PREDATORS, PARASITOIDS, AND PATHOGENS AS MO POPULATIONS

Ecology 78, 2145-2152 DOI: 10.1890/0012-9658(1997)078[2145:ppapam]2.0.co;2

Citation Report

#	Article	IF	CITATIONS
1	Patterns of diversity for aphidiine (Hymenoptera: Braconidae) parasitoid assemblages on aphids (Homoptera). Oecologia, 1998, 116, 234-242.	2.0	14
2	Annual Viral Expression in a Sea Slug Population: Life Cycle Control and Symbiotic Chloroplast Maintenance. Biological Bulletin, 1999, 197, 1-6.	1.8	36
3	PALEOECOLOGY:Enhanced: Hungry Herbivores Seek a Warmer World. Science, 1999, 284, 2098-2099.	12.6	8
4	Geometrical Games between a Host and a Parasitoid. American Naturalist, 2000, 156, 257-265.	2.1	40
5	Can plants use entomopathogens as bodyguards?. Ecology Letters, 2000, 3, 228-235.	6.4	114
6	Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. Journal of Animal Ecology, 2000, 69, 1-15.	2.8	267
7	Gregariousness and repellent defences in the survival of phytophagous insects. Oikos, 2000, 91, 213-224.	2.7	115
8	NITROGEN LIMITATION AND TROPHIC VS. ABIOTIC INFLUENCES ON INSECT HERBIVORES IN A TEMPERATE GRASSLAND. Ecology, 2000, 81, 1601-1612.	3.2	142
9	Life Systems of Polyphagous Arthropod Pests in Temporally Unstable Cropping Systems. Annual Review of Entomology, 2000, 45, 467-493.	11.8	228
10	Preference and performance linkage of a leaf-mining moth on different Salicaceae species. Population Ecology, 2001, 43, 141-147.	1.2	18
11	Insularity and adaptation in coupled victim-enemy associations. Journal of Evolutionary Biology, 2001, 14, 539-551.	1.7	23
12	Sources of variability in plant resistance against insects: free caterpillars show strongest effects. Oikos, 2001, 95, 461-470.	2.7	32
13	INSECTBIODEMOGRAPHY. Annual Review of Entomology, 2001, 46, 79-110.	11.8	258
14	Multiple approaches to estimating the relative importanceof top-down and bottom-up forces on insect populations:Experiments, life tables, and time-series analysis. Basic and Applied Ecology, 2001, 2, 295-309.	2.7	79
15	HIGH LARVAL PREDATION RATE IN NON-OUTBREAKING POPULATIONS OF A GEOMETRID MOTH. Ecology, 2001, 82, 281-289.	3.2	53
16	IS ATTRACTION FATAL? THE EFFECTS OF HERBIVORE-INDUCED PLANT VOLATILES ON HERBIVORE PARASITISM. Ecology, 2002, 83, 3416-3425.	3.2	17
17	Distribution, survivorship and mortality sources in immature stages of the neotropical leaf miner Pachyschelus coeruleipennis Kerremans (Coleoptera: Buprestidae). Brazilian Journal of Biology, 2002, 62, 69-76.	0.9	13
18	The influence of species identity and herbivore feeding mode on top-down and bottom-up effects in a salt marsh system. Oecologia, 2002, 133, 243-253.	2.0	29

#	Article	IF	CITATIONS
19	Relative effects of exophytic predation, endophytic predation, and intraspecific competition on a subcortical herbivore: consequences to the reproduction of Ips pini and Thanasimus dubius. Oecologia, 2002, 133, 483-491.	2.0	36
20	Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae). Global Change Biology, 2002, 8, 142-152.	9.5	89
21	Development and distribution of predators and parasitoids during two consecutive years of an Ips typographus (Col., Scolytidae) infestation. Journal of Applied Entomology, 2002, 126, 521-527.	1.8	65
22	Diversifying selection in a parasitoid's symbiotic virus among genes involved in inhibiting host immunity. Immunogenetics, 2003, 55, 351-361.	2.4	24

Influence of adult and egg predation on reproductive success of Epirrita autumnata (Lepidoptera:) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

24	Defence against multiple enemies. Journal of Evolutionary Biology, 2003, 16, 1319-1327.	1.7	27
25	Latitude, seed predation and seed mass. Journal of Biogeography, 2003, 30, 105-128.	3.0	213
26	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. Ecology, 2003, 84, 91-107.	3.2	299
27	The adaptive significance of insect gall morphology. Trends in Ecology and Evolution, 2003, 18, 512-522.	8.7	636
28	A Three-Year Partial Life Table Study of the Stemborer Busseola fusca Fuller (Lepidoptera: Noctuidae) on Sorghum in the Highlands of Eritrea. International Journal of Tropical Insect Science, 2003, 23, 221-237.	1.0	1
29	Arthropod Predators of <i>Galerucella calmariensis</i> L. (Coleoptera: Chrysomelidae): An Assessment of Biotic Interference. Environmental Entomology, 2004, 33, 356-361.	1.4	30
30	Directed Search Pattern of a Leafminer Parasitoid Among Mines of Host Larvae. Annals of the Entomological Society of America, 2004, 97, 586-591.	2.5	6
31	Predation-mediated Mortality of Early Life Stages: A Field Experiment with Nymphs of an Herbivorous Stick Insect (Metriophasma diocles)1. Biotropica, 2004, 36, 424.	1.6	0
32	Predation-mediated Mortality of Early Life Stages: A Field Experiment with Nymphs of an Herbivorous Stick Insect (Metriophasma diocles). Biotropica, 2004, 36, 424-428.	1.6	11
33	Interannual changes in folivory and bird insectivory along a natural productivity gradient in northern Patagonian forests. Ecography, 2004, 27, 29-40.	4.5	46
34	Patterns of parasitism among conopid flies parasitizing bumblebees. Entomologia Experimentalis Et Applicata, 2004, 111, 133-139.	1.4	18
35	Looks are important: parasitic assemblages of agromyzid leafminers (Diptera) in relation to mine shape and contrast. Journal of Animal Ecology, 2004, 73, 494-505.	2.8	29
36	Induced responses in three tropical dry forest plant species - direct and indirect effects on herbivory. Oikos, 2004, 107, 541-548.	2.7	38

