CITATION REPORT List of articles citing

· 1	1	. • 11	• , 1	• , •	C	. •
Ranid	Plactrosts	1109 H\\	20010100	association	ot nro	toine
Napiu	, CICCLI USLA	llicairy	assisteu	association	OI DIO	$\iota\iota\iota\iota\iota\iota\iota$
1		U				

DOI: 10.1038/nsb0596-427 Nature Structural Biology, 1996, 3, 427-31.

Source: https://exaly.com/paper-pdf/27481812/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
488	Biophysical methods for the determination of antibody-antigen affinities. 1996 , 14, 465-70		67
487	Double-mutant cycles: a powerful tool for analyzing protein structure and function. 1996 , 1, R121-6		232
486	Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. 1997 , 136, 1307-22		865
485	No salting-in of lysozyme chloride observed at low ionic strength over a large range of pH. <i>Biophysical Journal</i> , 1997 , 73, 2156-63	2.9	103
484	Enhancement of protein-protein association rate by interaction potential: accuracy of prediction based on local Boltzmann factor. <i>Biophysical Journal</i> , 1997 , 73, 2441-5	2.9	51
483	Protein-protein diffusional encounter. <i>Biophysical Journal</i> , 1997 , 72, 1915-6	2.9	5
482	Simulation of the diffusional association of barnase and barstar. <i>Biophysical Journal</i> , 1997 , 72, 1917-29	2.9	253
481	Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation. <i>Journal of Molecular Biology</i> , 1997 , 267, 696-706	6.5	112
480	The role of Glu73 of barnase in catalysis and the binding of barstar. <i>Journal of Molecular Biology</i> , 1997 , 270, 111-22	6.5	43
479	Importance of electrostatic interactions in the rapid binding of polypeptides to GroEL. <i>Journal of Molecular Biology</i> , 1997 , 269, 892-901	6.5	54
47 ⁸	Folding of barnase in the presence of the molecular chaperone SecB. <i>Journal of Molecular Biology</i> , 1997 , 274, 268-75	6.5	22
477	A mixed-charge pair in human interleukin 4 dominates high-affinity interaction with the receptor alpha chain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 1657-62	11.5	78
476	Certain bZIP peptides bind DNA sequentially as monomers and dimerize on the DNA. <i>Nature Structural Biology</i> , 1997 , 4, 115-7		54
475	Helix stability in barstar peptides. 1997 , 249, 724-32		10
474	Backbone makes a significant contribution to the electrostatics of alpha/beta-barrel proteins. 1997 , 6, 1849-57		12
473	Empirical free energy calculation: comparison to calorimetric data. 1997 , 6, 1976-84		27
472	The kinetics of protein-protein recognition. <i>Proteins: Structure, Function and Bioinformatics</i> , 1997 , 28, 153-61	4.2	172

471	Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22. 1998 , 250, 337-49	49
470	A rational design strategy for protein hormone superagonists. 1998 , 16, 871-5	32
469	New approach to steroid separation based on a low affinity IgM antibody. 1998 , 214, 73-9	12
468	MARCKS, membranes, and calmodulin: kinetics of their interaction. 1998 , 1376, 369-79	103
467	Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. 1998 , 8, 125-34	88
466	Protein Charge Ladders, Capillary Electrophoresis, and the Role of Electrostatics in Biomolecular Recognition. 1998 , 31, 343-350	41
465	Electrostatic enhancement of diffusion-controlled protein-protein association: comparison of theory and experiment on barnase and barstar. <i>Journal of Molecular Biology</i> , 1998 , 278, 1015-24	186
464	Brownian dynamics simulation of protein-protein diffusional encounter. 1998 , 14, 329-41	151
463	Role of electrostatic interactions on the affinity of thioredoxin for target proteins. Recognition of chloroplast fructose-1, 6-bisphosphatase by mutant Escherichia coli thioredoxins. 1998 , 273, 16273-80	49
462	The role of charged residues mediating low affinity protein-protein recognition at the cell surface by CD2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 5490-4 ^{11.5}	73
461	Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5942-9	: 169
460	DNA specificity enhanced by sequential binding of protein monomers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 11735-9	; 92
459	Improving macromolecular electrostatics calculations. 1999 , 12, 657-62	96
458	Lattice simulations of protein crystal formation. <i>Biophysical Chemistry</i> , 1999 , 77, 123-37 3.5	9
457	Electrostatics in the active site of an alpha-amylase. 1999 , 264, 816-24	55
456	Protein-protein recognition: exploring the energy funnels near the binding sites. <i>Proteins: Structure,</i> Function and Bioinformatics, 1999 , 34, 255-267	63
455	Theoretical study of the electrostatically driven step of receptor-G protein recognition. 1999 , 37, 145-156	29
454	The use of biosensor technology for the engineering of antibodies and enzymes. 1999 , 12, 198-216	48

453	On the protein-protein diffusional encounter complex. 1999 , 12, 226-34		73
452	Ligand-receptor interactions. 1999 , 62, 921-968		166
451	A kinetic basis for T cell receptor repertoire selection during an immune response. 1999 , 10, 485-92		444
45°	Free energy landscapes of encounter complexes in protein-protein association. <i>Biophysical Journal</i> , 1999 , 76, 1166-78	2.9	164
449	Structural response to mutation at a protein-protein interface. <i>Journal of Molecular Biology</i> , 1999 , 286, 1487-506	6.5	65
448	Predicting the rate enhancement of protein complex formation from the electrostatic energy of interaction. <i>Journal of Molecular Biology</i> , 1999 , 287, 409-19	6.5	110
447	Biophysical analysis of the interaction of human ifnar2 expressed in E. coli with IFNalpha2. <i>Journal of Molecular Biology</i> , 1999 , 289, 57-67	6.5	109
446	Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. Journal of Molecular Biology, 1999 , 291, 149-62	6.5	164
445	Mutational and structural analysis of the binding interface between type I interferons and their receptor Ifnar2. <i>Journal of Molecular Biology</i> , 1999 , 294, 223-37	6.5	86
444	Affinity for the cognate monoclonal antibody of synthetic peptides derived from selection by phage display. Role of sequences flanking thebinding motif. 2000 , 267, 1819-29		24
443	Microscopic model of protein crystal growth. <i>Biophysical Chemistry</i> , 2000 , 87, 43-61	3.5	8
442	Electrostatic aspects of protein-protein interactions. 2000 , 10, 153-9		612
441	Evaluation of the kinetics of electrostatically steered protein dimerization using Weighted-Ensemble Brownian dynamics. 2000 , 529, 183-191		5
440	The N-terminal region of cystatin A (stefin A) binds to papain subsequent to the two hairpin loops of the inhibitor. Demonstration of two-step binding by rapid-kinetic studies of cystatin A labeled at the N-terminus with a fluorescent reporter group. 2000 , 9, 2218-24		11
439	Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 9972-7	11.5	296
438	Initiation of spectrin dimerization involves complementary electrostatic interactions between paired triple-helical bundles. 2000 , 275, 3279-87		33
437	Binding of an antibody mimetic of the human low density lipoprotein receptor to apolipoprotein E is governed through electrostatic forces. Studies using site-directed mutagenesis and molecular modeling. 2000 , 275, 7109-16		15
436	Alkaline proteinase inhibitor of Pseudomonas aeruginosa. Interaction of native and N-terminally truncated inhibitor proteins with Pseudomonas metalloproteinases. 2000 , 275, 21002-9		26

