THEORETICAL AND EMPIRICAL EXAMINATION OF DE

Annual Review of Ecology, Evolution, and Systematics 28, 269-288

DOI: 10.1146/annurev.ecolsys.28.1.269

Citation Report

#	Article	IF	CITATIONS
1	Effect of Different Light Regimes on Pre-Adult Fitness in Drosophila melanogaster Populations Reared in Constant Light for over Six Hundred Generations. Biological Rhythm Research, 1999, 30, 424-433.	0.4	16
2	GENETIC INFLUENCES ON EXPERIMENTAL POPULATION DYNAMICS OF THE LEAST KILLIFISH. Ecological Monographs, 2000, 70, 289-309.	2.4	34
3	Population Cycles Caused by Selection by Density Dependent Competitive Interactions. Bulletin of Mathematical Biology, 2000, 62, 1109-1136.	0.9	24
4	EXPERIMENTAL EXCURSIONS ON ADAPTIVE LANDSCAPES: DENSITY-DEPENDENT SELECTION ON EGG SIZE. Evolution; International Journal of Organic Evolution, 2000, 54, 1396-1403.	1.1	121
5	The Effect of Different Light Regimes on Adult Lifespan in Drosophila melanogaster Is Partly Mediated through Reproductive Output. Journal of Biological Rhythms, 2000, 15, 380-392.	1.4	63
6	EXPERIMENTAL EXCURSIONS ON ADAPTIVE LANDSCAPES: DENSITY-DEPENDENT SELECTION ON EGG SIZE. Evolution; International Journal of Organic Evolution, 2000, 54, 1396.	1.1	14
7	The evolution of dispersal rates in a heterogeneous time-periodic environment. Journal of Mathematical Biology, 2001, 43, 501-533.	0.8	140
8	K-selection, α-selection, effectiveness, and tolerance in competition: Density-dependent selection revisited. Journal of Genetics, 2001, 80, 63-75.	0.4	45
9	Runaway social games, genetic cycles driven by alternative male and female strategies, and the origin of morphs. Contemporary Issues in Genetics and Evolution, 2001, , 417-434.	0.9	20
10	CORRELATED RESPONSES TO SELECTION FOR FASTER DEVELOPMENT AND EARLY REPRODUCTION IN DROSOPHILA: THE EVOLUTION OF LARVAL TRAITS. Evolution; International Journal of Organic Evolution, 2001, 55, 1363-1372.	1.1	84
11	CORRELATED RESPONSES TO SELECTION FOR FASTER DEVELOPMENT AND EARLY REPRODUCTION IN DROSOPHILA: THE EVOLUTION OF LARVAL TRAITS. Evolution; International Journal of Organic Evolution, 2001, 55, 1363.	1.1	10
12	Relationship between Measures of Fitness and Time Scale in Evolution. Physical Review Letters, 2002, 88, 228101.	2.9	30
13	ECOLOGICAL BISTABILITY AND EVOLUTIONARY REVERSALS UNDER ASYMMETRICAL COMPETITION. Evolution; International Journal of Organic Evolution, 2002, 56, 1081.	1.1	3
14	DENSITY-DEPENDENT SELECTION ON GAMETE TRAITS IN THREE CONGENERIC SEA URCHINS. Ecology, 2002, 83, 464-479.	1.5	103
15	r- ANDK-SELECTION REVISITED: THE ROLE OF POPULATION REGULATION IN LIFE-HISTORY EVOLUTION. Ecology, 2002, 83, 1509-1520.	1.5	393
16	A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecological Entomology, 2002, 27, 396-402.	1.1	124
17	From Asexual to Eusocial Reproduction by Multilevel Selection by Density-Dependent Competitive Interactions. Theoretical Population Biology, 2002, 61, 171-195.	0.5	16
18	Developmental plasticity of the locomotor activity rhythm of Drosophila melanogaster. Journal of Insect Physiology, 2002, 48, 25-32.	0.9	20

