectonophysics, 2012, 558-559, 1-27.	2.2	136
122	Approaches to constrain single-crystal elastic properties from Brillouin scattering of polycrystalline samples. High Pressure Research, 2013, 33, 607-621.	1.2	4
123	Compressibility and structural stability of two variably hydrated olivine samples (Fo97Fa3) to 34 GPa by X-ray diffraction and Raman spectroscopy. American Mineralogist, 2013, 98, 1972-1979.	1.9	10
124	The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics, 2013, 609, 395-422.	2.2	37
125	The influence of hydrous phases on the microstructure and seismic properties of a hydrated mantle rock. Tectonophysics, 2013, 594, 103-117.	2.2	26
126	Natural type-C olivine fabrics in garnet peridotites in North Qaidam UHP collision belt, NW China. Tectonophysics, 2013, 594, 91-102.	2.2	35
127	The origin and geophysical implications of a weak C-type olivine fabric in the Xugou ultrahigh pressure garnet peridotite. Earth and Planetary Science Letters, 2013, 376, 63-73.	4.4	19

#	Article	IF	CITATIONS
128	Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea. Tectonophysics, 2013, 608, 330-345.	2.2	44
129	Elasticity of single-crystal iron-bearing pyrope up to 20 GPa and 750 K. Earth and Planetary Science Letters, 2013, 361, 134-142.	4.4	45
130	Pressure―and stressâ€induced fabric transition in olivine from peridotites in the Western Gneiss Region (Norway): implications for mantle seismic anisotropy. Journal of Metamorphic Geology, 2013, 31, 93-111.	3.4	29
132	Seismic signatures of a hydrated mantle wedge from antigorite crystal-preferred orientation (CPO). Earth and Planetary Science Letters, 2013, 375, 395-407.	4.4	35
133	Mantle flow and deformation of subducting slab at a plate junction. Earth and Planetary Science Letters, 2013, 365, 132-142.	4.4	18
134	Distinguishing eclogite from peridotite: EBSD-based calculations of seismic velocities. Geophysical Journal International, 2013, 193, 489-505.	2.4	46
136	A database of plagioclase crystal preferred orientations (CPO) and microstructures – implications for CPO origin, strength, symmetry and seismic anisotropy in gabbroic rocks. Solid Earth, 2013, 4, 511-542.	2.8	58
138	Phase transitions of harzburgite and buckled slab under eastern China. Geochemistry, Geophysics, Geosystems, 2013, 14, 1182-1199.	2.5	22
139	Thermal elasticity of (Fe <i>_x</i> ,Mg _{1â^'<i>x</i>}) ₂ SiO ₄ olivine and wadsleyite. Geophysical Research Letters, 2013, 40, 290-294.	4.0	45
140	Shear wave anisotropy beneath the volcanic front in South Kyushu area, Japan: Development of Câ€ŧype olivine CPO under H ₂ Oâ€ŧich conditions. Journal of Geophysical Research: Solid Earth, 2013, 118, 4253-4264.	3.4	6
141	Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root. Solid Earth, 2014, 5, 45-63.	2.8	23
142	Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization. Earth, Planets and Space, 2014, 66, .	2.5	32
143	The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments. Geophysical Journal International, 2014, 197, 705-730.	2.4	26
144	Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates. Meteoritics and Planetary Science, 2014, 49, 1645-1665.	1.6	12
145	Petrofabrics of olivine in a rift axis and rift shoulder and their implications for seismic anisotropy beneath the <scp>R</scp> io <scp>G</scp> rande rift. Island Arc, 2014, 23, 299-311.	1.1	18
146	Flow in the uppermost mantle during back-arc spreading revealed by Ichinomegata peridotite xenoliths, NE Japan. Lithos, 2014, 189, 89-104.	1.4	16
147	"Thermoba-Raman-try― Calibration of spectroscopic barometers and thermometers for mineral inclusions. Earth and Planetary Science Letters, 2014, 388, 187-196.	4.4	111
148	Brillouin Scattering and its Application in Geosciences. Reviews in Mineralogy and Geochemistry, 2014, 78, 543-603.	4.8	72

#	Article	IF	Citations
149	Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth and Planetary Science Letters, 2014, 387, 157-168.	4.4	99
150	The effect of deformation history on the evolution of olivine CPO. Earth and Planetary Science Letters, 2014, 406, 213-222.	4.4	56
