Interaction between the sodium channel inactivation li

Biophysical Journal 73, 1885-1895 DOI: 10.1016/s0006-3495(97)78219-5

Citation Report

#	ARTICLE	IF	CITATIONS
1	Glutamine Substitution at Alanine1649 in the S4–S5 Cytoplasmic Loop of Domain 4 Removes the Voltage Sensitivity of Fast Inactivation in the Human Heart Sodium Channel. Journal of General Physiology, 1998, 111, 639-652.	1.9	24
2	Inactivation and Secondary Structure in the D4/S4-5 Region of the SkM1 Sodium Channel. Journal of General Physiology, 1998, 111, 703-715.	1.9	45
3	Phenotypic Characterization of a Novel Long-QT Syndrome Mutation (R1623Q) in the Cardiac Sodium Channel. Circulation, 1998, 97, 640-644.	1.6	138
4	Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel. Journal of Neuroscience, 1998, 18, 9607-9619.	3.6	345
5	Differential effects of homologous S4 mutations in human skeletal muscle sodium channels on deactivation gating from open and inactivated states. Journal of Physiology, 1999, 516, 687-698.	2.9	33
6	Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed inXenopusoocytes. Journal of Physiology, 1999, 514, 667-675.	2.9	143
7	Voltage Sensors in Domains III and IV, but Not I and II, Are Immobilized by Na+ Channel Fast Inactivation. Neuron, 1999, 22, 73-87.	8.1	264
8	1H-NMR and Circular Dichroism Spectroscopic Studies on Changes in Secondary Structures of the Sodium Channel Inactivation Gate Peptides as Caused by the Pentapeptide KIFMK. Biophysical Journal, 1999, 77, 1363-1373.	0.5	11
9	Ultra-Slow Inactivation in μ1 Na+ Channels Is Produced by a Structural Rearrangement of the Outer Vestibule. Biophysical Journal, 1999, 76, 1335-1345.	0.5	86
10	On Mutations that Uncouple Sodium Channel Activation from Inactivation. Biophysical Journal, 1999, 76, 2553-2559.	0.5	6
11	A mutation that causes ataxia shifts the voltage-dependence of the Scn8a sodium channel. NeuroReport, 1999, 10, 3027-3031.	1.2	17
12	Interactions between Local Anesthetics and Na+ Channel Inactivation Gate Peptides in Phosphatidylserine Suspensions as Studied by 1H-NMR Spectroscopy Chemical and Pharmaceutical Bulletin, 2000, 48, 1293-1298.	1.3	13
13	Patch clamp studies of the Thr1313met mutant sodium channel causing paramyotonia congenita. Muscle and Nerve, 2000, 23, 1736-1747.	2.2	6
14	Lidocaine induces a slow inactivated state in rat skeletal muscle sodium channels. Journal of Physiology, 2000, 524, 37-49.	2.9	63
15	Structure, function and pharmacology of voltage-gated sodium channels. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 453-479.	3.0	131
16	The Voltage Sensor in Voltage-Dependent Ion Channels. Physiological Reviews, 2000, 80, 555-592.	28.8	825
17	A Structural Rearrangement in the Sodium Channel Pore Linked to Slow Inactivation and Use Dependence. Journal of General Physiology, 2000, 116, 653-662.	1.9	97
18	The Role of the Putative Inactivation Lid in Sodium Channel Gating Current Immobilization. Journal of General Physiology, 2000, 115, 609-620.	1.9	51