#	Article	IF	CITATIONS
19	Evolutionary dynamics of exploited populations selected by density dependent competitive interactions. Ecological Modelling, 2002, 157, 51-68.	1.2	11
20	ECOLOGICAL BISTABILITY AND EVOLUTIONARY REVERSALS UNDER ASYMMETRICAL COMPETITION. Evolution; International Journal of Organic Evolution, 2002, 56, 1081-1090.	1.1	59
21	What have two decades of laboratory life-history evolution studies onDrosophila melanogaster taught us?. Journal of Genetics, 2003, 82, 45-76.	0.4	127
22	Effects of four generations of densityâ€dependent selection on life history traits and their plasticity in a clonally propagated plant. Journal of Evolutionary Biology, 2003, 16, 474-484.	0.8	32
23	Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. Journal of Evolutionary Biology, 2003, 16, 721-730.	0.8	106
24	Density-dependent populations require density-dependent elasticity analysis: an illustration using the LPA model of Tribolium. Journal of Animal Ecology, 2003, 72, 94-105.	1.3	32
25	Evolution of indefinite generation lengths. Biological Journal of the Linnean Society, 2003, 80, 269-280.	0.7	4
26	DETECTING ECOLOGICAL TRADE-OFFS USING SELECTION EXPERIMENTS. Ecology, 2003, 84, 1672-1678.	1.5	117
27	SYMMETRY BREAKING EFFECTS ON EQUILIBRIA AND TIME DEPENDENT REGIMES IN ADAPTIVE LOTKA–VOLTERRA SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 375-392.	0.7	5
28	Intraspecific variation in the strength of density dependence in aphid populations. Ecological Entomology, 2004, 29, 521-526.	1.1	48
29	VARIANCE AND SKEW OF THE DISTRIBUTION OF PLANT QUALITY INFLUENCE HERBIVORE POPULATION DYNAMICS. Ecology, 2004, 85, 686-693.	1.5	44
30	PREDICTABLE MODIFICATION OF BODY SIZE AND COMPETITIVE ABILITY FOLLOWING A HOST SHIFT BY A SEED BEETLE. Evolution; International Journal of Organic Evolution, 2004, 58, 2788.	1.1	10
31	PREDICTABLE MODIFICATION OF BODY SIZE AND COMPETITIVE ABILITY FOLLOWING A HOST SHIFT BY A SEED BEETLE. Evolution; International Journal of Organic Evolution, 2004, 58, 2788-2797.	1.1	81
32	Developmental Time and Thorax Length Differences Between the Cactophilic Species Drosophila Buzzatii and D. Koepferae Reared in Different Natural Hosts. Evolutionary Ecology, 2004, 18, 203-214.	0.5	16
33	Phenotypic plasticity in a maternal trait in red deer. Journal of Animal Ecology, 2005, 74, 387-396.	1.3	98
34	INTRAPARENTAL GAMETE COMPETITION PROVIDES A SELECTIVE ADVANTAGE FOR THE DEVELOPMENT OF HYBRID STERILITY VIA MEIOTIC DRIVE. Evolution; International Journal of Organic Evolution, 2005, 59, 1229-1236.	1.1	2
35	Three generations under low versus high neighborhood density affect the life history of a clonal plant through differential selection and genetic drift. Oikos, 2005, 108, 573-581.	1.2	11
36	r-Selected Traits in an Invasive Population. Evolutionary Ecology, 2005, 19, 255-274.	0.5	36

