Long-term persistence in a changing climate: DNA analy of alpine Carex curvula

Oecologia 105, 94-99

DOI: 10.1007/bf00328796

Citation Report

#	Article	IF	CITATIONS
1	Growth dynamics and population development in an alpine grassland under elevated CO2. Oecologia, 1996, 106, 93-99.	2.0	25
2	Responses of soil microbiota of a late successional alpine grassland to long term CO2 enrichment. Plant and Soil, 1996, 184, 219-229.	3.7	66
3	The responses of alpine grassland to four seasons of CO2 enrichment: a synthesis. Acta Oecologica, 1997, 18, 165-175.	1.1	104
4	Title is missing!. Plant Ecology, 1997, 130, 1-11.	1.6	44
5	An isozyme study of clone diversity and relative importance of sexual and vegetative recruitment in the grass Brachypodium pinnatum. Ecography, 1998, 21, 351-360.	4.5	39
6	Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia, 1998, 114, 60-66.	2.0	78
7	Clonal diversity in a Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. Molecular Ecology, 1998, 7, 975-982.	3.9	140
8	Sex after all: high levels of diversity detected in the arctic clonal plantSaxifraga cernuausing RAPD markers. Molecular Ecology, 1998, 7, 1701-1708.	3.9	132
9	BACTERIA AS MODULAR ORGANISMS. Annual Review of Microbiology, 1998, 52, 105-126.	7.3	34
10	RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). American Journal of Botany, 1998, 85, 811-819.	1.7	243
11	Clonal Diversity in Alpine Populations of Polygonum viviparum (Polygonaceae). International Journal of Plant Sciences, 1998, 159, 606-615.	1.3	68
12	Size and spatial pattern of Festuca rubra genets in a mountain grassland: its relevance to genet establishment and dynamics. Journal of Ecology, 1999, 87, 942-954.	4.0	29
13	Promiscuity in populations of the cushion plantSaxifraga oppositifoliain the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Molecular Ecology, 1999, 8, 453-461.	3.9	67
14	Sexual reproductive ecology of Carex bigelowii an arctic-alpine sedge. Ecography, 1999, 22, 305-313.	4.5	21
15	Title is missing!. Plant Ecology, 1999, 141, 145-150.	1.6	17
16	Clonal plants and environmental heterogeneity – An introduction to the proceedings. Plant Ecology, 1999, 141, 3-7.	1.6	112
17	Demographic and genetic invasion history of a 9-year-old roadside population of Bunias orientalis L. (Brassicaceae). Oecologia, 1999, 120, 225-234.	2.0	39
18	Alpine Plant Life. , 1999, , .		637