#	Article	IF	CITATIONS
37	Ecological and Genetic Interactions in Drosophila–parasitoids Communities: A Case Study with D. Melanogaster, D. Simulans and their Common Leptopilina Parasitoids in Southe-astern France. Genetica, 2004, 120, 181-194.	1.1	126
38	Behavior of Adult and Larval Platysoma cylindrica (Coleoptera: Histeridae) and Larval Medetera bistriata (Diptera: Dolichopodidae) During Subcortical Predation of Ips pini (Coleoptera: Scolytidae). Journal of Insect Behavior, 2004, 17, 115-128.	0.7	17
39	Density-dependent effects of multiple predators sharing a common prey in an endophytic habitat. Oecologia, 2004, 139, 418-426.	2.0	12
40	Dose–response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere, 2004, 54, 619-627.	8.2	95
41	The Acquired Immune System. Immunity, 2004, 21, 607-615.	14.3	102
42	Arthropod community structure along a latitudinal gradient: Implications for future impacts of climate change. Austral Ecology, 2005, 30, 281-297.	1.5	53
43	Apoptoticâ€ l ike morphology is associated with annual synchronized death in kleptoplastic sea slugs (<i>Elysia chlorotica</i>). Invertebrate Biology, 2003, 122, 126-137.	0.9	33
44	Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia, 2005, 142, 46-56.	2.0	60
45	Quality or quantity: the direct and indirect effects of host plants on herbivores and their natural enemies. Oecologia, 2005, 142, 413-420.	2.0	122
46	Resistance is costly: trade-offs between immunity, fecundity and survival in the pea aphid. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1803-1808.	2.6	92
47	Invertebrate predation on the water lily beetle, Galerucella nymphaeae (Coleoptera: Chrysomelidae), and its implications for potential biological control of water chestnut, Trapa natans. Biological Control, 2005, 35, 17-26.	3.0	7
48	Ichneumonoidea (Hymenoptera) Community Diversity in an Agricultural Environment in the State of Yucatan, Mexico. Environmental Entomology, 2006, 35, 1286-1297.	1.4	6
49	MULTITROPHIC BIOPHYSICAL BUDGETS: THERMAL ECOLOGY OF AN INTIMATE HERBIVORE INSECT–PLANT INTERACTION. Ecological Monographs, 2006, 76, 175-194.	5.4	72
50	Top-down effects on population dynamics of Eriocrania miners (Lepidoptera) under pollution impact: does an enemy-free space exist?. Oikos, 2006, 115, 413-426.	2.7	26
51	The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos, 2006, 115, 219-228.	2.7	160
52	A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere, 2006, 65, 1697-1706.	8.2	118
53	Seeing the trees for the leaves - oaks as mosaics for a host-specific moth. Oikos, 2006, 113, 106-120.	2.7	60
54	MULTISTEP BIOASSAY TO PREDICT RECOLONIZATION POTENTIAL OF EMERGING PARASITOIDS AFTER A	4.3	86

#	Article	IF	CITATIONS
55	Abiotic mosaics affect seasonal variation of plant resources and influence the performance and mortality of a leaf-miner in Gambel's oak (Quercus gambelii, Nutt.). Ecological Research, 2006, 21, 157-163.	1.5	15
56	Host plant population size determines cascading effects in a plant–herbivore–parasitoid system. Basic and Applied Ecology, 2006, 7, 191-200.	2.7	27
57	Responses of different herbivore guilds to nutrient addition and natural enemy exclusion. Ecoscience, 2006, 13, 66-74.	1.4	28
58	Two methods of assessing the mortality factors affecting the larvae and pupae of Cameraria ohridella in the leaves of Aesculus hippocastanum in Switzerland and Bulgaria. Bulletin of Entomological Research, 2007, 97, 445-453.	1.0	23
59	Contribution of predation and parasitism to mortality of citrus leafminer Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) populations in Florida. Biological Control, 2007, 40, 396-404.	3.0	22
60	Parasitoides de minadores de hojas y manejo de plagas. Ciencia E Investigacion Agraria, 2007, 34, .	0.2	12
61	Up or down in space? Uniting the bottomâ€up versus topâ€down paradigm and spatial ecology. Oikos, 2007, 116, 181-188.	2.7	126
62	Host preference and survival in selected lines of a Drosophila parasitoid, Asobara tabida. Journal of Evolutionary Biology, 2008, 14, 742-745.	1.7	18
63	Combined Effects of Host Plant Quality and Predation on a Tropical Lepidopteran: A Comparison between Treefall Gaps and the Understory in Panama. Biotropica, 2008, 40, 736-741.	1.6	18
64	Growth and survival of larvae of <i>Thaumetopoea pinivora</i> inside and outside a local outbreak area. Agricultural and Forest Entomology, 2008, 10, 225-232.	1.3	18
65	Wormholes, sensory nets and hypertrophied tactile setae: the extraordinary defence strategies of Brenthia caterpillars. Animal Behaviour, 2008, 76, 1709-1713.	1.9	14
66	Genetic variation and covariation of susceptibility to parasitoids in the aphid <i>Myzus persicae</i> : no evidence for trade-offs. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1089-1094.	2.6	64
67	Seismic Behaviors of a Leafminer, Antispila nysaefoliella (Lepidoptera: Heliozelidae). Florida Entomologist, 2008, , .	0.5	4
69	Conservation of Agroecosystem through Utilization of Parasitoid Diversity: Lesson for Promoting Sustainable Agriculture and Ecosystem Health. HAYATI Journal of Biosciences, 2008, 15, 165-172.	0.4	6
70	Assemblage of Hymenoptera arriving at logs colonized by <i>Ips pini</i> (Coleoptera: Curculionidae:) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf
71	Climate change effects on native fauna of northeastern forestsThis article is one of a selection of papers from NE Forests 2100: A Synthesis of Climate Change Impacts on Forests of the Northeastern US and Eastern Canada Canadian Journal of Forest Research, 2009, 39, 249-263.	1.7	60

72	Climate Change and Temporal and Spatial Mismatches in Insect Communities. , 2009, , 215-231.	17

73	Geographic Variation in Host-Specificity and Parasitoid Pressure of an Herbivore (Geometridae) Associated with the Tropical Genus <i>Piper</i> (Piperaceae). Journal of Insect Science, 2009, 9, 1-11.	1.5	39	
----	---	-----	----	--