435	Engineering the processive run length of the kinesin motor. 2000 , 151, 1093-100		227
434	Electrostatic dependence of the thrombin-thrombomodulin interaction. <i>Journal of Molecular Biology</i> , 2000 , 296, 651-8	6.5	57
433	Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. <i>Journal of Molecular Biology</i> , 2000 , 298, 503-20	6.5	96
432	Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. <i>Journal of Molecular Biology</i> , 2000 , 301, 1163-78	6.5	131
431	Experimental design for analysis of complex kinetics using surface plasmon resonance. 2000 , 20, 310-8		70
430	Kinetics of desolvation-mediated protein-protein binding. <i>Biophysical Journal</i> , 2000 , 78, 1094-105	2.9	131
429	Computer Simulation of Protein Protein Interactions. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1504-15	5 3 84	184
428	Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. <i>Journal of Molecular Biology</i> , 2001 , 306, 1139-55	6.5	197
427	Experimental assignment of the structure of the transition state for the association of barnase and barstar. <i>Journal of Molecular Biology</i> , 2001 , 308, 69-77	6.5	88
426	Prediction of functionally important residues based solely on the computed energetics of protein structure. <i>Journal of Molecular Biology</i> , 2001 , 312, 885-96	6.5	184
425	Effect of local molecular shape and anisotropic reactivity on the rate of diffusion-controlled reactions. <i>Biophysical Journal</i> , 2001 , 81, 3137-45	2.9	9
424	Dynamical view of the positions of key side chains in protein-protein recognition. <i>Biophysical Journal</i> , 2001 , 80, 635-42	2.9	81
423	Molecular mechanisms of protein-protein recognition: whether the surface placed charged residues determine the recognition process?. 2001 , 19, 279-84		20
422	Quantitative analysis of the effect of salt concentration on enzymatic catalysis. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11472-9	16.4	68
421	Models of protein crystal growth. <i>Biophysical Chemistry</i> , 2001 , 91, 1-20	3.5	31
420	Intrinsically disordered protein. 2001 , 19, 26-59		1747
419	New insights into the mechanism of protein-protein association. <i>Proteins: Structure, Function and Bioinformatics</i> , 2001 , 45, 190-8	4.2	106
418	Disparate ionic-strength dependencies of on and off rates in protein-protein association. 2001 , 59, 427	-33	72

417	Kinetics of diffusion-assisted reactions in microheterogeneous systems. 2001 , 89-90, 47-140		43
416	Optimization of binding electrostatics: charge complementarity in the barnase-barstar protein complex. 2001 , 10, 362-77		113
415	Barstar is electrostatically optimized for tight binding to barnase. <i>Nature Structural Biology</i> , 2001 , 8, 73-6		62
414	Kinetic effects of mutations of charged residues on the surface of a dimeric hemoglobin: insights from Brownian dynamics simulations. 2001 , 549, 47-54		2
413	Rapeseed chloroplast thioredoxin-m. Modulation of the affinity for target proteins. 2001 , 1546, 299-311		9
412	Assessing the omnipotence of inositol hexakisphosphate. 2001 , 13, 151-8		164
411	Affinity, kinetics, and thermodynamics of E-selectin binding to E-selectin ligand-1. 2001 , 276, 31602-12		66
410	Protein docking along smooth association pathways. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 10636-41	11.5	106
409	Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. <i>Nucleic Acids Research</i> , 2002 , 30, 3936-44	20.1	56
408	Clustered charged amino acids of human adenosine deaminase comprise a functional epitope for binding the adenosine deaminase complexing protein CD26/dipeptidyl peptidase IV. 2002 , 277, 19720-6		26
407	The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A. 2002 , 137, 206-19		18
406	Structural basis of macromolecular recognition. 2002 , 61, 9-73		126
405	Molecular Bioengineering. 2002 , 41, 441-455		7
404	Molecular mechanism of the interaction between MDM2 and p53. <i>Journal of Molecular Biology</i> , 2002 , 323, 491-501	6.5	280
403	Kinetic analysis of the interactions between troponin C and the C-terminal troponin I regulatory region and validation of a new peptide delivery/capture system used for surface plasmon resonance. <i>Journal of Molecular Biology</i> , 2002 , 323, 345-62	6.5	25
402	Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer. <i>Biophysical Journal</i> , 2002 , 83, 533-46	2.9	33
401	Differences in electrostatic properties at antibody-antigen binding sites: implications for specificity and cross-reactivity. <i>Biophysical Journal</i> , 2002 , 83, 2946-68	2.9	98
400	Atomistic simulations of competition between substrates binding to an enzyme. <i>Biophysical Journal</i> , 2002 , 82, 2326-32	2.9	15

(2003-2002)

399	Comparative properties of two peptide-antibody interactions as deduced from epitope delineation. 2002 , 259, 77-86	19
398	Prediction of protein-protein interactions by docking methods. 2002 , 12, 28-35	380
397	Protein-protein association kinetics and protein docking. 2002 , 12, 36-40	98
396	Kinetic studies of protein-protein interactions. 2002 , 12, 41-7	265
395	Functional mapping of conserved, surface-exposed charges of antibody variable domains. 2002 , 15, 94-103	12
394	Effects of local repositioning of charged surface residues on the kinetics of protein dimerization probed by Brownian dynamics simulations. 2002 , 592, 37-45	3
393	Principles of docking: An overview of search algorithms and a guide to scoring functions. <i>Proteins:</i> Structure, Function and Bioinformatics, 2002 , 47, 409-43 4-2	954
392	Two-step binding mechanism for T-cell receptor recognition of peptide MHC. 2002, 418, 552-6	243
391	The long-range electrostatic interactions control tRNA-aminoacyl-tRNA synthetase complex formation. 2003 , 12, 1247-51	19
390	Effect of environmental conditions on aggregation and fibril formation of barstar. <i>European Biophysics Journal</i> , 2003 , 32, 710-23	37
389	The human type I interferon receptor: NMR structure reveals the molecular basis of ligand binding. 2003 , 11, 791-802	73
388	Optimization of protein therapeutics by directed evolution. 2003 , 8, 118-26	40
387	Small molecule antagonists of proteins. 2003 , 65, 1-8	100
386	Design of multivalent complexes using the barnase*barstar module. 2003 , 21, 1486-92	155
385	Clathrin self-assembly involves coordinated weak interactions favorable for cellular regulation. 2003 , 22, 4980-90	47
384	Dynamics of cell surface molecules during T cell recognition. 2003 , 72, 717-42	98
383	Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. 2003 , 36, 723-30	125
382	Linking molecular and cellular events in T-cell activation and synapse formation. 2003 , 15, 307-15	42

381	Radiolytic modification of basic amino acid residues in peptides: probes for examining protein-protein interactions. 2003 , 75, 6995-7007		91
380	Biochemical characterization of the Ran-RanBP1-RanGAP system: are RanBP proteins and the acidic tail of RanGAP required for the Ran-RanGAP GTPase reaction?. 2003 , 23, 8124-36		44
379	How FMN binds to anabaena apoflavodoxin: a hydrophobic encounter at an open binding site. 2003 , 278, 24053-61		30
378	Role of the electrostatic interactions in pre-orientation of subunits in the formation of protein-protein complexes. 2004 , 22, 111-8		2
377	T cell cross-reactivity and conformational changes during TCR engagement. 2004, 200, 1455-66		137
376	Pegylating IFNs at his-34 improves the in vitro antiviral activity through the JAK/STAT pathway. 2004 , 15, 287-97		29
375	Enzymatic and molecular characteristics of the efficiency and specificity of exfoliative toxin cleavage of desmoglein 1. 2004 , 279, 5268-77		48
374	Protein topology determines binding mechanism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 511-6	11.5	297
373	The impact of self-tolerance on the polyclonal CD8+ T cell repertoire. 2004 , 172, 2324-31		17
372	Selective abolition of pancreatic RNase binding to its inhibitor protein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 53-8	11.5	11
371	Anchor residues in protein-protein interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11287-92	11.5	288
370	Realistic protein-protein association rates from a simple diffusional model neglecting long-range interactions, free energy barriers, and landscape ruggedness. 2004 , 13, 1660-9		147
369	What Can Really Be Learned from Dielectric Spectroscopy of Protein Solutions? A Case Study of Ribonuclease A. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8467-8474	3.4	143
368	The impact of protein flexibility on protein-protein docking. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 58, 126-33	4.2	35
367	Water-mediated interaction at a protein protein interface. 2004 , 307, 111-119		40
366	Radiolytic modification of acidic amino acid residues in peptides: probes for examining protein-protein interactions. 2004 , 76, 1213-21		71
365	Association and dissociation kinetics for CheY interacting with the P2 domain of CheA. <i>Journal of Molecular Biology</i> , 2004 , 336, 287-301	6.5	27
364	Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. <i>Journal of Molecular Biology</i> , 2004 , 336, 1239-49	6.5	280

(2005-2004)

