Crystal Structures of Substrate Binding Site Mutants of

Journal of Biological Chemistry 272, 17574-17580 DOI: 10.1074/jbc.272.28.17574

Citation Report

#	Article	IF	CITATIONS
1	Substrate binding and catalysis in heme peroxidases. Current Opinion in Chemical Biology, 1998, 2, 269-278.	2.8	165
2	A study on reducing substrates of manganese-oxidizing peroxidases fromPleurotus eryngiiandBjerkandera adusta. FEBS Letters, 1998, 428, 141-146.	1.3	188
3	Chapter 29. Bioinorganic chemistry. Annual Reports on the Progress of Chemistry Section A, 1998, 94, 587.	0.8	1
4	Effect of Modified Hemes on the Spectral Properties and Activity of Manganese Peroxidase. Archives of Biochemistry and Biophysics, 1998, 359, 291-296.	1.4	8
5	Characterization of a Novel Manganese Peroxidase-Lignin Peroxidase Hybrid Isozyme Produced by Bjerkandera Species Strain BOS55 in the Absence of Manganese. Journal of Biological Chemistry, 1998, 273, 15412-15417.	1.6	247
6	Description of a Versatile Peroxidase Involved in the Natural Degradation of Lignin That Has Both Manganese Peroxidase and Lignin Peroxidase Substrate Interaction Sites. Journal of Biological Chemistry, 1999, 274, 10324-10330.	1.6	326
7	Heme-mediated oxygen activation in biology: cytochrome c oxidase and nitric oxide synthase. Current Opinion in Chemical Biology, 1999, 3, 131-137.	2.8	47
8	Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Molecular Microbiology, 1999, 31, 223-235.	1.2	203
9	Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens. BBA - Proteins and Proteomics, 1999, 1434, 356-364.	2.1	23
10	Addition of Veratryl Alcohol Oxidase Activity to Manganese Peroxidase by Site-Directed Mutagenesis. Biochemical and Biophysical Research Communications, 1999, 256, 500-504.	1.0	45
11	Redox equilibria of manganese peroxidase from Phanerochaetes chrysosporium: functional role of residues on the proximal side of the haem pocket. Biochemical Journal, 2000, 349, 85.	1.7	11
12	Effects of cadmium on manganese peroxidase. FEBS Journal, 2000, 267, 1761-1769.	0.2	41
13	Role of arginine 177 in the Mnllbinding site of manganese peroxidase. FEBS Journal, 2000, 267, 7038-7045.	0.2	19
14	The cloning of a new peroxidase found in lignocellulose cultures ofPleurotus eryngiiand sequence comparison with other fungal peroxidases. FEMS Microbiology Letters, 2000, 191, 37-43.	0.7	55
15	Substrate Specificity of Lignin Peroxidase and a S168W Variant of Manganese Peroxidase. Archives of Biochemistry and Biophysics, 2000, 373, 147-153.	1.4	36
16	MnII Is Not a Productive Substrate for Wild-Type or Recombinant Lignin Peroxidase Isozyme H2. Archives of Biochemistry and Biophysics, 2000, 381, 16-24.	1.4	7
17	Oxidative Mechanisms Involved in Lignin Degradation by White-Rot Fungi. Chemical Reviews, 2001, 101, 3397-3414.	23.0	463
19	Oxidation of lignin in eucalyptus kraft pulp by manganese peroxidase from Bjerkandera sp. strain BOS55. Bioresource Technology, 2001, 78, 71-79.	4.8	25

CITATION REPORT

#	Article	IF	CITATIONS
20	Title is missing!. Biotechnology Letters, 2001, 23, 103-109.	1.1	19
21	The Green Fluorescent Protein Gene Functions as a Reporter of Gene Expression in Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2001, 67, 948-955.	1.4	65
22	Fungal peroxidases: molecular aspects and applications. Journal of Biotechnology, 2002, 93, 143-158.	1.9	185
23	Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology, 2002, 30, 425-444.	1.6	358
24	Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 2002, 30, 454-466.	1.6	780
25	Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. Journal of Biological Inorganic Chemistry, 2003, 8, 699-706.	1.1	13
26	NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. Journal of Biological Inorganic Chemistry, 2003, 8, 751-760.	1.1	24
27	Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiology Reviews, 2003, 27, 263-290.	3.9	264
28	Heme-peroxidases. , 2003, , 261-280.		5
30	A peroxidase gene family and gene trees in <i>Heterobasidion</i> and related genera. Mycologia, 2003, 95, 209-221.	0.8	41
31	Phanerochaete chrysosporium Genomics. Applied Mycology and Biotechnology, 2005, 5, 315-352.	0.3	10
32	Direct Electrochemistry of Proteins and Enzymes. Perspectives in Bioanalysis, 2005, , 517-598.	0.3	50
33	The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features. Biophysical Chemistry, 2005, 116, 167-173.	1.5	14
34	High-Resolution Crystal Structure of Manganese Peroxidase: Substrate and Inhibitor Complexesâ€,‡. Biochemistry, 2005, 44, 6463-6470.	1.2	81
36	Novel peroxidase mimics: μ-Aqua manganese–Schiff base dimers. Journal of Inorganic Biochemistry, 2006, 100, 1470-1478.	1.5	36
37	Kinetic and crystallographic studies of a redesigned manganese-binding site in cytochrome c peroxidase. Journal of Biological Inorganic Chemistry, 2006, 12, 126-137.	1.1	20
38	A Tryptophan Neutral Radical in the Oxidized State of Versatile Peroxidase from Pleurotus eryngii. Journal of Biological Chemistry, 2006, 281, 9517-9526.	1.6	93
39	Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology, 2007, 44, 77-87.	0.9	291