#	Article	IF	CITATIONS
37	How and When Selection Experiments Might Actually be Useful. Integrative and Comparative Biology, 2005, 45, 391-404.	0.9	110
38	INTRAPARENTAL GAMETE COMPETITION PROVIDES A SELECTIVE ADVANTAGE FOR THE DEVELOPMENT OF HYBRID STERILITY VIA MEIOTIC DRIVE. Evolution; International Journal of Organic Evolution, 2005, 59, 1229.	1.1	0
39	Pollution by conspecifics as a component of intraspecific competition among Aedes aegypti larvae. Ecological Entomology, 2005, 30, 1-7.	1.1	51
40	Temperatureâ€Related Genetic Changes in Laboratory Populations of Drosophila subobscura: Evidence against Simple Climaticâ€Based Explanations for Latitudinal Clines. American Naturalist, 2005, 165, 258-273.	1.0	69
41	Genetic and demographic implications of aquaculture in white sturgeon (Acipenser transmontanus) conservation. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1733-1745.	0.7	20
42	Population Dynamics, Life History, and Demography: Lessons From Drosophila. Advances in Ecological Research, 2005, 37, 77-99.	1.4	15
43	Evolutionary Feedback Mediated through Population Density, Illustrated with Viruses in Chemostats. American Naturalist, 2006, 167, E39-E51.	1.0	80
44	SELECTION IN A CYCLING POPULATION: DIFFERENTIAL RESPONSE AMONG SKELETAL TRAITS. Evolution; International Journal of Organic Evolution, 2006, 60, 1925-1935.	1.1	23
45	Variation in predation pressure as a mechanism underlying differences in numerical abundance between populations of the poeciliid fish Heterandria formosa. Oecologia, 2006, 147, 596-605.	0.9	25
46	Are organisms committed to lower their rates of entropy production?. BioSystems, 2006, 83, 10-17.	0.9	17
47	SELECTION IN A CYCLING POPULATION: DIFFERENTIAL RESPONSE AMONG SKELETAL TRAITS. Evolution; International Journal of Organic Evolution, 2006, 60, 1925.	1.1	0
48	Nicholson's blowflies revisited: a fuzzy modeling approach. , 2006, , .		0
49	Density Dependence Triggers Runaway Selection of Reduced Senescence. PLoS Computational Biology, 2007, 3, e256.	1.5	18
50	Nicholson's blowflies revisited: A fuzzy modeling approach. Fuzzy Sets and Systems, 2007, 158, 1083-1096.	1.6	12
51	Frequency-dependent selection in a periodic environment. Physica A: Statistical Mechanics and Its Applications, 2007, 381, 255-264.	1.2	1
52	The ecogenetic link between demography and evolution: can we bridge the gap between theory and data?. Ecology Letters, 2007, 10, 773-782.	3.0	162
53	Can more <i>K</i> â€selected species be better invaders? A case study of fruit flies in La Réunion. Diversity and Distributions, 2007, 13, 535-543.	1.9	64
54	Adaptive landscapes and densityâ€dependent selection in declining salmonid populations: going beyond numerical responses to human disturbance. Evolutionary Applications, 2008, 1, 239-251.	1.5	28

# 55	ARTICLE Estimation of the Mortalities of the Immature Stages. , 2008, , 1049-1160.	IF	CITATIONS
56	Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 594-599.	3.3	138
57	Differential Tolerance to Direct and Indirect Density-Dependent Costs of Viral Infection in Arabidopsis thaliana. PLoS Pathogens, 2009, 5, e1000531.	2.1	33
58	An evolutionary maximum principle for density-dependent population dynamics in a fluctuating environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1511-1518.	1.8	88
59	Fundamental Dimensions of Environmental Risk. Human Nature, 2009, 20, 204-268.	0.8	1,243
60	Maximization principles for frequency-dependent selection II: the one-locus multiallele case. Journal of Mathematical Biology, 2010, 61, 95-132.	0.8	7
61	Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off. Evolutionary Ecology, 2010, 24, 227-236.	0.5	25
62	Potential effects of life-history evolution on ecological risk assessment. , 2011, 21, 3191-3198.		6
63	Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evolutionary Applications, 2011, 4, 338-353.	1.5	47
64	Natural selection on body size is mediated by multiple interacting factors: a comparison of beetle populations varying naturally and experimentally in body size. Ecology and Evolution, 2011, 1, 1-14.	0.8	45
65	Interpopulation variation in a fish predator drives evolutionary divergence in prey in lakes. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2628-2637.	1.2	60
66	Transients and tradeoffs of phenotypic switching in a fluctuating limited environment. Theoretical Population Biology, 2012, 82, 187-199.	0.5	7
67	Assessing the roles of population density and predation risk in the evolution of offspring size in populations of a placental fish. Ecology and Evolution, 2012, 2, 1480-1490.	0.8	26
68	LIFE-HISTORY EVOLUTION AND DENSITY-DEPENDENT GROWTH IN EXPERIMENTAL POPULATIONS OF YEAST. Evolution; International Journal of Organic Evolution, 2012, 66, 3789-3802.	1.1	14
69	Selection on laying date is connected to breeding density in the pied flycatcher. Oecologia, 2012, 168, 703-710.	0.9	16
70	Correlated changes in circadian clocks in response to selection for faster pre-adult development in fruit flies Drosophila melanogaster. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 333-343.	0.7	21
71	The evolutionary consequences of indirect effects. Trends in Ecology and Evolution, 2013, 28, 23-29.	4.2	69
72	Environmentally-induced modulations of developmental rates do not affect the selection-mediated changes in pre-adult development time of fruit flies Drosophila melanogaster. Journal of Insect Physiology, 2013, 59, 729-737.	0.9	3

.