#	ARTICLE	IF	CITATIONS
19	RESPONSES OF TUNDRA PLANTS TO EXPERIMENTAL WARMING: META-ANALYSIS OF THE INTERNATIONAL TUNDRA EXPERIMENT. Ecological Monographs, 1999, 69, 491-511.	5 . 4	270
21	Responses of Tundra Plants to Experimental Warming: Meta-Analysis of the International Tundra Experiment. Ecological Monographs, 1999, 69, 491.	5 . 4	524
22	RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany, 2000, 87, 1128-1137.	1.7	156
23	Spatial genetic structure and clonal diversity of Anemone nemorosa in late successional deciduous woodlands of Central Europe. Journal of Ecology, 2000, 88, 424-435.	4.0	107
24	Life span and biomass allocation of stunted black spruce clones in the subarctic environment. Journal of Ecology, 2000, 88, 584-593.	4.0	48
25	Dynamics of genotypic structure in clonalRhododendron ferrugineum(Ericaceae) populations. Molecular Ecology, 2000, 9, 1099-1111.	3.9	69
26	Genet age in marginal populations of two clonal Carex species in the Siberian Arctic. Ecography, 2000, 23, 402-412.	4.5	20
27	Assessing alpine plant vulnerability to climate change: a modeling perspective. Integrated Assessment: an International Journal, 2000, 1, 307-320.	0.8	146
28	Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia, 2000, 125, 45-54.	2.0	133
29	Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 2000, 26, 194-220.	2.0	227
30	Evidence of sexuality in EuropeanRubus(Rosaceae) species based on AFLP and allozyme analysis. American Journal of Botany, 2000, 87, 1592-1598.	1.7	59
31	Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquatic Botany, 2000, 66, 195-208.	1.6	58
32	Clonality and sexual reproductive failure in remnant populations of Santalum lanceolatum (Santalaceae). Biological Conservation, 2000, 96, 45-54.	4.1	65
33	Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 2000, 26, 194-220.	2.0	537
34	Clonal Diversity in Differently-Aged Populations of the Pseudo-Annual Clonal Plant Circaea lutetiana L Plant Biology, 2000, 2, 646-652.	3.8	32
35	Tree spade transplanting of Spartina pectinata (Link) and Eleocharis macrostachya (Britt.) in a prairie wetland restoration site. Aquatic Botany, 2001, 71, 297-304.	1.6	15
36	Genotypic Diversity and Clonal Structure of Everglades Sawgrass, Cladium jamaicense (Cyperaceae). International Journal of Plant Sciences, 2001, 162, 1327-1335.	1,3	40
37	Genetic Diversity of Everglades Sawgrass, Cladium jamaicense (Cyperaceae). International Journal of Plant Sciences, 2001, 162, 817-825.	1.3	29

#	ARTICLE	IF	CITATIONS
38	Analysis of clonal structure of Melaleuca cajuputi (Myrtaceae) at a barren sandy site in Thailand using microsatellite polymorphism. Trees - Structure and Function, 2001, 15, 242-248.	1.9	17
39	Demographic and random amplified polymorphic DNA analyses reveal high levels of genetic diversity in a clonal violet. Molecular Ecology, 2001, 10, 1811-1819.	3.9	63
40	Genetic structure of the annual weed Senecio vulgaris in relation to habitat type and population size. Molecular Ecology, 2001, 10, 17-28.	3.9	37
41	Resistance or emigration: response of the high-alpine plant Eritrichium nanum (L.) Gaudin to the ice age within the Central Alps. Molecular Ecology, 2001, 10, 357-370.	3.9	120
42	Potential Impact of Climate Change on Vegetation in the European Alps: A Review., 2001, 50, 77-109.		700
43	Genetic Diversity of the Macaronesian Leafy Liverwort Porella canariensis Inferred From RAPD Markers. Journal of Heredity, 2001, 92, 339-345.	2.4	34
44	Conservation Genetics and Population History of Betula nana, Vaccinium uliginosum, and Campanula rotundifolia in the Arctic Archipelago of Svalbard. Arctic, Antarctic, and Alpine Research, 2002, 34, 408.	1.1	16
45	Conservation Genetics and Population History of <i>Betula nana, Vaccinium uliginosum </i> , and <i>Campanula rotundifolia </i> in the Arctic Archipelago of Svalbard. Arctic, Antarctic, and Alpine Research, 2002, 34, 408-418.	1.1	22
46	Population stasis in a high-elevation herbaceous plant under moderate climate warming. Basic and Applied Ecology, 2002, 3, 77-83.	2.7	26
47	Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. Journal of Ecology, 2002, 90, 360-370.	4.0	73
48	Colonization dynamics of the clonal moss Hylocomium splendens on islands in a Baltic land uplift area: reproduction, genet distribution and genetic variation. Journal of Ecology, 2002, 90, 925-935.	4.0	81
49	Clonal diversity and structure within a population of the pondweed Potamogeton pectinatus foraged by Bewick's swans. Molecular Ecology, 2002, 11, 2137-2150.	3.9	124
50	Does natural selection promote population divergence? A comparative analysis of population structure using amplified fragment length polymorphism markers and quantitative traits. Molecular Ecology, 2002, 11, 2583-2590.	3.9	69
51	Characterization of microsatellite loci in Lychnis flos-cuculi (Caryophyllaceae). Molecular Ecology Notes, 2002, 2, 491-492.	1.7	10
52	Immigration and in situ glacial survival of the low-alpine Erinus alpinus (Scrophulariaceae). Biological Journal of the Linnean Society, 2002, 77, 87-103.	1.6	69
53	Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity, 2002, 88, 243-249.	2.6	109
54	Niche differentiation and distribution of Carex curvula along a bioclimatic gradient in the southwestern Alps. Journal of Vegetation Science, 2002, 13, 851-858.	2.2	34
55	Title is missing!. Biodiversity and Conservation, 2002, 11, 2027-2046.	2.6	39