CITATION REPORT

#	Article	IF	CITATIONS
40	Molecular Evolution and Diversity of Lignin Degrading Heme Peroxidases in the Agaricomycetes. Journal of Molecular Evolution, 2008, 66, 243-257.	0.8	120
41	Novel peroxidases of Marasmius scorodonius degrade β-carotene. Applied Microbiology and Biotechnology, 2008, 77, 1241-1250.	1.7	113
42	Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiology Reviews, 2008, 32, 927-955.	3.9	581
43	Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. Journal of Experimental Botany, 2009, 60, 441-452.	2.4	237
44	Structure and Action Mechanism of Ligninolytic Enzymes. Applied Biochemistry and Biotechnology, 2009, 157, 174-209.	1.4	676
45	Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Applied Microbiology and Biotechnology, 2010, 88, 541-551.	1.7	19
46	Ultrahigh (0.93Ã) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: Implications for the catalytic mechanism. Journal of Inorganic Biochemistry, 2010, 104, 683-690.	1.5	78
47	Nature and Kinetic Analysis of Carbonâ^'Carbon Bond Fragmentation Reactions of Cation Radicals Derived from SET-Oxidation of Lignin Model Compounds. Journal of Organic Chemistry, 2010, 75, 6549-6562.	1.7	88
48	Crystallographic, Kinetic, and Spectroscopic Study of the First Ligninolytic Peroxidase Presenting a Catalytic Tyrosine. Journal of Biological Chemistry, 2011, 286, 15525-15534.	1.6	52
49	Fungal Biodegradation of Lignocelluloses. , 2011, , 319-340.		107
49 51	Fungal Biodegradation of Lignocelluloses. , 2011, , 319-340. Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express, 2012, 2, 62.	1.4	107 44
	Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of	1.4 0.4	
51	Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express, 2012, 2, 62.		44
51 52	Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express, 2012, 2, 62. Lignin-Degrading Enzyme Activities. Methods in Molecular Biology, 2012, 908, 251-268.		44 33
51 52 53	 Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express, 2012, 2, 62. Lignin-Degrading Enzyme Activities. Methods in Molecular Biology, 2012, 908, 251-268. Manganese Peroxidases: Molecular Diversity, Heterologous Expression, and Applications. , 2013, , 67-87. Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis. 	0.4	44 33 5
51 52 53 55	Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express, 2012, 2, 62. Lignin-Degrading Enzyme Activities. Methods in Molecular Biology, 2012, 908, 251-268. Manganese Peroxidases: Molecular Diversity, Heterologous Expression, and Applications. , 2013, , 67-87. Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis. Bioprocess and Biosystems Engineering, 2014, 37, 393-400.	0.4	44 33 5 6
51 52 53 55 56	Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express, 2012, 2, 62. Lignin-Degrading Enzyme Activities. Methods in Molecular Biology, 2012, 908, 251-268. Manganese Peroxidases: Molecular Diversity, Heterologous Expression, and Applications. , 2013, , 67-87. Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis. Bioprocess and Biosystems Engineering, 2014, 37, 393-400. Heme Enzyme Structure and Function. Chemical Reviews, 2014, 114, 3919-3962. Microbial enzyme systems for lignin degradation and their transcriptional regulation. Frontiers in	0.4 1.7 23.0	44 33 5 6 1,049

#	Article	IF	CITATIONS
60	Lignin Degrading Fungal Enzymes. Biofuels and Biorefineries, 2016, , 81-130.	0.5	15
61	6 Degradation of Plant Cell Wall Polymers by Fungi. , 2016, , 127-148.		2
62	Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Applied Sciences, 2019, 1, 1.	1.5	71
63	Myco-decontamination of azo dyes: nano-augmentation technologies. 3 Biotech, 2020, 10, 384.	1.1	14
64	Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 2020, 6, e03170.	1.4	272
65	Iron and Manganese Biomimetic Compounds. , 2021, , 774-823.		0
66	Extremophilic Ligninolytic Enzymes: Versatile Biocatalytic Tools with Impressive Biotechnological Potential. Catalysis Letters, 2022, 152, 2302-2326.	1.4	5
68	High Redox Potential Peroxidases. , 2007, , 477-488.		12
70	Enzymology and Molecular Biology of Lignin Degradation. , 2004, , 249-273.		77
71	Chapter 3. Understanding the Reactivity and Interactions of Peroxidases with Substrates. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 47-60.	0.8	2
72	Engineering Towards Catalytic Use of Fungal Class-II Peroxidases for Dye-Decolorizing and Conversion of Lignin Model Compounds. Current Biotechnology, 2017, 6, 116-127.	0.2	5
74	Myco-Degradation of Lignocellulose: An Update on theÂReaction Mechanism and Production of Lignocellulolytic Enzymes by Fungi. Fungal Biology, 2019, , 81-117.	0.3	0
75	MnP enzyme: Structure, mechanisms, distributions and its ample opportunities in biotechnological application. , 2022, , 185-202.		1

CITATION REPORT