151	Single-crystal elasticity of the deep-mantle magnesite at high pressure and temperature. Earth and Planetary Science Letters, 2014, 392, 292-299.	4.4	39
152	Microstructures and seismic properties of south Patagonian mantle xenoliths (Gobernador Gregores) Tj ETQq1 1	0.784314 2.2	rgBT /Overlo
153	A new method for calculating seismic velocities in rocks containing strongly dimensionally anisotropic mineral grains and its application to antigorite-bearing serpentinite mylonites. Earth and Planetary Science Letters, 2014, 391, 24-35.	4.4	17
154	Study of the Earth's interior using measurements of sound velocities in minerals by ultrasonic interferometry. Physics of the Earth and Planetary Interiors, 2014, 233, 135-153.	1.9	65
155	Microstructures, composition, and seismic properties of the <scp>O</scp> ntong <scp>J</scp> ava <scp>P</scp> lateau mantle root. Geochemistry, Geophysics, Geosystems, 2014, 15, 4547-4569.	2.5	30
156	Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle. Science Advances, 2015, 1, e1500360.	10.3	49
157	Seismic anisotropy of serpentinite from Val Malenco, Italy. Journal of Geophysical Research: Solid Earth, 2015, 120, 4113-4129.	3.4	13
158	Elastic wave velocities of peridotite KLBâ€1 at mantle pressures and implications for mantle velocity modeling. Geophysical Research Letters, 2015, 42, 3289-3297.	4.0	10
159	Olivine Crystallographic Fabrics and Their P-wave Velocity Structures within Peridotites in the Uppermost Mantle. Journal of Geography (Chigaku Zasshi), 2015, 124, 397-409.	0.3	7
160	Modeling olivine <scp>CPO</scp> evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle. Geochemistry, Geophysics, Geosystems, 2015, 16, 3436-3455.	2.5	52
161	Plastic Deformation and Seismic Properties in Fore-arc Mantles: A Petrofabric Analysis of the Yushigou Harzburgites, North Qilian Suture Zone, NW China. Journal of Petrology, 2015, 56, 1897-1944.	2.8	39
162	Lattice-preferred orientation of olivine found in diamond-bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy. Journal of Structural Geology, 2015, 70, 12-22.	2.3	25
163	Constraints on the thickness and seismic properties of the lithosphere in an extensional setting (NógrÃįd-Gömör Volcanic Field, Northern Pannonian Basin). Acta Geodaetica Et Geophysica, 2015, 50, 133-149.	1.6	13
164	Elasticity of single-crystal olivine at high pressures and temperatures. Earth and Planetary Science Letters, 2015, 426, 204-215.	4.4	61
165	Deformation microstructures of olivine and chlorite in chlorite peridotites from Almklovdalen in the Western Gneiss Region, southwest Norway, and implications for seismic anisotropy. International Geology Review, 2015, 57, 650-668.	2.1	31
166	Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective. , 2015, , 487-538.		38

#	Article	IF	CITATIONS
167	Deformation microstructures of olivine and pyroxene in mantle xenoliths in Shanwang, eastern China, near the convergent plate margin, and implications for seismic anisotropy. International Geology Review, 2015, 57, 629-649.	2.1	27
168	The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa. Russian Geology and Geophysics, 2015, 56, 172-189.	0.7	28
169	Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift: Constraints from mantle xenoliths from the North Tanzanian Divergence of the East African Rift. Tectonophysics, 2015, 639, 34-55.	2.2	40
170	Flow in the western Mediterranean shallow mantle: Insights from xenoliths in Pliocene alkali basalts from SE Iberia (eastern Betics, Spain). Tectonics, 2016, 35, 2657-2676.	2.8	10
171	Natural olivine crystal-fabrics in the western Pacific convergence region: A new method to identify fabric type. Earth and Planetary Science Letters, 2016, 443, 70-80.	4.4	52
172	Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10503-10506.	7.1	30
173	Meltâ€rock interactions and fabric development of peridotites from North Pond in the Kane area, Midâ€Atlantic Ridge: Implications of microstructural and petrological analyses of peridotite samples from IODP Hole U1382A. Geochemistry, Geophysics, Geosystems, 2016, 17, 2298-2322.	2.5	8
174	Lattice-Preferred orientations of olivine in subducting oceanic lithosphere derived from the observed seismic anisotropies in double seismic zones. Earthquake Science, 2016, 29, 243-258.	0.9	1
