Thermal decomposition of biodegradable polyestersâ€"

Polymer Degradation and Stability 53, 329-342 DOI: 10.1016/0141-3910(96)00102-4

Citation Report

#	Article	IF	CITATIONS
1	Thermal degradation of poly-l-lactide—studies on kinetics, modelling and melt stabilisation. Polymer Degradation and Stability, 1997, 57, 87-94.	2.7	136
2	Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 1997, 40-41, 43-53.	2.6	150
3	Thermal Analysis of Some Environmentally Degradable Polymers. Magyar Apróvad Közlemények, 1998, 52, 261-274.	1.4	17
4	Random Polyester Transesterification:Â Prediction of Molecular Weight and MW Distribution. Macromolecules, 1998, 31, 7187-7194.	2.2	22
5	Interchange Reactions in Condensation Polymers and Their Analysis by NMR Spectroscopy. , 0, , 1-78.		5
6	Thermal stability of poly(lactic acid) before and after γ-radiolysis. Polymer International, 1999, 48, 980-984.	1.6	84
7	Rheological properties of poly(lactides). Effect of molecular weight and temperature on the viscoelasticity of poly(l-lactic acid). Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1803-1814.	2.4	136
8	Influence of low molecular weight lactic acid derivatives on degradability of polylactide. , 2000, 76, 228-239.		45
9	PY-GC/MS an effective technique to characterizing of degradation mechanism of poly (L-lactide) in the different environment. Journal of Applied Polymer Science, 2000, 78, 2369-2378.	1.3	81
10	Thermal decomposition of poly(1,4-dioxan-2-one). Polymer Degradation and Stability, 2000, 70, 485-496.	2.7	93
11	Effect of structure modification on rheological properties of biodegradable poly(ester-urethane). Polymer Engineering and Science, 2000, 40, 1655-1662.	1.5	18
12	Py-GC/MS as a means to predict degree of degradation by giving microstructural changes modelled on LDPE and PLA. Polymer Degradation and Stability, 2001, 73, 281-287.	2.7	51
13	A novel evaluation method for biodegradability of poly(butylene succinate- co -butylene adipate) by pyrolysis-gas chromatography. Polymer Degradation and Stability, 2001, 73, 327-334.	2.7	38
14	Degradation of and drug release from a novel 2,2-bis(2-oxazoline) linked poly(lactic acid) polymer. Journal of Controlled Release, 2002, 81, 251-261.	4.8	36
15	Lactic acid based PEU/HA and PEU/BCP composites: Dynamic mechanical characterization of hydrolysis. Journal of Biomedical Materials Research Part B, 2002, 63, 346-353.	3.0	11
16	Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 2002, 27, 1123-1163.	11.8	1,233
17	Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[Îμ-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability, 2002, 76, 53-59.	2.7	385
18	Analysis of the initial process in pyrolysis of poly(p-dioxanone). Polymer Degradation and Stability, 2002, 78, 129-135.	2.7	62

ARTICLE

IF CITATIONS

19 Thermogravimetric study of copolymers derived from p-dioxanone, l-lactide and poly (ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 74

20	Pyrolysis kinetics of poly(l-lactide) with carboxyl and calcium salt end structures. Polymer Degradation and Stability, 2003, 79, 547-562.	2.7	115
21	Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(Îμ-caprolactone). Polymer Degradation and Stability, 2003, 80, 241-250.	2.7	48
22	Racemization on thermal degradation of poly(?-lactide) with calcium salt end structure. Polymer Degradation and Stability, 2003, 80, 503-511.	2.7	63
23	Poly(l-lactide) XI. Lactide formation by thermal depolymerisation of poly(l-lactide) in a closed system. Polymer Degradation and Stability, 2003, 81, 501-509.	2.7	52
24	Effect of tin on poly(l-lactic acid) pyrolysis. Polymer Degradation and Stability, 2003, 81, 515-523.	2.7	155
25	Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer, 2003, 44, 2891-2896.	1.8	263
26	Control of racemization for feedstock recycling of PLLA. Green Chemistry, 2003, 5, 575-579.	4.6	62

27 Thermal decomposition kinetics of copolymers derived fromp-dioxanone, L-lactide and poly(ethylene) Tj ETQq0 0 0 1gBT /Overlock 10 Tf