363	A new member of the bacterial ribonuclease inhibitor family from Saccharopolyspora erythraea. 2004 , 557, 164-8		5
362	Thermodynamics of the interaction of xanthine oxidase with superoxide dismutase studied by isothermal titration calorimetry and fluorescence spectroscopy. 2005 , 426, 173-178		18
361	Exploring the charge space of protein-protein association: a proteomic study. <i>Proteins: Structure, Function and Bioinformatics</i> , 2005 , 60, 341-52	4.2	50
360	Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. 2005 , 280, 8051-9		56
359	Transient homodimer interactions studied using the electron self-exchange reaction. 2005 , 280, 19281	-8	13
358	Site of pegylation and polyethylene glycol molecule size attenuate interferon-alpha antiviral and antiproliferative activities through the JAK/STAT signaling pathway. 2005 , 280, 6327-36		74
357	Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction. 2005 , 280, 13487-92		93
356	Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). 2005 , 386, 1173-84		72
355	How do biomolecular systems speed up and regulate rates?. 2005 , 2, R1-25		28
354	Prediction of physical protein-protein interactions. 2005 , 2, S1-16		75
354 353	Prediction of physical protein-protein interactions. 2005 , 2, S1-16 Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium channel. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6836-49	16.4	75 43
	Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium	16.4	43
353	Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium channel. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6836-49 Development of a tandem protein trans-splicing system based on native and engineered split		43
353 352	Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium channel. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6836-49 Development of a tandem protein trans-splicing system based on native and engineered split inteins. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6198-206 Two different T cell receptors use different thermodynamic strategies to recognize the same	16.4	43
353 352 351	Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium channel. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6836-49 Development of a tandem protein trans-splicing system based on native and engineered split inteins. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6198-206 Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. <i>Journal of Molecular Biology</i> , 2005 , 346, 533-50 Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin	16.4 6.5	43 107 92
353 352 351 350	Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium channel. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6836-49 Development of a tandem protein trans-splicing system based on native and engineered split inteins. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6198-206 Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. <i>Journal of Molecular Biology</i> , 2005 , 346, 533-50 Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance. <i>Journal of Molecular Biology</i> , 2005 , 349, 401-12 Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A.	16.46.56.5	43 107 92 50
353 352 351 350 349	Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium channel. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6836-49 Development of a tandem protein trans-splicing system based on native and engineered split inteins. <i>Journal of the American Chemical Society</i> , 2005 , 127, 6198-206 Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. <i>Journal of Molecular Biology</i> , 2005 , 346, 533-50 Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance. <i>Journal of Molecular Biology</i> , 2005 , 349, 401-12 Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. <i>Journal of Molecular Biology</i> , 2005 , 351, 158-69 Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to	16.46.56.5	43 107 92 50 127

345	Optimal clustering for detecting near-native conformations in protein docking. <i>Biophysical Journal</i> , 2005 , 89, 867-75	2.9	100
344	Determination of the two-dimensional interaction rate constants of a cytokine receptor complex. <i>Biophysical Journal</i> , 2006 , 90, 3345-55	2.9	47
343	Diffusional encounter of barnase and barstar. <i>Biophysical Journal</i> , 2006 , 90, 1913-24	2.9	112
342	Mechanisms of protein assembly: lessons from minimalist models. 2006 , 39, 135-42		77
341	Positively charged C-terminal subdomains of EcoRV endonuclease: contributions to DNA binding, bending, and cleavage. <i>Biochemistry</i> , 2006 , 45, 11453-63	3.2	7
340	Massive sequence perturbation of the Raf ras binding domain reveals relationships between sequence conservation, secondary structure propensity, hydrophobic core organization and stability. <i>Journal of Molecular Biology</i> , 2006 , 362, 151-71	6.5	7
339	Ionic strength effects on the association funnel of barnase and barstar investigated by Brownian dynamics simulations. 2006 , 352, 4437-4444		7
338	Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 60-7	4.2	158
337	Detecting transient intermediates in macromolecular binding by paramagnetic NMR. 2006, 440, 1227-3	0	323
336	Visualization of transient encounter complexes in protein-protein association. 2006 , 444, 383-6		352
335	Cell biology: brief encounters bolster contacts. 2006 , 444, 279-80		43
334	Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. 2006 , 25, 163-73		181
333	Interaction between a 1998 human influenza virus N2 neuraminidase and monoclonal antibody Mem5. 2006 , 345, 424-33		10
332	Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3022-60	16.4	200
331	Interpretation of the temperature dependence of equilibrium and rate constants. 2006 , 19, 389-407		100
330	Warum sind Proteine geladen? Netzwerke aus Ladungs-Ladungs-Wechselwirkungen in Proteinen, analysiert Ber Ladungsleitern und Kapillarelektrophorese. <i>Angewandte Chemie</i> , 2006 , 118, 3090-3131	3.6	17
329	Sequence-specific binding of single-stranded RNA: is there a code for recognition?. <i>Nucleic Acids Research</i> , 2006 , 34, 4943-59	20.1	233
328	Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces. 2006 , 22, 1335-42		143

(2007-2006)

327	Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. 2006 , 17, 4972-81		68
326	Synthesis and selection of de novo proteins that bind and impede cellular functions of an essential mycobacterial protein. 2007 , 73, 1320-31		7
325	Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor. 2007, 204, 3157-72		38
324	The contribution of conformational adjustments and long-range electrostatic forces to the CD2/CD58 interaction. 2007 , 282, 13160-6		10
323	Toward realistic modeling of dynamic processes in cell signaling: quantification of macromolecular crowding effects. <i>Journal of Chemical Physics</i> , 2007 , 127, 155105	5.9	55
322	Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. <i>Journal of Molecular Biology</i> , 2007 , 368, 434-49	ó.5	113
321	The mechanism of inhibition of antibody-based inhibitors of membrane-type serine protease 1 (MT-SP1). <i>Journal of Molecular Biology</i> , 2007 , 369, 1041-51	ó.5	46
320	On the dynamic nature of the transition state for protein-protein association as determined by double-mutant cycle analysis and simulation. <i>Journal of Molecular Biology</i> , 2007 , 371, 180-96	ó.5	35
319	Off-rate and concentration diversity in multidonor-derived dimers of immunoglobulin G. 2007 , 44, 2528-4	10	3
318	On the Slow Kinetics of Protein Crystallization. 2007 , 7, 1533-1540		31
317	Protein-protein interfaces: properties, preferences, and projections. 2007 , 6, 2576-86		29
316	Energy landscape and transition state of protein-protein association. <i>Biophysical Journal</i> , 2007 , 92, 1486 ₂	592	55
315	Role of a conserved salt bridge between the PAS core and the N-terminal domain in the activation of the photoreceptor photoactive yellow protein. <i>Biophysical Journal</i> , 2007 , 93, 1687-99	2.9	21
314	Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach. 2007 , 87, 149-64		17
313	Protein crystal nucleation: Recent notions. 2007 , 42, 4-12		32
312	Interaction energy decomposition in protein-protein association: a quantum mechanical study of barnase-barstar complex. <i>Biophysical Chemistry</i> , 2007 , 125, 221-36	1.5	21
311	Thermodynamic and kinetic characterization of the association of triosephosphate isomerase: the role of diffusion. 2007 , 1774, 985-94		5
310	In silico screening of mutational effects on enzyme-proteic inhibitor affinity: a docking-based approach. 2007 , 7, 37		14

309	Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans. 2007 , 8, 1001-7	71
308	Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. 2007 , 17, 603-16	177
307	Prediction of protein-protein association rates from a transition-state theory. 2007 , 15, 215-24	55
306	Temperature dependence of binding and catalysis for the Cdc25B phosphatase. <i>Biophysical Chemistry</i> , 2007 , 125, 549-55	6
305	Knitting and untying the protein network: modulation of protein ensembles as a therapeutic strategy. 2009 , 18, 481-93	18
304	Electrostatic rate enhancement and transient complex of protein-protein association. <i>Proteins:</i> Structure, Function and Bioinformatics, 2008 , 71, 320-35 4.2	123
303	Conformational flexibility and kinetic complexity in antibody-antigen interactions. 2008, 21, 114-21	14
302	Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat. 2008 , 90, 105-16	17
301	Mechanism of fast peptide recognition by SH3 domains. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7626-30	66
300	Mechanismus der schnellen Peptiderkennung durch SH3-Domlen. Angewandte Chemie, 2008 , 120, 7738-த. 64	2
299	Stability and specificity of heterodimer formation for the coiled-coil neck regions of the motor proteins Kif3A and Kif3B: the role of unstructured oppositely charged regions. 2005 , 65, 209-20	15
298	Conformational stability and folding mechanisms of dimeric proteins. 2008 , 98, 61-84	78
297	Dynamic properties of a type II cadherin adhesive domain: implications for the mechanism of strand-swapping of classical cadherins. 2008 , 16, 1195-205	44
296	Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. 2008 , 19, 2543-8	304
295	Interaction of onconase with the human ribonuclease inhibitor protein. 2008, 377, 512-514	16
294	Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement. 2008 , 4, 1058-69	58
293	Proximate parameter tuning for biochemical networks with uncertain kinetic parameters. 2008, 4, 74-97	27
292	Dynamics of protein-protein encounter: a Langevin equation approach with reaction patches. <i>Journal of Chemical Physics</i> , 2008 , 129, 155106	33