175	Sound velocities of olivine at high pressures and temperatures and the composition of Earth's upper mantle. Geophysical Research Letters, 2016, 43, 9611-9618.	4.0	38
176	Effects of olivine fabric, meltâ€rock reaction, and hydration on the seismic properties of peridotites: Insight from the Luobusha ophiolite in the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2016, 121, 3300-3323.	3.4	13
177	A test for Io's magma ocean: Modeling tidal dissipation with a partially molten mantle. Journal of Geophysical Research E: Planets, 2016, 121, 2211-2224.	3.6	40
178	A Shock Wave Experimental Study on Damaping Olivine and Estimation of its Parameters for Equation of State. Chinese Journal of Geophysics, 2016, 59, 9-14.	0.2	4
179	Hugoniot equation of state of olivine and its geodynamic implications. Science China Earth Sciences, 2016, 59, 619-625.	5.2	2
180	Hydration effects on crystal structures and equations of state for silicate minerals in the subducting slabs and mantle transition zone. Science China Earth Sciences, 2016, 59, 707-719.	5.2	4
181	Effect of hydration on the elasticity of mantle minerals and its geophysical implications. Science China Earth Sciences, 2016, 59, 873-888.	5.2	18
182	Deformation, annealing, reactive melt percolation, and seismic anisotropy in the lithospheric mantle beneath the southeastern Ethiopian rift: Constraints from mantle xenoliths from Mega. Tectonophysics, 2016, 682, 186-205.	2.2	18
183	Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction. Ultramicroscopy, 2016, 168, 34-45.	1.9	72
184	Elasticity of plagioclase feldspars. Journal of Geophysical Research: Solid Earth, 2016, 121, 663-675.	3.4	76

#	Article	IF	CITATIONS
185	Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Reviews of Geophysics, 2017, 55, 367-433.	23.0	127
186	Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Communications, 2017, 8, 15247.	12.8	152
187	Deformation and seismic anisotropy of the subcontinental lithospheric mantle in NE Spain: EBSD data on xenoliths from the Catalan Volcanic Zone. Tectonophysics, 2017, 698, 16-37.	2.2	6
188	Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Science Advances, 2017, 3, e1701338.	10.3	51
189	Control of serpentinisation rate by reaction-induced cracking. Earth and Planetary Science Letters, 2017, 476, 143-152.	4.4	43
190	Determination of elastic constants of a single-crystal topaz and their temperature dependence via sphere resonance method. Physics of the Earth and Planetary Interiors, 2017, 271, 64-72.	1.9	4
191	Fluidâ€Enhanced Annealing in the Subcontinental Lithospheric Mantle Beneath the Westernmost Margin of the Carpathianâ€Pannonian Extensional Basin System. Tectonics, 2017, 36, 2987-3011.	2.8	20
192	The zone of influence of the subducting slab in the asthenospheric mantle. Journal of Geophysical Research: Solid Earth, 2017, 122, 6599-6624.	3.4	13
193	Deformation of olivine-orthopyroxene aggregates at high pressure and temperature: Implications for the seismic properties of the asthenosphere. Tectonophysics, 2017, 694, 385-399.	2.2	22
194	Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosciences Journal, 2017, 21, 985-1011.	1.2	62
195	Constraints on the anisotropic contributions to velocity discontinuities at â^1⁄460 km depth beneath the <scp>P</scp> acific. Geochemistry, Geophysics, Geosystems, 2017, 18, 2855-2871.	2.5	20
196	Dislocation Interactions in Olivine Revealed by HRâ€EBSD. Journal of Geophysical Research: Solid Earth, 2017, 122, 7659-7678.	3.4	26
197	Thermodynamic properties of San Carlos olivine at high temperature and high pressure. Acta Geochimica, 2018, 37, 171-179.	1.7	11
198	Olivine-antigorite orientation relationships: Microstructures, phase boundary misorientations and the effect of cracks in the seismic properties of serpentinites. Tectonophysics, 2018, 724-725, 93-115.	2.2	23
199	The Elastic Anisotropy Change Near the 410â€km Discontinuity: Predictions From Singleâ€Crystal Elasticity Measurements of Olivine and Wadsleyite. Journal of Geophysical Research: Solid Earth, 2018, 123, 2674-2684.	3.4	17
