SOX9 Binds DNA, Activates Transcription, and Coexpre Chondrogenesis in the Mouse

Developmental Biology 183, 108-121 DOI: 10.1006/dbio.1996.8487

Citation Report

#	Article	IF	CITATIONS
1	Sex-Determining Genes. Trends in Endocrinology and Metabolism, 1997, 8, 342-346.	3.1	27
2	Sox genes find their feet. Current Opinion in Genetics and Development, 1997, 7, 338-344.	1.5	443
3	Rainbow trout SOX9: cDNA cloning, gene structure and expression. Gene, 1997, 202, 167-170.	1.0	64
4	Two uses for old SOX. Nature Genetics, 1997, 16, 114-115.	9.4	19
5	SOX9 directly regulates the type-ll collagen gene. Nature Genetics, 1997, 16, 174-178.	9.4	847
6	A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO Journal, 1998, 17, 5718-5733.	3.5	723
7	Genetics of skeletogenesis. Genesis, 1998, 22, 301-313.	3.1	86
8	Disrupted expression of matrix genes in the growth plate of the mouse cartilage matrix deficiency (cmd) mutant. , 1998, 22, 349-358.		42
9	Syndecan-3 in limb skeletal development. , 1998, 43, 123-130.		41
10	Cellular and molecular changes during sex differentiation of embryonic mammalian gonads. The Journal of Experimental Zoology, 1998, 281, 482-493.	1.4	14
11	cDNA characterization and high resolution mapping of the human SOX20 gene. Mammalian Genome, 1998, 9, 1059-1061.	1.0	9
12	Cloning and characterization of mouse mSox13 cDN. Gene, 1998, 208, 201-206.	1.0	20
13	cDNA cloning of a novel rainbow trout SRY-type HMG box protein, rtSox23, and its functional analysis. Gene, 1998, 209, 193-200.	1.0	19
14	Rainbow trout Sox24, a novel member of the Sox family, is a transcriptional regulator during oogenesis. Gene, 1998, 211, 251-257.	1.0	29
15	Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biology, 1998, 16, 529-540.	1.5	232
16	Genetic control of cell differentiation in the skeleton. Current Opinion in Cell Biology, 1998, 10, 614-619.	2.6	130
17	The development of the vertebrate inner ear. Mechanisms of Development, 1998, 71, 5-21.	1.7	316
18	Sertoli Cell Differentiation and Y-Chromosome Activity: A Developmental Study of X-Linked Transgene Activity in Sex-Reversed X/XSxraMouse Embryos, Developmental Biology, 1998, 199, 235-244.	0.9	17

ARTICLE IF CITATIONS # Chondrogenic Differentiation of Cultured Human Mesenchymal Stem Cells from Marrow. Tissue 19 4.9 1,179 Engineering, 1998, 4, 415-428. Three High Mobility Group-like Sequences within a 48-Base Pair Enhancer of the Col2a1 Gene Are Required for Cartilage-specific Expression in Vivo. Journal of Biological Chemistry, 1998, 273, 1.6 14989-14997. Functional Analysis of Sox10 Mutations Found in Human Waardenburg-Hirschsprung Patients. Journal 21 1.6 126 of Biological Chemistry, 1998, 273, 23033-23038. Chondrocyte-specific Enhancer Elements in the Col11a2 Gene Resemble the Col2a1 Tissue-specific 246 Enhancer. Journal of Biological Chemistry, 1998, 273, 14998-15006. Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. 23 3.3 153 Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10649-10654. Transcription factors and osteoblasts. Frontiers in Bioscience - Landmark, 1998, 3, d817-820. The local control of spermatogenesis., 0,, 56-84. 25 0 The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Research, 1999, 27, 1359-1364. 6.5 26 202 Identification of a novel Sry-related gene and its germ cell-specific expression. Nucleic Acids Research, 27 6.5 77 1999, 27, 2503-2510. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Research, 1999, 27, 1409-1420. 6.5 Functional and Structural Studies of Wild Type SOX9 and Mutations Causing Campomelic Dysplasia. 29 101 1.6 Journal of Biological Chemistry, 1999, 274, 24023-24030. Sox9 is required for cartilage formation. Nature Genetics, 1999, 22, 85-89. 30 9.4 1,576 Sry and Sox9: mammalian testis-determining genes. Cellular and Molecular Life Sciences, 1999, 55, $\mathbf{31}$ 2.4 116 839-856. The Transcription Factor Sox9 Is Involved in BMP-2 Signaling. Journal of Bone and Mineral Research, 1999, 14, 1734-1741. 3.1 154 Cartilage-Derived Retinoic Acid-Sensitive Protein and Type II Collagen Expression During Fracture Healing Are Potential Targets for Sox9 Regulation. Journal of Bone and Mineral Research, 1999, 14, 33 3.1 31 1891-1901. Trans-activation of the Mouse Cartilage-Derived Retinoic Acid-Sensitive Protein Gene by Sox9. Journal 3.1 116 of Bone and Mineral Research, 1999, 14, 757-763. Presence of anti- $M\tilde{A}^{1/4}$ llerian hormone correlates with absence of laminin $\hat{1}\pm 5$ chain in differentiating rat 35 0.8 15 testis and ovary. Histochemistry and Cell Biology, 1999, 111, 367-373. Molecular control of vertebrate limb development, evolution and congenital malformations. Cell 1.5 and Tissue Research, 1999, 296, 3.

#	Article	IF	CITATIONS
37	Isolation and characterization of a mouse SRY-related cDNA, mSox7. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 225-231.	2.4	37
38	Practical applications of immunohistochemistry in the diagnosis of soft tissue neoplasms. Surgical Oncology, 1999, 8, 197-203.	0.8	3
39	Expression of chickBarx-1 and its differential regulation by FGF-8 and BMP signaling in the maxillary primordia. , 1999, 214, 291-302.		105
40	Regulation and role of Sox9 in cartilage formation. Developmental Dynamics, 1999, 215, 69-78.	0.8	199
41	Ventrally emigrating neural tube cells contribute to the formation of Meckel's and quadrate cartilage. Developmental Dynamics, 1999, 216, 37-44.	0.8	33
42	Expression and localization ofPG-Lb/epiphycan during mouse development. , 1999, 216, 499-510.		23
43	Campomelic syndrome and deletion of SOX9. American Journal of Medical Genetics Part A, 1999, 84, 20-24.	2.4	41
44	Sex determination and the Y chromosome. , 1999, 89, 176-185.		82
45	Campomelic Dysplasia Translocation Breakpoints Are Scattered over 1 Mb Proximal to SOX9: Evidence for an Extended Control Region. American Journal of Human Genetics, 1999, 65, 111-124.	2.6	197
46	Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mechanisms of Development, 1999, 84, 103-120.	1.7	300
47	Mechanism of Regulatory Target Selection by the SOX High-Mobility-Group Domain Proteins as Revealed by Comparison of SOX1/2/3 and SOX9. Molecular and Cellular Biology, 1999, 19, 107-120.	1.1	165
48	Regulation of human COL2A1 gene expression in chondrocytes: identification of C-KROX responsive elements and modulation by phenotype alteration. Journal of Biological Chemistry, 2000, 275, 27421-38.	1.6	40
49	Potent Inhibition of the Master Chondrogenic FactorSox9 Gene by Interleukin-1 and Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2000, 275, 3687-3692.	1.6	256
50	All for one and one for all: condensations and the initiation of skeletal development. BioEssays, 2000, 22, 138-147.	1.2	790
51	Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by sox9 and msx2. , 2000, 217, 401-414.		117
52	Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis, 2000, 28, 111-124.	0.8	95
53	Cellular interactions and signaling in cartilage development. Osteoarthritis and Cartilage, 2000, 8, 309-334.	0.6	710
54	Pairing SOX off: with partners in the regulation of embryonic development. Trends in Genetics, 2000, 16, 182-187.	2.9	592

#	Article	IF	CITATIONS
55	Association of enhanced expression of gap junctions with in vitro chondrogenic differentiation of rat nasal septal cartilage-released cells following their dedifferentiation and redifferentiation. Archives of Oral Biology, 2000, 45, 843-856.	0.8	53
56	Bone Development. Annual Review of Cell and Developmental Biology, 2000, 16, 191-220.	4.0	797
57	Sox9 protein in rat Sertoli cells is age and stage dependent. Histochemistry and Cell Biology, 2000, 113, 31-36.	0.8	80
58	Sox6 is a candidate gene for p100H myopathy, heart block, and sudden neonatal death. Proceedings of the United States of America, 2000, 97, 4180-4185.	3.3	73
59	Identification of an Enhancer Sequence within the First Intron Required for Cartilage-specific Transcription of the α2(XI) Collagen Gene. Journal of Biological Chemistry, 2000, 275, 12712-12718.	1.6	90
60	SOX9 Enhances Aggrecan Gene Promoter/Enhancer Activity and Is Up-regulated by Retinoic Acid in a Cartilage-derived Cell Line, TC6. Journal of Biological Chemistry, 2000, 275, 10738-10744.	1.6	426
61	Cloning and characterisation of the Sry-related transcription factor gene Sox8. Nucleic Acids Research, 2000, 28, 1473-1480.	6.5	75
62	The Transcription Factor ÎʿEF1 Is Inversely Expressed with Type II Collagen mRNA and Can Repress Col2a1 Promoter Activity in Transfected Chondrocytes. Journal of Biological Chemistry, 2000, 275, 3610-3618.	1.6	69
63	Identification of the Transactivation Domain of the Transcription Factor Sox-2 and an Associated Co-activator. Journal of Biological Chemistry, 2000, 275, 3810-3818.	1.6	82
64	A Zinc Finger Transcription Factor, αA-Crystallin Binding Protein 1, Is a Negative Regulator of the Chondrocyte-Specific Enhancer of the α1(II) Collagen Gene. Molecular and Cellular Biology, 2000, 20, 4428-4435.	1.1	55
65	Phosphorylation of SOX9 by Cyclic AMP-Dependent Protein Kinase A Enhances SOX9's Ability To Transactivate a Col2a1 Chondrocyte-Specific Enhancer. Molecular and Cellular Biology, 2000, 20, 4149-4158.	1.1	256
66	Protein Zero Gene Expression Is Regulated by the Glial Transcription Factor Sox10. Molecular and Cellular Biology, 2000, 20, 3198-3209.	1.1	210
67	Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1113-1118.	3.3	343
68	BMPs Are Required at Two Steps of Limb Chondrogenesis: Formation of Prechondrogenic Condensations and Their Differentiation into Chondrocytes. Developmental Biology, 2000, 219, 237-249.	0.9	280
69	Phylogeny of the SOX Family of Developmental Transcription Factors Based on Sequence and Structural Indicators. Developmental Biology, 2000, 227, 239-255.	0.9	851
70	Sox9 Expression during Chondrogenesis in Micromass Cultures of Embryonic Limb Mesenchyme. Experimental Cell Research, 2000, 255, 327-332.	1.2	61
71	Molecular Mechanisms of SOX9 Action. Molecular Genetics and Metabolism, 2000, 71, 455-462.	0.5	42
72	Regulation of the promoters for the human bone morphogenetic protein 2 and 4 genes. Gene, 2000, 256, 123-138.	1.0	84