(2009-2008)

291	Electrostatic interactions guide the active site face of a structure-specific ribonuclease to its RNA substrate. <i>Biochemistry</i> , 2008 , 47, 8912-8	3.2	11
290	Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. 2008 , 180, 391-401		78
289	Modeling Protein Protein and Protein Nucleic Acid Interactions: Structure, Thermodynamics, and Kinetics. 2008 , 67-87		3
288	Replica exchange simulations of transient encounter complexes in protein-protein association. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12855-60	11.5	94
287	Binding-induced folding of a natively unstructured transcription factor. <i>PLoS Computational Biology</i> , 2008 , 4, e1000060	5	167
286	Improved binding of raf to Ras.GDP is correlated with biological activity. 2009 , 284, 31893-902		27
285	Dissection of the high rate constant for the binding of a ribotoxin to the ribosome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 6974-9	11.5	25
284	The acidic tail of the Cdc34 ubiquitin-conjugating enzyme functions in both binding to and catalysis with ubiquitin ligase SCFCdc4. 2009 , 284, 36012-36023		26
283	Polyamine sharing between tubulin dimers favours microtubule nucleation and elongation via facilitated diffusion. <i>PLoS Computational Biology</i> , 2009 , 5, e1000255	5	22
282	Dynamical model of DNA-protein interaction: Effect of protein charge distribution and mechanical properties. <i>Journal of Chemical Physics</i> , 2009 , 131, 105102	3.9	22
281	Principal determinants leading to transition state formation of a protein-protein complex, orientation trumps side-chain interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2559-64	11.5	17
280	Kinetic and thermodynamic properties of the folding and assembly of formate dehydrogenase. 2009 , 583, 2887-92		10
279	Functional aspects of co-variant surface charges in an antibody fragment. 2002, 11, 2697-705		16
278	Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. <i>Chemical Reviews</i> , 2009 , 109, 4108-39	68.1	575
277	Binding mechanism of an SH3 domain studied by NMR and ITC. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4355-67	16.4	84
276	Role of sequence in salt-bridge formation for alkali metal cationized GlyArg and ArgGly investigated with IRMPD spectroscopy and theory. <i>Journal of the American Chemical Society</i> , 2009 , 131, 1232-42	16.4	76
275	Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. 2009 , 139, 957-68		149
274	NMR structure of a monomeric intermediate on the evolutionarily optimized assembly pathway of a small trimerization domain. <i>Journal of Molecular Biology</i> , 2009 , 389, 103-14	6.5	15

273	Kinetics and thermodynamics of interaction of coagulation factor VIII with a pathogenic human antibody. 2009 , 47, 290-7		5
272	An end to 40 years of mistakes in DNA-protein association kinetics?. 2009 , 37, 343-8		187
271	The effect of different force applications on the protein-protein complex Barnase-Barstar. <i>Biophysical Journal</i> , 2009 , 97, 1687-99	2.9	14
270	Fruitful and futile encounters along the association reaction between proteins. <i>Biophysical Journal</i> , 2009 , 96, 4237-48	2.9	41
269	Fundamental aspects of protein-protein association kinetics. <i>Chemical Reviews</i> , 2009 , 109, 839-60	68.1	528
268	Fast predictions of thermodynamics and kinetics of protein-protein recognition from structures: from molecular design to systems biology. 2009 , 5, 323-34		24
267	Monomer-dimer equilibrium in glutathione transferases: a critical re-examination. <i>Biochemistry</i> , 2009 , 48, 10473-82	3.2	68
266	Predicting pKa values with continuous constant pH molecular dynamics. 2009 , 466, 455-75		65
265	Predicting HLA class I alloantigen immunogenicity from the number and physiochemical properties of amino acid polymorphisms. 2009 , 88, 791-8		53
264	A small bispecific protein selected for orthogonal affinity purification. 2010 , 5, 605-17		27
263	Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach. 2010 , 82, 021915		17
262	Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. 2010 , 20, 196-206		229
261	Downhill binding energy surface of the barnase-barstar complex. 2010 , 93, 977-85		19
260	Force spectroscopy of barnase-barstar single molecule interaction. 2010 , 23, 583-8		9
259	Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 7698-703	11.5	39
258	Electrostatic hot spot on DNA-binding domains mediates phosphate desolvation and the pre-organization of specificity determinant side chains. <i>Nucleic Acids Research</i> , 2010 , 38, 2134-44	20.1	8
257	Mechanistic details of a protein-protein association pathway revealed by paramagnetic relaxation enhancement titration measurements. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 1379-84	11.5	71
256	Assembly dynamics and stability of the pneumococcal epsilon zeta antitoxin toxin (PezAT) system from Streptococcus pneumoniae. 2010 , 285, 21797-806		23

(2011-2010)

255	Functional mapping of the anti-idiotypic antibody anti-TS1 scFv using site-directed mutagenesis and kinetic analysis. 2010 , 2, 662-9		
254	Absolute protein-protein association rate constants from flexible, coarse-grained Brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in barnase-barstar association. <i>Biophysical Journal</i> , 2010 , 99, L75-7	2.9	68
253	Protein-assisted self-assembly of multifunctional nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 5827-32	11.5	86
252	Visualization of the encounter ensemble of the transient electron transfer complex of cytochrome c and cytochrome c peroxidase. <i>Journal of the American Chemical Society</i> , 2010 , 132, 241-7	16.4	109
251	A biosensor study indicating that entropy, electrostatics, and receptor glycosylation drive the binding interaction between interleukin-7 and its receptor. <i>Biochemistry</i> , 2010 , 49, 8766-78	3.2	16
250	Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. 2010 , 9, 2216-25		196
249	Barnase-Barstar: from first encounter to final complex. 2010 , 171, 52-63		25
248	Computational mapping of anchoring spots on protein surfaces. <i>Journal of Molecular Biology</i> , 2010 , 402, 259-77	6.5	59
247	Rate theories for biologists. 2010 , 43, 219-93		107
246	Electrical contacting of an assembly of pseudoazurin and nitrite reductase using DNA-directed immobilization. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6550-7	16.4	25
245	Enhanced initial protein adsorption on engineered nanostructured cubic zirconia. 2011 , 13, 6597-609		30
244	Adhesive water networks facilitate binding of protein interfaces. 2011 , 2, 261		108
243	Carbon Nanotube Wins the Competitive Binding over Proline-Rich Motif Ligand on SH3 Domain. 2011 , 115, 12322-12328		52
242	Multispecific recognition: mechanism, evolution, and design. <i>Biochemistry</i> , 2011 , 50, 602-11	3.2	42
241	Is the rigid-body assumption reasonable?: Insights into the effects of dynamics on the electrostatic analysis of barnaseBarstar. 2011 , 357, 707-716		23
241		6.5	23
	analysis of barnaseBarstar. 2011, 357, 707-716 Identification of a Elactamase inhibitory protein variant that is a potent inhibitor of	6.5	