#	ARTICLE	IF	Citations
56	Genetic diversity of alligator weed in China by RAPD analysis. Biodiversity and Conservation, 2003, 12, 637-645.	2.6	91
57	The relative importance of sexual reproduction versus clonal spread in an aridland bunchgrass. Oecologia, 2003, 137, 216-225.	2.0	35
58	Low genetic differentiation among seasonal cohorts in Senecio vulgaris as revealed by amplified fragment length polymorphism analysis. Molecular Ecology, 2003, 12, 2541-2551.	3.9	24
59	Phoenix clones: recovery after long-term defoliation-induced dormancy. Ecology Letters, 2003, 6, 119-125.	6.4	31
60	Overview: Patterns in Diversity. Ecological Studies, 2003, , 125-132.	1.2	1
61	Seedling demography in an alpine ecosystem. American Journal of Botany, 2003, 90, 1197-1206.	1.7	123
62	Alpine Biodiversity in Space and Time: A Synthesis. Ecological Studies, 2003, , 453-464.	1.2	23
63	Genetic Variability and Its Ecological Implications in the Clonal Plant Carex scopulorum Holm. in Colorado Tundra. Arctic, Antarctic, and Alpine Research, 2003, 35, 429-433.	1.1	6
64	POPULATION STRUCTURE AND INBREEDING VARY WITH SUCCESSIONAL STAGE IN CREATED SPARTINA ALTERNIFLORA MARSHES. , 2004, 14, 1189-1202.		70
65	Past uppermost tree limit in the Central European Alps (Switzerland) based on soil and soil charcoal. Holocene, 2004, 14, 393-405.	1.7	58
66	Population genetic diversity of the clonal plant <i>Geum reptans</i> (Rosaceae) in the Swiss Alps. American Journal of Botany, 2004, 91, 2013-2021.	1.7	104
67	An under-appreciated difficulty: sampling of plant populations for analysis using molecular markers. Evolutionary Ecology, 2004, 18, 625-646.	1.2	13
68	Clonal integration beyond resource sharing: implications for defence signalling and disease transmission in clonal plant networks. Evolutionary Ecology, 2004, 18, 647-667.	1.2	89
69	Clonal diversity and subpopulation structure in central European relict populations of Saxifraga paniculata Mill. (Saxifragaceae). Feddes Repertorium, 2004, 115, 239-247.	0.5	10
70	Genetic diversity of giant reed (Arundo donax) in the Santa Ana River, California. Weed Science, 2004, 52, 395-405.	1.5	64
71	How long can glacier foreland species live?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2004, 199, 500-504.	1.2	20
72	Isolation and characterization of microsatellite DNA markers in the grass Poa alpina L Molecular Ecology Notes, 2005, 5, 719-720.	1.7	9
73	Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. Molecular Ecology, 2005, 14, 991-1000.	3.9	51