	Сітатіо	n Report	
#	ARTICLE The 2.2-kb promoter of cartilage-derived retinoic acid-sensitive protein controls gene expression in	IF	CITATIONS
73	cartilage and embryonic mammary buds of transgenic mice. Matrix Biology, 2000, 19, 501-509.	1.5	25
74	Transcriptional mechanisms of chondrocyte differentiation. Matrix Biology, 2000, 19, 389-394.	1.5	416
75	TwoSox9messenger RNA isoforms: isolation of cDNAs and their expression during gonadal development in the frogRana rugosa. FEBS Letters, 2000, 466, 249-254.	1.3	43
76	Accelerated Up-Regulation of L-Sox5, Sox6, and Sox9 by BMP-2 Gene Transfer During Murine Fracture Healing*. Journal of Bone and Mineral Research, 2001, 16, 1837-1845.	3.1	62
77	Compound Effects of Point Mutations Causing Campomelic Dysplasia/Autosomal Sex Reversal upon SOX9 Structure, Nuclear Transport, DNA Binding, and Transcriptional Activation. Journal of Biological Chemistry, 2001, 276, 27864-27872.	1.6	84
78	Two Sox9 Genes on Duplicated Zebrafish Chromosomes: Expression of Similar Transcription Activators in Distinct Sites. Developmental Biology, 2001, 231, 149-163.	0.9	303
79	Comparative Genomics of the SOX9 Region in Human and Fugu rubripes: Conservation of Short Regulatory Sequence Elements within Large Intergenic Regions. Genomics, 2001, 78, 73-82.	1.3	91
80	Effect of Oxygen Tension and Alginate Encapsulation on Restoration of the Differentiated Phenotype of Passaged Chondrocytes. Tissue Engineering, 2001, 7, 791-803.	4.9	171
81	The Transcription Factors L-Sox5 and Sox6 Are Essential for Cartilage Formation. Developmental Cell, 2001, 1, 277-290.	3.1	548
82	Identification of an interaction between SOX9 and HSP70. FEBS Letters, 2001, 496, 75-80.	1.3	28
83	Modulation of Proteoglycan and Collagen Profiles in Human Dermal Fibroblasts by High Density Micromass Culture and Treatment with Lactic Acid Suggests Change to a Chondrogenic Phenotype. Connective Tissue Research, 2001, 42, 59-69.	1.1	45
84	The Molecular Genetics of Bone Formation. Molecular Diagnosis and Therapy, 2001, 1, 175-187.	3.3	22
85	Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochemical Journal, 2001, 360, 461.	1.7	102
86	Regulation of male sexual development bySry andSox9. The Journal of Experimental Zoology, 2001, 290, 463-474.	1.4	61
87	Characterisation and expression ofSox9 in the Leopard gecko,Eublepharis macularius. The Journal of Experimental Zoology, 2001, 291, 85-91.	1.4	32
88	Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. Journal of Cellular Physiology, 2001, 186, 315-328.	2.0	86
89	Transcriptional suppression ofSox9 expression in chondrocytes by retinoic acid. Journal of Cellular Biochemistry, 2001, 81, 71-78.	1.2	33
90	BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. Journal of Cellular Physiology, 2001, 189, 275-284.	2.0	251

#	Article	IF	CITATIONS
91	Transcriptional dysregulation in skeletal malformation syndromes. American Journal of Medical Genetics Part A, 2001, 106, 258-271.	2.4	23
92	Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis. Arthritis and Rheumatism, 2001, 44, 947-955.	6.7	73
93	L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway. Osteoarthritis and Cartilage, 2001, 9, S69-S75.	0.6	315
94	Hox genes, neural crest cells and branchial arch patterning. Current Opinion in Cell Biology, 2001, 13, 698-705.	2.6	240
95	Regulatory mechanisms in the pathways of cartilage and bone formation. Current Opinion in Cell Biology, 2001, 13, 721-728.	2.6	419
96	Idiopathic Weight Reduction in Mice Deficient in the High-Mobility-Group Transcription Factor Sox8. Molecular and Cellular Biology, 2001, 21, 6951-6959.	1.1	148
97	Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochemical Journal, 2001, 360, 461-470.	1.7	159
98	The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone-related peptide in the growth plate of endochondral bones. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 160-165.	3.3	208
99	Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6698-6703.	3.3	506
100	The Transcription Factor SOX9 Regulates Cell Cycle and Differentiation Genes in Chondrocytic CFK2 Cells. Journal of Biological Chemistry, 2001, 276, 41229-41236.	1.6	84
101	Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Soxâ€9 transcription factor. Rheumatology, 2001, 40, 1146-1156.	0.9	84
102	Dexamethasone enhances SOX9 expression in chondrocytes. Journal of Endocrinology, 2001, 169, 573-579.	1.2	65
103	Serum-Free Medium Supplemented with High-Concentration FGF2 for Cell Expansion Culture of Human Ear Chondrocytes Promotes Redifferentiation Capacity. Tissue Engineering, 2002, 8, 573-580.	4.9	77
104	Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes and Development, 2002, 16, 1990-2005.	2.7	194
105	SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Research, 2002, 30, 3245-3252.	6.5	81
106	Deconstructing the Molecular Biology of Cartilage and Bone Formation. , 2002, , 279-295.		4
107	Estrogen actions in the ovary revisited. Journal of Endocrinology, 2002, 175, 269-276.	1.2	158
108	A New Long Form of c-Maf Cooperates with Sox9 to Activate the Type II Collagen Gene. Journal of Biological Chemistry, 2002, 277, 50668-50675.	1.6	62

#	ARTICLE	IF	CITATIONS
109	Distribution of the Transcription Factors Sox9, AP-2, and [Delta]EF1 in Adult Murine Articular and Meniscal Cartilage and Growth Plate. Journal of Histochemistry and Cytochemistry, 2002, 50, 1059-1065.	1.3	35
110	The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes and Development, 2002, 16, 2813-2828.	2.7	1,511
111	Estrogen regulates development of the somatic cell phenotype in the eutherian ovary. FASEB Journal, 2002, 16, 1389-1397.	0.2	93
112	Morphology and Chemical Composition of Connective Tissue: Bone. , 0, , 67-120.		3
113	p107 and p130 Coordinately Regulate Proliferation, Cbfa1 Expression, and Hypertrophic Differentiation during Endochondral Bone Development. Developmental Biology, 2002, 247, 271-285.	0.9	66
114	Expression of Sox8, Sox9 and Sox10 in the developing valves and autonomic nerves of the embryonic heart. Mechanisms of Development, 2002, 118, 199-202.	1.7	51
115	Reaching a Genetic and Molecular Understanding of Skeletal Development. Developmental Cell, 2002, 2, 389-406.	3.1	1,309
116	Expression of Sox9 and Type IIA Procollagen during Ocular Development and Aging in Transgenic Del1 Mice with a Mutation in the Type II Collagen Gene. European Journal of Ophthalmology, 2002, 12, 450-458.	0.7	10
117	Sex Determination and Differentiation. , 2002, , 371-393.		4
118	Expression of collagen and aggrecan genes in normal and osteoarthritic murine knee joints. Osteoarthritis and Cartilage, 2002, 10, 51-61.	0.6	54
119	Molecular profiling of human chondrosarcomas for matrix production and cancer markers. International Journal of Cancer, 2002, 100, 144-151.	2.3	54
120	Sox9 transactivation and testicular expression of a novel human gene,KIAA0800. Journal of Cellular Biochemistry, 2002, 86, 277-289.	1.2	8
121	Conditional inactivation ofSox9: A mouse model for campomelic dysplasia. Genesis, 2002, 32, 121-123.	0.8	99
122	Redifferentiation of dedifferentiated human chondrocytes in high-density cultures. Cell and Tissue Research, 2002, 308, 371-379.	1.5	197
123	Toward understanding the functions of the two highly related Sox5 and Sox6 genes. Journal of Bone and Mineral Metabolism, 2002, 20, 121-130.	1.3	42
124	The genetics of male undermasculinization. Clinical Endocrinology, 2002, 56, 1-18.	1.2	59
125	Coordinated expression ofscleraxis andSox9 genes during embryonic development of tendons and cartilage. Journal of Orthopaedic Research, 2002, 20, 827-833.	1.2	98
126	Distinct Phases of Coordinated Early and Late Gene Expression in Growth Plate Chondrocytes in Relationship to Cell Proliferation, Matrix Assembly, Remodeling, and Cell Differentiation. Journal of Bone and Mineral Research, 2003, 18, 844-851.	3.1	77

#	Article	IF	CITATIONS
127	Expression patterns of cartilage collagens and Sox9 during mouse heart development. Histochemistry and Cell Biology, 2003, 120, 103-110.	0.8	32
128	Chondrogenic differentiation during midfacial development in the mouse: in vivo and in vitro studies. Biology of the Cell, 2003, 95, 75-86.	0.7	15
129	A novel Xenopus laevis SRY-related gene, xSox33. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1628, 140-145.	2.4	2
130	Genome duplication, subfunction partitioning, and lineage divergence:Sox9in stickleback and zebrafish. Developmental Dynamics, 2003, 228, 480-489.	0.8	100
131	Revisiting the role of retinoid signaling in skeletal development. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 156-173.	3.6	75
132	Molecular ontogeny of the skeleton. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 93-101.	3.6	130
133	Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Research Part C: Embryo Today Reviews, 2003, 69, 305-317.	3.6	110
134	Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials, 2003, 24, 3265-3275.	5.7	89
135	Mutagenesis Study on the Zebra Fish SOX9 High-Mobility Group:Â Comparison of Sequence and Non-Sequence Specific HMG Domainsâ€. Biochemistry, 2003, 42, 11183-11193.	1.2	7
136	Thyroxine downregulates Sox9 and promotes chondrocyte hypertrophy. Biochemical and Biophysical Research Communications, 2003, 306, 186-190.	1.0	41
137	Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: sox genes and BMP signaling. Developmental Biology, 2003, 257, 292-301.	0.9	208
138	Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Developmental Biology, 2003, 260, 79-96.	0.9	212
139	Regulation of the phenotype of ovarian somatic cells by estrogen. Molecular and Cellular Endocrinology, 2003, 202, 11-17.	1.6	60
140	Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Human Pathology, 2003, 34, 263-269.	1.1	187
141	SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biology, 2003, 22, 363-372.	1.5	144
142	Regulation of Human COL9A1 Gene Expression. Journal of Biological Chemistry, 2003, 278, 117-123.	1.6	109
143	Type II and Type IX Collagen Transcript Isoforms Are Expressed During Mouse Testis Development. Biology of Reproduction, 2003, 68, 1742-1747.	1.2	35
144	Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9360-9365.	3.3	383