200	40Âyears of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. Physics and Chemistry of Minerals, 2018, 45, 95-113.	0.8	49
201	Detecting seismic anisotropy above the 410â€ ⁻ km discontinuity using reflection coefficients of underside reflections. Physics of the Earth and Planetary Interiors, 2018, 274, 170-183.	1.9	7
202	Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications. Tectonophysics, 2018, 722, 432-446.	2.2	1

#	Article	IF	CITATIONS
203	Seismic Anisotropy and Its Geodynamic Implications in Iran, the Easternmost Part of the Tethyan Belt. Tectonics, 2018, 37, 4377-4395.	2.8	13
204	Elasticity of lower-mantle bridgmanite. Nature, 2018, 564, E18-E26.	27.8	17
205	A Poroelastic Model of Serpentinization: Exploring the Interplay Between Rheology, Surface Energy, Reaction, and Fluid Flow. Journal of Geophysical Research: Solid Earth, 2018, 123, 8653-8675.	3.4	20
206	Determination of elastic moduli from measured acoustic velocities. Ultrasonics, 2018, 90, 23-31.	3.9	8
207	HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone. Geochemistry, Geophysics, Geosystems, 2018, 19, 2308-2324.	2.5	16
208	The structure and elasticity of phase B silicates under high pressure by first principles simulation. Chinese Physics B, 2018, 27, 047402.	1.4	2
210	Fluidâ€Assisted Deformation and Strain Localization in the Cooling Mantle Wedge of a Young Subduction Zone (Semail Ophiolite). Journal of Geophysical Research: Solid Earth, 2018, 123, 7529-7549.	3.4	17
211	E-Wave software: EBSD-based dynamic wave propagation model for studying seismic anisotropy. Computers and Geosciences, 2018, 118, 100-108.	4.2	1
212	SKS Splitting Beneath Mount St. Helens: Constraints on Subslab Mantle Entrainment. Geochemistry, Geophysics, Geosystems, 2019, 20, 4202-4217.	2.5	9
213	First-principles investigations on the formation of H2O defects in lizardite with influence on the elastic property. Physics and Chemistry of Minerals, 2019, 46, 935-946.	0.8	4
214	Lateral and Vertical Heterogeneity in the Lithospheric Mantle at the Northern Margin of the Pannonian Basin Reconstructed From Peridotite Xenolith Microstructures. Journal of Geophysical Research: Solid Earth, 2019, 124, 6315-6336.	3.4	12
215	Crust-mantle coupling during continental convergence and break-up: Constraints from peridotite xenoliths from the Borborema Province, northeast Brazil. Tectonophysics, 2019, 766, 249-269.	2.2	13
216	Effect of iron content on thermal conductivity of olivine with implications for cooling history of rocky planets. Earth and Planetary Science Letters, 2019, 519, 109-119.	4.4	27
217	A Dimensional Reduction Algorithm and Software for Acyclically Dependent Constraints. International Journal for Computational Methods in Engineering Science and Mechanics, 2019, 20, 494-513.	2.1	0
218	Lowâ€Temperature Plasticity in Olivine: Grain Size, Strain Hardening, and the Strength of the Lithosphere. Journal of Geophysical Research: Solid Earth, 2019, 124, 5427-5449.	3.4	44
219	Weak Bâ€Type Olivine Fabric Induced by Fast Compaction of Crystal Mush in a Crustal Magma Reservoir. Journal of Geophysical Research: Solid Earth, 2019, 124, 3530-3556.	3.4	17
220	Deformation, Annealing, Meltâ€Rock Interaction, and Seismic Properties of an Old Domain of the Equatorial Atlantic Lithospheric Mantle. Tectonics, 2019, 38, 1164-1188.	2.8	15
221	GassDem: A MATLAB program for modeling the anisotropic seismic properties of porous medium using differential effective medium theory and Gassmann's poroelastic relationship. Computers and Geosciences, 2019, 126, 131-141.	4.2	10

#	Article	IF	CITATIONS
222	Sound velocities of the 23â€Ã phase at high pressure and implications for seismic velocities in subducted slabs. Physics of the Earth and Planetary Interiors, 2019, 288, 1-8.	1.9	7
223	Elastic plastic self-consistent (EPSC) modeling of San Carlos olivine deformed in a D-DIA apparatus. American Mineralogist, 2019, 104, 276-281.	1.9	6
224	Microstructures, Water Contents, and Seismic Properties of the Mantle Lithosphere Beneath the Northern Limit of the Hangay Dome, Mongolia. Geochemistry, Geophysics, Geosystems, 2019, 20, 183-207.	2.5	14
