Towards the development of a bioartificial pancreas: Ef beads with BTC3 cells

Cell Transplantation 6, 395-402 DOI: 10.1016/s0963-6897(97)00044-4

Citation Report

#	Article	IF	CITATIONS
1	Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped βTC3 mouse insulinoma cells. Biomaterials, 1999, 20, 2019-2027.	5.7	65
2	Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomedical Microdevices, 1999, 1, 131-138.	1.4	85
3	In Vitro Monitoring of Total Choline Levels in a Bioartificial Pancreas: 1H NMR Spectroscopic Studies of the Effects of Oxygen Level. Journal of Magnetic Resonance, 2000, 146, 49-57.	1.2	28
4	Engineering Challenges in the Development of an Encapsulated Cell System for Treatment of Type 1 Diabetes. Diabetes Technology and Therapeutics, 2000, 2, 81-89.	2.4	13
5	The effects of alginate composition on encapsulated Î ² TC3 cells. Biomaterials, 2001, 22, 1301-1310.	5.7	133
6	In Vitro Effects of Transcatheter Injection on Structure, Cell Viability, and Cell Metabolism in Fibroblast-impregnated Alginate Microspheres. Radiology, 2001, 220, 428-435.	3.6	12
7	Effects of Alginate Composition on the Growth and Overall Metabolic Activity of βTC3 Cells. Annals of the New York Academy of Sciences, 2002, 961, 130-133.	1.8	14
8	NMR properties of alginate microbeads. Biomaterials, 2003, 24, 4941-4948.	5.7	59
9	Effects of growth regulation on conditionally-transformed alginate-entrapped insulin secreting cell lines in vitro. Biomaterials, 2005, 26, 4633-4641.	5.7	26
10	Cell Encapsulation Therapy for Malignant Gliomas. Focus on Biotechnology, 2005, , 211-227.	0.4	1
11	Alginate assessment by NMR microscopy. Journal of Materials Science: Materials in Medicine, 2005, 16, 511-514.	1.7	9
12	Nonâ€Invasive Monitoring of a Bioartificial Pancreas <i>in Vitro</i> and <i>in Vivo</i> . Annals of the New York Academy of Sciences, 2001, 944, 83-95.	1.8	8
13	Improved activity of streptozotocin-selected insulinoma cells following microencapsulation and transplantation into diabetic mice. Cell Biology International, 2006, 30, 138-143.	1.4	8
14	Biochemical consequences of alginate encapsulation: A NMR study of insulin-secreting cells. Biomaterials, 2006, 27, 2577-2586.	5.7	29
15	In vivo stability and biocompatibility of implanted calcium alginate disks. Journal of Biomedical Materials Research - Part A, 2007, 83A, 1128-1137.	2.1	72
16	Non-invasive evaluation of alginate/poly-l-lysine/alginate microcapsules by magnetic resonance microscopy. Biomaterials, 2007, 28, 2438-2445.	5.7	27
17	Alginate Composition Effects on a Neural Stem Cell–Seeded Scaffold. Tissue Engineering - Part C: Methods, 2009, 15, 541-550.	1.1	80
18	Chemoselective Cross-Linking and Functionalization of Alginate via Staudinger Ligation. Biomacromolecules, 2009, 10, 3122-3129.	2.6	62

#	Article	IF	CITATIONS
19	Limited beneficial effects of perfluorocarbon emulsions on encapsulated cells in culture: Experimental and modeling studies. Journal of Biotechnology, 2010, 150, 232-239.	1.9	33
20	Alginate as an immobilization material for MAb production via encapsulated hybridoma cells. Critical Reviews in Biotechnology, 2010, 30, 145-159.	5.1	32
21	Bioconjugation via azide–Staudinger ligation: an overview. Chemical Society Reviews, 2011, 40, 4840.	18.7	271
22	Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation. Acta Biomaterialia, 2011, 7, 614-624.	4.1	82
23	Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsules to impart stability and permselectivity. Journal of Materials Chemistry B, 2014, 2, 8208-8219.	2.9	30
24	Microenvironmentâ€dependent respiration of Tâ€47D cells cultured in alginate biostructures. Cell Proliferation, 2015, 48, 318-329.	2.4	0
25	Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants. Journal of Biomedical Nanotechnology, 2016, 12, 1035-1047.	0.5	46
26	A 4.7 T/11.1 T NMR Compliant 50 nW Wirelessly Programmable Implant for Bioartificial Pancreas <i>In Vivo</i> Monitoring. IEEE Journal of Solid-State Circuits, 2016, 51, 473-483.	3.5	5
27	ENGINEERING CHALLENGES IN IMMUNOISOLATION DEVICE DEVELOPMENT. , 2000, , 331-350.		6
28	Cell Encapsulation. , 0, , 1348-1358.		Ο

CITATION REPORT