#	Article	IF	CITATIONS
145	Loss of DNA-dependent dimerization of the transcription factor SOX9 as a cause for campomelic dysplasia. Human Molecular Genetics, 2003, 12, 1439-1447.	1.4	122
146	Requirements for FGF3 and FGF10 during inner ear formation. Development (Cambridge), 2003, 130, 6329-6338.	1.2	184
147	The Molecular Action and Regulation of the Testis-Determining Factors, SRY (Sex-Determining Region) Tj ETQq0 (2003, 24, 466-487.	0 0 rgBT /0 8.9	Overlock 10 T 217
148	Turning on the male – SRY, SOX9 and sex determination in mammals. Cytogenetic and Genome Research, 2003, 101, 185-198.	0.6	59
149	Origin and possible roles of the <i>Sox8</i> transcription factor gene during sexual development. Cytogenetic and Genome Research, 2003, 101, 212-218.	0.6	20
150	Neural crest patterning: autoregulatory and crest-specific elements co-operate forKrox20transcriptional control. Development (Cambridge), 2003, 130, 941-953.	1.2	46
151	Dimerization of SOX9 is required for chondrogenesis, but not for sex determination. Human Molecular Genetics, 2003, 12, 1755-1765.	1.4	139
152	Transcriptional Co-activators CREB-binding Protein and p300 Regulate Chondrocyte-specific Gene Expression via Association with Sox9. Journal of Biological Chemistry, 2003, 278, 27224-27229.	1.6	183
153	SOX9 Exerts a Bifunctional Effect on Type II Collagen Gene (COL2A1) Expression in Chondrocytes Depending on the Differentiation State. DNA and Cell Biology, 2003, 22, 119-129.	0.9	74
154	SOX8 Is Expressed during Testis Differentiation in Mice and Synergizes with SF1 to Activate the Amh Promoter in Vitro. Journal of Biological Chemistry, 2003, 278, 28101-28108.	1.6	154
155	Characterization of Nkx3.2 DNA Binding Specificity and Its Requirement for Somitic Chondrogenesis. Journal of Biological Chemistry, 2003, 278, 27532-27539.	1.6	35
156	JAK/STAT but Not ERK1/ERK2 Pathway Mediates Interleukin (IL)-6/Soluble IL-6R Down-regulation of Type II Collagen, Aggrecan Core, and Link Protein Transcription in Articular Chondrocytes. Journal of Biological Chemistry, 2003, 278, 2903-2912.	1.6	166
157	Smad-Dependent Recruitment of a Histone Deacetylase/Sin3A Complex Modulates the Bone Morphogenetic Protein-Dependent Transcriptional Repressor Activity of Nkx3.2. Molecular and Cellular Biology, 2003, 23, 8704-8717.	1.1	98
158	Formation of the Outer and Middle Ear, Molecular Mechanisms. Current Topics in Developmental Biology, 2003, 57, 85-113.	1.0	44
159	Expression of Transcription Factor Sox9 in Rat L6 Myoblastic Cells. Connective Tissue Research, 2004, 45, 164-173.	1.1	12
160	Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6502-6507.	3.3	237
161	Specification of the otic placode depends on Sox9 function in Xenopus. Development (Cambridge), 2004, 131, 1755-1763.	1.2	77
162	SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. Journal of Cell Biology, 2004, 166, 37-47.	2.3	422

#	Article	IF	CITATIONS
163	Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. Journal of Cell Biology, 2004, 164, 747-758.	2.3	157
164	SOX9-dependent and -independent Transcriptional Regulation of Human Cartilage Link Protein. Journal of Biological Chemistry, 2004, 279, 50942-50948.	1.6	84
165	Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development (Cambridge), 2004, 131, 299-309.	1.2	121
166	The endless quest for sex determination genes. Clinical Genetics, 2004, 67, 15-25.	1.0	69
167	Collagens and collagen-related matrix components in the human and mouse eye. Progress in Retinal and Eye Research, 2004, 23, 403-434.	7.3	153
168	Directing Stem Cell Differentiation into the Chondrogenic Lineage In Vitro. Stem Cells, 2004, 22, 1152-1167.	1.4	225
169	Can RNA interference be used to expand the plasticity of autologous adult stem cells?. Journal of Molecular Medicine, 2004, 82, 784-786.	1.7	5
170	The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis and Rheumatism, 2004, 50, 3561-3573.	6.7	322
171	Zinc finger proteinZac1 is expressed in chondrogenic sites of the mouse. Developmental Dynamics, 2004, 229, 340-348.	0.8	20
172	Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Developmental Dynamics, 2004, 230, 239-250.	0.8	229
173	Gene-Regulatory Interactions in Neural Crest Evolution and Development. Developmental Cell, 2004, 7, 291-299.	3.1	420
174	The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Developmental Biology, 2004, 273, 361-372.	0.9	175
175	Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus. Developmental Biology, 2004, 275, 93-103.	0.9	45
176	Tissue-restricted expression of the Cdrap/Mia gene within a conserved multigenic housekeeping locus. Genomics, 2004, 83, 667-678.	1.3	7
177	DOWNREGULATION OF TRANSCRIPTION FACTORS BY RIBONUCLEIC ACID INTERFERENCE. A NOVEL APPROACH TO EXTEND THE MULTIPOTENCY OF AUTOLOGOUS ADULT STEM CELLS?. In Vitro Cellular and Developmental Biology - Animal, 2004, 40, 131.	0.7	0
178	Temporal Expression Patterns and Corresponding Protein Inductions of Early Responsive Genes in Rabbit Bone Marrow-Derived Mesenchymal Stem Cells Under Cyclic Compressive Loading. Stem Cells, 2005, 23, 1113-1121.	1.4	107
179	Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell & Melanoma Research, 2005, 18, 74-85.	4.0	94
180	Stepwise mechanical stretching inhibits chondrogenesis through cell–matrix adhesion mediated by integrins in embryonic rat limb-bud mesenchymal cells. European Journal of Cell Biology, 2005, 84, 45-58.	1.6	41

#	Article	IF	CITATIONS
181	Potential applications of intracellular antibodies (intrabodies) in stem cell therapeutics. Journal of Cellular and Molecular Medicine, 2005, 9, 191-195.	1.6	3
182	Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 2005, 13, 988-997.	0.6	163
183	Normal lung development and function afterSox9 inactivation in the respiratory epithelium. Genesis, 2005, 41, 23-32.	0.8	109
184	Transcriptional control of chondrocyte fate and differentiation. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 200-212.	3.6	421
185	A homozygous nonsense mutation in SOX9 in the dominant disorder campomelic dysplasia: a case of mitotic gene conversion. Human Genetics, 2005, 117, 43-53.	1.8	32
186	Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. Journal of Bone and Mineral Metabolism, 2005, 23, 337-340.	1.3	111
188	Common Molecular Mechanisms Regulating Fetal Bone Formation and Adult Fracture Repair. , 2005, , 45-55.		3
190	Molecular and Immunohistological Characterization of Human Cartilage Two Years Following Autologous Cell Transplantation. Journal of Bone and Joint Surgery - Series A, 2005, 87, 46-57.	1.4	38
191	Mint Represses Transactivation of the Type II Collagen Gene Enhancer through Interaction with αA-crystallin-binding Protein 1. Journal of Biological Chemistry, 2005, 280, 18710-18716.	1.6	17
192	Strong and Rapid Induction of Osteoblast Differentiation by Cbfa1/Til-1 Overexpression for Bone Regeneration. Journal of Biological Chemistry, 2005, 280, 2944-2953.	1.6	30
193	Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14665-14670.	3.3	508
194	Transcriptional coactivator PGC-1Â regulates chondrogenesis via association with Sox9. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2414-2419.	3.3	145
195	Expression of the Carcinoembryonic Antigen Gene Is Inhibited by SOX9 in Human Colon Carcinoma Cells. Cancer Research, 2005, 65, 2193-2198.	0.4	56
196	Structure and function of the notochord: an essential organ for chordate development. Development (Cambridge), 2005, 132, 2503-2512.	1.2	371
197	The Transcription Factors Steroidogenic Factor-1 and SOX9 Regulate Expression of Vanin-1 during Mouse Testis Development. Journal of Biological Chemistry, 2005, 280, 5917-5923.	1.6	72
198	Smad3 Induces Chondrogenesis through the Activation of SOX9 via CREB-binding Protein/p300 Recruitment. Journal of Biological Chemistry, 2005, 280, 8343-8350.	1.6	274
199	Bcl-2 Positively Regulates Sox9-dependent Chondrocyte Gene Expression by Suppressing the MEK-ERK1/2 Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 30517-30525.	1.6	28
200	Hoxa2 downregulates Six2 in the neural crest-derived mesenchyme. Development (Cambridge), 2005, 132, 469-478.	1.2	40

#	Article	IF	CITATIONS
201	Fine Mapping of Chromosome 17 Translocation Breakpoints ⩾900 Kb Upstream of SOX9 in Acampomelic Campomelic Dysplasia and a Mild, Familial Skeletal Dysplasia. American Journal of Human Genetics, 2005, 76, 663-671.	2.6	42
202	A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development (Cambridge), 2005, 132, 1069-1083.	1.2	294
203	Effects of mechanical stress and scaffold material on osteogenesis and chondrogenesis. , 0, , .		3
204	The transcription factor Sox9 is degraded by the ubiquitin?proteasome system and stabilized by a mutation in a ubiquitin-target site. Matrix Biology, 2005, 23, 499-505.	1.5	56
205	Regulation of the human Sox9 promoter by the CCAAT-binding factor. Matrix Biology, 2005, 24, 185-197.	1.5	35
206	Left-Right Asymmetry in the Sea Urchin Embryo Is Regulated by Nodal Signaling on the Right Side. Developmental Cell, 2005, 9, 147-158.	3.1	242
207	Bone defect repair in immobilization-induced osteopenia: a pQCT, biomechanical, and molecular biologic study in the mouse femur. Bone, 2005, 36, 142-149.	1.4	15
208	Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Developmental Biology, 2005, 280, 344-361.	0.9	97
209	Sox proteins and neural crest development. Seminars in Cell and Developmental Biology, 2005, 16, 694-703.	2.3	166
210	Cell Biology of Cardiac Cushion Development. International Review of Cytology, 2005, 243, 287-335.	6.2	316
211	Mesenchymal Stem Cells and Tissue Engineering. Methods in Enzymology, 2006, 420, 339-361.	0.4	165
212	Osteogenic Nodule Formation from Single Embryonic Stem Cell-Derived Progenitors. Stem Cells and Development, 2006, 15, 865-879.	1.1	26
213	Structure, Biosynthesis and Gene Regulation of Collagens in Cartilage and Bone. , 2006, , 3-40.		23
214	Human Articular Chondrocytes – Plasticity and Differentiation Potential. Cells Tissues Organs, 2006, 184, 55-67.	1.3	21
215	Dlx5- and Dlx6-mediated chondrogenesis: Differential domain requirements for a conserved function. Mechanisms of Development, 2006, 123, 819-830.	1.7	27
216	Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Developmental Biology, 2006, 291, 382-397.	0.9	148
217	Sox9 is required for notochord maintenance in mice. Developmental Biology, 2006, 295, 128-140.	0.9	84
218	Hearts and bones: Shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Developmental Biology, 2006, 294, 292-302.	0.9	206

		15	C
#	ARTICLE Zebrafish Trap230/Med12 is required as a coactivator for Sox9-dependent neural crest, cartilage and	IF	CITATIONS
219	ear development. Developmental Biology, 2006, 296, 83-93.	0.9	88
220	An in situ hybridization study of Runx2, Osterix, and Sox9 at the onset of condylar cartilage formation in fetal mouse mandible. Journal of Anatomy, 2006, 208, 169-177.	0.9	67
221	Stepwise enforcement of the notochord and its intersection with the myoseptum: an evolutionary path leading to development of the vertebra?. Journal of Anatomy, 2006, 209, 339-357.	0.9	53
222	Initiation of Mesenchymal Condensation in Alginate Hollow Spheres?A Useful Model for Understanding Cartilage Repair?. Artificial Organs, 2006, 30, 775-784.	1.0	22
223	Use of Differentiating Adult Stem Cells (Marrow Stromal Cells) to Identify New Downstream Target Genes for Transcription Factors. Stem Cells, 2006, 24, 642-652.	1.4	20
224	Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: Molecular association between Sox9 and Erk1/2. Biochemical Pharmacology, 2006, 72, 1382-1395.	2.0	66
225	The control of chondrogenesis. Journal of Cellular Biochemistry, 2006, 97, 33-44.	1.2	932
226	Regulator of G-protein signaling (RGS) proteins differentially control chondrocyte differentiation. Journal of Cellular Physiology, 2006, 207, 735-745.	2.0	29
227	Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3180-3185.	3.3	89
228	Rac1 Signaling Stimulates N-cadherin Expression, Mesenchymal Condensation, and Chondrogenesis. Journal of Biological Chemistry, 2007, 282, 23500-23508.	1.6	101
229	Sex Determination and Gonadal Development in Mammals. Physiological Reviews, 2007, 87, 1-28.	13.1	548
230	Porous Thermoresponsive-co-Biodegradable Hydrogels as Tissue-Engineering Scaffolds for 3-Dimensional In Vitro Culture of Chondrocytes. Tissue Engineering, 2007, 13, 2645-2652.	4.9	38
231	Sonic Hedgehog promotes the development of multipotent neural crest progenitors endowed with both mesenchymal and neural potentials. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19879-19884.	3.3	106
232	Regulation of skeletogenic differentiation in cranial dermal bone. Development (Cambridge), 2007, 134, 3133-3144.	1.2	195
233	SOX9cre1, a cis-acting regulatory element located 1.1ÂMb upstream of SOX9, mediates its enhancement through the SHH pathway. Human Molecular Genetics, 2007, 16, 1143-1156.	1.4	68
234	Computational identification and functional validation of regulatory motifs in cartilage-expressed genes. Genome Research, 2007, 17, 1438-1447.	2.4	30
235	Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. Journal of Cell Biology, 2007, 178, 635-648.	2.3	412
236	Sox9-dependent transcriptional regulation of the proprotein convertase furin. American Journal of Physiology - Cell Physiology, 2007, 293, C172-C183.	2.1	18