28	Macroporous poly(l-lactide) of controlled pore size derived from the annealing of co-continuous polystyrene/poly(l-lactide) blends. Biomaterials, 2004, 25, 2161-2170.	5.7	73
29	Thermal stability of poly (l-lactide): influence of end protection by acetyl group. Polymer Degradation and Stability, 2004, 84, 143-149.	2.7	97
30	Effects of chain end structures on pyrolysis of poly(-lactic acid) containing tin atoms. Polymer Degradation and Stability, 2004, 84, 243-251.	2.7	59
31	Thermal degradation behaviour of poly(lactic acid) stereocomplex. Polymer Degradation and Stability, 2004, 86, 197-208.	2.7	160
32	Thermal degradation of poly(l-lactide): effect of alkali earth metal oxides for selective l,l-lactide formation. Polymer, 2004, 45, 1197-1205.	1.8	138
33	Thermal Degradation Processes of End-Capped Poly(l-lactide)s in the Presence and Absence of Residual Zinc Catalyst. Biomacromolecules, 2004, 5, 1606-1614.	2.6	88
34	Effects of Residual Zinc Compounds and Chain-End Structure on Thermal Degradation of Poly(ε-caprolactone). Biomacromolecules, 2004, 5, 1480-1488.	2.6	61
35	Compositional analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by pyrolysis-gas chromatography in the presence of organic alkali. Journal of Analytical and Applied Pyrolysis, 2005, 74, 193-199.	2.6	24
36	Crystallinity and mechanical properties of optically pure polylactides and their blends. Polymer Engineering and Science, 2005, 45, 745-753.	1.5	178

#	Article	IF	CITATIONS
37	Preparation and characterization of biodegradable poly(trimethylenecarbonate-É>-caprolactone)-block-poly(p-dioxanone) copolymers. Journal of Polymer Science Part A, 2005, 43, 2790-2799.	2.5	24
39	Poly(lactic acid)-based bioplastics. , 2005, , 251-288.		13
40	Feedstock Recycling of Flame-Resisting Poly(lactic acid)/Aluminum Hydroxide Composite tol,l-lactide. Industrial & Engineering Chemistry Research, 2005, 44, 1433-1437.	1.8	91
41	Thermal Decomposition of Fungal Poly(β,l-malic acid) and Poly(β,l-malate)s. Biomacromolecules, 2006, 7, 3283-3290.	2.6	27
42	Recovery of Lactide from Polylactic Acid/Polyethylene Blend with Extruder. Kobunshi Ronbunshu, 2006, 63, 241-247.	0.2	11
43	Protection Against Pollution of Polymeric Materials-Toxicity of Degradation Products of Polymeric Materials to the Environment. Kobunshi Ronbunshu, 2006, 63, 368-382.	0.2	5
44	Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polymer International, 2006, 55, 626-642.	1.6	408
45	Thermal degradation behavior of poly(4-hydroxybutyric acid). Polymer Degradation and Stability, 2006, 91, 2333-2341.	2.7	18
46	Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature. Polymer Degradation and Stability, 2006, 91, 3259-3265.	2.7	111
47	Quantitative analysis of biodegradable amphiphilic poly(L-lactide)-block-poly(ethyleneglycol)-blockpoly(L-lactide) by using TG, FTIR and NMR. Journal of Thermal Analysis and Calorimetry, 2006, 85, 173-177.	2.0	21
48	Thermal Degradation of Environmentally Degradable Poly(hydroxyalkanoic acid)s. Macromolecular Bioscience, 2006, 6, 469-486.	2.1	100
49	Thermal Degradation of Polyester Main Chains. Kobunshi Ronbunshu, 2007, 64, 575-582.	0.2	6
50	Selective Depolymerization of Poly-L-lactic Acid into L,L-Lactide from Blends with Polystyrene. Kobunshi Ronbunshu, 2007, 64, 745-750.	0.2	10
51	Selective Depolymerization of Poly-L-lactic Acid into L,L-Lactide from Blends with Polybutylene Succinate-Related Copolymers. Kobunshi Ronbunshu, 2007, 64, 751-757.	0.2	10
52	Comparative thermal degradation studies on glycolide/trimethylene carbonate and lactide/trimethylene carbonate copolymers. Journal of Applied Polymer Science, 2007, 104, 3539-3553.	1.3	12
53	Thermal Degradation Behavior and Kinetic Analysis of Biodegradable Polymers Using Various Comparative Models, 1. Macromolecular Theory and Simulations, 2007, 16, 101-110.	0.6	23
54	Racemization behavior of l,l-lactide during heating. Polymer Degradation and Stability, 2007, 92, 552-559.	2.7	71
55	Effects of MgO catalyst on depolymerization of poly-l-lactic acid to l,l-lactide. Polymer Degradation and Stability, 2007, 92, 1350-1358.	2.7	74

