Role of ATP and Pi in the mechanism of insulin secretio line

Biochemical Journal 326, 807-814 DOI: 10.1042/bj3260807

Citation Report

#	Article	IF	CITATIONS
1	Adenosine 5′-triphosphate: an intracellular metabolic messenger. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 333-353.	1.0	46
2	Noninvasive Monitoring of Tissue-Engineered Constructs by Nuclear Magnetic Resonance Methodologies. Tissue Engineering, 1998, 4, 9-17.	4.6	24
3	Clucose-stimulated insulin secretion is not obligatorily linked to an increase in O2 consumption in βHC9 cells. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E1100-E1106.	3.5	10
4	Phosphotransfer reactions in the regulation of ATPâ€sensitive K ⁺ channels. FASEB Journal, 1998, 12, 523-529.	0.5	146
5	Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped βTC3 mouse insulinoma cells. Biomaterials, 1999, 20, 2019-2027.	11.4	65
6	Development of a bioartificial pancreas: I. Long-term propagation and basal and induced secretion from entrapped ?TC3 cell cultures. Biotechnology and Bioengineering, 1999, 66, 219-230.	3.3	56
7	Development of a bioartificial pancreas: II. Effects of oxygen on long-term entrapped ?TC3 cell cultures. Biotechnology and Bioengineering, 1999, 66, 231-237.	3.3	57
8	Effects of Short-Term Hypoxia on a Transformed Cell-Based Bioartificial Pancreatic Construct. Cell Transplantation, 2000, 9, 415-422.	2.5	27
9	In Vitro Monitoring of Total Choline Levels in a Bioartificial Pancreas: 1H NMR Spectroscopic Studies of the Effects of Oxygen Level. Journal of Magnetic Resonance, 2000, 146, 49-57.	2.1	28
10	Augmentation of basal insulin release from rat islets by preexposure to a high concentration of glucose. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E927-E940.	3.5	17
11	Engineering Challenges in the Development of an Encapsulated Cell System for Treatment of Type 1 Diabetes. Diabetes Technology and Therapeutics, 2000, 2, 81-89.	4.4	13
12	The effects of alginate composition on encapsulated \hat{I}^2 TC3 cells. Biomaterials, 2001, 22, 1301-1310.	11.4	133
13	NMR properties of alginate microbeads. Biomaterials, 2003, 24, 4941-4948.	11.4	59
14	Real-time detection of13C NMR labeling kinetics in perfused EMT6 mouse mammary tumor cells and PHC9 mouse insulinomas. Biotechnology and Bioengineering, 2004, 87, 835-848.	3.3	30
15	Magnetically labeled insulin-secreting cells. Biochemical and Biophysical Research Communications, 2004, 319, 569-569.	2.1	0
16	Alginate as a Carrier for Cell Immobilisation. Focus on Biotechnology, 2004, , 33-51.	0.4	17
17	Magnetically labeled insulin-secreting cells. Biochemical and Biophysical Research Communications, 2004, 319, 569-575.	2.1	12
18	Effects of Cryopreservation on Cell Viability and Insulin Secretion in a Model Tissue-Engineered Pancreatic Substitute (TEPS). Cell Transplantation, 2005, 14, 449-456.	2.5	35

CITATION REPORT

#	Article	IF	CITATIONS
19	Effects of growth regulation on conditionally-transformed alginate-entrapped insulin secreting cell lines in vitro. Biomaterials, 2005, 26, 4633-4641.	11.4	26
20	Alginate assessment by NMR microscopy. Journal of Materials Science: Materials in Medicine, 2005, 16, 511-514.	3.6	9
21	Effects of alginate encapsulation on mitochondrial activity. Journal of Materials Science: Materials in Medicine, 2005, 16, 521-524.	3.6	5
22	Nonâ€Invasive Monitoring of a Bioartificial Pancreas <i>in Vitro</i> and <i>in Vivo</i> . Annals of the New York Academy of Sciences, 2001, 944, 83-95.	3.8	8
23	NMR Spectroscopy in \hat{I}^2 Cell Engineering and Islet Transplantation. Annals of the New York Academy of Sciences, 2001, 944, 96-119.	3.8	35
24	Biochemical consequences of alginate encapsulation: A NMR study of insulin-secreting cells. Biomaterials, 2006, 27, 2577-2586.	11.4	29
25	Insights into the role of anaplerosis in insulin secretion: a 13C NMR study. Diabetologia, 2006, 49, 1338-1348.	6.3	22
26	Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations. Cryobiology, 2007, 55, 10-18.	0.7	27
28	Non-invasive evaluation of alginate/poly-l-lysine/alginate microcapsules by magnetic resonance microscopy. Biomaterials, 2007, 28, 2438-2445.	11.4	27
29	Modeling of encapsulated cell systems. Journal of Theoretical Biology, 2007, 244, 500-510.	1.7	33
30	The ATP/DNA Ratio Is a Better Indicator of Islet Cell Viability Than the ADP/ATP Ratio. Transplantation Proceedings, 2008, 40, 346-350.	0.6	31
31	Use of magnetic nanoparticles to monitor alginateâ€encapsulated βTCâ€ŧet cells. Magnetic Resonance in Medicine, 2009, 61, 282-290.	3.0	12
32	<i>In Vitro</i> and <i>In Vivo</i> Characterization of Nonbiomedical- and Biomedical-Grade Alginates for Articular Chondrocyte Transplantation. Tissue Engineering - Part C: Methods, 2011, 17, 829-842.	2.1	33
33	Artificial Organs Pancreas. , 2011, , 699-711.		1
34	Nutrient Regulation by Continuous Feeding for Large-scale Expansion of Mammalian Cells in Spheroids. Journal of Visualized Experiments, 2016, , .	0.3	2
35	Endocytosis of KATP Channels Drives Glucose-Stimulated Excitation of Pancreatic β Cells. Cell Reports, 2018, 22, 471-481.	6.4	16
36	Cellular and systemic mechanisms for glucose sensing and homeostasis. Pflugers Archiv European Journal of Physiology, 2020, 472, 1547-1561.	2.8	11
37	XPR1 Mediates the Pancreatic β-Cell Phosphate Flush. Diabetes, 2021, 70, 111-118.	0.6	3

#	Article	IF	CITATIONS
38	Non-Invasive Monitoring of Tissue-Engineered Pancreatic Constructs by NMR Techniques. Advances in Experimental Medicine and Biology, 2006, 585, 261-276.	1.6	9
39	Nutrient Regulation by Continuous Feeding Removes Limitations on Cell Yield in the Large-Scale Expansion of Mammalian Cell Spheroids. PLoS ONE, 2013, 8, e76611.	2.5	10
40	Artificial Organs Pancreas. , 2011, , 660-672.		0
41	Role of transporters in regulating mammalian intracellular inorganic phosphate. Frontiers in Pharmacology, 0, 14, .	3.5	4