237	Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase. Chemical Reviews, 2011, 111, 5768	8 -83 .1	89
236	Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6450-5	11.5	28
235	Electrostatic interactions in biological DNA-related systems. 2011 , 13, 9942-68		119
234	Nanotoxicity: Exploring the Interactions Between Carbon Nanotubes and Proteins. 2011,		1
233	Dynamics in electron transfer protein complexes. FEBS Journal, 2011, 278, 1391-400	5.7	64
232	Transient RNA-protein interactions in RNA folding. FEBS Journal, 2011, 278, 1634-42	5.7	40
231	Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range. 2011 , 50, 191-5		18
230	Triathlon for energy functions: who is the winner for design of protein-protein interactions?. <i>Proteins: Structure, Function and Bioinformatics</i> , 2011 , 79, 1487-98	4.2	20
229	Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. 2011 , 20, 229-46		55
228	Kinetic Control of One-Pot Trans-Splicing Reactions by Using a Wild-Type and Designed Split Intein. <i>Angewandte Chemie</i> , 2011 , 123, 6641-6645	3.6	7
227	Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6511-5	16.4	54
226	Brownian dynamics study of the association between the 70S ribosome and elongation factor G. 2011 , 95, 616-27		18
225	A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. 2011 , 85, 5331-7		55
224	From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. 2011 , 75, 491-506, second page of table of contents		57
223	Sequence-specific long range networks in PSD-95/discs large/ZO-1 (PDZ) domains tune their binding selectivity. 2011 , 286, 27167-75		51
222	Importance of electrostatic interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2A.Z-H2B. <i>PLoS Computational Biology</i> , 2012 , 8, e1002608	5	58
221	Finding a needle in a haystack: the role of electrostatics in target lipid recognition by PH domains. <i>PLoS Computational Biology</i> , 2012 , 8, e1002617	5	32
220	Structural basis of efficient electron transport between photosynthetic membrane proteins and plastocyanin in spinach revealed using nuclear magnetic resonance. 2012 , 24, 4173-86		16

219	Asymptotic Expansion for Electrostatic Embedding Integrals in QM/MM Calculations. 2012, 8, 4232-8		14
218	Self-assembly of magnetic and fluorescent colloidal constructs based on protein-protein interactions. 2012 , 445, 210-2		1
217	A method for computing association rate constants of atomistically represented proteins under macromolecular crowding. 2012 , 9, 066008		23
216	Folding without charges. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5705-10	11.5	49
215	Side-chain interactions form late and cooperatively in the binding reaction between disordered peptides and PDZ domains. <i>Journal of the American Chemical Society</i> , 2012 , 134, 599-605	16.4	35
214	Ribosome display: a perspective. 2012 , 805, 3-28		82
213	Bovine Elactoglobulin is dimeric under imitative physiological conditions: dissociation equilibrium and rate constants over the pH range of 2.5-7.5. <i>Biophysical Journal</i> , 2012 , 103, 303-12	2.9	106
212	Slow, reversible, coupled folding and binding of the spectrin tetramerization domain. <i>Biophysical Journal</i> , 2012 , 103, 2203-14	2.9	35
211	T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions. 2012 , 7, e51943		8
210	Rational approaches to improving selectivity in drug design. 2012 , 55, 1424-44		189
			109
209	Effect of interprotein polarization on protein-protein binding energy. 2012 , 33, 1416-20		17
209	Effect of interprotein polarization on protein-protein binding energy. 2012 , 33, 1416-20 Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting. 2012 , 84, 2533-40		
	Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent	16.4	17
208	Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting. 2012 , 84, 2533-40 Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP. <i>Journal of the American</i>	16.4	17 28
208	Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting. 2012, 84, 2533-40 Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP. <i>Journal of the American Chemical Society</i> , 2012, 134, 3792-803 Real-time monitoring of a stepwise transcription reaction on a quartz-crystal microbalance. 2012,	16.4	17 28 104
208	Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting. 2012, 84, 2533-40 Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP. <i>Journal of the American Chemical Society</i> , 2012, 134, 3792-803 Real-time monitoring of a stepwise transcription reaction on a quartz-crystal microbalance. 2012, 421, 732-41	16.4	17 28 104 3
208 207 206 205	Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting. 2012, 84, 2533-40 Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP. <i>Journal of the American Chemical Society</i> , 2012, 134, 3792-803 Real-time monitoring of a stepwise transcription reaction on a quartz-crystal microbalance. 2012, 421, 732-41 Can biochemistry drive drug discovery beyond simple potency measurements?. 2012, 17, 388-95 NMR structure of a heterodimeric SAM:SAM complex: characterization and manipulation of EphA2	16.4	17 28 104 3 5

201	Efficient determination of protein-protein standard binding free energies from first principles. 2013 , 9,	133
200	Computer Simulations of the Bacterial Cytoplasm. 2013 , 5, 109-119	30
199	Protein immobilization techniques for microfluidic assays. 2013 , 7, 41501	246
198	Interaction specific binding hotspots in Endonuclease colicin-immunity protein complex from MD simulations. 2013 , 56, 1143-1151	6
197	Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. <i>Trends in Biochemical Sciences</i> , 2013 , 38, 515-30 ^{0.3}	46
196	Roles of long-range electrostatic domain interactions and K+ in phosphoenzyme transition of Ca2+-ATPase. 2013 , 288, 20646-57	5
195	Specific and non-specific protein association in solution: computation of solvent effects and prediction of first-encounter modes for efficient configurational bias Monte Carlo simulations. 3.4 Journal of Physical Chemistry B, 2013, 117, 12360-74	15
194	Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 11.5 2013 , 110, E4417-26	41
193	Calculating the Bimolecular Rate of Protein-Protein Association with Interacting Crowders. 2013, 9, 2481-9	11
192	The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. 2013 , 4, 2815	51
191	Loss of electrostatic interactions causes increase of dynamics within the plastocyanin-cytochrome f complex. <i>Biochemistry</i> , 2013 , 52, 6615-26	13
190	Redesign of a cross-reactive antibody to dengue virus with broad-spectrum activity and increased in vivo potency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 11.5 110, E1555-64	43
189	Preorientation of protein and RNA just before contacting. 2013, 31, 716-28	5
188	Improving the affinity of an antibody for its antigen via long-range electrostatic interactions. 2013 , 26, 773-80	24
187	Coupled effect of salt and pH on proteins probed with NMR spectroscopy. 2013 , 579, 114-121	11
186	Atom depth analysis delineates mechanisms of protein intermolecular interactions. 2013, 436, 725-9	6
185	Probing target search pathways during protein-protein association by rational mutations based on paramagnetic relaxation enhancement. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3384-8	. 5
184	Kinetics of ligand-receptor interaction reveals an induced-fit mode of binding in a cyclic nucleotide-activated protein. <i>Biophysical Journal</i> , 2013 , 104, 63-74	27

183	pH-Dependent aggregation and disaggregation of native 🛭 actoglobulin in low salt. 2013 , 29, 4584-93		55
182	Molecular determinants of drug-receptor binding kinetics. 2013 , 18, 667-73		245
181	Role of hydrophobic interactions in the encounter complex formation of the plastocyanin and cytochrome f complex revealed by paramagnetic NMR spectroscopy. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7681-92	16.4	34
180	Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins. 2013 , 85, 6080-8		26
179	Protein-ligand interactions: fundamentals. 2013 , 1008, 3-34		13
178	Remarkably fast coupled folding and binding of the intrinsically disordered transactivation domain of cMyb to CBP KIX. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 13346-56	3.4	74
177	Microchamber Western blotting using poly-L-lysine conjugated polyacrylamide gel for blotting of sodium dodecyl sulfate coated proteins. 2013 , 85, 7753-61		8
176	Naturally split inteins assemble through a "capture and collapse" mechanism. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18673-81	16.4	50
175	Nonconserved active site residues modulate CheY autophosphorylation kinetics and phosphodonor preference. <i>Biochemistry</i> , 2013 , 52, 2262-73	3.2	23
174	BLIP-II is a highly potent inhibitor of Klebsiella pneumoniae carbapenemase (KPC-2). 2013 , 57, 3398-40	1	9
174	BLIP-II is a highly potent inhibitor of Klebsiella pneumoniae carbapenemase (KPC-2). 2013 , 57, 3398-40 Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. 2013 , 4, 443-9	1	9
	Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. 2013 ,	3.6	
173	Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. 2013, 4, 443-9 Probing Target Search Pathways during Protein Protein Association by Rational Mutations Based		
173	Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. 2013, 4, 443-9 Probing Target Search Pathways during Protein Protein Association by Rational Mutations Based on Paramagnetic Relaxation Enhancement. <i>Angewandte Chemie</i> , 2013, 125, 3468-3472		25
173 172 171	Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. 2013, 4, 443-9 Probing Target Search Pathways during Protein Protein Association by Rational Mutations Based on Paramagnetic Relaxation Enhancement. <i>Angewandte Chemie</i> , 2013, 125, 3468-3472 The role of protonation states in ligand-receptor recognition and binding. 2013, 19, 4182-90 Use of Molecular Dynamics for the Refinement of an Electrostatic Model for the In Silico Design of		25
173 172 171 170	Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. 2013, 4, 443-9 Probing Target Search Pathways during Protein Protein Association by Rational Mutations Based on Paramagnetic Relaxation Enhancement. Angewandte Chemie, 2013, 125, 3468-3472 The role of protonation states in ligand-receptor recognition and binding. 2013, 19, 4182-90 Use of Molecular Dynamics for the Refinement of an Electrostatic Model for the In Silico Design of a Polymer Antidote for the Anticoagulant Fondaparinux. 2013, 2013, 487387 Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy.	3.6	25 56
173 172 171 170	Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. 2013, 4, 443-9 Probing Target Search Pathways during Protein Protein Association by Rational Mutations Based on Paramagnetic Relaxation Enhancement. Angewandte Chemie, 2013, 125, 3468-3472 The role of protonation states in ligand-receptor recognition and binding. 2013, 19, 4182-90 Use of Molecular Dynamics for the Refinement of an Electrostatic Model for the In Silico Design of a Polymer Antidote for the Anticoagulant Fondaparinux. 2013, 2013, 487387 Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E62-71 A multiscale model for simulating binding kinetics of proteins with flexible linkers. Proteins:	3.6	25 56