#	Article	IF	CITATIONS
74	Predicting the time to colonization of the parasitoid Diadegma semiclausum: The importance of the shape of spatial dispersal kernels for biological control. Biological Control, 2009, 50, 267-274.	3.0	27
75	Complex Biotic Interactions Drive Long-Term Vegetation Change in a Nitrogen Enriched Boreal Forest. Ecosystems, 2009, 12, 1204-1211.	3.4	39
76	Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecology Letters, 2009, 12, 612-621.	6.4	156
77	Beyond biological control: nonâ€pest insects and their pathogens in a changing world. Insect Conservation and Diversity, 2009, 2, 65-72.	3.0	33
78	Male hypofertility induced by Paraquat consumption in the non-target parasitoid Anisopteromalus calandrae (Hymenoptera: Pteromalidae). Biological Control, 2009, 49, 214-218.	3.0	16
79	The insect immune response and other putative defenses as effective predictors of parasitism. Ecology, 2009, 90, 1434-1440.	3.2	96
80	Is There a Latitudinal Gradient in the Importance of Biotic Interactions?. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 245-269.	8.3	957
81	Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens. , 2009, , 1-6.		2
82	Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. , 2009, , 55-73.		6
83	Effects of Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 573-592.	8.3	453
84	Scared sick? Predator–pathogen facilitation enhances exploitation of a shared resource. Ecology, 2009, 90, 2832-2839.	3.2	63
85	Deep space and hidden depths: understanding the evolution and ecology of fungal entomopathogens. BioControl, 2010, 55, 1-6.	2.0	29
86	Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl, 2010, 55, 55-73.	2.0	87
87	Insect endosymbionts: manipulators of insect herbivore trophic interactions?. Protoplasma, 2010, 244, 25-51.	2.1	54
88	Spatial heterogeneity in the relative impacts of foliar quality and predation pressure on red oak, Quercus rubra, arthropod communities. Oecologia, 2010, 164, 1017-1027.	2.0	6
89	Call-induction in insects: evolutionary dead-end or speciation driver?. BMC Evolutionary Biology, 2010, 10, 257.	3.2	54
90	Natural enemy diversity and biological control: Making sense of the context-dependency. Basic and Applied Ecology, 2010, 11, 657-668.	2.7	115
91	Relationship between the ability to penetrate complex webs of Tetranychus spider mites and the ability of thread-cutting behavior in phytoseiid predatory mites. Biological Control, 2010, 53, 273-279.	3.0	9

#	Article	IF	CITATIONS
92	Multi-agent modeling and simulation of an Aedes aegypti mosquito population. Environmental Modelling and Software, 2010, 25, 1490-1507.	4.5	59
93	Spatial Variation in the Strength of a Trophic Cascade Involving <i>Ruellia nudiflora</i> (Acanthaceae), an Insect Seed Predator and Associated Parasitoid Fauna in Mexico. Biotropica, 2010, 42, 180-187.	1.6	27
94	Leaf miners: The hidden herbivores. Austral Ecology, 2010, 35, 300-313.	1.5	55
95	Inhibitory effects of permethrin on flight responses, hostâ€searching, and foraging behaviour of <i>Cotesia vestalis</i> (Hymenoptera: Braconidae), a larval parasitoid of <i>Plutella xylostella</i> (Lepidoptera: Plutellidae). Journal of Applied Entomology, 2010, 134, 313-322.	1.8	5
96	Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecological Entomology, 2010, 35, 623-638.	2.2	118
97	Environmental Dependence of Thermal Reaction Norms: Host Plant Quality Can Reverse the Temperatureâ€Size Rule. American Naturalist, 2010, 175, 1-10.	2.1	128
98	Biodiversity patterns and trophic interactions in human-dominated tropical landscapes in Sulawesi (Indonesia): plants, arthropods and vertebrates. Environmental Science and Engineering, 2010, , 15-71.	0.2	10
99	Drivers of host plant shifts in the leaf beetle <i>Chrysomela lapponica</i> : natural enemies or competition?. Ecological Entomology, 2010, 35, 611-622.	2.2	16
100	Emergence asynchrony between herbivores leads to apparent competition in the field. Ecology, 2011,	3.2	16
	92, 2020-2026.		
101	Acquired Natural Enemies of the Weed Biological Control Agent <i>Oxyops vitiosa</i> (Colepotera:) Tj ETQq1 1 C	.784314 r 0.5	gBŢ /Overloc
101 102	 92, 2020-2026. Acquired Natural Enemies of the Weed Biological Control Agent<i>Oxyops vitiosa</i> (Colepotera:) Tj ETQq1 1 0 Parasitic assemblages on leafminers: a comparison of structure and function among host orders. Studies on Neotropical Fauna and Environment, 2011, 46, 11-22. 	.784314 r 0.5	gBŢ /Overlac 9
101 102 103	 92, 2020-2026. Acquired Natural Enemies of the Weed Biological Control Agent<i>Oxyops vitiosa</i> (Colepotera:) Tj ETQq110 Parasitic assemblages on leafminers: a comparison of structure and function among host orders. Studies on Neotropical Fauna and Environment, 2011, 46, 11-22. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasileira De Botanica, 2011, 34, 343-358. 	.784314 r 0.5 1.0 1.3	gBŢ /Overloc 9 17
101 102 103 104	 92, 2020-2026. Acquired Natural Enemies of the Weed Biological Control Agent <i>Oxyops vitiosa </i> (Colepotera:) Tj ETQq1 1 O Parasitic assemblages on leafminers: a comparison of structure and function among host orders. Studies on Neotropical Fauna and Environment, 2011, 46, 11-22. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasileira De Botanica, 2011, 34, 343-358. The constraints of selecting for insect resistance in plantation trees. Agricultural and Forest Entomology, 2011, 13, 111-120. 	.784314 r 1.0 1.3 1.3	gBŢ /Overloc 9 17 25
101 102 103 104	92, 2020-2026. Acquired Natural Enemies of the Weed Biological Control Agent <i>Oxyops vitiosa</i> (Colepotera:) Tj ETQq110 Parasitic assemblages on leafminers: a comparison of structure and function among host orders. Studies on Neotropical Fauna and Environment, 2011, 46, 11-22. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasileira De Botanica, 2011, 34, 343-358. The constraints of selecting for insect resistance in plantation trees. Agricultural and Forest Entomology, 2011, 13, 111-120. Can we predict indirect interactions from quantitative food webs? - an experimental approach. Journal of Animal Ecology, 2011, 80, 108-118.	.784314 r 1.0 1.3 1.3 2.8	gBŢ /Overloc 9 17 25 55
101 102 103 104 105	 92, 2020-2026. Acquired Natural Enemies of the Weed Biological Control Agent <i>> Oxyops vitiosa </i>> (Colepotera:) Tj ETQq110 Parasitic assemblages on leafminers: a comparison of structure and function among host orders. Studies on Neotropical Fauna and Environment, 2011, 46, 11-22. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasileira De Botanica, 2011, 34, 343-358. The constraints of selecting for insect resistance in plantation trees. Agricultural and Forest Entomology, 2011, 13, 111-120. Can we predict indirect interactions from quantitative food webs? - an experimental approach. Journal of Animal Ecology, 2011, 80, 108-118. Geographic patterns in the distribution of social systems in terrestrial arthropods. Biological Reviews, 2011, 86, 475-491. 	.784314 r 1.0 1.3 1.3 2.8 10.4	gBŢ /Overloc 9 17 25 55 63
101 102 103 104 105 106	 92, 2020-2026. Acquired Natural Enemies of the Weed Biological Control Agent <i>>Oxyops vitiosa </i> (Colepotera:) Tj ETQq1 1 C Parasitic assemblages on leafminers: a comparison of structure and function among host orders. Studies on Neotropical Fauna and Environment, 2011, 46, 11-22. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasileira De Botanica, 2011, 34, 343-358. The constraints of selecting for insect resistance in plantation trees. Agricultural and Forest Entomology, 2011, 13, 111-120. Can we predict indirect interactions from quantitative food webs? - an experimental approach. Journal of Animal Ecology, 2011, 80, 108-118. Geographic patterns in the distribution of social systems in terrestrial arthropods. Biological Reviews, 2011, 86, 475-491. The latitudinal herbivoryâCdefence hypothesis takes a detour on the map. New Phytologist, 2011, 191, 589-592. 	.784314 r 1.0 1.3 1.3 2.8 10.4 7.3	gBJ /Overloc 9 17 25 55 63 62
101 102 103 104 105 106 107	 92, 2020-2026. Acquired Natural Enemies of the Weed Biological Control Agent<i>Oxyops vitiosa</i> (I) (Colepotera:) TJ ETQq1 1 C Parasitic assemblages on leafminers: a comparison of structure and function among host orders. Studies on Neotropical Fauna and Environment, 2011, 46, 11-22. Morphological, anatomical and biochemical studies on the foliar galls of Alstonia scholaris (Apocynaceae). Revista Brasileira De Botanica, 2011, 34, 343-358. The constraints of selecting for insect resistance in plantation trees. Agricultural and Forest Entomology, 2011, 13, 111-120. Can we predict indirect interactions from quantitative food webs? - an experimental approach. Journal of Animal Ecology, 2011, 80, 108-118. Geographic patterns in the distribution of social systems in terrestrial arthropods. Biological Reviews, 2011, 86, 475-491. The latitudinal herbivoryâCdefence hypothesis takes a detour on the map. New Phytologist, 2011, 191, 589-592. Quantifying predation on folivorous insect larvae: the perspective of life-history evolution. Biological Journal of the Linnean Society, 2011, 104, 1-18. 	.784314 r 1.0 1.3 1.3 2.8 10.4 7.3 1.6	gBJ /Overloc 9 17 25 55 63 62 76