#	ARTICLE	IF	CITATIONS
74	Clone identification and clonal structure of the European aspen (Populus tremula). Molecular Ecology, 2005, 14, 2851-2860.	3.9	71
75	RAPD Profiling in Detecting Genetic Variation in Endemic Coelonema (Brassicaceae) of Qinghai-Tibet Plateau of China. Biochemical Genetics, 2005, 43, 189-201.	1.7	24
76	Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): a review. Hydrobiologia, 2005, 535-536, 297-307.	2.0	36
77	Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. Journal of Arid Environments, 2005, 63, 390-405.	2.4	56
78	How important is clonal recruitment for population maintenance in rare plant species?: the case of the narrow endemic cactus, Stenocereus eruca, in Baja California, México. Biological Conservation, 2005, 124, 123-132.	4.1	31
79	The Green Cover of Mountains in a Changing Environment. Advances in Global Change Research, 2005, , 367-375.	1.6	20
81	Genetic Variability within Carex sempervirens Tussocks of Contrasting Vitality. International Journal of Plant Sciences, 2006, 167, 513-518.	1.3	10
82	Range-wide genetic analysis provides evidence of natural isolation among populations of the Mongolian endemic Potentilla ikonnikovii Juz. (Rosaceae). Plant Species Biology, 2006, 21, 155-163.	1.0	5
83	Effects of neighbourhood structure and tussock dynamics on genet demography of Festuca rubra in a mountain meadow. Journal of Ecology, 2006, 94, 66-76.	4.0	13
84	The relative importance of sexual and clonal reproduction for population growth in the long-lived alpine plantGeum reptans. Journal of Ecology, 2006, 94, 869-879.	4.0	91
85	The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology, 2006, 241, 896-902.	1.7	87
86	Spatial Genetic Structure and Clonal Diversity in an Alpine Population of Salix herbacea (Salicaceae). Annals of Botany, 2006, 99, 647-651.	2.9	48
87	Genetic Structure of Galitzkya macrocarpa and G. potaninii, Two Closely Related Endemics of Central Asian Mountain Ranges. Annals of Botany, 2006, 98, 1025-1034.	2.9	19
88	Microsatellite Diversity of the Agriculturally Important Alpine Grass Poa alpina in Relation to Land Use and Natural Environment. Annals of Botany, 2007, 100, 1249-1258.	2.9	34
89	Large Clones on Cliff Faces: Expanding by Rhizomes through Crevices. Annals of Botany, 2007, 100, 51-54.	2.9	18
90	Forecasting the Effects of Global Warming on Biodiversity. BioScience, 2007, 57, 227-236.	4.9	483
91	Ecological and Land Use Studies Along Elevational Gradients. Mountain Research and Development, 2007, 27, 58-65.	1.0	135
92	Microscale variation in alpine grasslands: AFLPs reveal a high level of genotypic diversity in Primula minima (Primulaceae). Botanical Journal of the Linnean Society, 2007, 155, 549-556.	1.6	13

#	Article	IF	Citations
93	Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994?2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 2007, 13, 147-156.	9.5	392
94	The role of genotypic diversity in determining grassland community structure under constant environmental conditions. Journal of Ecology, 2007, 95, 895-907.	4.0	81
95	Upward shift of alpine plants increases floristic similarity of mountain summits. Journal of Vegetation Science, 2007, 18, 711-718.	2.2	89
96	Spatial genotypical diversity of Sesleria albicans (Poaceae) in a dry grassland community. Biologia (Poland), 2007, 62, 670-674.	1.5	2
97	Virulence in clonal plants: conflicting selection pressures at work?. Evolutionary Ecology, 2008, 22, 467-470.	1.2	9
98	No positive correlation between species and genetic diversity in European alpine grasslands dominated by <i>Carex curvula</i> . Diversity and Distributions, 2008, 14, 852-861.	4.1	40
99	Postâ€glacial history of the dominant alpine sedge <i> Carex curvula</i> in the European Alpine System inferred from nuclear and chloroplast markers. Molecular Ecology, 2008, 17, 2417-2429.	3.9	57
100	Can clone size serve as a proxy for clone age?An exploration using microsatellite divergence in <i>Populus tremuloides</i> . Molecular Ecology, 2008, 17, 4897-4911.	3.9	93
101	Coppice forests and genetic diversity: A case study in Quercus pyrenaica Willd. from Central Spain. Forest Ecology and Management, 2008, 254, 225-232.	3.2	41
103	Short Communication. Some wild bamboo clumps contain more than one genet. Australian Journal of Botany, 2008, 56, 433.	0.6	4
105	Dynamics of distribution and performance of ramets constructing genets: a demographic–genetic study in a clonal plant, Convallaria keiskei. Annals of Botany, 2009, 104, 71-79.	2.9	14
106	Disturbance by mowing affects clonal diversity: the genetic structure of Ranunculus ficaria (Ranunculuaceae) in meadows and forests. Plant Ecology, 2009, 201, 699-707.	1.6	16
107	Infraâ€red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 2010, 16, 2602-2613.	9.5	208
108	On the genesis of the plant population in the Alps: New or critical aspects. Comptes Rendus - Biologies, 2009, 332, 1092-1103.	0.2	24
109	Genetic Structure of Isolated Vaccinium oxycoccus Populations in Lithuania. Proceedings of the Latvian Academy of Sciences, 2009, 63, 33-36.	0.1	0
110	Climate Change Impacts in Alpine Environments. Geography Compass, 2010, 4, 1133-1153.	2.7	119
111	Clonal structure and genetic diversity of three desert phreatophytes. American Journal of Botany, 2010, 97, 234-242.	1.7	30
112	Rapid warming in the Himalayas: Ecosystem responses and development options. Climate and Development, 2010, 2, 221-232.	3.9	69