225	Lattice-preferred orientation of amphibole, chlorite, and olivine found in hydrated mantle peridotites from BjÅrkedalen, southwestern Norway, and implications for seismic anisotropy. Tectonophysics, 2019, 750, 137-152.	2.2	14
226	Phaseâ€Field Modeling of Reactionâ€Driven Cracking: Determining Conditions for Extensive Olivine Serpentinization. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018614.	3.4	25
227	Textural and Compositional Changes in the Lithospheric Mantle Atop the Hawaiian Plume: Consequences for Seismic Properties. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009138.	2.5	9
228	Synergy of Experimental Rock Mechanics, Seismology, and Geodynamics Reveals Still Elusive Upper Mantle Rheology. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019896.	3.4	7
229	Geneses of Two Contrasting Antigorite Crystal Preferred Orientations and Their Implications for Seismic Anisotropy in the Forearc Mantle. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019354.	3.4	9
230	Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength. Earth and Planetary Science Letters, 2020, 543, 116349.	4.4	24
231	Strain-Induced Fabric Transition of Chlorite and Implications for Seismic Anisotropy in Subduction Zones. Minerals (Basel, Switzerland), 2020, 10, 503.	2.0	4
232	Thermal and decompression history of the Lanzo Massif, northern Italy: Implications for the thermal structure near the lithosphere–asthenosphere boundary. Lithos, 2020, 372-373, 105661.	1.4	3
233	Serpentinization, Deformation, and Seismic Anisotropy in the Subduction Mantle Wedge. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008950.	2.5	13
234	Flow plane orientation in the upper mantle under the Western/Central United States from SKS shear-wave splitting observations. Geophysical Journal International, 2020, 221, 1125-1137.	2.4	5
235	Full wave sensitivity of SK(K)S phases to arbitrary anisotropy in the upper and lower mantle. Geophysical Journal International, 2020, 222, 412-435.	2.4	15
236	Microstructural Evolution of Amphibole Peridotites in Ã…heim, Norway, and the Implications for Seismic Anisotropy in the Mantle Wedge. Minerals (Basel, Switzerland), 2020, 10, 345.	2.0	7
237	Preâ€Alpine Fault Fabrics in Mantle Xenoliths From East Otago, South Island, New Zealand. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	7
238	Effects of melt-percolation, refertilization and deformation on upper mantle seismic anisotropy: constraints from peridotite xenoliths, Marie Byrd Land, West Antarctica. Geological Society Memoir, 2023, 56, 151-180.	1.7	5
239	Interactions between organic compounds and olivine under aqueous conditions: A potential role for organic distribution in carbonaceous chondrites. Meteoritics and Planetary Science, 2021, 56, 195-205.	1.6	4

#	Article	IF	CITATIONS
240	Evolution of Microstructural Properties in Sheared Ironâ€Rich Olivine. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB019629.	3.4	7
242	Multi‣ayer Seismic Anisotropy Beneath Greenland. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009512.	2.5	2
243	Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature. Minerals (Basel,) Tj ETQq0 0 (0 r gB)T /Ov	erlæck 10 Tf
244	Dislocation Creep of Olivine: Backstress Evolution Controls Transient Creep at High Temperatures. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021325.	3.4	11
245	Directional amorphization of covalently-bonded solids: A generalized deformation mechanism in extreme loading. Materials Today, 2021, 49, 59-67.	14.2	16
246	Defects in olivine. European Journal of Mineralogy, 2021, 33, 249-282.	1.3	10
247	Anisotropic Layering and Seismic Body Waves: Deformation Gradients, Initial S-Polarizations, and Converted-Wave Birefringence. Pure and Applied Geophysics, 2021, 178, 2001-2023.	1.9	4
248	Composition of the Subâ€Cratonic Mantle of the Guiana Shield Inferred From Diamondâ€Hosted Inclusions. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009841.	2.5	0
249	Dislocation interactions in olivine control postseismic creep of the upper mantle. Nature Communications, 2021, 12, 3496.	12.8	14