		CITATION R	Report	
#	Article		IF	CITATIONS
110	Entomopathogen biodiversity increases host mortality. Biological Control, 2011, 59, 27	7-283.	3.0	38
111	Evaluation of mortality factors using life table analysis of Gratiana boliviana, a biologica agent of tropical soda apple in Florida. Biological Control, 2011, 59, 354-360.	l control	3.0	9
112	Detection of refuge from enemies through phenological mismatching in multitrophic in requires season-wide estimation of host abundance. Evolutionary Ecology, 2011, 25, 48	teractions 35-498.	1.2	6
113	Avoiding incidental predation by mammalian herbivores: accurate detection and efficier aphids. Die Naturwissenschaften, 2011, 98, 731-738.	it response in	1.6	26
114	Distinct antimicrobial activities in aphid galls onPistacia atlantica. Plant Signaling and B 6, 2008-2012.	ehavior, 2011,	2.4	23
115	Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores. 3, 573-592.	Insects, 2012,	2.2	43
116	Effects of Banana Plantation Pesticides on the Immune Response of Lepidopteran Larva Parasitoid Natural Enemies. Insects, 2012, 3, 616-628.	e and Their	2.2	13
117	Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua No Journal of Tropical Ecology, 2012, 28, 331-341.	ew Guinea.	1.1	100
118	The nonâ€ŧarget impact of spinosyns on beneficial arthropods. Pest Management Scier 1523-1536.	ıce, 2012, 68,	3.4	297
120	Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Di suzukii. Biological Control, 2012, 63, 40-47.	rosophila	3.0	185
121	High temporal consistency in quantitative food web structure in the face of extreme sp turnover. Oikos, 2012, 121, 1771-1782.	ecies	2.7	37
122	Solar radiation directly affects larval performance of a forest insect. Ecological Entomol 38, 553-559.	ogy, 2013,	2.2	23
123	Immunocompetence increases with larval body size in a phytophagous moth. Physiolog Entomology, 2013, 38, 219-225.	ical	1.5	34
124	Costly leaf shelters protect moth pupae from parasitoids. Arthropod-Plant Interactions, 445-453.	2013, 7,	1.1	17
125	Aspects of the Natural History of <i>Neochlamisus</i> (Coleoptera: Chrysomelidae) II: Characterization of Parasitoid Guilds from Different Plant Hosts. Annals of the Entomole Society of America, 2013, 106, 818-831.	ogical	2.5	3
126	Plant neighbours mediate bird predation effects on arthropod abundance and herbivory Entomology, 2013, 38, 448-455.	. Ecological	2.2	7
127	Geographical variation in parasitism shapes larval immune function in a phytophagous i Naturwissenschaften, 2013, 100, 1149-1161.	nsect. Die	1.6	17
128	Forest remnants contribute to parasitoid conservation: experimental evaluation of para leafminer host. Journal of Insect Conservation, 2013, 17, 1137-1144.	sitism on a	1.4	13