165	VASP-E: specificity annotation with a volumetric analysis of electrostatic isopotentials. <i>PLoS Computational Biology</i> , 2014 , 10, e1003792	5	11
164	Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling. <i>PLoS Computational Biology</i> , 2014 , 10, e1003901	5	14
163	Electrostatic interactions in the binding pathway of a transient protein complex studied by NMR and isothermal titration calorimetry. 2014 , 289, 27911-23		17
162	Electrostatic properties of complexes along a DNA glycosylase damage search pathway. <i>Biochemistry</i> , 2014 , 53, 7680-92	3.2	16
161	Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E49	9 2 9-35	24
160	Positive and negative impacts of nonspecific sites during target location by a sequence-specific DNA-binding protein: origin of the optimal search at physiological ionic strength. <i>Nucleic Acids Research</i> , 2014 , 42, 7039-46	20.1	54
159	Specific and nonspecific interactions in ultraweak protein-protein associations revealed by solvent paramagnetic relaxation enhancements. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10277-86	16.4	30
158	Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry. 2015 , 1, 127-138		18
157	webSDA: a web server to simulate macromolecular diffusional association. <i>Nucleic Acids Research</i> , 2015 , 43, W220-4	20.1	9
156	Globular and disordered-the non-identical twins in protein-protein interactions. <i>Frontiers in Molecular Biosciences</i> , 2015 , 2, 40	5.6	24
155	Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions. 2015 , 26, 125-41		3
154	Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations. 2015 , 290, 1106-18		13
153	SDA 7: A modular and parallel implementation of the simulation of diffusional association software. 2015 , 36, 1631-45		46
152	Epitope mapping of monoclonal antibody HPT-101: a study combining dynamic force spectroscopy, ELISA and molecular dynamics simulations. 2015 , 12, 066018		3
151	Insights into the role of substrates on the interaction between cytochrome b5 and cytochrome P450 2B4 by NMR. <i>Scientific Reports</i> , 2015 , 5, 8392	4.9	19
150	Orientational alignment of amyloidogenic proteins in pre-aggregated solutions. 2015 , 114, 128101		10
149	Peptide Binding to a PDZ Domain by Electrostatic Steering via Nonnative Salt Bridges. <i>Biophysical Journal</i> , 2015 , 108, 2362-70	2.9	27
148	[Supramolecular Agents for Theranostics]. 2015 , 41, 539-52		8

How Hydrophilic Proteins Form Nonspecific Complexes. *Journal of Physical Chemistry B*, **2015**, 119, 10524. 40 6 147 Thermodynamics of protein destabilization in live cells. Proceedings of the National Academy of 146 11.5 140 Sciences of the United States of America, 2015, 112, 12402-7 Advances in Antibody Design. 2015, 17, 191-216 145 127 Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting. 144 9 2015, 290, 30006-17 Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular 143 22 dynamics simulations. 2016, 18, 10191-200 Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies. 2016, 291, 6689-95 142 104 Protein dynamics and function from solution state NMR spectroscopy. 2016, 49, e6 88 141 Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics. Journal of 6.1 140 Chemical Information and Modeling, 2016, 56, 1164-74 Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. 63 11.5 139 Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2489-97 HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. 2016, 138 127 536, 349-53 Accelerating the Association of the Most Stable Protein-Ligand Complex by More than Two Orders 137 16.4 1 of Magnitude. Angewandte Chemie - International Edition, 2016, 55, 9350-5 Hydrogen Exchange Mass Spectrometry for the Analysis of Ligand Binding and Protein 136 Aggregation. **2016**, 185-207 The contribution of major histocompatibility complex contacts to the affinity and kinetics of T cell 135 4.9 14 receptor binding. Scientific Reports, 2016, 6, 35326 Accelerating the Association of the Most Stable Protein Ligand Complex by More than Two Orders 3.6 134 of Magnitude. Angewandte Chemie, 2016, 128, 9496-9501 Studying Protein-Protein Binding through T-Jump Induced Dissociation: Transient 2D IR 133 3.4 37 Spectroscopy of Insulin Dimer. Journal of Physical Chemistry B, 2016, 120, 5134-45 Electrostatics, structure prediction, and the energy landscapes for protein folding and binding. 132 55 2016, 25, 255-69 Highly Efficient Computation of the Basal kon using Direct Simulation of Protein-Protein 131 3.4 21 Association with Flexible Molecular Models. Journal of Physical Chemistry B, 2016, 120, 117-22 Transient protein-protein interactions visualized by solution NMR. 2016, 1864, 115-22 130 40

129	Comparing protein behaviour in vitro and in vivo, what does the data really tell us?. 2017, 42, 129-135		10
128	Prediction of Biomolecular Complexes. 2017 , 265-292		5
127	Interaction Entropy for Computational Alanine Scanning. <i>Journal of Chemical Information and Modeling</i> , 2017 , 57, 1112-1122	6.1	55
126	Breaking the color barrier - a multi-selective antibody reporter offers innovative strategies of fluorescence detection. 2017 , 130, 2644-2653		4
125	Physicochemical code for quinary protein interactions in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E4556-E4563	11.5	73
124	Weak protein-protein interactions in live cells are quantified by cell-volume modulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6776-6781	11.5	60
123	The Molecular Mechanisms Underlying the Hijack of Host Proteins by the 1918 Spanish Influenza Virus. <i>ACS Chemical Biology</i> , 2017 , 12, 1199-1203	4.9	9
122	Interaction entropy for protein-protein binding. <i>Journal of Chemical Physics</i> , 2017 , 146, 124124	3.9	65
121	Controllable Activation of Nanoscale Dynamics in a Disordered Protein Alters Binding Kinetics. Journal of Molecular Biology, 2017 , 429, 987-998	6.5	10
120	Slow molecular recognition by RNA. 2017 , 23, 1745-1753		20
120	Slow molecular recognition by RNA. 2017 , 23, 1745-1753 The dock-and-coalesce mechanism for the association of a WASP disordered region with the Cdc42 GTPase. <i>FEBS Journal</i> , 2017 , 284, 3381-3391	5.7	18
	The dock-and-coalesce mechanism for the association of a WASP disordered region with the Cdc42	5.7	18
119	The dock-and-coalesce mechanism for the association of a WASP disordered region with the Cdc42 GTPase. <i>FEBS Journal</i> , 2017 , 284, 3381-3391 Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 ,	11.5	18
119	The dock-and-coalesce mechanism for the association of a WASP disordered region with the Cdc42 GTPase. FEBS Journal, 2017, 284, 3381-3391 Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9882-9887	11.5	18
119 118 117	The dock-and-coalesce mechanism for the association of a WASP disordered region with the Cdc42 GTPase. <i>FEBS Journal</i> , 2017 , 284, 3381-3391 Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9882-9887 Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. 2017 , 8, 324 Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine	11.5	18 38 88
119 118 117 116	The dock-and-coalesce mechanism for the association of a WASP disordered region with the Cdc42 GTPase. <i>FEBS Journal</i> , 2017 , 284, 3381-3391 Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9882-9887 Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. 2017 , 8, 324 Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning. <i>Scientific Reports</i> , 2017 , 7, 46622 The ATAD2 bromodomain binds different acetylation marks on the histone H4 in similar fuzzy	11.5	18 38 88 21
119 118 117 116	The dock-and-coalesce mechanism for the association of a WASP disordered region with the Cdc42 GTPase. FEBS Journal, 2017, 284, 3381-3391 Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9882-9887 Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. 2017, 8, 324 Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning. Scientific Reports, 2017, 7, 46622 The ATAD2 bromodomain binds different acetylation marks on the histone H4 in similar fuzzy complexes. 2017, 292, 16734-16745	11.5	18 38 88 21