250	An effective parameterization of texture-induced viscous anisotropy in orthotropic materials with application for modeling geodynamical flows. , 0, , .		1
251	Hydrostatic Dehydration Fabrics of Antigorite at High Pressure and High Temperature: Implications for Trench Parallel Seismic Anisotropy at Convergent Plate Boundaries. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021671.	3.4	2
252	The competing effects of olivine and orthopyroxene CPO on seismic anisotropy. Tectonophysics, 2021, 814, 228954.	2.2	14
253	Enhanced visibility of subduction slabs by the formation of dense hydrous phase A. Geophysical Research Letters, 2021, 48, e2021GL095487.	4.0	8
254	Material Behavior: Texture and Anisotropy. , 2010, , 973-1003.		14
255	Material Behavior: Texture and Anisotropy. , 2015, , 2149-2188.		2
256	Thermodynamic Properties of Minerals at High Pressures and Temperatures from Vibrational Spectroscopic Data. , 1999, , 71-92.		6
257	Dynamic Measurements of Elastic Moduli of Samples at High Pressures and Temperatures. , 2001, , 469-487.		3
258	Elastic Properties of Minerals and Planetary Objects. , 2001, , 325-376.		11

#	Article	IF	CITATIONS
259	Rock and Earth's Crust. , 2001, , 377-461.		2
260	A Subgrain‣ize Piezometer Calibrated for EBSD. Geophysical Research Letters, 2020, 47, e2020GL090056.	4.0	11
261	Rock Deformation and Formation of LPO of Minerals in the Upper Mantle: Implications for Seismic Anisotropy. The Journal of the Petrological Society of Korea, 2012, 21, 249-261.	0.2	3
262	Initial Acoustoelastic Measurements in Olivine: Investigating the Effect of Stress on <i>P</i> ―and <i>S</i> â€Wave Velocities. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022494.	3.4	2
263	Seismic anisotropy in subduction zones and lattice-preferred orientation of olivine. Ganseki Kobutsu Kagaku, 2010, 39, 12-18.	0.1	1
264	Predicting Lowermost Mantle Anisotropy Using Models of Mantle Flow. Springer Theses, 2013, , 123-149.	0.1	1
265	Mantle Anisotropy Beneath the Earth's Mid-Ocean Ridges. Springer Theses, 2013, , 61-97.	0.1	0
266	Experimental studies on crystallographic preferred orientation of olivine: A review. Ganseki Kobutsu Kagaku, 2013, 42, 51-67.	0.1	2
267	Material Behavior: Texture and Anisotropy. , 2013, , 1-36.		0
268	High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase. Journal of the Mineralogical Society of Korea, 2013, 26, 35-44.	0.2	2
269	Material Behavior: Texture and Anisotropy. , 2015, , 1-36.		0
270	Pressure, temperature and lithological dependence of seismic and magnetic susceptibility anisotropy in amphibolites and gneisses from the central Scandinavian Caledonides. Tectonophysics, 2021, 820, 229113.	2.2	6
271	Transient grating measurements at ultralow probe power. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 433.	2.1	4
272	Constraints on Olivine Deformation From SKS Shearâ€Wave Splitting Beneath the Southern Cascadia Subduction Zone Backâ€Arc. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC010091.	2.5	7
274	How to quake a subducting dry slab at intermediate depths: Inferences from numerical modelling. Earth and Planetary Science Letters, 2022, 578, 117289.	4.4	7
275	Acoustic Properties of Rocks. , 2021, , 245-291.		0
276	Hydrostatic compression and pressure phase transition of major Portland cement constituents – Insights via molecular dynamics modeling. Cement, 2022, 7, 100017.	2.7	2
277	Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone. Tectonophysics, 2022, 822, 229186.	2.2	4

#	Article	IF	CITATIONS
278	Transient Creep in Subduction Zones by Longâ€Range Dislocation Interactions in Olivine. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	4
279	Mantle Wedge Seismic Anisotropy and Shear Wave Splitting: Effects of Oblique Subduction. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	3
280	Thermal Properties of Rocks and Minerals. , 2021, , 455-504.		0
281	An anisotropic equationÂof state for high-pressure, high-temperature applications. Geophysical Journal International, 2022, 231, 230-242.	2.4	2