#	Article	IF	CITATIONS
129	Optimal Control and Cold War Dynamics between Plant and Herbivore. American Naturalist, 2013, 182, E25-E39.	2.1	3
130	Complementary effects of resident natural enemies on the suppression of the introduced moth Epiphyas postvittana. Biological Control, 2013, 64, 125-131.	3.0	20
131	Parasitoid polydnaviruses: evolution, pathology and applications. Biocontrol Science and Technology, 2013, 23, 1-61.	1.3	54
132	Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora. Oecologia, 2013, 173, 871-880.	2.0	10
133	Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest. Oecologia, 2013, 173, 521-532.	2.0	50
134	Nutritional state of the pollen beetle parasitoid Tersilochus heterocerus foraging in the field. BioControl, 2013, 58, 17-26.	2.0	20
135	Suitability of the Pest-Plant System <i>Tuta absoluta</i> (Lepidoptera: Gelechiidae)-Tomato for <i>Trichogramma</i> (Hymenoptera: Trichogrammatidae) Parasitoids and Insights for Biological Control. Journal of Economic Entomology, 2013, 106, 2310-2321.	1.8	77
136	Interactions between conventional and organic farming for biocontrol services across the landscape. Ecological Applications, 2013, 23, 1531-1543.	3.8	49
137	Can Climate Change Trigger Massive Diversity Cascades in Terrestrial Ecosystems?. Diversity, 2013, 5, 479-504.	1.7	15
138	Spatial variation in the magnitude and functional form of densityâ€dependent processes on the large skipper butterfly <i>Ochlodes sylvanus</i> . Ecological Entomology, 2013, 38, 608-616.	2.2	11
139	Phenotypic divergence in reproductive traits of a moth population experiencing a phenological shift. Ecology and Evolution, 2013, 3, 5098-5108.	1.9	28
140	Noncrop flowering plants restore topâ€down herbivore control in agricultural fields. Ecology and Evolution, 2013, 3, 2634-2646.	1.9	46
141	Spud Web. , 2013, , 271-290.		0
142	Host dynamics determine responses to disease: additive vs. compensatory mortality in a grasshopper–pathogen system. Ecology, 2014, 95, 2579-2588.	3.2	18
143	Time is of the essence: direct and indirect effects of plant ontogenetic trajectories on higher trophic levels. Ecology, 2014, 95, 2589-2602.	3.2	45
144	<i>Myrmeleon brasiliensis</i> 's Parasitoids (Neuroptera: Myrmeleontidae) in the South Pantanal, Brazil. Florida Entomologist, 2014, 97, 313-316.	0.5	3
145	The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biological Reviews, 2014, 89, 1021-1041.	10.4	62
146	Solving the puzzle of <i>Pringleophaga</i> – threatened, keystone detritivores in the subâ€Antarctic. Insect Conservation and Diversity, 2014, 7, 308-313.	3.0	11

#	Article	IF	CITATIONS
147	A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl, 2014, 59, 175-183.	2.0	102
148	Mortality effects of the parasitoid flesh fly Blaesoxipha japonensis (Diptera: Sarcophagidae) in relation to body size of the adult grasshopper Parapodisma tanbaensis (Orthoptera: Catantopidae). Applied Entomology and Zoology, 2014, 49, 171-176.	1.2	5
149	Bottom-up impact on the cecidomyiid leaf galler and its parasitism in a tropical rainforest. Oecologia, 2014, 176, 511-520.	2.0	12
150	Resident spiders as predators of the recently introduced light brown apple moth, <i><scp>E</scp>piphyas postvittana</i> . Entomologia Experimentalis Et Applicata, 2014, 151, 65-74.	1.4	11
151	Defense strategies used by two sympatric vineyard moth pests. Journal of Insect Physiology, 2014, 64, 54-61.	2.0	22
152	New and Revised Life History of the Florida Hairstreak <i>Eumaeus atala</i> (Lepidoptera: Lycaenidae) with Notes on its Current Conservation Status. Florida Entomologist, 2015, 98, 1134-1147.	0.5	14
153	Altitudinal patterns of abundances and parasitism in frugivorous drosophilids in west Java, Indonesia. Journal of Natural History, 2015, 49, 1627-1639.	0.5	11
154	Behaviour and Population Dynamics of Entomopathogenic Nematodes Following Application. , 2015, , 57-95.		22
155	Parasitoid wasps indirectly suppress seed production by stimulating consumption rates of their seedâ€feeding hosts. Journal of Animal Ecology, 2015, 84, 1103-1111.	2.8	22
156	Immune benefits from alternative host plants could maintain polyphagy in a phytophagous insect. Oecologia, 2015, 177, 467-475.	2.0	24
157	Species differences in bumblebee immune response predict developmental success of a parasitoid fly. Oecologia, 2015, 178, 1017-1032.	2.0	9
158	The cost of autotomy caused by the parasitoid fly <i>Blaesoxipha japonensis</i> (Diptera:) Tj ETQq1 1 0.784314 Ecological Research, 2015, 30, 33-39.	rgBT /Ove 1.5	rlock 10 Tf 5 5
159	Habitat restoration affects immature stages of a wetland butterfly through indirect effects on predation. Ecology, 2015, 96, 1761-1767.	3.2	12
160	Scale-dependent, contrasting effects of habitat fragmentation on host-natural enemy trophic interactions. Landscape Ecology, 2015, 30, 1371-1385.	4.2	1
161	Can Beauveria bassiana Bals. (Vuill) (Ascomycetes: Hypocreales) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) be used together for improved biological control of Bactericera cockerelli (Hemiptera: Triozidae)?. Biological Control, 2015, 90, 42-48.	3.0	27
162	Lethal and Demographic Impact of Chlorpyrifos and Spinosad on the Ectoparasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Neotropical Entomology, 2015, 44, 626-633.	1.2	8
163	Changes in host–parasitoid food web structure with elevation. Journal of Animal Ecology, 2015, 84, 353-363.	2.8	63
164	Maternal care behaviour and kin discrimination in the subsocial bug <scp><i>T</i></scp> <i>ectocoris diophthalmus</i> (<scp>H</scp> emiptera: <scp>S</scp> cutelleridae). Austral Entomology, 2016, 55, 170-176	1.4	5