#	Article	IF	Citations
113	Longevity of clonal plants: why it matters and how to measure it. Annals of Botany, 2010, 106, 859-870.	2.9	199
114	Clonal diversity and structure in the endangered Alabama leather flower Clematis socialis Kral (Ranunculaceae)1. Journal of the Torrey Botanical Society, 2011, 138, 41-51.	0.3	4
115	Trees in the desert: Reproduction and genetic structure of fragmented Ulmus pumila forests in Mongolian drylands. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 91-99.	1.2	33
116	Plant genotype and nitrogen loading influence seagrass productivity, biochemistry, and plant–herbivore interactions. Ecology, 2011, 92, 1807-1817.	3.2	83
117	Differential effects of historical migration, glaciations and human impact on the genetic structure and diversity of the mountain pasture weed Veratrum album L Journal of Biogeography, 2011, 38, 1776-1791.	3.0	16
118	Extensive clonal spread and extreme longevity in saw palmetto, a foundation clonal plant. Molecular Ecology, 2011, 20, 3730-3742.	3.9	25
119	Demographic processes of upward range contraction in a long-lived Mediterranean high mountain plant. Ecography, $2011, 34, 85-93$.	4.5	44
120	Evolutionary and organismic constraints on the relationship between spacer length and environmental conditions in clonal plants. Oikos, 2011, 120, 1110-1120.	2.7	36
121	Spatial pattern and process at the plant neighbourhood scale: insights from communities dominated by the clonal grass Elymus repens (L.) Gould. Journal of Vegetation Science, 2011, 22, 973-982.	2.2	7
122	Elevational species shifts in a warmer climate are overestimated when based on weather station data. International Journal of Biometeorology, 2011, 55, 645-654.	3.0	80
123	The use of nondestructive methods to assess a physiological status and conservation perspectives of Eryngium maritimum L Journal of Coastal Conservation, 2011, 15, 509-522.	1.6	18
124	Are clonal plants more frequent in cold environments than elsewhere?. Plant Ecology and Diversity, 2011, 4, 373-378.	2.4	26
125	The Importance of Being Connected. Journal of Alzheimer's Disease, 2011, 24, 247-251.	2.6	6
126	Horizontal growth in arctic-alpine clonal plants is not affected by climatic variability among regions. Plant Ecology and Diversity, 2011, 4, 329-340.	2.4	11
127	Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica. PLoS ONE, 2012, 7, e30454.	2.5	195
128	AFLP markers reveal high clonal diversity and extreme longevity in four key arcticâ€alpine species. Molecular Ecology, 2012, 21, 1081-1097.	3.9	75
129	Vulnerability of Pollination Ecosystem Services., 2013,, 117-128.		3
130	Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary. Tree Genetics and Genomes, 2013, 9, 1129-1142.	1.6	21