#	Article	IF	CITATIONS
56	Polylactide compositions. II. Correlation between morphology and main properties of PLA/calcium sulfate composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2770-2780.	2.4	39
57	(Plasticized) Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties. Journal of Materials Science, 2007, 42, 5105-5117.	1.7	95
58	Thermal decomposition of microbial poly(γ-glutamic acid) and poly(γ-glutamate)s. Polymer Degradation and Stability, 2007, 92, 1916-1924.	2.7	29
59	Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degradation and Stability, 2008, 93, 321-328.	2.7	201
60	In-line monitoring of the thermal degradation of poly(l-lactic acid) duringÂmelt extrusion by UV–vis spectroscopy. Polymer, 2008, 49, 1257-1265.	1.8	121
61	Synthesis, physical properties, and crystallization of optically active poly(<scp>L</scp> â€phenyllactic) Tj ETQq1 1 Polymer Science, 2008, 110, 3954-3962.	0.784314 1.3	rgBT /Overl 39
62	Effect of metal compounds on thermal degradation behavior of aliphatic poly(hydroxyalkanoic acid)s. Polymer Degradation and Stability, 2008, 93, 776-785.	2.7	51
63	Evaluation of kinetics parameters for poly(l-lactic acid) hydrolysis under high-pressure steam. Polymer Degradation and Stability, 2008, 93, 1053-1058.	2.7	76
64	Processing technologies for poly(lactic acid). Progress in Polymer Science, 2008, 33, 820-852.	11.8	2,233
65	Flash co-pyrolysis of biomass with polylactic acid. Part 1: Influence on bio-oil yield and heating value. Fuel, 2008, 87, 1031-1041.	3.4	112
66	Thermal Decomposition and Kinetics of Mixtures of Polylactic Acid and Biomass during Copyrolysis. Chinese Journal of Chemical Engineering, 2008, 16, 929-933.	1.7	37
67	Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1471-1478.	3.8	177
68	Thermal Degradation of Poly(<i>ε</i> â€caprolactone), Poly(Lâ€lactic acid) and their Blends with Poly(3â€hydroxyâ€butyrate) Studied by TGA/FTâ€lR Spectroscopy. Macromolecular Symposia, 2008, 265, 183-19	4 ^{0.4}	89
69	Influence of processing, sterilisation and storage on bioresorbability. , 2008, , 209-233.		2
70	Thermal Properties of Poly(Lâ€lactide)/Calcium Carbonate Nanocomposites. Macromolecular Symposia, 2008, 263, 96-101.	0.4	29
71	熱å^†è§£ã«ã,^ã,‹ãƒẽƒª-L-ä¹³é,ã®é,œŠžçš"è§£é‡ů•̂. Kobunshi, 2008, 57, 358-361.	0.0	ο
72	Flame Retardancy of Polylactic Acid Blended with Metal Oxides Catalysts. Kobunshi Ronbunshu, 2008, 65, 288-294.	0.2	4
79	A Thermogravimetric Approach to Study the Influence of a Biodegradation in Soil Test to a Poly(lactic) Tj ETQq1 1	0,784314	rgBT /Overl

IF ARTICLE CITATIONS # Thermal and thermooxidative degradation., 2008,, 72-85. 2 74 Synthesis of L,L-Lactide via Depolymerization of Oligo(L-Lactic Acid) by Microwave Irradiation. Journal 0.3 9 of Chemical Engineering of Japan, 2009, 42, 687-690. Selective Depolymerization and Effects of Homolysis of Poly(L-lactic acid) in a Blend with 76 1.2 8 Polypropylene. International Journal of Polymer Science, 2009, 2009, 1-9. Solvent―and thermalâ€induced crystallization of polyâ€<scp>L</scp>″actic acid in supercritical CO₂ medium. Journal of Applied Polymer Science, 2009, 111, 291-300. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. Journal of 78 1.3 73 Applied Polymer Science, 2009, 113, 3095-3102. Intumescent polylactide: A nonflammable material. Journal of Applied Polymer Science, 2009, 113, 79 1.3 3860-3865. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier 80 2.0 178 transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 2009, 97, 929-935. Production of optically pure poly(lactic acid) from lactic acid. Polymer Bulletin, 2009, 63, 637-651. 1.7 Flameâ€retardancy and antiâ€dripping effects of intumescent flame retardant incorporating 82 103 1.6 montmorillonite on poly(lactic acid). Polymers for Advanced Technologies, 2009, 20, 1114-1120. Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube 2.4 nanocomposites. Journal of Polymer Ścience, Part B: Polymer Physics, 2009, 47, 1231-1239. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Materials Science and 273 84 3.8 Engineering C, 2009, 29, 1433-1441. Thermal degradation kinetics of g-HA/PLA composite. Thermochimica Acta, 2009, 493, 90-95. 1.2 Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and 86 2.7 370 their blends upon melt processing. Polymer Degradation and Stability, 2009, 94, 74-82. Melt spinning of poly(l/d)lactide 96/4: Effects of molecular weight and melt processing on hydrolytic degradation. Polymer Degradation and Stability, 2009, 94, 438-442. 87 2.7 Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. 88 2.7 126 Polymer Degradation and Stability, 2009, 94, 327-338. Thermo-oxidative processes in biodegradable poly(butylene succinate). Polymer Degradation and 54 Stability, 2009, 94, 1825-1838. Longitudinal acoustic properties of poly(lactic acid) and poly(lactic- <i>co</i> -glycolic acid). 90 1.7 43 Biomedical Materials (Bristol), 2010, 5, 055004. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and 547 mechanical properties. Polymer Degradation and Stability, 2010, 95, 116-125.