		CITATION REPORT	
#	Article	IF	CITATIONS
165	Insect Pest Proteomics and Its Potential Application in Pest Control Management. , 2016, , 267-287.		3
166	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	4.1	388
167	Contrasting patterns of selection between <scp>MHC</scp> I and <scp>II</scp> across populations of Humboldt and Magellanic penguins. Ecology and Evolution, 2016, 6, 7498-7510.	1.9	13
168	Shelter-Building Insects and Their Role as Ecosystem Engineers. Neotropical Entomology, 2016, 45, 1-12.	1.2	56
169	Genetic specificity of a plant–insect food web: Implications for linking genetic variation to network complexity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2128-2133.	7.1	63
170	Molecular detection of <i>Cotesia vestalis</i> (Hymenoptera: Braconidae) in the beet webworm <i>Loxostege sticticalis</i> L. (Lepidoptera: Crambidae). Journal of Applied Entomology, 2016, 140, 232-235.	1.8	2
171	Temporal Patterns in the Abundance and Species Composition of Spiders on Host Plants of the Invasive Moth Epiphyas postvittana (Lepidoptera: Tortricidae). Environmental Entomology, 2017, 46, 502-510.	1.4	6
172	Effects of carotenoid sequestration on a caterpillar's cryptic coloration and susceptibility to predation. Entomologia Experimentalis Et Applicata, 2017, 163, 177-183.	1.4	4
173	Life history of Paraselenis (Spaethiechoma) dichroa (Germar, 1824) (Coleoptera: Chrysomelidae:) Tj ETQqO 0 0 531-543.	rgBT /Over 0.5	lock 10 Tf 50 2
174	Native birds exploit leaf-mining moth larvae using a new North American host, non-native <i>Lonicera maackii</i> . Ecoscience, 0, , 1-10.	1.4	2
175	Effect of habitat type and soil moisture on pupal stage of a Mediterranean forest pest (<i>Thaumetopoea pityocampa</i>). Agricultural and Forest Entomology, 2017, 19, 130-138.	1.3	18
176	Acceptability ofDiorhabda carinulata, an Introduced Biological Control Agent ofTamarix, as Prey for Selected Resident Native Arthropod Predators. Southwestern Entomologist, 2017, 42, 665-676.	0.2	6
177	Can hyperparasitoids cause largeâ€scale outbreaks of insect herbivores?. Oikos, 2018, 127, 1344-1354.	2.7	6
178	Plant and herbivore ontogeny interact to shape the preference, performance and chemical defense of a specialist herbivore. Oecologia, 2018, 187, 401-412.	2.0	33
179	Related herbivore species show similar temporal dynamics. Journal of Animal Ecology, 2018, 87, 801-812.	2.8	8
180	Latitudinal variation in responses of a forest herbivore and its egg parasitoids to experimental warming. Oecologia, 2018, 186, 869-881.	2.0	5
181	Effects of phenological synchronization on caterpillar early-instar survival under a changing climate. Canadian Journal of Forest Research, 2018, 48, 247-254.	1.7	35
182	Bottomâ€up vs. topâ€down effects on terrestrial insect herbivores: a metaâ€analysis. Ecology Letters, 2018, 21, 138-150.	6.4	184

#	Article	IF	CITATIONS
183	Effects of Dietary β-Carotene on the Melanization Response and Growth Rate of Trichoplusia ni (Lepidoptera: Noctuidae). Environmental Entomology, 2018, 47, 1618-1622.	1.4	1
184	Temporal variation in bottom-up and top-down effects differ among herbivores with different seasonality. Basic and Applied Ecology, 2018, 33, 49-57.	2.7	3
185	A random survival forest illustrates the importance of natural enemies compared to host plant quality on leaf beetle survival rates. BMC Ecology, 2018, 18, 33.	3.0	5
186	When warmer means weaker: high temperatures reduce behavioural and immune defences of the larvae of a major grapevine pest. Journal of Pest Science, 2018, 91, 1315-1326.	3.7	23
187	Cascading effects of soil type on assemblage size and structure in a diverse herbivore community. Ecology, 2018, 99, 1866-1877.	3.2	5
188	The influence of conopid flies on bumble bee colony productivity under different food resource conditions. Ecological Monographs, 2018, 88, 653-671.	5.4	8
189	Zucchini Yellow Mosaic Virus Infection Limits Establishment and Severity of Powdery Mildew in Wild Populations of Cucurbita pepo. Frontiers in Plant Science, 2018, 9, 792.	3.6	19
190	Effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on the immune response of Octodonta nipae (Coleoptera: Chrysomelidae). Journal of Insect Physiology, 2018, 109, 125-137.	2.0	14
191	Antiâ€insect defenses of <i><scp>A</scp>chnatherum robustum</i> (sleepygrass) provided by two <i>Epichloë</i> endophyte species. Entomologia Experimentalis Et Applicata, 2018, 166, 474-482.	1.4	12
192	Morphology, ultrastructure, and chemical compounds of the osmeterium of Heraclides thoas (Lepidoptera: Papilionidae). Protoplasma, 2018, 255, 1693-1702.	2.1	6
193	An Onychophoran and Its Putative Lepidopteran Mimic in the Arboreal Bryosphere of an Ecuadorian Cloud Forest. American Entomologist, 2018, 64, 94-101.	0.2	0
194	Quantifying parasitoid and predator controls on rice hopper eggs using a dynamic stageâ€structured model and field data. Journal of Applied Ecology, 2019, 56, 2536-2550.	4.0	2
195	Parasitoid wasp communities on oil palm plantation: Effects of natural habitat existence are obscured by lepidopteran abundance. Journal of Asia-Pacific Entomology, 2019, 22, 903-907.	0.9	6
196	Managing sustainable agroecosystem: Study on diversity of parasitic Hymenoptera on riparian sites of oil palm and rubber plantation. IOP Conference Series: Earth and Environmental Science, 2019, 325, 012002.	0.3	1
197	Hearing in Caterpillars of the Monarch Butterfly (<i>Danaus plexippus</i>). Journal of Experimental Biology, 2019, 222, .	1.7	13
198	Does chemistry make a difference? Milkweed butterfly sequestered cardenolides as a defense against parasitoid wasps. Arthropod-Plant Interactions, 2019, 13, 835-852.	1.1	7
199	Suboptimal oviposition of tephritid flies supports parasitoid wasps. Ecological Entomology, 2019, 44, 717-720.	2.2	3
200	Acoustic stimuli from predators trigger behavioural responses in aggregate caterpillars. Austral Ecology, 2019, 44, 880-890.	1.5	8