#	Article	IF	CITATIONS
237	Role of RhoC in digit morphogenesis during limb development. Developmental Biology, 2007, 303, 325-335.	0.9	30
238	Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Developmental Biology, 2007, 305, 120-132.	0.9	162
239	Visualization of Cartilage Formation: Insight into Cellular Properties of Skeletal Progenitors and Chondrodysplasia Syndromes. Developmental Cell, 2007, 12, 931-941.	3.1	154
240	Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. International Journal of Biochemistry and Cell Biology, 2007, 39, 2195-2214.	1.2	383
241	Update on the Chondrocyte Lineage and Implications for Cell Therapy in Osteoarthritis. , 2007, , 53-76.		2
242	Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factorSOX9. Arthritis and Rheumatism, 2007, 56, 158-167.	6.7	143
243	Connective tissue growth factor (CTGF) acts as a downstream mediator of TGF-β1 to induce mesenchymal cell condensation. Journal of Cellular Physiology, 2007, 210, 398-410.	2.0	102
244	Gene expression patterns underlying proximal–distal skeletal segmentation in lateâ€stage zebrafish, <i>Danio rerio</i> . Developmental Dynamics, 2007, 236, 3111-3128.	0.8	38
245	Development and evolution of chordate cartilage. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 325-335.	0.6	106
246	Expression of cartilage-related genes in bovine synovial tissue. Journal of Orthopaedic Research, 2007, 25, 813-819.	1.2	23
247	S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Reports, 2007, 8, 504-509.	2.0	99
248	Expression of Hoxa2 in cells entering chondrogenesis impairs overall cartilage development. Differentiation, 2007, 75, 256-267.	1.0	30
249	Bone morphogenetic protein rescues the lack of secondary cartilage in Runx2-deficient mice. Journal of Anatomy, 2007, 211, 8-15.	0.9	23
250	Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics, 2007, 8, 205.	1.2	63
251	A new approach to control condylar growth by regulating angiogenesis. Archives of Oral Biology, 2007, 52, 1009-1017.	0.8	23
252	Regulation of the human SOX9 promoter by Sp1 and CREB. Experimental Cell Research, 2007, 313, 1069-1079.	1.2	79
253	Regulation of type II collagen expression by cyclin-dependent kinase 6, cyclin D1, and p21 in articular chondrocytes. IUBMB Life, 2007, 59, 90-98.	1.5	13
254	Cloning of the full-length coding sequence and expression analysis of Sox9b in guppy (Poecilia) Tj ETQq1 1 0.78	4314 rgBT	/Overlock 1

#	Article	IF	CITATIONS
255	BAC constructs in transgenic reporter mouse lines control efficient and specific LacZ expression in hypertrophic chondrocytes under the complete Col10a1 promoter. Histochemistry and Cell Biology, 2007, 127, 183-194.	0.8	26
256	Gene expression analysis of major lineageâ€defining factors in human bone marrow cells: Effect of aging, gender, and ageâ€related disorders. Journal of Orthopaedic Research, 2008, 26, 910-917.	1.2	81
257	Molecular network of cartilage homeostasis and osteoarthritis. Medicinal Research Reviews, 2008, 28, 464-481.	5.0	101
258	A critical evaluation of specific aspects of joint development. Developmental Dynamics, 2008, 237, 2284-2294.	0.8	58
259	Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. Journal of Cellular Physiology, 2008, 215, 329-336.	2.0	98
260	Repression of chondrogenesis through binding of notch signaling proteins HESâ€1 and HEYâ€1 to Nâ€box domains in the COL2A1 enhancer site. Arthritis and Rheumatism, 2008, 58, 2754-2763.	6.7	76
261	Cartilaginous features in matrix-producing carcinoma of the breast: four cases report with histochemical and immunohistochemical analysis of matrix molecules. Modern Pathology, 2008, 21, 1282-1292.	2.9	35
262	Brachyury, SOX-9, and podoplanin, new markers in the skull base chordoma vs chondrosarcoma differential: a tissue microarray-based comparative analysis. Modern Pathology, 2008, 21, 1461-1469.	2.9	176
263	Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature, 2008, 453, 930-934.	13.7	837
264	Human mesenchymal stem cells: from basic biology to clinical applications. Gene Therapy, 2008, 15, 109-116.	2.3	330
265	An <i>in situ</i> hybridization study of <i>Runx2</i> , <i>Osterix</i> , and <i>Sox9</i> in the anlagen of mouse mandibular condylar cartilage in the early stages of embryogenesis. Journal of Anatomy, 2008, 213, 274-283.	0.9	37
266	Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males. Clinical Endocrinology, 2008, 68, 791-799.	1.2	46
267	Induction of chondrogenic phenotype in synovium-derived progenitor cells by intermittent hydrostatic pressure. Osteoarthritis and Cartilage, 2008, 16, 805-814.	0.6	40
268	Osteoblastic cells: Differentiation and trans-differentiation. Archives of Biochemistry and Biophysics, 2008, 473, 183-187.	1.4	70
269	TGF-β mediated Dlx5 signaling plays a crucial role in osteo-chondroprogenitor cell lineage determination during mandible development. Developmental Biology, 2008, 321, 303-309.	0.9	58
270	Transcriptional Control of Skeletogenesis. Annual Review of Genomics and Human Genetics, 2008, 9, 183-196.	2.5	337
271	Bcl-2-associated athanogene-1 (BAG-1): A transcriptional regulator mediating chondrocyte survival and differentiation during endochondral ossification. Bone, 2008, 42, 113-128.	1.4	13
272	Skeletogenesis in Xenopus tropicalis: Characteristic bone development in an anuran amphibian. Bone, 2008, 43, 901-909.	1.4	45

#	Article	IF	CITATIONS
273	Altered fracture callus formation in chondromodulin-I deficient mice. Bone, 2008, 43, 1047-1056.	1.4	23
274	The stem cells of the neural crest. Cell Cycle, 2008, 7, 1013-1019.	1.3	129
275	<i>SOX</i> Gene Expression in Human Osteoarthritic Cartilage. Pathobiology, 2008, 75, 195-199.	1.9	51
276	Control of chondrogenesis by the transcription factor Sox9. Modern Rheumatology, 2008, 18, 213-219.	0.9	223
277	L-Sox5 and Sox6 Drive Expression of the Aggrecan Gene in Cartilage by Securing Binding of Sox9 to a Far-Upstream Enhancer. Molecular and Cellular Biology, 2008, 28, 4999-5013.	1.1	260
278	Aryl Hydrocarbon Receptor-Mediated Down-Regulation of <i>Sox9b</i> Causes Jaw Malformation in Zebrafish Embryos. Molecular Pharmacology, 2008, 74, 1544-1553.	1.0	97
279	Bone morphogenetic protein-2 stimulates chondrogenic expression in human nasal chondrocytes expanded <i>in vitro</i> . Growth Factors, 2008, 26, 201-211.	0.5	32
280	Regulatory Mechanisms of Chondrogenesis and Implications for Understanding Articular Cartilage Homeostasis. Current Rheumatology Reviews, 2008, 4, 136-147.	0.4	18
281	Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro. International Journal of Developmental Biology, 2008, 52, 323-332.	0.3	36
282	Chapter 2 Evolution of Vertebrate Cartilage Development. Current Topics in Developmental Biology, 2009, 86, 15-42.	1.0	25
283	Temporomandibular joint formation requires two distinct hedgehog-dependent steps. Proceedings of the United States of America, 2009, 106, 18297-18302.	3.3	71
284	Long-range regulation at the SOX9 locus in development and disease. Journal of Medical Genetics, 2009, 46, 649-656.	1.5	148
285	A new mechanism of SOX9 action to regulate PKCα expression in the intestine epithelium. Journal of Cell Science, 2009, 122, 2191-2196.	1.2	19
286	The molecular markers for condylar growth: Experimental and clinical implications. Orthodontic Waves, 2009, 68, 51-56.	0.2	3
287	Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Experimental Cell Research, 2009, 315, 2231-2240.	1.2	120
288	Remodelling of human osteoarthritic cartilage by FGFâ€2, alone or combined with <i>Sox9 via</i> rAAV gene transfer. Journal of Cellular and Molecular Medicine, 2009, 13, 2476-2488.	1.6	65
289	Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. Journal of Cellular and Molecular Medicine, 2009, 13, 3186-3194.	1.6	48
290	Interactions between SOX factors and Wnt/βâ€catenin signaling in development and disease. Developmental Dynamics, 2010, 239, 56-68.	0.8	223

#	Article	IF	CITATIONS
291	Analyses of early events during chondrogenic repair in rat full-thickness articular cartilage defects. Journal of Bone and Mineral Metabolism, 2009, 27, 272-286.	1.3	37
292	In vitro engineering of fibrocartilage using CDMP1 induced dermal fibroblasts and polyglycolide. Biomaterials, 2009, 30, 3241-3250.	5.7	16
293	The cartilageâ€specific transcription factor Sox9 regulates APâ€2ε expression in chondrocytes. FEBS Journal, 2009, 276, 2494-2504.	2.2	24
294	Maleâ€specific expression of <i>Sox9</i> during gonad development of crocodile and mouse is mediated by alternative splicing of its prolineâ€glutamineâ€alanine rich domain. FEBS Journal, 2009, 276, 4184-4196.	2.2	20
295	3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials, 2009, 30, 2705-2715.	5.7	301
296	Smad3 activates the Sox9-dependent transcription on chromatin. International Journal of Biochemistry and Cell Biology, 2009, 41, 1198-1204.	1.2	75
297	Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. Developmental Biology, 2009, 325, 225-237.	0.9	114
298	Expression profiling of zebrafish sox9 mutants reveals that Sox9 is required for retinal differentiation. Developmental Biology, 2009, 329, 1-15.	0.9	46
299	Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Developmental Biology, 2009, 335, 327-339.	0.9	41
300	TGF-β3: A potential biological therapy for enhancing chondrogenesis. Expert Opinion on Biological Therapy, 2009, 9, 689-701.	1.4	95
301	Morphogenetic and Regulatory Mechanisms During Developmental Chondrogenesis: New Paradigms for Cartilage Tissue Engineering. Tissue Engineering - Part B: Reviews, 2009, 15, 29-41.	2.5	123
302	Human Amniotic Mesenchymal Cells Differentiate into Chondrocytes. Cloning and Stem Cells, 2009, 11, 19-26.	2.6	71
303	Biologic Solutions for Degenerative Disk Disease. Journal of Spinal Disorders and Techniques, 2009, 22, 297-308.	1.8	37
304	Strong lymphoid nuclear expression of SOX11 transcription factor defines lymphoblastic neoplasms, mantle cell lymphoma and Burkitt's lymphoma. Haematologica, 2009, 94, 1563-1568.	1.7	131
305	Different expression of Sox9 and Runx2 between chondrosarcoma and dedifferentiated chondrosarcoma cell line. European Journal of Cancer Prevention, 2010, 19, 466-471.	0.6	15
306	Experimental study of low-frequency electroacupuncture-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes. International Journal of Molecular Medicine, 2011, 27, 79-86.	1.8	9
307	Molecular cloning and characterization of hatching enzyme-like gene in the silkworm, Bombyx mori. Molecular Biology Reports, 2010, 37, 1175-1182.	1.0	10
308	Znrg, a novel gene expressed mainly in the developing notochord of zebrafish. Molecular Biology Reports, 2010, 37, 2199-2205.	1.0	1