282	Seismological Evidence for Girdled Olivine Latticeâ€Preferred Orientation in Oceanic Lithosphere and Implications for Mantle Deformation Processes During Seafloor Spreading. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	2
283	Shearâ€Wave Splitting in the Mantle Wedge: Role of Elastic Tensor Symmetry of Olivine Aggregates. Geophysical Research Letters, 2022, 49, .	4.0	2
284	Evolution of Olivine Fabrics During Deep Subduction and Exhumation of Continental Crust: Insights From the Yinggelisayi Garnet Lherzolite, South Altyn, NW China. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	2
285	Sound Velocity of (Mg _{0.91} Fe _{0.09}) ₂ SiO ₄ Wadsleyite and Its Implications to Water Distribution in Mantle Transition Zone. Geophysical Research Letters, 2022, 49, .	4.0	2
286	Equation of state of spinel (MgAl2O4): constraints on self-consistent thermodynamic parameters and implications for elastic geobarometry of peridotites and chromitites. Contributions To Mineralogy and Petrology, 2022, 177, .	3.1	1
287	实验矿物物ç†çš"å'展现状与趋åŠį:2.弹性和波速. Diqiu Kexue - Zhongguo Dizhi Daxı Geosciences, 2022, 47, 2729.	ie Xuebao	/Earth Science
288	Sound velocities and single-crystal elasticity of hydrous Fo90 olivine to 12ÂGPa. Physics of the Earth and Planetary Interiors, 2023, 337, 107011.	1.9	0
289	Influence of Meltâ€Peridotite Interactions on Deformation and Seismic Properties of the Upper Mantle Beneath a Destroyed Craton: A Case Study of the Damaping Peridotites From the North China Craton. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0
290	Lattice-preferred orientation (LPO) of olivine and amphibole in amphibole peridotites and neighboring hornblendites from Gapyeong, South Korea and implications for seismic anisotropy. Journal of Geodynamics, 2023, 157, 101977.	1.6	1
291	Sound velocities of natural clinohumite at high pressures and implications for seismic velocities of subducted slabs in the upper mantle. Physics of the Earth and Planetary Interiors, 2023, 341, 107052.	1.9	0
292	Calibration and data-analysis routines for nanoindentation with spherical tips. Journal of Materials Research, 2023, 38, 4042-4056.	2.6	0
293	åፄ陆岩石åœ^æµåĩä,Žåœ°éœ‡æ³¢é€Ÿå"åå¼,性. SCIENTIA SINICA Terrae, 2023, , .	0.3	0
294	Deforming the Upper Mantle—Olivine Mechanical Properties and Anisotropy. Elements, 2023, 19, 151-157.	0.5	2
295	The sound velocity of garnet at high pressure: Implications for high velocity anomalies in cold subducting slabs. Tectonophysics, 2023, 865, 230045.	2.2	Ο

#	Article	IF	CITATIONS
296	MYflow - A simple computer program for rheological modelling of mylonites. Journal of Structural Geology, 2023, 177, 105006.	2.3	0
297	Anomalous Sound Velocities of Talc at High Pressure and Implications for Estimating Water Content in Mantle Wedge. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	Ο
298	Variation in olivine crystal-fabrics and their seismic anisotropies in the Horoman peridotite complex, Hokkaido, Japan. Journal of Geodynamics, 2023, 158, 102006.	1.6	0
299	Anisotropic structure in the mantle wedge beneath southeastern Mexico from shear-wave splitting tomography. Journal of Geodynamics, 2023, , 102007.	1.6	0
300	Phase Transformation Under High Pressure Radiates as a Double Couple Deep Earthquake. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0
301	Rheology of continental lithosphere and seismic anisotropy. Science China Earth Sciences, 0, , .	5.2	0
302	On the Constitutive Equations for Coupled Flow, Chemical Reaction, and Deformation of Porous Media. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0
303	The development of internal pressure standards for in-house elastic wave velocity measurements in multi-anvil presses. Review of Scientific Instruments, 2024, 95, .	1.3	0
304	Sound velocities of Tremolite at high pressure: Implications for detecting water on Venus. Icarus, 2024, 411, 115965.	2.5	0
305	The Effect of Intracrystalline Water on the Mechanical Properties of Olivine at Room Temperature. Geophysical Research Letters, 2024, 51, .	4.0	0
306	Typeâ€B Crystallographic Preferred Orientation in Olivine Induced by Dynamic Dehydration of Antigorite in Forearc Regions. Journal of Geophysical Research: Solid Earth, 2024, 129, .	3.4	0