#	Article	IF	CITATIONS
73	Evolution in Population Parameters: Density-Dependent Selection or Density-Dependent Fitness?. American Naturalist, 2013, 181, S9-S20.	1.0	60
74	Size Selectivity of Predation by Brown Bears Depends on the Density of Their Sockeye Salmon Prey. American Naturalist, 2013, 181, 663-673.	1.0	18
75	A Quantitative Genetic Model of <i>r</i> - and <i>K</i> -Selection in a Fluctuating Population. American Naturalist, 2013, 181, 725-736.	1.0	47
76	Reproductive allocation between the sexes, across natural and novel habitats, and its impact on genetic diversity. Evolutionary Ecology, 2014, 28, 247-261.	0.5	23
77	Rapid humanâ€induced divergence of lifeâ€history strategies in <scp>B</scp> ahamian livebearing fishes (family <scp>P</scp> oeciliidae). Journal of Animal Ecology, 2015, 84, 1732-1743.	1.3	18
78	Phospholipid fatty acid composition linking larval-density to lifespan of adult Drosophila melanogaster. Experimental Gerontology, 2015, 72, 177-183.	1.2	13
79	The Evolution of Foraging Rate across Local and Geographic Gradients in Predation Risk and Competition. American Naturalist, 2015, 186, E16-E32.	1.0	28
80	Development of intensive copepod culture technology for Parvocalanus crassirostris: Optimizing adult density. Aquaculture, 2015, 435, 128-136.	1.7	30
81	The fitness effects of a point mutation in Escherichia coli change with founding population density. Genetica, 2016, 144, 417-424.	0.5	2
82	Optimal age of maturity in fluctuating environments under <i>r</i> ―and <i>K</i> â€selection. Oikos, 2016, 125, 1577-1585.	1.2	20
83	Adaptation to larval crowding in Drosophila ananassae and Drosophila nasuta nasuta: increased larval competitive ability without increased larval feeding rate. Journal of Genetics, 2016, 95, 411-425.	0.4	27
84	Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate. Journal of Genetics, 2016, 95, 491-503.	0.4	35
85	The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes. Parasites and Vectors, 2016, 9, 282.	1.0	20
86	r- and K-Selection in Fluctuating Environments, Theory of. , 2016, , 406-410.		Ο
87	An Ecological and Evolutionary Framework for Commensalism in Anthropogenic Environments. Trends in Ecology and Evolution, 2016, 31, 633-645.	4.2	121
88	Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11582-11590.	3.3	40
89	Densityâ€dependent selection on mate search and evolution of Allee effects. Journal of Animal Ecology, 2018, 87, 24-35.	1.3	30
90	Impact of density and sex-dependent larval competition on selected life history traits ofDrosophila melanogaster(Diptera: Drosophilidae). Canadian Entomologist, 2018, 150, 87-99.	0.4	Ο