#	Article	IF	CITATIONS
309	GRIP1 enhances estrogen receptor α-dependent extracellular matrix gene expression in chondrogenic cells. Osteoarthritis and Cartilage, 2010, 18, 934-941.	0.6	20
310	SOX9 determines RUNX2 transactivity by directing intracellular degradation. Journal of Bone and Mineral Research, 2010, 25, 2680-2689.	3.1	124
311	Survival of <i>Hoxa13</i> homozygous mutants reveals a novel role in digit patterning and appendicular skeletal development. Developmental Dynamics, 2010, 239, 446-457.	0.8	30
312	Sox9â€expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis, 2010, 48, 635-644.	0.8	159
313	Rho kinase–dependent activation of SOX9 in chondrocytes. Arthritis and Rheumatism, 2010, 62, 191-200.	6.7	78
314	Signaling Pathways in Valve Formation. , 2010, , 389-413.		1
315	Stage-specific Control of Connective Tissue Growth Factor (CTGF/CCN2) Expression in Chondrocytes by Sox9 and β-Catenin. Journal of Biological Chemistry, 2010, 285, 27702-27712.	1.6	34
316	SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development (Cambridge), 2010, 137, 901-911.	1.2	257
317	Embryonic Expression of Cyclooxygenase-2 Causes Malformations in Axial Skeleton. Journal of Biological Chemistry, 2010, 285, 16206-16217.	1.6	17
318	Low Oxygen Tension During Incubation Periods of Chondrocyte Expansion Is Sufficient to Enhance Postexpansion Chondrogenesis. Tissue Engineering - Part A, 2010, 16, 1585-1593.	1.6	29
319	The dimerization domain of SOX9 is required for transcription activation of a chondrocyte-specific chromatin DNA template. Nucleic Acids Research, 2010, 38, 6018-6028.	6.5	33
320	Expression of Sox 9 and type II and X collagens in regenerated condyle. European Journal of Orthodontics, 2010, 32, 677-680.	1.1	10
321	Vertebrate Skeletogenesis. Current Topics in Developmental Biology, 2010, 90, 291-317.	1.0	165
322	Immunohistochemical analysis for Sox9 reveals the cartilaginous character of chondroblastoma and chondromyxoid fibroma of the bone. Human Pathology, 2010, 41, 208-213.	1.1	56
323	Human circulating fibrocytes have the capacity to differentiate osteoblasts and chondrocytes. International Journal of Biochemistry and Cell Biology, 2010, 42, 662-671.	1.2	53
324	Differential expression of Tenomodulin and Chondromodulin-1 at the insertion site of the tendon reflects a phenotypic transition of the resident cells. Tissue and Cell, 2010, 42, 116-120.	1.0	13
325	Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage. Developmental Biology, 2010, 341, 346-359.	0.9	68
326	Analysis of early human neural crest development. Developmental Biology, 2010, 344, 578-592.	0.9	142

#	Article	IF	CITATIONS
327	Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis. Developmental Biology, 2010, 346, 170-180.	0.9	25
328	A multidisciplinary approach to understanding skeletal dysplasias. Expert Review of Endocrinology and Metabolism, 2011, 6, 731-743.	1.2	2
329	Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects. Bone, 2011, 49, 673-682.	1.4	54
330	Gene and protein expressions of bone marrow mesenchymal stem cells in a boneÂtunnel for tendon-bone healing. Formosan Journal of Musculoskeletal Disorders, 2011, 2, 85-93.	0.2	3
331	Sox9 Transcriptionally Represses Spp1 to Prevent Matrix Mineralization in Maturing Heart Valves and Chondrocytes. PLoS ONE, 2011, 6, e26769.	1.1	37
332	Characterization and Functionality of Proliferative Human Sertoli Cells. Cell Transplantation, 2011, 20, 619-635.	1.2	108
333	Bone regeneration and stem cells. Journal of Cellular and Molecular Medicine, 2011, 15, 718-746.	1.6	308
334	Identification of an evolutionarily conserved regulatory element of the zebrafish col2a1a gene. Developmental Biology, 2011, 357, 518-531.	0.9	116
335	SoxE gene duplication and development of the lamprey branchial skeleton: Insights into development and evolution of the neural crest. Developmental Biology, 2011, 359, 149-161.	0.9	34
336	Generation of mice with a novel conditional null allele of the Sox9 gene. Biotechnology Letters, 2011, 33, 1551-1558.	1.1	16
337	Unraveling the transcriptional regulatory machinery in chondrogenesis. Journal of Bone and Mineral Metabolism, 2011, 29, 390-395.	1.3	158
338	Facile control of RGD-alginate/hyaluronate hydrogel formation for cartilage regeneration. Carbohydrate Polymers, 2011, 86, 1107-1112.	5.1	37
339	Mechanisms of digit formation: Human malformation syndromes tell the story. Developmental Dynamics, 2011, 240, 990-1004.	0.8	51
340	Sox9 function in craniofacial development and disease. Genesis, 2011, 49, 200-208.	0.8	93
341	Zincâ€finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis and Rheumatism, 2011, 63, 2711-2720.	6.7	60
342	The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials, 2011, 32, 268-278.	5.7	81
343	Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials, 2011, 32, 2305-2313.	5.7	112
344	Harnessing Cell–Biomaterial Interactions for Osteochondral Tissue Regeneration. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 67-104.	0.6	3

#	Article	IF	CITATIONS
345	Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways. Development (Cambridge), 2011, 138, 1507-1519.	1.2	151
346	Developmental Mechanisms in Articular Cartilage Degradation in Osteoarthritis. Arthritis, 2011, 2011, 1-16.	2.0	116
347	SOX9 Governs Differentiation Stage-Specific Gene Expression in Growth Plate Chondrocytes via Direct Concomitant Transactivation and Repression. PLoS Genetics, 2011, 7, e1002356.	1.5	174
348	Disruption of a Sox9–β-catenin circuit by mutant Fgfr3 in thanatophoric dysplasia type II. Human Molecular Genetics, 2012, 21, 4628-4644.	1.4	23
349	The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6. Development (Cambridge), 2012, 139, 2988-2998.	1.2	14
350	Osterix Regulates Calcification and Degradation of Chondrogenic Matrices through Matrix Metalloproteinase 13 (MMP13) Expression in Association with Transcription Factor Runx2 during Endochondral Ossification. Journal of Biological Chemistry, 2012, 287, 33179-33190.	1.6	138
351	SIK3 is essential for chondrocyte hypertrophy during skeletal development in mice. Development (Cambridge), 2012, 139, 1153-1163.	1.2	77
352	Calcite Biohybrids as Microenvironment for Stem Cells. Polymers, 2012, 4, 1065-1083.	2.0	7
353	Isolation and Characterization of Human Amniotic Mesenchymal Stem Cells and Their Chondrogenic Differentiation. Transplantation, 2012, 93, 1221-1228.	0.5	51
354	Chondrogenic Differentiation of Adult MSCs. Current Stem Cell Research and Therapy, 2012, 7, 260-265.	0.6	13
354 355	Chondrogenic Differentiation of Adult MSCs. Current Stem Cell Research and Therapy, 2012, 7, 260-265. Articular Cartilage Development: A Molecular Perspective. Orthopedic Clinics of North America, 2012, 43, 155-171.	0.6	13 30
	Articular Cartilage Development: A Molecular Perspective. Orthopedic Clinics of North America, 2012,		
355	Articular Cartilage Development: A Molecular Perspective. Orthopedic Clinics of North America, 2012, 43, 155-171. Fibronectin and stem cell differentiation – lessons from chondrogenesis. Journal of Cell Science,	0.5	30
355 356	 Articular Cartilage Development: A Molecular Perspective. Orthopedic Clinics of North America, 2012, 43, 155-171. Fibronectin and stem cell differentiation – lessons from chondrogenesis. Journal of Cell Science, 2012, 125, 3703-12. GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit 	0.5 1.2	30 161
355 356 357	 Articular Cartilage Development: A Molecular Perspective. Orthopedic Clinics of North America, 2012, 43, 155-171. Fibronectin and stem cell differentiation – lessons from chondrogenesis. Journal of Cell Science, 2012, 125, 3703-12. GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis. Developmental Cell, 2012, 22, 837-848. Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating 	0.5 1.2 3.1	30 161 94
355 356 357 358	Articular Cartilage Development: A Molecular Perspective. Orthopedic Clinics of North America, 2012, 43, 155-171. Fibronectin and stem cell differentiation – lessons from chondrogenesis. Journal of Cell Science, 2012, 125, 3703-12. GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis. Developmental Cell, 2012, 22, 837-848. Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoblasts and osteoclasts. Toxicology and Applied Pharmacology, 2012, 263, 210-217. Chondrogenic Differentiation of Amniotic Fluid Stem Cells and Their Potential for Regenerative	0.5 1.2 3.1 1.3	30 161 94 23
355 356 357 358 359	 Articular Cartilage Development: A Molecular Perspective. Orthopedic Clinics of North America, 2012, 43, 155-171. Fibronectin and stem cell differentiation – lessons from chondrogenesis. Journal of Cell Science, 2012, 125, 3703-12. GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis. Developmental Cell, 2012, 22, 837-848. Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoolasts and osteoclasts. Toxicology and Applied Pharmacology, 2012, 263, 210-217. Chondrogenic Differentiation of Amniotic Fluid Stem Cells and Their Potential for Regenerative Therapy. Stem Cell Reviews and Reports, 2012, 8, 1267-1274. Hoxall and Hoxdll Regulate Chondrocyte Differentiation Upstream of Runx2 and Shox2 in Mice. PLoS 	0.5 1.2 3.1 1.3 5.6	 30 161 94 23 21

#	Article	IF	CITATIONS
364	Regenerative medicine and connective tissues: cartilage versus tendon. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 337-347.	1.3	18
365	Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. Journal of Molecular Medicine, 2012, 90, 649-666.	1.7	34
366	Molecular cloning and expression of the col2a1a and col2a1b genes in the medaka, Oryzias latipes. Gene Expression Patterns, 2012, 12, 46-52.	0.3	5
367	Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 53-62.	1.5	228
368	Evolution of the osteoblast: skeletogenesis in gar and zebrafish. BMC Evolutionary Biology, 2012, 12, 27.	3.2	62
369	Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. Journal of Orthopaedic Research, 2012, 30, 468-474.	1.2	42
370	Rare syndromes of the head and face—Pierre Robin sequence. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 369-377.	5.9	12
371	WNT Signaling and Cartilage: Of Mice and Men. Calcified Tissue International, 2013, 92, 399-411.	1.5	49
372	Development of an <i>In Vitro</i> Cell System from Zebrafish Suitable to Study Bone Cell Differentiation and Extracellular Matrix Mineralization. Zebrafish, 2013, 10, 500-509.	0.5	18
373	Developmental and genetic perspectives on Pierre Robin sequence. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2013, 163, 295-305.	0.7	109
374	A conditional mouse line for lineage tracing of Sox9 loss-of-function cells using enhanced green fluorescent protein. Biotechnology Letters, 2013, 35, 1991-1996.	1.1	4
375	Sox proteins: regulators of cell fate specification and differentiation. Development (Cambridge), 2013, 140, 4129-4144.	1.2	475
376	Signals and Switches in Mammalian Neural Crest Cell Differentiation. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008326-a008326.	2.3	191
377	Mesenchymal Stromal Cells and the Repair of Cartilage Tissue. , 2013, , 145-160.		0
378	Increased Dietary Intake of Vitamin A Promotes Aortic Valve Calcification In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 285-293.	1.1	28
379	Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. Journal of Molecular Medicine, 2013, 91, 625-636.	1.7	80
380	Hoxa-5 acts in segmented somites to regulate cervical vertebral morphology. Mechanisms of Development, 2013, 130, 226-240.	1.7	20
381	Sonic hedgehog signaling directly targets Hyaluronic Acid Synthase 2, an essential regulator of phalangeal joint patterning. Developmental Biology, 2013, 375, 160-171.	0.9	25