#	Article	IF	CITATIONS
19	Residues in Na+ Channel D3-S6 Segment Modulate both Batrachotoxin and Local Anesthetic Affinities. Biophysical Journal, 2000, 79, 1379-1387.	0.5	98
20	A Point Mutation in Domain 4-Segment 6 of the Skeletal Muscle Sodium Channel Produces an Atypical Inactivation State. Biophysical Journal, 2000, 78, 773-784.	0.5	18
21	From Ionic Currents to Molecular Mechanisms. Neuron, 2000, 26, 13-25.	8.1	1,920
22	Contributions of charged residues in a cytoplasmic linking region to Na channel gating. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 275-291.	2.6	13
23	The Cardiac Sodium Channel: Gating Function and Molecular Pharmacology. Journal of Molecular and Cellular Cardiology, 2001, 33, 599-613.	1.9	164
24	Molecular biology of sodium channels and their role in cardiac arrhythmias. American Journal of Medicine, 2001, 110, 296-305.	1.5	50
25	Residue-Specific Effects on Slow Inactivation at V787 in D2-S6 of Nav1.4 Sodium Channels. Biophysical Journal, 2001, 81, 2100-2111.	0.5	46
26	A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience, 2001, 102, 307-317.	2.3	214
27	Structural determinants of fast inactivation of high voltage-activated Ca2+ channels. Trends in Neurosciences, 2001, 24, 176-182.	8.6	104
28	Implication of the C-Terminal Region of the α-Subunit of Voltage-gated Sodium Channels in Fast Inactivation. Journal of Membrane Biology, 2001, 183, 103-114.	2.1	40
29	Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4â^'S5) in domains III and IV of human brain sodium channels in SDS micelles. Chemical Biology and Drug Design, 2001, 58, 193-203.	1.1	11
30	Helix-stabilizing effects of the pentapeptide KIFMK and its related peptides on the sodium channel inactivation gate peptides. Chemical Biology and Drug Design, 2001, 58, 413-423.	1.1	3
31	Solution structure of the cytoplasmic linker between domain III-S6 and domain IV-S1 (III-IV linker) of the rat brain sodium channel in SDS micelles. Biopolymers, 2001, 59, 380-393.	2.4	13
32	Identification of Inactivation Determinants in the Domain IIS6 Region of High Voltage-activated Calcium Channels. Journal of Biological Chemistry, 2001, 276, 33001-33010.	3.4	52
33	Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proceedings of the United States of America, 2001, 98, 15348-15353.	7.1	119
34	Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovascular Research, 2001, 49, 257-271.	3.8	113
35	Role of Amino Acid Residues in Transmembrane Segments IS6 and IIS6 of the Na+ Channel α Subunit in Voltage-dependent Gating and Drug Block. Journal of Biological Chemistry, 2002, 277, 35393-35401.	3.4	209
36	Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5. Neurology, 2002, 58, 1266-1272.	1.1	67

#	Article	IF	CITATIONS
38	Cardiac Ion Channels. Annual Review of Physiology, 2002, 64, 431-475.	13.1	259
39	Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet, The, 2002, 360, 851-852.	13.7	332
40	Structural determinants for the action of grayanotoxin in D1 S4–S5 and D4 S4–S5 intracellular linkers of sodium channel α-subunits. Biochemical and Biophysical Research Communications, 2002, 295, 452-457.	2.1	14
41	Voltage-Gated Sodium Channel Toxins: Poisons, Probes, and Future Promise. Cell Biochemistry and Biophysics, 2003, 38, 215-238.	1.8	59
42	Methanethiosulfonate-modification Alters Local Anesthetic Block in rNavl.4 Cysteine-substituted Mutants S1276C and L1280C. Journal of Membrane Biology, 2003, 193, 47-55.	2.1	1
43	Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cellular Signalling, 2003, 15, 151-159.	3.6	269
44	Mechanisms of sodium channel inactivation. Current Opinion in Neurobiology, 2003, 13, 284-290.	4.2	214
45	A Novel mutation L619F in the cardiac Na channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating. Human Mutation, 2003, 21, 552-552.	2.5	33
46	Genetic control of sodium channel function. Cardiovascular Research, 2003, 57, 961-973.	3.8	157
47	Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNaV1.4 differentially affect slow inactivation. FEBS Letters, 2003, 552, 163-169.	2.8	14
48	Effect of S6 Tail Mutations on Charge Movement in Shaker Potassium Channels. Biophysical Journal, 2003, 84, 295-305.	0.5	43
49	Mutations in Cardiac Sodium Channels. Molecular Diagnosis and Therapy, 2003, 3, 173-179.	3.3	26
50	Point Mutations at L1280 in Nav1.4 Channel D3-S6 Modulate Binding Affinity and Stereoselectivity of Bupivacaine Enantiomers. Molecular Pharmacology, 2003, 63, 1398-1406.	2.3	37
51	Stimulation of Protein Kinase C Inhibits Bursting in Disease-Linked Mutant Human Cardiac Sodium Channels. Circulation, 2003, 107, 3216-3222.	1.6	29
52	The conformation and movement of Na+ channel inactivation gate peptide in linker between domain III and IV during inactivation by NMR spectroscopy and molecular modeling study. Chemical Biology and Drug Design, 2004, 63, 313-323.	1.1	1
53	Cooperative effect of S4-S5 loops in domains D3 and D4 on fast inactivation of the Na+channel. Journal of Physiology, 2004, 561, 39-51.	2.9	29
54	Interactions of Local Anesthetics with Voltage-gated Na+ Channels. Journal of Membrane Biology, 2004, 201, 1-8.	2.1	166
55	The biology of voltage-gatedsodium channels. Advances in Molecular and Cell Biology, 2004, , 15-50.	0.1	1