#	Article	IF	CITATIONS
201	Causes of mortality at different stages of Cactoblastis cactorum in the native range. BioControl, 2019, 64, 249-261.	2.0	5
202	Parasitoid wasps regulate population growth of fungus gnats genus Neoempheria Osten Sacken (Diptera: Mycetophilidae) in shiitake mushroom cultivation. Biological Control, 2019, 134, 15-22.	3.0	8
203	Perennial flower strips for pest control in organic apple orchards - A pan-European study. Agriculture, Ecosystems and Environment, 2019, 278, 43-53.	5.3	48
204	The ecological and evolutionary importance of nectarâ€secreting galls. Ecosphere, 2019, 10, e02670.	2.2	19
205	Latitudinal variation in the phenological responses of eastern tent caterpillars and their egg parasitoids. Ecological Entomology, 2019, 44, 50-61.	2.2	12
206	Sublethal effects enhance detrimental impact of insecticides on non-target organisms: A quantitative synthesis in parasitoids. Chemosphere, 2019, 214, 371-378.	8.2	14
207	Long-term changes in mole cricket body size associated with enemy-free space and a novel range. Biological Invasions, 2020, 22, 773-782.	2.4	1
208	Testing the effect of different insecticides on Myzus persicae (Homoptera: Aphididae) in field mustard (Brassicae campestris L.) Czern for possible consideration in an IPM strategy. International Journal of Tropical Insect Science, 2020, 40, 225-231.	1.0	3
209	Predation and parasitism on herbivorous insects change in opposite directions in a latitudinal gradient crossing a boreal forest zone. Journal of Animal Ecology, 2020, 89, 2946-2957.	2.8	14
210	The Evolution of Endophagy in Herbivorous Insects. Frontiers in Plant Science, 2020, 11, 581816.	3.6	24
211	Exposure to predators, but not intraspecific competitors, heightens herbivore susceptibility to entomopathogens. Biological Control, 2020, 151, 104403.	3.0	5
212	Modeling Climatic Influences on Three Parasitoids of Low-Density Spruce Budworm Populations. Part 1: Tranosema rostrale (Hymenoptera: Ichneumonidae). Forests, 2020, 11, 846.	2.1	5
213	Effect of Cultural Practices on Neopamera bilobata in Relation to Fruit Injury and Marketable Yields in Organic Strawberries. Insects, 2020, 11, 843.	2.2	6
214	Loss of consumers constrains phenotypic evolution in the resulting food web. Evolution Letters, 2020, 4, 266-277.	3.3	4
215	Phenological responses in a sycamore–aphid–parasitoid system and consequences for aphid population dynamics: A 20Âyear case study. Global Change Biology, 2020, 26, 2814-2828.	9.5	20
216	What drives gallers and parasitoids interacting on a host plant? A network approach revealing morphological coupling as the main factor. Ecological Entomology, 2021, 46, 334-341.	2.2	4
217	Cycad killer, qu'est-ce que c'est? Dieback of Macrozamia communis on the south coast of New South Wales. Australian Journal of Botany, 2021, 69, 102.	0.6	0
218	Modeling Climatic Influences on Three Parasitoids of Low-Density Spruce Budworm Populations. Part 2: Meteorus trachynotus (Hymenoptera: Braconidae). Forests, 2021, 12, 155.	2.1	2

#	Article	IF	CITATIONS
219	Responses of native egg parasitoids to the invasive seed bug Leptoglossus occidentalis. Agricultural and Forest Entomology, 2021, 23, 323.	1.3	5
220	Assessing invertebrate herbivory in humanâ€modified tropical forest canopies. Ecology and Evolution, 2021, 11, 4012-4022.	1.9	5
221	Ecosystem services provided by aculeate wasps. Biological Reviews, 2021, 96, 1645-1675.	10.4	75
222	Low host specificity and broad geographical ranges in a community of parasitic nonâ€pollinating fig wasps (Sycoryctinae; Chalcidoidea). Journal of Animal Ecology, 2021, 90, 1678-1690.	2.8	4
223	Non-consumptive effects of Encarsia formosa on the reproduction and metabolism of the whitefly Bemisia tabaci. BioControl, 2021, 66, 639-648.	2.0	0
224	Latitudinal gradient in the intensity of biotic interactions in terrestrial ecosystems: Sources of variation and differences from the diversity gradient revealed by metaâ€analysis. Ecology Letters, 2021, 24, 2506-2520.	6.4	47
225	Recent Progress Regarding the Molecular Aspects of Insect Gall Formation. International Journal of Molecular Sciences, 2021, 22, 9424.	4.1	16
226	Feeding guild determines strength of top-down forces in multitrophic system experiencing bottom-up constraints. Science of the Total Environment, 2021, 793, 148544.	8.0	9
227	Ecological and genetic interactions in Drosophila-parasitoids communities: a case study with D. melanogaster, D. simulans and their common Leptopilina parasitoids in south-eastern France. Contemporary Issues in Genetics and Evolution, 2004, , 181-194.	0.9	15
228	Evolution and Origin of Polydnavirus Virulence Genes. , 2012, , 63-78.		12
229	Ichneumonoidea (Hymenoptera) Community Diversity in an Agricultural Environment in the State of Yucatan, Mexico. Environmental Entomology, 2006, 35, 1286-1297.	1.4	7
231	Age-specific life table of swallowtail butterfly Papilio demoleus (Lepidoptera: Papilionidae) in dry and wet seasons. Biodiversitas, 2016, 13, .	0.6	3
232	Survival to Parasitoids in an Insect Hosting Defensive Symbionts: A Multivariate Approach to Polymorphic Traits Affecting Host Use by Its Natural Enemy. PLoS ONE, 2013, 8, e60708.	2.5	14
233	Indirect Interactions in the High Arctic. PLoS ONE, 2013, 8, e67367.	2.5	28
234	Lobesia botrana Larvae Develop Faster in the Presence of Parasitoids. PLoS ONE, 2013, 8, e72568.	2.5	7
235	Quantifying the Impact of Woodpecker Predation on Population Dynamics of the Emerald Ash Borer (Agrilus planipennis). PLoS ONE, 2013, 8, e83491.	2.5	27
236	Invasive insects in Europe - the role of climate change and global trade. Dissertationes Forestales, 2008, 2008, .	0.1	6
237	Changing Leaf Geometry Provides a Refuge from a Parasitoid for a Leaf Miner. Zoological Science, 2019, 36, 31.	0.7	5