#	Article	IF	CITATIONS
131	Effects of grazing and fertilization on the relationship between species abundance and functional traits in an alpine meadow community on the Tibetan Plateau. Nordic Journal of Botany, 2013, 31, 247-255.	0.5	11
132	Genetic Structure of Carex Species from the Australian Alpine Region along Elevation Gradients: Patterns of Reproduction and Gene Flow. International Journal of Plant Sciences, 2013, 174, 189-199.	1.3	6
133	Long-term study of an alpine grassland: local constancy in times of global change. Alpine Botany, 2013, 123, 1-6.	2.4	19
134	Analyse de la Flore des Alpes. 5: Milieux et Phytosociologie. Candollea, 2013, 68, 5.	0.2	5
135	Longevity of the Brazilian underground tree Jacaranda decurrens Cham Anais Da Academia Brasileira De Ciencias, 2013, 85, 671-678.	0.8	17
136	DNA fingerprinting in botany: past, present, future. Investigative Genetics, 2014, 5, 1.	3.3	153
137	Population clustering and clonal structure evidence the relict state of Ulmus minor Mill. in the Balearic Islands. Heredity, 2014, 113, 21-31.	2.6	9
138	Plant community response to nitrogen and phosphorus enrichment varies across an alpine tundra moisture gradient. Plant Ecology and Diversity, 2015, 8, 739-749.	2.4	12
139	Clonal Diversity and Fineâ€scale Genetic Structure in a High Andean Treeline Population. Biotropica, 2015, 47, 59-65.	1.6	7
140	Mixed reproduction strategy and polyploidy facilitate dominance of Kobresia pygmaeaon the Tibetan Plateau. Journal of Plant Ecology, 2015, , rtv035.	2.3	3
141	Environmental and genetic correlates of allocation to sexual reproduction in the circumpolar plant Bistorta vivipara. American Journal of Botany, 2015, 102, 1174-1186.	1.7	12
142	Xylem and soil CO2 fluxes in a Quercus pyrenaica Willd. coppice: root respiration increases with clonal size. Annals of Forest Science, 2015, 72, 1065-1078.	2.0	21
143	Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands. New Phytologist, 2016, 209, 1196-1207.	7.3	28
145	Isolated coastal populations of Tilia americana var. caroliniana persist long-term through vegetative growth. American Journal of Botany, 2016, 103, 1687-1693.	1.7	7
146	A rhizomatous metaphor for dialogic theory. Public Relations Review, 2017, 43, 568-578.	3.2	59
147	Age and intraspecific diversity of resilient Acropora communities in Belize. Coral Reefs, 2017, 36, 1111-1120.	2.2	16
148	Clonal plasticity and diversity facilitates the adaptation of Rhododendron aureum Georgi to alpine environment. PLoS ONE, 2018, 13, e0197089.	2.5	9
149	Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms. Ecography, 2019, 42, 334-345.	4.5	36