#	Article	IF	CITATIONS
56	A1152D mutation of the Na+channel causes paramyotonia congenita and emphasizes the role of DIII/S4-S5 linker in fast inactivation. Journal of Physiology, 2005, 565, 415-427.	2.9	18
57	Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channelScn2a. Mammalian Genome, 2005, 16, 683-690.	2.2	58
58	Substitution of a conserved alanine in the domain IIIS4–S5 linker of the cardiac sodium channel causes long QT syndrome. Cardiovascular Research, 2005, 67, 459-466.	3.8	16
59	Sodium Channel Inactivation: Molecular Determinants and Modulation. Physiological Reviews, 2005, 85, 1271-1301.	28.8	251
60	Block of inactivation-deficient cardiac Na+ channels by acetyl-KIFMK-amide. Biochemical and Biophysical Research Communications, 2005, 329, 780-788.	2.1	6
61	SCN9A Mutations in Paroxysmal Extreme Pain Disorder: Allelic Variants Underlie Distinct Channel Defects and Phenotypes. Neuron, 2006, 52, 767-774.	8.1	640
62	Interaction of local anesthetics with a peptide encompassing the Ⅳ/S4–S5 linker of the Na+ channel. Biophysical Chemistry, 2006, 123, 29-39.	2.8	11
63	Size Matters: Erythromelalgia Mutation S241T in Nav1.7 Alters Channel Gating. Journal of Biological Chemistry, 2006, 281, 36029-36035.	3.4	78
64	Sodium channel genes and the evolution of diversity in communication signals of electric fishes: Convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3675-3680.	7.1	149
65	Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochemical Journal, 2006, 396, 255-263.	3.7	248
66	Effects in Neocortical Neurons of Mutations of the Nav1.2 Na+ Channel causing Benign Familial Neonatal-Infantile Seizures. Journal of Neuroscience, 2006, 26, 10100-10109.	3.6	110
67	Na _v 1.7 Mutant A863P in Erythromelalgia: Effects of Altered Activation and Steady-State Inactivation on Excitability of Nociceptive Dorsal Root Ganglion Neurons. Journal of Neuroscience, 2006, 26, 12566-12575.	3.6	136
68	Characterization of a novel SCN5A mutation associated with Brugada syndrome reveals involvement of DIIIS4–S5 linker in slow inactivation. Cardiovascular Research, 2007, 76, 418-429.	3.8	40
69	Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6. American Journal of Physiology - Cell Physiology, 2007, 293, C1895-C1905.	4.6	10
70	Charge Immobilization of Skeletal Muscle Na+ Channels: Role of Residues in the Inactivation Linker. Biophysical Journal, 2007, 93, 1519-1533.	0.5	12
71	Probing the nonâ€covalent binding interaction of the Na ⁺ channel inactivation gate peptide in a linker between domain III and IV with 5,5â€diphenyhydantoin in electrospray ion trap tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 3795-3802.	1.5	4
72	Central Charged Residues in DIIIS4 Regulate Deactivation Gating in Skeletal Muscle Sodium Channels. Cellular and Molecular Neurobiology, 2007, 27, 87-106.	3.3	3
73	Paroxysmal extreme pain disorder mutations within the D3/S4–S5 linker of Nav1.7 cause moderate destabilization of fast inactivation. Journal of Physiology, 2008, 586, 4137-4153.	2.9	77