#	Article	IF	CITATIONS
92	Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polymer Degradation and Stability, 2010, 95, 1769-1777.	2.7	92
93	Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decomposition kinetics. Polymer Degradation and Stability, 2010, 95, 2192-2199.	2.7	51
94	Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 2010, 510, 97-102.	1.2	45
95	An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 2010, 101, 8493-8501.	4.8	1,943
96	Thermal Degradation of Hydroxyl-Terminated Poly(L-Lactic Acid) Oligomer into L-Lactide. Advanced Materials Research, 0, 152-153, 222-228.	0.3	6
98	Transmission FT-IR Study on the Adsorption and Reactions of Lactic Acid and Poly(lactic acid) on TiO ₂ . Journal of Physical Chemistry C, 2010, 114, 17720-17727.	1.5	48
99	Effects of hydrophilic fillers on the thermal degradation of poly(lactic acid). Thermochimica Acta, 2010, 509, 147-151.	1.2	66
100	Threshold temperature luminescent indicators from biodegradable poly(lactic acid)/poly(butylene) Tj ETQq1 1 0.7	784314 rg 6.7	BT ₃ /Overlock
102	Revising the mechanism of polymer autooxidation. Organic and Biomolecular Chemistry, 2011, 9, 480-490.	1.5	171
103	High-Pressure Reactivity of <scp>l</scp> , <scp>l</scp> -Lactide. Journal of Physical Chemistry B, 2011, 115, 2173-2184.	1.2	15
104	Poly(tetramethyl glycolide) from Renewable Carbon, a Racemization-Free and Controlled Depolymerizable Polyester. Macromolecules, 2011, 44, 12-13.	2.2	33
105	Kinetics of Ring-Opening Polymerization of <scp>l</scp> , <scp>l</scp> -Lactide. Industrial & Engineering Chemistry Research, 2011, 50, 7927-7940.	1.8	88
110	Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d,l-lactide). Polymer Degradation and Stability, 2011, 96, 1631-1638.	2.7	78
111	Water-catalyzed racemisation of lactide. Polymer Degradation and Stability, 2011, 96, 1745-1750.	2.7	19
112	Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition. Chemical Engineering Journal, 2011, 178, 451-460.	6.6	69
113	From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors. Biomacromolecules, 2011, 12, 523-532.	2.6	573
114	The Properties of Poly(l-Lactide) Prepared by Different Synthesis Procedure. Journal of Polymers and the Environment, 2011, 19, 419-430.	2.4	21
115	PLLA/Flax Mat/Balsa Bio-Sandwich Manufacture and Mechanical Properties. Applied Composite Materials, 2011, 18, 421-438.	1.3	50