#	ARTICLE	IF	CITATIONS
150	The Kobresia pygmaea ecosystem of the Tibetan highlands – Origin, functioning and degradation of the world's largest pastoral alpine ecosystem. Science of the Total Environment, 2019, 648, 754-771.	8.0	209
154	Effect of disturbance on population structure, regeneration and conservation of Moghania chappar in sal forests of Gorakhpur, India. Tropical Ecology, 2019, 60, 337-349.	1.2	0
156	Interactions between Species. , 2019, , 24-65.		0
157	Plants Are Strange and Wondrous Beings. , 2019, , 1-23.		1
158	Mechanisms of Coexistence. , 2019, , 66-104.		1
159	Community-Level Processes. , 2019, , 105-159.		0
160	Assembly Rules. , 2019, , 160-222.		0
161	Theories and Their Predictions. , 2019, , 223-264.		0
163	Halving sunlight reveals no carbon limitation of aboveground biomass production in alpine grassland. Global Change Biology, 2020, 26, 1857-1872.	9.5	17
164	Fine-scale spatial genetic structure, neighbourhood size and gene dispersal in clonal plants: exploring the best possible estimates. Botanical Journal of the Linnean Society, 2020, 192, 760-772.	1.6	4
165	Integrating biodiversity conservation in wider landscape management: Necessity, implementation and evaluation. Advances in Ecological Research, 2020, , 127-159.	2.7	15
166	The alpine life zone., 2021,, 23-51.		2
167	Plant reproduction., 2021,, 395-449.		1
168	Global change at high elevation. , 2021, , 451-483.		1
169	Climate Change Affects Vegetation Differently on Siliceous and Calcareous Summits of the European Alps. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	12
170	Area Not Geographic Isolation Mediates Biodiversity Responses of Alpine Refugia to Climate Change. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
171	Plant community persistence strategy is elevationâ€specific. Journal of Vegetation Science, 2021, 32, e13028.	2.2	7
172	Why Is the Alpine Flora Comparatively Robust against Climatic Warming?. Diversity, 2021, 13, 383.	1.7	51

#	Article	IF	CITATIONS
173	Life under and in snow: protection and limitation. , 2021, , 89-118.		1
174	Mountain Biodiversity, Its Causes and Function. Ambio, 2004, 33, 11.	5. 5	241
175	Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): a review., 2005,, 297-307.		8
177	Vegetation of the Alpine and Nival Belts. , 2017, , 271-431.		3
178	The alpine life zone. , 2003, , 9-20.		10
180	Genet age in marginal populations of two clonal Carex species in the Siberian Arctic. Ecography, 2000, 23, 402-412.	4.5	18
181	Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs., 0, .		4
182	Threatened Habitats: Marginal Vegetation in Upland Areas. Issues in Environmental Science and Technology, 2007, , 107-134.	0.4	5
184	Niche differentiation and distribution of Carex curvula along a bioclimatic gradient in the southwestern Alps. Journal of Vegetation Science, 2002, 13, 851.	2.2	14
185	European High Mountain (Alpine) Vegetation and its Suitability for Indicating Climate Change Impacts. Biology and Environment, 2006, 106, 335-341.	0.3	22
186	Analysis of Genetic Variation among Populations of Withania somnifera (L.) in South India based on RAPD Markers. European Journal of Medicinal Plants, 2013, 3, 266-280.	0.5	5
187	Disturbance by mowing affects clonal diversity: the genetic structure of Ranunculus ficaria (Ranunculuaceae) in meadows and forests., 2008,, 335-343.		2
188	Namenökologie: Eine neue Forschungsrichtung mit mikrotoponomastischen und landschaftsökologischen Methoden. Am Beispiel der Hochgebirgsorte Obergurgl und Vent (Tirol). , 2011, , 199-224.		0
189	Die Auswirkungen des Klimawandels auf die Biodiversitä , 2014, , 335-370.		0
190	Plant Population Ecology. Progress in Botany Fortschritte Der Botanik, 1999, , 502-526.	0.3	1
191	Vegetation of the Temperate High Mountains. , 2020, , 551-598.		0
193	Detecting climate signals in populations across life histories. Global Change Biology, 2022, 28, 2236-2258.	9 . 5	8
194	Genetic mechanisms of aging in plants: What can we learn from them?. Ageing Research Reviews, 2022, 77, 101601.	10.9	6

#	Article	IF	CITATIONS
195	Low winter temperatures and divergent freezing resistance set the cold range limit of widespread alpine graminoids. Journal of Biogeography, 2022, 49, 1562-1575.	3.0	4
196	Concepts in Alpine Plant Ecology. Plants, 2023, 12, 2666.	3.5	0
197	The oldest known clones of <i>Salix herbacea</i> growing in the Northern Apennines, Italy are at least 2000 years old. American Journal of Botany, 2023, 110, .	1.7	1