111	Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1. <i>PLoS Computational Biology</i> , 2017 , 13, e1005468	5	28
110	SLTCAP: A Simple Method for Calculating the Number of Ions Needed for MD Simulation. 2018 , 14, 182	3-1827	' 19
109	Effect of CationIInteraction on Macroionic Self-Assembly. <i>Angewandte Chemie</i> , 2018 , 130, 4131-4136	3.6	8
108	Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes. 2018 , 69, 253-271		33
107	Effect of Cation-Interaction on Macroionic Self-Assembly. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 4067-4072	16.4	28
106	Binding of ferredoxin to algal photosystem I involves a single binding site and is composed of two thermodynamically distinct events. 2018 , 1859, 234-243		11
105	Binding kinetics of ultrasmall gold nanoparticles with proteins. 2018 , 10, 3235-3244		27
104	Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. <i>Chemical Reviews</i> , 2018 , 118, 1691-1741	68.1	290
103	Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. <i>Biochemistry</i> , 2018 , 57, 2211-2226	3.2	5
102	Interaction entropy for computational alanine scanning in protein protein binding. 2018 , 8, e1342		34
101	Ultrafast Protein Folding in Membrane-Mimetic Environments. <i>Journal of Molecular Biology</i> , 2018 , 430, 554-564	6.5	8
100	Seeking allosteric networks in PDZ domains. 2018 , 31, 367-373		19
99	Diffusion-limited association of disordered protein by non-native electrostatic interactions. 2018 , 9, 470	07	31
98	Osmolytes and Protein-Protein Interactions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7441-	7 46. 4	35
97	Facilitated Protein Association via Engineered Target Search Pathways Visualized by Paramagnetic NMR Spectroscopy. 2018 , 26, 887-893.e2		8
96	Protein folding and quinary interactions: creating cellular organisation through functional disorder. 2018 , 592, 3040-3053		14
95	Electrostatic control of calcineurin's intrinsically-disordered regulatory domain binding to calmodulin. 2018 , 1862, 2651-2659		4
94	Measuring Novel Protein-Protein Binding with Surface Plasmon Resonance in the Physical Chemistry Lab. 2018 , 15-31		О

93	Reversible Supramolecular Assembly of Velvet Worm Adhesive Fibers via Electrostatic Interactions of Charged Phosphoproteins. 2018 , 19, 4034-4043		13
92	Tunable order-disorder continuum in protein-DNA interactions. <i>Nucleic Acids Research</i> , 2018 , 46, 8700-8	7 209 1	13
91	Conservation of coactivator engagement mechanism enables small-molecule allosteric modulators. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8960-8965	11.5	11
90	Binding Kinetics of the Intrinsically Disordered p53 Family Transactivation Domains and MDM2. Journal of Physical Chemistry B, 2018 , 122, 6899-6905	3.4	16
89	Rational evolution of the cofactor-binding site of cytochrome P450 reductase yields variants with increased activity towards specific cytochrome P450 enzymes. <i>FEBS Journal</i> , 2019 , 286, 4473-4493	5.7	6
88	Stabilizing and Understanding a Miniprotein by Rational Redesign. <i>Biochemistry</i> , 2019 , 58, 3060-3064	3.2	1
87	Single-molecule fluorescence studies of IDPs and IDRs. 2019 , 93-136		
86	Electrostatically Driven Guanidinium Interaction Domains that Control Hydrogel-Mediated Protein Delivery In Vivo. <i>ACS Central Science</i> , 2019 , 5, 1750-1759	16.8	17
85	Protein-protein binding pathways and calculations of rate constants using fully-continuous, explicit-solvent simulations. <i>Chemical Science</i> , 2019 , 10, 2360-2372	9.4	28
84	Enhancement of RNA/Ligand Association Kinetics via an Electrostatic Anchor. <i>Biochemistry</i> , 2019 , 58, 2760-2768	3.2	O
83	Drug-Target Association Kinetics in Drug Discovery. <i>Trends in Biochemical Sciences</i> , 2019 , 44, 861-871	10.3	12
82	Reactive centre loop dynamics and serpin specificity. <i>Scientific Reports</i> , 2019 , 9, 3870	4.9	18
81	Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	10
80	Electrostatic Steering Enables Flow-Activated Von Willebrand Factor to Bind Platelet Glycoprotein, Revealed by Single-Molecule Stretching and Imaging. <i>Journal of Molecular Biology</i> , 2019 , 431, 1380-139	6 ^{6.5}	10
79	Unbiased Atomistic Insight into the Mechanisms and Solvent Role for Globular Protein Dimer Dissociation. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 1883-1895	3.4	7
78	Atomic-level characterization of protein-protein association. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 4244-4249	11.5	97
77	Model of a Kinetically Driven Crosstalk between Paralogous Protein Encounter Complexes. <i>Biophysical Journal</i> , 2019 , 117, 1655-1665	2.9	4
76	Accurate and Efficient Calculation of Protein-Protein Binding Free Energy-Interaction Entropy with Residue Type-Specific Dielectric Constants. <i>Journal of Chemical Information and Modeling</i> , 2019 , 59, 272	-2 8 1	18

(2021-2019)

75	Electron transfer between cytochrome c and the binuclear center of cytochrome oxidase. <i>Journal of Theoretical Biology</i> , 2019 , 460, 134-141	2.3	3
74	Detecting Counterion Dynamics in DNAProtein Association. <i>Angewandte Chemie</i> , 2020 , 132, 1481-1484	3.6	O
73	Detecting Counterion Dynamics in DNA-Protein Association. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1465-1468	16.4	6
72	Binding of HasA by its transmembrane receptor HasR follows a conformational funnel mechanism. <i>European Biophysics Journal</i> , 2020 , 49, 39-57	1.9	3
71	Ligand R eceptor Binding Kinetics in Drug Design. <i>Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry</i> , 2020 , 14, 228-240	0.4	
70	Influence of electrostatic forces on the association kinetics and conformational ensemble of an intrinsically disordered protein. <i>Proteins: Structure, Function and Bioinformatics</i> , 2020 , 88, 1607-1619	4.2	2
69	Long-Range Charge Reorganization as an Allosteric Control Signal in Proteins. <i>Journal of the American Chemical Society</i> , 2020 , 142, 20456-20462	16.4	9
68	Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 10698-10707	3.4	7
67	Revealing the Dynamical Role of Co-solvents in the Coupled Folding and Dimerization of Insulin. Journal of Physical Chemistry Letters, 2020 , 11, 4353-4358	6.4	5
66	DNA binds to a specific site of the adhesive blood-protein von Willebrand factor guided by electrostatic interactions. <i>Nucleic Acids Research</i> , 2020 , 48, 7333-7344	20.1	6
65	Diffusive protein interactions in human versus bacterial cells. <i>Current Research in Structural Biology</i> , 2020 , 2, 68-78	2.8	6
64	Co-localization and confinement of ecto-nucleotidases modulate extracellular adenosine nucleotide distributions. <i>PLoS Computational Biology</i> , 2020 , 16, e1007903	5	5
63	Structure-Guided Design of a Peptide Lock for Modular Peptide Binders. <i>ACS Chemical Biology</i> , 2020 , 15, 457-468	4.9	3
62	An Early Association between the Helix of the TEAD Binding Domain of YAP and TEAD Drives the Formation of the YAP:TEAD Complex. <i>Biochemistry</i> , 2020 , 59, 1804-1812	3.2	11
61	Impact of magnetic field on corrosion performance of AlMg alloy with different electrode potential phases. <i>Intermetallics</i> , 2021 , 129, 107037	3.5	3
60	Discrete-state stochastic kinetic models for target DNA search by proteins: Theory and experimental applications. <i>Biophysical Chemistry</i> , 2021 , 269, 106521	3.5	3
59	Double Mutant Cycles as a Tool to Address Folding, Binding, and Allostery. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2
58	Energetic Aspects of Protein Protein Interactions (PPIs). 2021, 113-151		