#	Article	IF	CITATIONS
91	Two Decades of Drosophila Population Dynamics: Modeling, Experiments, and Implications. Handbook of Statistics, 2018, 39, 275-312.	0.4	7
92	Lifeâ€history evolution under fluctuating densityâ€dependent selection and the adaptive alignment of paceâ€ofâ€life syndromes. Biological Reviews, 2019, 94, 230-247.	4.7	90
93	Intergenerational paternal effect of adult density in <i>Drosophila melanogaster</i> . Ecology and Evolution, 2019, 9, 3553-3563.	0.8	10
95	Density dependence on multiple spatial scales maintains spatial variation in both abundance and traits. Journal of Theoretical Biology, 2020, 491, 110142.	0.8	3
96	The eco-evolutionary dynamics of a predator-prey system across an r/K continuum. Ecological Modelling, 2020, 436, 109269.	1.2	5
97	Phenotypic evolution in stochastic environments: The contribution of frequency―and densityâ€dependent selection. Evolution; International Journal of Organic Evolution, 2020, 74, 1923-1941.	1.1	15
98	Farmers, Farms and Farming Resources. , 2020, , 41-85.		0
100	Thinking about Population and Traditional Farmers. , 2020, , 3-40.		0
101	Limits. , 2020, , 86-122.		0
102	A Modicum of Demography. , 2020, , 125-162.		0
103	The Intensification Debate after Boserup. , 2020, , 204-246.		0
104	The Farming Household as a Fundamental Unit of Analysis. , 2020, , 249-279.		0
105	The Nature of Traditional Farm Work and the Household Labor Force. , 2020, , 312-348.		0
106	The Economics of the Household Demographic Life Cycle. , 2020, , 349-385.		0
107	Seasonality and the Household Demographic Enterprise. , 2020, , 386-416.		0
108	Beyond the Household. , 2020, , 417-446.		0
111	Integrative developmental ecology: a review of density-dependent effects on life-history traits and host-microbe interactions in non-social holometabolous insects. Evolutionary Ecology, 2020, 34, 659-680.	0.5	26
112	Malthus and Boserup. , 2020, , 163-203.		0

#	Article	IF	CITATIONS
113	Under-Nutrition and the Household Demographic Enterprise. , 2020, , 280-311.		0
114	Ant Collective Behavior Is Heritable and Shaped by Selection. American Naturalist, 2020, 196, 541-554.	1.0	10
115	Lifeâ€history strategy varies with the strength of competition in a foodâ€limited ungulate population. Ecology Letters, 2020, 23, 811-820.	3.0	17
116	Variation in the life history strategy underlies functional diversity of tumors. National Science Review, 2021, 8, nwaa124.	4.6	7
117	Densityâ€dependent natural selection mediates harvestâ€induced trait changes. Ecology Letters, 2021, 24, 648-657.	3.0	17
118	Density-Dependent Adaptive Topography in a Small Passerine Bird, the Collared Flycatcher. American Naturalist, 2021, 197, 93-110.	1.0	5
119	Ecological adaptation drives wood frog population divergence in life history traits. Heredity, 2021, 126, 790-804.	1.2	2
120	Ancestral ecological regime shapes reaction to food limitation in the Least Killifish, <i>HeterandriaAformosa</i> . Ecology and Evolution, 2021, 11, 6391-6405.	0.8	3
121	Evolution of pathogen-specific improved survivorship post-infection in populations of Drosophila melanogaster adapted to larval crowding. PLoS ONE, 2021, 16, e0250055.	1.1	10
122	An Evolutionary and Ecological Community Model for Distribution of Phenotypes and Abundances among Competing Species. American Naturalist, 2021, 198, 13-32.	1.0	2
123	Evolution of sexâ€specific heat stress tolerance and larval Hsp70 expression in populations of <i>Drosophila melanogaster</i> adapted to larval crowding. Journal of Evolutionary Biology, 2021, 34, 1376-1385.	0.8	8
124	Clocks, Genes and Evolution: The Evolution of Circadian Organization. , 2002, , 5-23.		8
125	Faster development does not lead to correlated evolution of greater pre-adult competitive ability in Drosophila melanogaster. Biology Letters, 2005, 1, 91-94.	1.0	19
130	"Ant―and "Grasshopper―Life-History Strategies in Saccharomyces cerevisiae. PLoS ONE, 2008, 3, e1579	9.1.1	32
131	A fitness trade-off between seasons causes multigenerational cycles in phenotype and population size. ELife, 2017, 6, .	2.8	10
150	Density-dependent selection in Drosophila: evolution of egg size and hatching time. Journal of Genetics, 2022, 101, 1.	0.4	12
151	Environmental risks, life history strategy, and developmental psychology. PsyCh Journal, 2022, 11, 433-447.	0.5	6
154	Mass production of predatory mites: state of the art and future challenges. , 2023, , 195-232.		3

#	Article	IF	Citations
156	Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in <i>Drosophila melanogaster</i> . Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	3
157	Estimating Density Dependence, Environmental Variance, and Long-term Selection on a Stage-structured Life History. American Naturalist, 0, , .	1.0	0