	Article	IF	CITATIONS
382	miR-1247 Functions by Targeting Cartilage Transcription Factor SOX9. Journal of Biological Chemistry, 2013, 288, 30802-30814.	1.6	43
383	The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development. Differentiation, 2013, 85, 121-130.	1.0	22
384	MicroRNA-140 Expression During Chondrogenic Differentiation of Equine Cord Blood-Derived Mesenchymal Stromal Cells. Stem Cells and Development, 2013, 22, 1288-1296.	1.1	38
385	Incremental evolution of the neural crest, neural crest cells and neural crestâ€derived skeletal tissues. Journal of Anatomy, 2013, 222, 19-31.	0.9	49
386	An Immunohistochemistry Study of Sox9, Runx2, and Osterix Expression in the Mandibular Cartilages of Newborn Mouse. BioMed Research International, 2013, 2013, 1-11.	0.9	20
387	TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. Journal of Cell Science, 2013, 126, 5704-13.	1.2	44
388	E6-AP/UBE3A Protein Acts as a Ubiquitin Ligase toward SOX9 Protein. Journal of Biological Chemistry, 2013, 288, 35138-35148.	1.6	35
389	Sox9 Modulates Proliferation and Expression of Osteogenic Markers of Adipose-Derived Stem Cells (ASC). Cellular Physiology and Biochemistry, 2013, 31, 703-717.	1.1	3,327
390	SOX9 overexpression plays a potential role in idiopathic congenital talipes equinovarus. Molecular Medicine Reports, 2013, 7, 821-825.	1.1	8
391	Tissue Engineered Animal Sparing Models for the Study of Joint and Muscle Diseases. , 2013, , .		1
391 392	Tissue Engineered Animal Sparing Models for the Study of Joint and Muscle Diseases. , 2013, , . Mice with a Conditional Deletion of the Neurotrophin Receptor TrkB Are Dwarfed, and Are Similar to Mice with a MAPK14 Deletion. PLoS ONE, 2013, 8, e66206.	1.1	1
	Mice with a Conditional Deletion of the Neurotrophin Receptor TrkB Are Dwarfed, and Are Similar to	1.1	
392	Mice with a Conditional Deletion of the Neurotrophin Receptor TrkB Are Dwarfed, and Are Similar to Mice with a MAPK14 Deletion. PLoS ONE, 2013, 8, e66206. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive		18
392 393	Mice with a Conditional Deletion of the Neurotrophin Receptor TrkB Are Dwarfed, and Are Similar to Mice with a MAPK14 Deletion. PLoS ONE, 2013, 8, e66206. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline. PLoS ONE, 2014, 9, e86025. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1Î ² in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways. International	1.1	18 20
392 393 394	Mice with a Conditional Deletion of the Neurotrophin Receptor TrkB Are Dwarfed, and Are Similar to Mice with a MAPK14 Deletion. PLoS ONE, 2013, 8, e66206. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline. PLoS ONE, 2014, 9, e86025. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1Î ² in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways. International Journal of Molecular Sciences, 2014, 15, 16025-16042. Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular	1.1 1.8	18 20 26
392 393 394 395	 Mice with a Conditional Deletion of the Neurotrophin Receptor TrkB Are Dwarfed, and Are Similar to Mice with a MAPK14 Deletion. PLoS ONE, 2013, 8, e66206. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline. PLoS ONE, 2014, 9, e86025. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1Î² in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways. International Journal of Molecular Sciences, 2014, 15, 16025-16042. Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular chondrocytes in vitro. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 982-991. Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro. 	1.1 1.8 0.7	18 20 26 7
392 393 394 395 396	 Mice with a Conditional Deletion of the Neurotrophin Receptor TrkB Are Dwarfed, and Are Similar to Mice with a MAPK14 Deletion. PLoS ONE, 2013, 8, e66206. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline. PLoS ONE, 2014, 9, e86025. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1Î² in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways. International Journal of Molecular Sciences, 2014, 15, 16025-16042. Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular chondrocytes in vitro. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 982-991. Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro. Chemico-Biological Interactions, 2014, 221, 127-138. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory 	1.1 1.8 0.7 1.7	18 20 26 7 6

#	Article	IF	CITATIONS
400	Polysaccharides immobilized in polypyrrole matrices are able to induce osteogenic differentiation in mouse mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 989-999.	1.3	12
401	Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy, 2014, 16, 893-905.	0.3	35
402	Redundancy in regulation of chondrogenesis in MIA/CD-RAP-deficient mice. Mechanisms of Development, 2014, 131, 24-34.	1.7	5
403	Tendonâ€ŧoâ€bone attachment: From development to maturity. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 101-112.	3.6	146
404	The chondrocytic journey in endochondral bone growth and skeletal dysplasia. Birth Defects Research Part C: Embryo Today Reviews, 2014, 102, 52-73.	3.6	67
405	Brief Report: Importance of SOX8 for In Vitro Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 1629-1635.	1.4	25
406	Growth and differentiation of a long bone in limb development, repair and regeneration. Development Growth and Differentiation, 2014, 56, 410-424.	0.6	40
407	Cartilage Repair Using Human Embryonic Stem Cell-Derived Chondroprogenitors. Stem Cells Translational Medicine, 2014, 3, 1287-1294.	1.6	101
408	All-trans-retinoid acid (ATRA) suppresses chondrogenesis of rat primary hind limb bud mesenchymal cells by downregulating p63 and cartilage-specific molecules. Environmental Toxicology and Pharmacology, 2014, 38, 460-468.	2.0	6
409	Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells. Biomaterials, 2014, 35, 8236-8248.	5.7	33
410	Development of the annelid axochord: Insights into notochord evolution. Science, 2014, 345, 1365-1368.	6.0	90
411	Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo. Acta Biomaterialia, 2014, 10, 1451-1462.	4.1	60
412	All-trans-retinoid acid (ATRA) may have inhibited chondrogenesis of primary hind limb bud mesenchymal cells by downregulating Pitx1 expression. Toxicology Letters, 2014, 224, 282-289.	0.4	6
413	Analysis of the association of <i><scp>COL</scp>2<scp>A</scp>1</i> and <i><scp>IGF</scp>â€1</i> with mandibular prognathism in a <scp>C</scp> hinese population. Orthodontics and Craniofacial Research, 2014, 17, 144-149.	1.2	32
414	Master Regulator for Chondrogenesis, Sox9, Regulates Transcriptional Activation of the Endoplasmic Reticulum Stress Transducer BBF2H7/CREB3L2 in Chondrocytes. Journal of Biological Chemistry, 2014, 289, 13810-13820.	1.6	62
415	S100A1 and S100B are dispensable for endochondral ossification during skeletal development. Biomedical Research, 2014, 35, 243-250.	0.3	6
416	All-trans-retinoic acid inhibits chondrogenesis of rat embryo hindlimb bud mesenchymal cells by downregulating p53 expression. Molecular Medicine Reports, 2015, 12, 210-218.	1.1	11
417	Chondroprotective Effects of Taurine in Primary Cultures of Human Articular Chondrocytes. Tohoku Journal of Experimental Medicine, 2015, 235, 201-213.	0.5	13

#	Article	IF	CITATIONS
418	Protocatechuic acid benefits proliferation and phenotypic maintenance of rabbit articular chondrocytes: An in vitro study. Experimental and Therapeutic Medicine, 2015, 9, 1865-1870.	0.8	7
419	A Novel Synthesized Sulfonamido-Based Gallate—JEZ-C as Potential Therapeutic Agents for Osteoarthritis. PLoS ONE, 2015, 10, e0125930.	1.1	6
420	Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An <i>In Vitro</i> Study. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-10.	0.5	11
421	AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation. Bone, 2015, 74, 125-133.	1.4	29
422	The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Research, 2015, 43, 8183-8203.	6.5	219
423	Improved bone defect healing by a superagonistic GDF5 variant derived from a patient with multiple synostoses syndrome. Bone, 2015, 73, 111-119.	1.4	12
424	Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science, 2015, 347, 760-764.	6.0	78
426	A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development (Cambridge), 2015, 142, 817-831.	1.2	414
427	Epigenetic regulation of Tbx18 gene expression during endochondral bone formation. Cell and Tissue Research, 2015, 359, 503-512.	1.5	13
428	The Multifaceted Role of the Vasculature in Endochondral Fracture Repair. Frontiers in Endocrinology, 2015, 6, 4.	1.5	104
429	Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. Experimental and Therapeutic Medicine, 2015, 9, 213-218.	0.8	10
430	A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury. Bone, 2015, 77, 31-41.	1.4	32
431	Refining the regulatory region upstream of <i>SOX9</i> associated with 46,XX testicular disorders of Sex Development (DSD). American Journal of Medical Genetics, Part A, 2015, 167, 1851-1858.	0.7	53
432	Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Engineering - Part A, 2015, 21, 1869-1885.	1.6	11
433	Mesenchymeâ€ s pecific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. FASEB Journal, 2015, 29, 2555-2565.	0.2	9
434	Skeletal (stromal) stem cells: An update on intracellular signaling pathways controlling osteoblast differentiation. Bone, 2015, 70, 28-36.	1.4	87
435	Sex Determination and Differentiation. , 2015, , 267-292.		2
436	The Role of Chondrocytes in Fracture Healing. Journal of Spine, 2016, 5, .	0.2	Ο