57	Binding Revisited-Avidity in Cellular Function and Signaling. <i>Frontiers in Molecular Biosciences</i> , 2020 , 7, 615565	5.6	14
56	The RED scheme: Rate-constant estimation from pre-steady state weighted ensemble simulations. <i>Journal of Chemical Physics</i> , 2021 , 154, 114111	3.9	2
55	A baton-relay and proofreading mechanism for selective ER retrieval signal capture by the KDEL receptor.		
54	Shark Antibody Variable Domains Rigidify Upon Affinity Maturation-Understanding the Potential of Shark Immunoglobulins as Therapeutics. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 639166	5.6	4
53	Insertion state of modular protein nanopores into a membrane. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2021 , 1863, 183570	3.8	0
52	Effects of common mutations in the SARS-CoV-2 Spike RBD domain and its ligand the human ACE2 receptor on binding affinity and kinetics.		5
51	A signal capture and proofreading mechanism for the KDEL-receptor explains selectivity and dynamic range in ER retrieval. <i>ELife</i> , 2021 , 10,	8.9	2
50	Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. <i>Chemical Reviews</i> , 2021 , 121, 8095-8160	68.1	25
49	Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. <i>ELife</i> , 2021 , 10,	8.9	66
48	Classification of protein-protein association rates based on biophysical informatics. <i>BMC Bioinformatics</i> , 2021 , 22, 408	3.6	
47	Experimental approaches for investigating ion atmospheres around nucleic acids and proteins. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 2279-2285	6.8	3
46	Revisiting the Rate-Limiting Step of the ANS-Protein Binding at the Protein Surface and Inside the Hydrophobic Cavity. <i>Molecules</i> , 2021 , 26,	4.8	5
45	Brownian Dynamics.		1
44	Directed Ligand Passage over the Surface of Diffusion-Controlled Enzymes: A Cellular Automata Model. <i>Lecture Notes in Computer Science</i> , 2004 , 719-724	0.9	4
43	Role of charges in actomyosin interactions. Results and Problems in Cell Differentiation, 2002, 36, 51-64	1.4	1
42	The Interaction Between Cytochrome f and Plastocyanin or Cytochrome c6. <i>Advances in Photosynthesis and Respiration</i> , 2016 , 631-655	1.7	1
41	Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. Journal of Biosciences, 2020 , 45, 1	2.3	3
40	Repulsive electrostatic interactions modulate dense and dilute phase properties of biomolecular condensates.		6

39	Screened Coulomb interactions of general macroions with nonzero particle volume. <i>Physical Review Research</i> , 2020 , 2,	3.9	2
38	The diabetogenic mouse MHC class II molecule I-Ag7 is endowed with a switch that modulates TCR affinity. <i>Journal of Clinical Investigation</i> , 2010 , 120, 1578-90	15.9	31
37	Insight Into the Binding Mechanism of p53/pDIQ-MDMX/MDM2 With the Interaction Entropy Method. <i>Frontiers in Chemistry</i> , 2019 , 7, 33	5	11
36	Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 749052	5.6	2
35	Proteinsprotein interactions. 2002,		
34	Thermal Unfolding of Proteins. 70		
33	Association and Folding of Small Oligomeric Proteins. 965		
32	Direct Visualization Reveals Dynamics of a Transient Intermediate During Protein Assembly. 2012 , 27-4	48	
31	Sequential Checkpoints Govern Substrate Selection During Co-translational Protein Targeting. 2012 , 67-96		
30	The Physical Chemistry of Specific Recognition. 1997 , 3-19		
29	Modulation of Thioredoxin Affinity for Chloroplastic Fructose-1,6-Bisphosphatase by Electrostatic Interactions. 1998 , 3545-3548		
28	Chapter 3 Electrostatic effects in proteins: Experimental and computational approaches. <i>Protein</i> , 1999 , 61-97		
27	Biorecognition Molecules: Types and Molecular Basis and Development of Specificity. 2015 , 45-63		
26	Electrostatics at the Active Site of Two Amylases: Direct Comparison of Experiment with Theory. Journal of Analytical & Pharmaceutical Research, 2018, 7,	0.4	1
25	Dual roles of electrostatic-steering and conformational dynamics in the binding of calcineurin intrinsically-disordered recognition domain to calmodulin.		
24	Local unfolding of the HSP27 monomer regulates chaperone activity.		
23	Reactive Centre Loop Dynamics and Serpin Specificity.		
22	The RED scheme: Rate-constant estimation from pre-steady state weighted ensemble simulations.		O

21	Protein-protein binding pathways and calculations of rate constants using fully continuous explicit solvent simulations.		
20	Unbiased Atomistic Insight in the Mechanisms and Solvent Role for Globular Protein Dimer Dissociation.		
19	[Ligand-receptor binding kinetics in drug design]. Biomeditsinskaya Khimiya, 2020, 66, 42-53	0.8	1
18	A Computationally Fast and Parametric Model to Estimate Protein-Ligand Docking Time for Stochastic Event Based Simulation. 2007 , 14-41		О
17	Histidine-rich Ca2+-binding protein stimulates the transport cycle of SERCA through a conformation-dependent fuzzy complex.		
16	Specific visualization of tumor cells using upconversion nanophosphors. <i>Acta Naturae</i> , 2014 , 6, 48-53	2.1	5
15	Distal Ionic Substrate-Catalyst Interactions Enable Long-Range Stereocontrol: Access to Remote Quaternary Stereocenters through a Desymmetrizing Suzuki-Miyaura Reaction <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	4
14	Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. <i>Journal of Biosciences</i> , 2020 , 45,	2.3	1
13	Multiple binding modes of an N-terminal CCR5-peptide in complex with HIV-1 gp120 <i>FEBS Journal</i> , 2021 ,	5.7	
12	Data_Sheet_1.PDF. 2019 ,		
12	Data_Sheet_1.PDF. 2019 , On the osmotic pressure of cells. <i>QRB Discovery</i> , 1-26	2.7	0
		2.7	0
11	On the osmotic pressure of cells. <i>QRB Discovery</i> , 1-26 Revving an Engine of Human Metabolism: Activity Enhancement of Triosephosphate Isomerase via	2.7	
11	On the osmotic pressure of cells. <i>QRB Discovery</i> , 1-26 Revving an Engine of Human Metabolism: Activity Enhancement of Triosephosphate Isomerase via Hemi-Phosphorylation.	2.7	0
11 10	On the osmotic pressure of cells. <i>QRB Discovery</i> , 1-26 Revving an Engine of Human Metabolism: Activity Enhancement of Triosephosphate Isomerase via Hemi-Phosphorylation. Heparins mediate the multimer assembly of secreted Noggin. 2022, 31, Explaining Small Molecule Binding Specificity with Volumetric Representations of Protein Binding	2.7	0
11 10 9	On the osmotic pressure of cells. <i>QRB Discovery</i> , 1-26 Revving an Engine of Human Metabolism: Activity Enhancement of Triosephosphate Isomerase via Hemi-Phosphorylation. Heparins mediate the multimer assembly of secreted Noggin. 2022, 31, Explaining Small Molecule Binding Specificity with Volumetric Representations of Protein Binding Sites. 2022, 17-45 AMOEBA Force Field Trajectories Improve Predictions of Accurate pKa Values of the GFP	2.7	0 1 0
11 10 9 8	On the osmotic pressure of cells. <i>QRB Discovery</i> , 1-26 Revving an Engine of Human Metabolism: Activity Enhancement of Triosephosphate Isomerase via Hemi-Phosphorylation. Heparins mediate the multimer assembly of secreted Noggin. 2022, 31, Explaining Small Molecule Binding Specificity with Volumetric Representations of Protein Binding Sites. 2022, 17-45 AMOEBA Force Field Trajectories Improve Predictions of Accurate pKa Values of the GFP Fluorophore: The Importance of Polarizability and Water Interactions.	2.7	0 1 0

CITATION REPORT

Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction.

Prine Tuning Rigid Body Docking Results Using the Dreiding Force Field: A Computational Study of 36 Known Nanobody-Protein Complexes.

Different electrostatic forces drive the binding kinetics of SARS-CoV, SARS-CoV-2 and MERS-CoV Envelope proteins with the PDZ2 domain of ZO1. 2023, 13,