#	Article	IF	CITATIONS
74	<i>Scn2a</i> sodium channel mutation results in hyperexcitability in the hippocampus in vitro. Epilepsia, 2008, 49, 488-499.	5.1	17
75	SCN5A channelopathies – An update on mutations and mechanisms. Progress in Biophysics and Molecular Biology, 2008, 98, 120-136.	2.9	130
76	Paroxysmal Extreme Pain Disorder M1627K Mutation in Human Na _v 1.7 Renders DRG Neurons Hyperexcitable. Molecular Pain, 2008, 4, 1744-8069-4-37.	2.1	112
77	Differential effects of paramyotonia congenita mutations F1473S and F1705I on sodium channel gating. Channels, 2008, 2, 39-50.	2.8	6
78	Biophysical defects in voltage-gated sodium channels associated with Long QT and Brugada syndromes. Channels, 2008, 2, 70-80.	2.8	18
79	A Pore-blocking Hydrophobic Motif at the Cytoplasmic Aperture of the Closed-state Nav1.7 Channel Is Disrupted by the Erythromelalgia-associated F1449V Mutation. Journal of Biological Chemistry, 2008, 283, 24118-24127.	3.4	40
80	Na _V 1.7 Gain-of-Function Mutations as a Continuum: A1632E Displays Physiological Changes Associated with Erythromelalgia and Paroxysmal Extreme Pain Disorder Mutations and Produces Symptoms of Both Disorders. Journal of Neuroscience, 2008, 28, 11079-11088.	3.6	148
81	A Double Tyrosine Motif in the Cardiac Sodium Channel Domain III-IV Linker Couples Calcium-dependent Calmodulin Binding to Inactivation Gating. Journal of Biological Chemistry, 2009, 284, 33265-33274.	3.4	49
82	Biophysical characterization of a new <i>SCN5A</i> mutation S1333Y in a SIDS infant linked to long QT syndrome. FEBS Letters, 2009, 583, 890-896.	2.8	15
83	Characterization of a novel Nav1.5 channel mutation, A551T, associated with Brugada syndrome. Journal of Biomedical Science, 2009, 16, 76.	7.0	8
84	Mutations at opposite Ends of the DIII/S4-S5 Linker of Sodium Channel NaV1.7 Produce Distinct Pain Disorders. Molecular Pain, 2010, 6, 1744-8069-6-24.	2.1	33
85	Long-term inactivation particle for voltage-gated sodium channels. Journal of Physiology, 2010, 588, 3695-3711.	2.9	77
86	Multiple arrhythmic syndromes in a newborn, owing to a novel mutation in <i>SCN5A</i> . Canadian Journal of Physiology and Pharmacology, 2011, 89, 723-736.	1.4	6
87	Neurotoxins and Their Binding Areas on Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 2011, 2, 71.	3.5	215
88	Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navβ4 peptideâ€mediated resurgent sodium currents. Journal of Physiology, 2011, 589, 597-608.	2.9	80
89	Phylogeny Unites Animal Sodium Leak Channels with Fungal Calcium Channels in an Ancient, Voltage-Insensitive Clade. Molecular Biology and Evolution, 2012, 29, 3613-3616.	8.9	53
90	Footprints of positive selection associated with a mutation (<i>N1575Y</i>) in the voltage-gated sodium channel of <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6614-6619.	7.1	179
91	Seeing the Forest through the Trees: towards a Unified View on Physiological Calcium Regulation of Voltage-Gated Sodium Channels. Biophysical Journal, 2012, 103, 2243-2251.	0.5	52