#	Article	IF	CITATIONS
437	A Joint Less Ordinary: Intriguing Roles for Hedgehog Signalling in the Development of the Temporomandibular Synovial Joint. Journal of Developmental Biology, 2016, 4, 25.	0.9	8
438	Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation. PLoS ONE, 2016, 11, e0147507.	1.1	13
439	A case report of acampomelic campomelic dysplasia and operative difficulties in cleft palate reconstruction. Indian Journal of Plastic Surgery, 2016, 49, 253-257.	0.2	3
440	Transforming Growth Factor-Î ² -Induced KDM4B Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells, 2016, 34, 711-719.	1.4	52
441	SOX9 p.Lys106Glu mutation causes acampomelic campomelic dysplasia: Prenatal and postnatal clinical findings. American Journal of Medical Genetics, Part A, 2016, 170, 781-784.	0.7	2
442	Nanomechanics of Engineered Articular Cartilage: Synergistic Influences of Transforming Growth Factor- <i>β</i> 3 and Oscillating Pressure. Journal of Nanoscience and Nanotechnology, 2016, 16, 3136-3145.	0.9	17
443	Cartilage. , 2016, , .		3
444	Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 245-256.	2.1	23
446	Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Research and Therapy, 2016, 18, 125.	1.6	13
447	Cell Fate of Growth Plate Chondrocytes in Endochondral Ossification: Cell Death or Reprogramming into Osteogenic Lineage?. , 2016, , 115-142.		2
448	Valve Endothelial Cell–Derived Tgfβ1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 328-338.	1.1	54
449	Skeletal regeneration in the brittle star Amphiura filiformis. Frontiers in Zoology, 2016, 13, 18.	0.9	38
450	Dynamic epigenetic mechanisms regulate age-dependent SOX9 expression in mouse articular cartilage. International Journal of Biochemistry and Cell Biology, 2016, 72, 125-134.	1.2	22
451	Correlation Analysis of SOX9, -5, and -6 as well as COL2A1 and Aggrecan Gene Expression of Collagen I Implant–Derived and Osteoarthritic Chondrocytes. Cartilage, 2016, 7, 185-192.	1.4	18
452	Recapitulating cranial osteogenesis with neural crest cells in 3-D microenvironments. Acta Biomaterialia, 2016, 31, 301-311.	4.1	9
453	Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. Medical and Biological Engineering and Computing, 2016, 54, 607-617.	1.6	8
454	Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355, 748-752.	6.0	434
455	Dynamic cyclic compression modulates the chondrogenic phenotype in human chondrocytes from late stage osteoarthritis. Biochemical and Biophysical Research Communications, 2017, 486, 14-21.	1.0	9

#	Article	IF	CITATIONS
456	Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development. Developmental Biology, 2017, 425, 161-175.	0.9	78
457	Fgf10-Sox9 are essential for establishment of distal progenitor cells during salivary gland development. Development (Cambridge), 2017, 144, 2294-2305.	1.2	79
458	Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. Journal of Orthopaedic Research, 2018, 36, 52-63.	1.2	160
459	Dose-dependent effect of triiodothyronine on the chondrogenic differentiation of mesenchymal stem cells from the bone marrow of female rats. Journal of Pharmacy and Pharmacology, 2017, 70, 89-100.	1.2	5
460	Altered SOX9 genital tubercle enhancer region in hypospadias. Journal of Steroid Biochemistry and Molecular Biology, 2017, 170, 28-38.	1.2	10
461	Chondrogenesis of embryonic limb bud cells in micromass culture progresses rapidly to hypertrophy and is modulated by hydrostatic pressure. Cell and Tissue Research, 2017, 368, 47-59.	1.5	18
462	Clodronate as a Therapeutic Strategy against Osteoarthritis. International Journal of Molecular Sciences, 2017, 18, 2696.	1.8	22
463	Transcriptional Network Controlling Endochondral Ossification. Journal of Bone Metabolism, 2017, 24, 75.	0.5	56
464	Midazolam inhibits chondrogenesis via peripheral benzodiazepine receptor in human mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2018, 22, 2896-2907.	1.6	6
465	The role of <i>Sox9</i> in collagen hydrogel-mediated chondrogenic differentiation of adult mesenchymal stem cells (MSCs). Biomaterials Science, 2018, 6, 1556-1568.	2.6	43
466	Transcription factor <i>Foxc1</i> is involved in anterior part of cranial base formation. Congenital Anomalies (discontinued), 2018, 58, 158-166.	0.3	8
467	Developmental characteristics of secondary cartilage in the mandibular condyle and sphenoid bone in mice. Archives of Oral Biology, 2018, 89, 84-92.	0.8	13
468	Effects of stanozolol on normal and IL-1Î ² -stimulated equine chondrocytes in vitro. BMC Veterinary Research, 2018, 14, 103.	0.7	10
469	Early limb patterning in the directâ€developing salamander <i>Plethodon cinereus</i> revealed by <i>sox9</i> and <i>col2a1</i> . Evolution & Development, 2018, 20, 100-107.	1.1	11
470	Genome-wide identification and transcriptome-based expression analysis of sox gene family in the Japanese flounder Paralichthys olivaceus. Journal of Oceanology and Limnology, 2018, 36, 1731-1745.	0.6	16
471	In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration. Scientific Reports, 2018, 8, 17911.	1.6	29
472	Molecular Programming of Perivascular Stem Cell Precursors. Stem Cells, 2018, 36, 1890-1904.	1.4	25
473	SFMBT2 positively regulates SOX9 and chondrocyte proliferation. International Journal of Molecular Medicine, 2018, 42, 3503-3512.	1.8	5

#	Article	IF	CITATIONS
474	Challenges in Cell-Based Therapies for Intervertebral Disc Regeneration. , 2018, , 149-180.		0
475	tp53-dependent and independent signaling underlies the pathogenesis and possible prevention of Acrofacial Dysostosis–Cincinnati type. Human Molecular Genetics, 2018, 27, 2628-2643.	1.4	20
476	Effective Remodelling of Human Osteoarthritic Cartilage by <i>sox9</i> Gene Transfer and Overexpression upon Delivery of rAAV Vectors in Polymeric Micelles. Molecular Pharmaceutics, 2018, 15, 2816-2826.	2.3	29
477	Latest advances in intervertebral disc development and progenitor cells. JOR Spine, 2018, 1, e1030.	1.5	16
478	SOX9 is dispensable for the initiation of epigenetic remodeling and the activation of marker genes at the onset of chondrogenesis. Development (Cambridge), 2018, 145, .	1.2	59
479	Thyroid Hormone and Skeletal Development. Vitamins and Hormones, 2018, 106, 383-472.	0.7	23
480	miRâ€182â€5p overexpression inhibits chondrogenesis by downâ€regulating PTHLH. Cell Biology International, 2019, 43, 222-232.	1.4	18
481	Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15068-15073.	3.3	51
482	Tankyrase inhibition preserves osteoarthritic cartilage by coordinating cartilage matrix anabolism via effects on SOX9 PARylation. Nature Communications, 2019, 10, 4898.	5.8	29
483	Induction of Articular Chondrogenesis by Chitosan/Hyaluronic-Acid-Based Biomimetic Matrices Using Human Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 2019, 20, 4487.	1.8	39
484	Collagen microencapsulation recapitulates mesenchymal condensation and potentiates chondrogenesis of human mesenchymal stem cells – A matrix-driven in vitro model of early skeletogenesis. Biomaterials, 2019, 213, 119210.	5.7	21
485	Systematic Identification and Evolution Analysis of Sox Genes in Coturnix japonica Based on Comparative Genomics. Genes, 2019, 10, 314.	1.0	10
486	Marine-derived natural polymer-based bioprinting ink for biocompatible, durable, and controllable 3D constructs. Biofabrication, 2019, 11, 035001.	3.7	27
487	Roles and regulation of SOX transcription factors in skeletogenesis. Current Topics in Developmental Biology, 2019, 133, 171-193.	1.0	74
488	Chondrocyte dedifferentiation and osteoarthritis (OA). Biochemical Pharmacology, 2019, 165, 49-65.	2.0	264
489	Loss of Sox9 in cardiomyocytes delays the onset of cardiac hypertrophy and fibrosis. International Journal of Cardiology, 2019, 282, 68-75.	0.8	19
490	Models of tendon development and injury. BMC Biomedical Engineering, 2019, 1, .	1.7	19
491	Glucose regulates tissue-specific chondro-osteogenic differentiation of human cartilage endplate stem cells via O-GlcNAcylation of Sox9 and Runx2. Stem Cell Research and Therapy, 2019, 10, 357.	2.4	24

#	Article	IF	CITATIONS
492	Insights into Gene Regulatory Networks in Chondrocytes. International Journal of Molecular Sciences, 2019, 20, 6324.	1.8	8
493	Dynamic Expression Profiles of Sox9 in Embryonic, Post Natal, and Adult Heart Valve Cell Populations. Anatomical Record, 2019, 302, 108-116.	0.8	7
494	ACVR1 ^{R206H} FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell, 2019, 30, 17-29.	0.9	30
495	Cellular biology of fracture healing. Journal of Orthopaedic Research, 2019, 37, 35-50.	1.2	304
496	Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways. Stem Cell Research and Therapy, 2020, 11, 6.	2.4	21
497	Selenomethionine exposure affects chondrogenic differentiation and bone formation in Japanese medaka (Oryzias latipes). Journal of Hazardous Materials, 2020, 387, 121720.	6.5	14
498	A retrotransposon gag-like-3 gene RTL3 and SOX-9 co-regulate the expression of COL2A1 in chondrocytes. Connective Tissue Research, 2020, , 1-14.	1.1	2
499	The involvement of cytokine-like 1 (Cytl1) in chondrogenesis and cartilage metabolism. Biochemical and Biophysical Research Communications, 2020, 529, 608-614.	1.0	4
500	Aqueous extract of Arctium lappa L. root (burdock) enhances chondrogenesis in human bone marrow-derived mesenchymal stem cells. BMC Complementary Medicine and Therapies, 2020, 20, 364.	1.2	4
501	Simultaneous differentiation of articular and transient cartilage: WNT-BMP interplay and its therapeutic implication. International Journal of Developmental Biology, 2020, 64, 203-211.	0.3	7
502	Production of Injectable Marine Collagen-Based Hydrogel for the Maintenance of Differentiated Chondrocytes in Tissue Engineering Applications. International Journal of Molecular Sciences, 2020, 21, 5798.	1.8	23
503	Epiphyseal Cartilage Formation Involves Differential Dynamics of Various Cellular Populations During Embryogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 122.	1.8	7
504	Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nature Communications, 2020, 11, 1189.	5.8	69
505	Atelocollagen promotes chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Scientific Reports, 2020, 10, 10678.	1.6	12
506	Characterization of gonad differentially expressed SoxB2 genes in mud crab Scylla paramamosain. Gene, 2020, 740, 144507.	1.0	9
507	Evolutionary repression of chondrogenic genes in the vertebrate osteoblast. FEBS Journal, 2020, 287, 4354-4361.	2.2	5
508	Growth plate skeletal stem cells and their transition from cartilage to bone. Bone, 2020, 136, 115359.	1.4	41
509	Detection of a 4 bp Mutation in the 3′UTR Region of Goat Sox9 Gene and Its Effect on the Growth Traits. Animals, 2020, 10, 672.	1.0	11

CITATI	ON	REP	ORT

#	Article	IF	CITATIONS
510	Med23 Regulates Sox9 Expression during Craniofacial Development. Journal of Dental Research, 2021, 100, 406-414.	2.5	14
511	Heterozygous deletion of <i>Sox9</i> in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Human Molecular Genetics, 2021, 29, 3781-3792.	1.4	5
512	Cartilage-Specific Recombinase /Alleles in the Mouse. Methods in Molecular Biology, 2021, 2245, 23-38.	0.4	0
513	Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development (Cambridge), 2021, 148, .	1.2	6
515	Transcriptional networks controlling stromal cell differentiation. Nature Reviews Molecular Cell Biology, 2021, 22, 465-482.	16.1	23
516	Engineering cartilage graft using mesenchymal stem cell laden polyacrylamide-galactoxyloglucan hydrogel for transplantation. Journal of Biomaterials Applications, 2021, 36, 541-551.	1.2	2
517	FSH modulated cartilage ECM metabolism by targeting the PKA/CREB/SOX9 pathway. Journal of Bone and Mineral Metabolism, 2021, 39, 769-779.	1.3	7
518	Identification of Jmjd3 as an Essential Epigenetic Regulator of Hox Gene Temporal Collinear Activation for Body Axial Patterning in Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 642931.	1.8	0
519	Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2α expression and coordinately regulate cartilage homeostasis. Nature Communications, 2021, 12, 4148.	5.8	38
520	Promotive Role of CircATRNL1 on Chondrogenic Differentiation of BMSCs Mediated by miR-338-3p. Archives of Medical Research, 2021, 52, 514-522.	1.5	11
522	Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. Osteology, 2021, 1, 149-174.	0.3	2
524	Healing Effect of Danggwisu-san (Dangguixu-san) on Femur Fractured Mice. Journal of Korean Medicine Rehabilitation, 2021, 31, 1-16.	0.2	2
525	Sry, Sox9 and mammalian sex determination. Exs, 2001, , 25-56.	1.4	28
526	The Cell Biology and Molecular Genetics of Testis Determination. Results and Problems in Cell Differentiation, 2000, 28, 23-52.	0.2	3
527	Major Signaling Pathways Regulating the Proliferation and Differentiation of Mesenchymal Stem Cells. , 2013, , 75-100.		4
528	Human interstitial cellular model in therapeutics of heart valve calcification. Amino Acids, 2017, 49, 1981-1997.	1.2	6
529	Control of chondrogenesis by the transcription factor Sox9. Modern Rheumatology, 2008, 18, 213-219.	0.9	161
530	Structure, Biosynthesis and Gene Regulation of Collagens in Cartilage and Bone. , 2006, , 3-40.		21