#	Article	IF	CITATIONS
238	ParasitoÃ ⁻ des et lutte biologique: paradigme ou panacée ?. VertigO: La Revue Electronique En Sciences De L'environnement, 2001, , .	0.1	5
240	The role of geography and host abundance in the distribution of parasitoids of an alien pest. PeerJ, 2016, 4, e1592.	2.0	7
241	Curculio Curculis lupus: biology, behavior and morphology of immatures of the cannibal weevil <i>Anchylorhynchus eriospathae</i> G. G. Bondar, 1943. PeerJ, 2014, 2, e502.	2.0	6
242	Predicting Parasitoid Accumulation of Potential Brazilian Peppertree Biological Control Agents from Assessments in the Native and Invaded Ranges. SSRN Electronic Journal, 0, , .	0.4	0
244	Use of an exotic host plant shifts immunity, chemical defense, and viral burden in wild populations of a specialist insect herbivore. Ecology and Evolution, 2022, 12, e8723.	1.9	15
245	Parasitoid impairment on the galling Lopesia sp. activity reflects on the cytological and histochemical profiles of the globoid bivalve-shaped gall on Mimosa gemmulata. Protoplasma, 2022, , 1.	2.1	0
246	What Drives Caterpillar Guilds on a Tree: Enemy Pressure, Leaf or Tree Growth, Genetic Traits, or Phylogenetic Neighbourhood?. Insects, 2022, 13, 367.	2.2	3
247	Hanging by a thread: Post-attack defense of caterpillars. Journal of Asia-Pacific Entomology, 2022, 25, 101893.	0.9	1
248	Sexually dimorphic galls induced on leaflets of Matayba guianensis (Sapindaceae): a rare phenomenon occurring in Diptera (Cecidomyiidae). Die Naturwissenschaften, 2022, 109, 10.	1.6	0
249	Dietâ€mediated immune response to parasitoid attacks on a caterpillar with a broad diet breadth. Ecological Entomology, 2022, 47, 636-644.	2.2	1
258	Natural History and Ecology of Caterpillar Parasitoids. Fascinating Life Sciences, 2022, , 225-272.	0.9	4
260	On Being a Caterpillar: Structure, Function, Ecology, and Behavior. Fascinating Life Sciences, 2022, , 11-62.	0.9	3
261	Do patterns of insect mortality in temperate and tropical zones have broader implications for insect ecology and pest management?. PeerJ, 2022, 10, e13340.	2.0	2
262	Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types. PLoS ONE, 2022, 17, e0264881.	2.5	2
263	Seasonal fluctuation and mortality schedule for immatures of Hypna clytemnestra (Butler), an uncommon neotropical butterfly (Nymphalidae: Charaxinae). The Journal of Research on the Lepidoptera, 2003, 37, 37-45.	0.1	5
264	Predicting parasitoid accumulation by potential Brazilian peppertree biological control agents from assessments in the native and invaded ranges. Biological Control, 2022, 173, 104981.	3.0	1
265	The insecticidal potential of Bacillus velezensis CE 100 against Dasineura jujubifolia Jiao & Bu (Diptera: Cecidomyiidae) larvae infestation and its role in the enhancement of yield and fruit quality of jujube (Zizyphus jujuba Miller var. inermis Rehder). Crop Protection, 2023, 163, 106098.	2.1	7
266	Host Range and Phenology of Sugarcane Aphid (Hemiptera: Aphididae) and Natural Enemy Community in Sorghum in Haiti. Journal of Economic Entomology, 2022, 115, 1956-1963.	1.8	2

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
267	Potential of variegated lady beetle <scp><i>Hippodamia variegata</i></scp> in management of invasive tomato potato psyllid <scp><i>Bactericera cockerelli</i></scp> . Pest Management Science, 2023, 79, 821-832.	3.4	6
268	Higher temperatures reduce the efficacy of a key biocontrol parasitoid. Biological Control, 2022, 176, 105079.	3.0	3
269	Development and reproduction of a native generalist predator, Coccinella transversalis (Coleoptera:) Tj biocontrol potential. Biological Control, 2022, 176, 105108.	ETQq0 0 0 rgBT /Ov 3.0	erlock 10 Tf 5
270	Pupation site preference (PSP) variation in cold adapted, warm adapted, and generalist Drosophila species. Acta Ecologica Sinica, 2022, , .	1.9	0
271	Use of an exotic host plant reduces viral burden in a native insect herbivore. Ecology Letters, 2023, 26, 425-436.	6.4	5
272	The role of host plant usage and the accumulation of toxic secondary chemical compounds across the life cycle of a passion vine specialist butterfly. Ecological Entomology, 2023, 48, 389-395.	2.2	1
273	Predator efficacy and attraction to herbivore-induced volatiles determine insect pest selection of inferior host plant. IScience, 2023, 26, 106077.	4.1	2
274	Tomato Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae) in Australia: Incursion, Potential Impact and Opportunities for Biological Control. Insects, 2023, 14, 263.	2.2	1
275	First Comprehensive Description of Salt Marsh Skipper (Panoquina panoquin) (Hesperiidae) Natural History: Confirmation of a Second Host Plant In Virginia Salt Marshes. Journal of the Lepidopterists' Society, 2023, 77, .	0.2	0
276	A preliminary study of pupation behavior of common banded awl, Hasora chromus (Hesperiidae:) Tj ETQ	q1 1 0.784314 rgB 1.0	Г /Overlock
277	Dietary Challenges for Parasitoid Wasps (Hymenoptera: Ichneumonoidea); Coping with Toxic Hosts, or Not?. Toxins, 2023, 15, 424.	3.4	0
278	Definitions of parasitism, considering its potentially opposing effects at different levels of hierarchical organization. Parasitology, 2023, 150, 761-768.	1.5	3
279	Floral strips adjacent to Manitoba crop fields attract beneficial insects shortly after establishment regardless of management type or landscape context. Agricultural and Forest Entomology, 2024, 26, 18-37.	1.3	1
280	Geographical variation in parasitoid communities and the cause of enemy-free space in a range-expanding myrmecophilous lycaenid butterfly. Biological Journal of the Linnean Society, 0, , .	1.6	0
281	El Niño oscillations impact anti-predator defences to alter survival of an herbivorous beetle in a neotropical wet forest. Journal of Tropical Ecology, 2023, 39, .	1.1	0
282	The formation of a rolling larval chamber as the unique structural gall of a new species of cynipid gall wasps. Scientific Reports, 2023, 13, .	3.3	0
283	Pesticide Residue and Food Safety: Retrospection and Prospects. , 2023, , 183-210.		0
285	Host-plant related effects on host feeding, parasitism and sex ratio of <i>Neochrysocharis formosa</i> (Westwood) (Hymenoptera, Eulophidae) attacking <i>Liriomyza huidobrensis</i> (Blanchard) (Diptera, Agromyzidae) leafminer. International Journal of Pest Management, 0, , 1-7.	1.8	0

#	Article	IF	CITATIONS
286	Pierid Butterflies, Legume Hostplants, and Parasitoids in Urban Areas of Southern Florida. Insects, 2024, 15, 123.	2.2	0
287	Global scientific progress and shortfalls in biological control of the fall armyworm Spodoptera frugiperda. Biological Control, 2024, 191, 105460.	3.0	0