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
92	Voltage sensor of ion channels and enzymes. Biophysical Reviews, 2012, 4, 1-15.	3.2	16
93	Voltage-gated sodium channel-associated proteins and alternative mechanisms of inactivation and block. Cellular and Molecular Life Sciences, 2012, 69, 1067-1076.	5.4	55
94	Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pesticide Biochemistry and Physiology, 2013, 106, 93-100.	3.6	235
95	Clinical spectrum of <i>SCN2A</i> mutations expanding to Ohtahara syndrome. Neurology, 2013, 81, 992-998.	1.1	188
96	Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. Journal of General Physiology, 2013, 142, 101-112.	1.9	175
97	S1–S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation. Journal of General Physiology, 2013, 141, 601-618.	1.9	21
98	Shellfish Toxins Targeting Voltage-Gated Sodium Channels. Marine Drugs, 2013, 11, 4698-4723.	4.6	56
99	Slow Inactivation of Na+ Channels. Handbook of Experimental Pharmacology, 2014, 221, 33-49.	1.8	46
101	Sodium Channels, Cardiac Arrhythmia, and Therapeutic Strategy. Advances in Pharmacology, 2014, 70, 367-392.	2.0	13
102	Voltage-Gated Sodium Channels and Electrical Excitability of the Heart. , 2014, , 1-11.		0
104	p.L1612P, a Novel Voltage-gated Sodium Channel Nav1.7 Mutation Inducing a Cold Sensitive Paroxysmal Extreme Pain Disorder. Anesthesiology, 2015, 122, 414-423.	2.5	18
105	Intracellular Calcium Attenuates Late Current Conducted by Mutant Human Cardiac Sodium Channels. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 933-941.	4.8	17
106	The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy. NeuroMolecular Medicine, 2015, 17, 158-169.	3.4	70
107	Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. IJC Heart and Vasculature, 2015, 9, 75-82.	1.1	76
108	Mechanism of Inactivation in Voltage-Gated Na+ Channels. Current Topics in Membranes, 2016, 78, 409-450.	0.9	12
109	Physiology and Pathophysiology of Sodium Channel Inactivation. Current Topics in Membranes, 2016, 78, 479-509.	0.9	47
110	Role of Sodium Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022814.	6.2	78
111	Translational approach to address therapy in myotonia permanens due to a new <i>SCN4A</i> mutation. Neurology, 2016, 86, 2100-2108.	1.1	22

#	Article	IF	CITATIONS
112	Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels. Current Topics in Membranes, 2016, 78, 39-64.	0.9	4
113	Cardiac Na Channels. Current Topics in Membranes, 2016, 78, 287-311.	0.9	28
114	The <i>SCN8A</i> encephalopathy mutation p.lle1327Val displays elevated sensitivity to the anticonvulsant phenytoin. Epilepsia, 2016, 57, 1458-1466.	5.1	41
115	Aberrant epilepsy-associated mutant Na _v 1.6 sodium channel activity can be targeted with cannabidiol. Brain, 2016, 139, 2164-2181.	7.6	105
116	The hitchhiker's guide to the voltage-gated sodium channel galaxy. Journal of General Physiology, 2016, 147, 1-24.	1.9	299
117	Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review). International Journal of Molecular Medicine, 2017, 39, 519-526.	4.0	28
118	Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains. Journal of General Physiology, 2017, 149, 389-403.	1.9	30
119	Structure of the Nav1.4-β1 Complex from Electric Eel. Cell, 2017, 170, 470-482.e11.	28.9	272
120	Mechanisms of Drug Binding to Voltage-Gated Sodium Channels. Handbook of Experimental Pharmacology, 2017, 246, 209-231.	1.8	13
121	De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Research, 2017, 129, 17-25.	1.6	34
122	Mechanisms and models of cardiac sodium channel inactivation. Channels, 2017, 11, 517-533.	2.8	27
123	Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Scientific Reports, 2018, 8, 3539.	3.3	24
124	Distinct modulation of inactivation by a residue in the pore domain of voltage-gated Na+ channels: mechanistic insights from recent crystal structures. Scientific Reports, 2018, 8, 631.	3.3	7
125	Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chemical Neuroscience, 2018, 9, 187-197.	3.5	32
126	Voltage-Gated Sodium Channels and Electrical Excitability of the Heart. , 2018, , 1-11.		2
127	Structure–Function Relations of Heterotrimetric Complexes of Sodium Channel α- and β-Subunits. , 2018, , 90-95.		0
128	Structure of the human voltage-gated sodium channel Na _v 1.4 in complex with \hat{l}^21 . Science, 2018, 362, .	12.6	333
129	Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biology, 2018, 16, e2004892.	5.6	24