ARTICLE IF CITATIONS Regulation of SOX9 Activity During Chondrogenesis., 2020, , 548-559. 531 1 Biology of the Normal Joint., 2013, , 1-19.e6. 9 Regulation of Human COL2A1 Gene Expression in Chondrocytes. Journal of Biological Chemistry, 2000, 533 1.6 60 275, 27421-27438. Switching of Sox9 expression during musculoskeletal system development. Scientific Reports, 2020, 534 10, 8425. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid 535 hormone-related peptide in the growth plate of endochondral bones. Proceedings of the National 3.3 101 Academy of Sciences of the United States of America, 2001, 98, 160-5. Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. Journal of 537 1.6 Cellular and Molecular Medicine, 0, 13, 3186-3194. Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing 538 3.9 52 retinoic acid synthesis. Journal of Clinical Investigation, 2009, 119, 146-56. A misplaced lncRNA causes brachydactyly in humans. Journal of Clinical Investigation, 2012, 122, 3.9 108 3990-4002. Role of <i>Dlx-1</i> and <i>Dlx-2</i> genes in patterning of the murine dentition. Development 540 1.2 225 (Cambridge), 1997, 124, 4811-4818. 541 A role for SOX1 in neural determination. Development (Cambridge), 1998, 125, 1967-1978. 1.2 399 <i>Hoxa-2</i> restricts the chondrogenic domain and inhibits bone formation during development of 542 1.2 185 the branchial area. Development (Cambridge), 1998, 125, 2587-2597. The murine <i>Bapx1</i> homeobox gene plays a critical role in embryonic development of the axial 1.2 229 skeleton and spleen. Development (Cambridge), 1999, 126, 5699-5711. Requirement for<i>Pbx1</i>in skeletal patterning and programming chondrocyte proliferation and 544 1.2 266 differentiation. Development (Cambridge), 2001, 128, 3543-3557. The transcription factor Sox9 is required for cranial neural crest development in<i>Xenopus</i>. 545 1.2 244 Development (Cambridge), 2002, 129, 421-432. A zebrafish <i>sox9 </i>gene required for cartilage morphogenesis. Development (Cambridge), 2002, 129, 546 1.2 252 5065-5079. Compressive force promotes Sox9, type II collagen and aggrecan and inhibits IL-1Î² expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. Journal of Cell Science, 1998, 111, 547 1.2 164 2067-2076. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of 548 1.556 p100/CBP Complexes. PLoS Genetics, 2015, 11, e1005680. Identification of Five Developmental Processes during Chondrogenic Differentiation of Embryonic 549 1.1 Stem Cells. PLoS ONE, 2010, 5, e10998.

#	Article	IF	CITATIONS
550	Exportin 4 Interacts with Sox9 through the HMG Box and Inhibits the DNA Binding of Sox9. PLoS ONE, 2011, 6, e25694.	1.1	14
551	Distinct Functional and Temporal Requirements for Zebrafish Hdac1 during Neural Crest-Derived Craniofacial and Peripheral Neuron Development. PLoS ONE, 2013, 8, e63218.	1.1	44
552	Anti-IL-20 monoclonal antibody inhibited inflammation and protected against cartilage destruction in murine models of osteoarthritis. PLoS ONE, 2017, 12, e0175802.	1.1	20
553	MOLECULAR AND IMMUNOHISTOLOGICAL CHARACTERIZATION OF HUMAN CARTILAGE TWO YEARS FOLLOWING AUTOLOGOUS CELL TRANSPLANTATION. Journal of Bone and Joint Surgery - Series A, 2005, 87, 46-57.	1.4	7
554	Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model. Iranian Journal of Basic Medical Sciences, 2018, 21, 745-752.	1.0	13
555	Developmental patterns of cartilage. Frontiers in Bioscience - Landmark, 1999, 4, d731.	3.0	71
556	Role of Growth Factors in the Development of Mandible. The Journal of Indian Orthodontic Society, 2011, 45, 51-60.	0.2	4
557	Small Round Cell Tumors of Bone. Archives of Pathology and Laboratory Medicine, 2007, 131, 192-204.	1.2	59
558	Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. ELife, 2018, 7, .	2.8	59
559	Vascular dimorphism ensured by regulated proteoglycan dynamics favors rapid umbilical artery closure at birth. ELife, 2020, 9, .	2.8	16
560	Developmental Biology of Bone. , 2001, , 189-212.		2
561	Molecular genetics of gonad development. , 2004, , 9-21.		0
563	Genome Duplication and Subfunction Partitioning: Sox9 in Medaka and Other Vertebrates. , 2011, , 323-337.		0
564	Cis-Regulatory Disruption at the SOX9 Locus as a Cause of Pierre Robin Sequence. , 2012, , 123-136.		0
565	Molecular mechanisms of skeletal tissue formation. The Journal of Physical Fitness and Sports Medicine, 2013, 2, 1-8.	0.2	0
566	Amniotic Fluid Stem Cells for the Treatment of Articular Cartilage Defects. , 2014, , 87-97.		Ο
567	Possible Role of Noggin Gene in Mandibular Development / Posible papel del gen noggin en el desarrollo mandibular. Universitas Odontologica: Revista Cientifica De La Facultad De Odontologica, 2015, 34, .	0.2	0
568	Developmental Pathways and Aortic Valve Calcification. Contemporary Cardiology, 2020, , 47-71.	0.0	1

#	Article	IF	CITATIONS
569	Placental Calcification: Long-standing Questions and New Biomedical Research Directions. Contemporary Cardiology, 2020, , 263-296.	0.0	1
572	Transcriptional, epigenetic and microRNA regulation of growth plate. Bone, 2020, 137, 115434.	1.4	4
573	Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB Journal, 2021, 35, e22002.	0.2	9
574	Angiostatin-functionalized collagen scaffolds suppress angiogenesis but do not induce chondrogenesis by mesenchymal stromal cells <i>in vivo </i> . Journal of Oral Science, 2020, 62, 371-376.	0.7	4
575	Deletion of p21 expression accelerates cartilage tissue repair via chondrocyte proliferation. Molecular Medicine Reports, 2020, 21, 2236-2242.	1.1	5
577	Regulation der Chondrozytendifferenzierung in der Wachstumsfuge: Parakrine Signalsysteme. , 2006, , 461-477.		1
578	Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis, 2000, 28, 111-24.	0.8	30
579	Bridging the Cap: Understanding Embryonic Intervertebral Disc Development. Cell & Developmental Biology, 2012, 1, .	0.3	25
582	Spidroin striped micropattern promotes chondrogenic differentiation of human Wharton's jelly mesenchymal stem cells. Scientific Reports, 2022, 12, 4837.	1.6	0
583	In Vivo and In Vitro Cartilage Differentiation from Embryonic Epicardial Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 3614.	1.8	2
584	Sox9 is required for nail bed differentiation and digit tip regeneration. Journal of Investigative Dermatology, 2022, , .	0.3	2
585	Chsy1 deficiency reduces extracellular matrix productions and aggravates cartilage injury in osteoarthritis. Gene, 2022, 827, 146466.	1.0	4
586	Patterning of cartilaginous condensations in the developing facial skeleton. Developmental Biology, 2022, 486, 44-55.	0.9	7
587	HES1 is a novel downstream modifier of the SHH-GLI3 Axis in the development of preaxial polydactyly. PLoS Genetics, 2021, 17, e1009982.	1.5	5
605	Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell International, 2022, 22, 169.	1.8	5
606	Biodegradable Poly(D-L-lactide-co-glycolide) (PLGA)-Infiltrated Bioactive Glass (CAR12N) Scaffolds Maintain Mesenchymal Stem Cell Chondrogenesis for Cartilage Tissue Engineering. Cells, 2022, 11, 1577.	1.8	5
608	Plasticity in Airway Smooth Muscle Differentiation During Mouse Lung Development. SSRN Electronic Journal, O, , .	0.4	0
609	3D Spheroid Cultures of Stem Cells and Exosome Applications for Cartilage Repair. Life, 2022, 12, 939.	1.1	11

	Сітатіо	n Report	
#	Article	IF	CITATIONS
610	SOX Genes and Their Role in Disorders of Sex Development. Sexual Development, 2022, 16, 80-91.	1.1	9
611	Vibration exposure uncovers a critical early developmental window for zebrafish caudal fin development. Development Genes and Evolution, 2022, 232, 67-79.	0.4	4
612	Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20
613	Tenuous Transcriptional Threshold of Human Sex Determination. I. SRY and Swyer Syndrome at the Edge of Ambiguity. Frontiers in Endocrinology, 0, 13, .	1.5	1
614	The adaptive response of the mandibular condyle to increased load is disrupted by ADAMTS5 deficiency. Connective Tissue Research, 0, , 1-12.	1.1	0
615	A new protocol for validation of Chondro, Adipo and Osteo differentiation kit of Cultured Adipose-Derived Stem Cells (ADSC) by real-time rt-QPCR. Tissue and Cell, 2022, 79, 101923.	1.0	0
616	Endostatin in 3D Fibrin Hydrogel Scaffolds Promotes Chondrogenic Differentiation in Swine Neonatal Meniscal Cells. Biomedicines, 2022, 10, 2415.	1.4	5
617	Proximal ear hole injury heals by limited regeneration during the early postnatal phase in mice. Journal of Anatomy, 2023, 242, 402-416.	0.9	1
619	Introduction of tenomodulin by gene transfection vectors for rat bone tissue regeneration. Regenerative Therapy, 2023, 22, 99-108.	1.4	0
620	Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog–Wnt signaling, causing campomelia. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
621	Abaloparatide and teriparatide enhance mandibular growth in adolescent rats with site-specific and mechano-related effects. European Journal of Orthodontics, 0, , .	1.1	0
622	LRRC75A-AS1 Inhibits Chondrogenic Differentiation Of Bmscs Via Targeting the Mir-140-3p/Wnt/Î'-Catenin Pathway. Current Stem Cell Research and Therapy, 2023, 18, .	0.6	0
623	Determining the Notch1 Expression in Chondrogenically Differentiated Rat Amniotic Fluid Stem Cells in Alginate Beads Using Conditioned Media from Chondrocytes Culture. Biology Bulletin, 2022, 49, S9-S20.	0.1	0
624	PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism. Trends in Molecular Medicine, 2023, 29, 390-405.	3.5	3
625	Plasticity in airway smooth muscle differentiation during mouse lung development. Developmental Cell, 2023, 58, 338-347.e4.	3.1	4
627	Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Communications Biology, 2023, 6, .	2.0	1
631	Role and Application of Biomolecules for Regeneration of Cartilage Tissue. , 2023, , 155-208.		0