#	Article	IF	Citations
130	Detection of Nav1.5 Conformational Change in Mammalian Cells Using the Noncanonical Amino Acid ANAP. Biophysical Journal, 2019, 117, 1352-1363.	0.5	13
131	Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2945-2954.	7.1	71
132	Paralytic, the <i>Drosophila</i> voltage-gated sodium channel, regulates proliferation of neural progenitors. Genes and Development, 2019, 33, 1739-1750.	5.9	13
133	Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annual Review of Pharmacology and Toxicology, 2020, 60, 133-154.	9.4	160
134	Structure of the Cardiac Sodium Channel. Cell, 2020, 180, 122-134.e10.	28.9	217
135	Purkinje system hyperexcitability and ventricular arrhythmia risk in type 3 long QT syndrome. Heart Rhythm, 2020, 17, 1768-1776.	0.7	13
136	Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatric Neurology, 2021, 116, 85-94.	2.1	28
137	Single-cell transcriptomics trajectory and molecular convergence of clinically relevant mutations in Brugada syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1935-H1948.	3.2	6
138	Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation. Journal of General Physiology, 2021, 153, .	1.9	7
139	Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell, 2021, 184, 5151-5162.e11.	28.9	56
140	Sodium channelopathies of skeletal muscle and brain. Physiological Reviews, 2021, 101, 1633-1689.	28.8	55
141	Voltage-Dependent Inactivation of Voltage Gated Calcium Channels. , 2005, , 194-204.		2
142	Cardiac Na+ Channels as Therapeutic Targets for Antiarrhythmic Agents. , 2006, , 99-121.		15
143	Regulation/Modulation of Sensory Neuron Sodium Channels. Handbook of Experimental Pharmacology, 2014, 221, 111-135.	1.8	35
144	Sodium Channels. , 2004, , 1-9.		3
145	Structure and function of the cardiac sodium channels. Cardiovascular Research, 1999, 42, 327-338.	3.8	66
146	Sodium channel mutations in epilepsy and other neurological disorders. Journal of Clinical Investigation, 2005, 115, 2010-2017.	8.2	427
147	A revised view of cardiac sodium channel "blockade―in the long-QT syndrome. Journal of Clinical Investigation, 2000, 105, 1133-1140.	8.2	68

#	Article	IF	CITATIONS
148	Pharmacology of the Cardiac Sodium Channel. , 2004, , 127-132.		2
150	Intersegment Contacts of Potentially Damaging Variants of Cardiac Sodium Channel. Frontiers in Pharmacology, 2021, 12, 756415.	3.5	1
151	A Novel Spider Toxin Inhibits Fast Inactivation of the Nav1.9 Channel by Binding to Domain III and Domain IV Voltage Sensors. Frontiers in Pharmacology, 2021, 12, 778534.	3.5	3
154	Structural Advances in Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 0, 13, .	3.5	14
155	Peripheral temperature dysregulation associated with functionally altered NaV1.8 channels. Pflugers Archiv European Journal of Physiology, 2023, 475, 1343-1355.	2.8	1