#	Article	IF	CITATIONS
116	Mechanism of high thermal stability of commercial polyesters and polyethers conjugated with bioâ€based caffeic acid. Journal of Polymer Science Part A, 2011, 49, 3152-3162.	2.5	17
117	Nonâ€oxidative Thermal Degradation of Poly(glycidol), Poly(glycidol)â€gâ€ <scp>L</scp> ″actide, and Poly(glycidol)â€gâ€glycolide. Macromolecular Chemistry and Physics, 2011, 212, 2103-2113.	1.1	10
118	Effects of aging on the thermomechanical properties of poly(lactic acid). Journal of Applied Polymer Science, 2011, 119, 472-481.	1.3	23
119	Telechelic poly(<scp>L</scp> â€lactic acid) for dilactide production and prepolymer applications. Journal of Applied Polymer Science, 2011, 119, 2602-2610.	1.3	10
120	Influence of crystallinity on the fracture toughness of poly(lactic acid)/montmorillonite nanocomposites prepared by twinâ€screw extrusion. Journal of Applied Polymer Science, 2011, 120, 896-905.	1.3	34
121	Quantification of thermal material degradation during the processing of biomedical thermoplastics. Journal of Applied Polymer Science, 2011, 120, 2872-2880.	1.3	17
122	Melt processing of poly(<scp>L</scp> â€lactic acid) in the presence of organomodified anionic or cationic clays. Journal of Applied Polymer Science, 2011, 122, 112-125.	1.3	64
123	Poly(vinyl alcohol)â€ <i>g</i> ″actic acid copolymers and films with silver nanoparticles. Journal of Applied Polymer Science, 2011, 122, 1109-1120.	1.3	14
124	Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. European Polymer Journal, 2011, 47, 139-152.	2.6	93
125	Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide). European Polymer Journal, 2011, 47, 1416-1428.	2.6	54
126	Capillary rise properties of porous geopolymers prepared by an extrusion method using polylactic acid (PLA) fibers as the pore formers. Journal of the European Ceramic Society, 2011, 31, 461-467.	2.8	41
127	Thermal decomposition of poly(propylene sebacate) and poly(propylene azelate) biodegradable polyesters: Evaluation of mechanisms using TGA, FTIR and GC/MS. Journal of Analytical and Applied Pyrolysis, 2011, 92, 123-130.	2.6	44
128	Effect of layered double hydroxides on the thermal degradation behavior of biodegradable poly(l-lactide) nanocomposites. Polymer Degradation and Stability, 2011, 96, 60-66.	2.7	50
129	Thermal Decomposition Kinetics of PLLA/Talc/TBC Composites. Applied Mechanics and Materials, 0, 262, 572-576.	0.2	1
130	The Effect of Phase Morphology on the Thermal Stability of Epoxy/Poly(Lâ€lactide) Blends Before and After Curing. Macromolecular Symposia, 2012, 321-322, 14-19.	0.4	1
131	The novel [(dME)2(HIM)P]2Ti(IV) complex: synthesize, characterization, and its utility in ROP of d,l-lactide. Polymer Bulletin, 2012, 69, 511-525.	1.7	6
132	Synthesis and pyrolysis of ABC type miktoarm star copolymers with polystyrene, poly(lactic acid) and poly(ethylene glycol) arms. European Polymer Journal, 2012, 48, 1755-1767.	2.6	20
133	Analysis of Reaction Kinetics of Carton Packaging Pyrolysis. Procedia Engineering, 2012, 42, 113-122.	1.2	21

#	Article	IF	CITATIONS
134	Diblock Poly(ester)-Poly(ester-ether) Copolymers: I. Synthesis, Thermal Properties, and Degradation Kinetics. Industrial & Engineering Chemistry Research, 2012, 51, 12031-12040.	1.8	14
135	Thermal Degradation of Carboxymethyl Starch–g-Poly(lactic acid) Copolymer by TG–FTIR–MS Analysis. Industrial & Engineering Chemistry Research, 2012, 51, 15537-15545.	1.8	41
136	Flammability and Thermal Stability in Clay/Polyesters Nano-Biocomposites. Green Energy and Technology, 2012, , 265-285.	0.4	4
137	Poly(lactic acid)/clay nanocomposites: effect of nature and content of clay on morphology, thermal and thermo-mechanical properties. Materials Science and Engineering C, 2012, 32, 1790-1795.	3.8	61
138	Transforming polylactide into valueâ€added materials. Journal of Polymer Science Part A, 2012, 50, 4814-4822.	2.5	91
139	Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science - Physics, 2012, 51, 411-424.	0.4	20
140	Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 2012, 97, 1898-1914.	2.7	622
141	Kinetics of the ringâ€opening polymerization of <scp>D</scp> , <scp>L</scp> â€lactide using zinc (II) octoate as catalyst. Polymer International, 2012, 61, 265-273.	1.6	19
142	Thermal Properties and Degradation Behavior of Linear and Branched Poly(<scp>L</scp> â€lactide)s and Poly(<scp>L</scp> â€lactideâ€ <i>co</i> â€glycolide)s. Macromolecular Chemistry and Physics, 2012, 213, 924-936.	1.1	21
143	Poly(lactic acid)/lowâ€density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering and Science, 2012, 52, 988-1004.	1.5	28
144	Preparation and characterization of doubleâ€layered microencapsulated red phosphorus and its flame retardance in poly(lactic acid). Journal of Applied Polymer Science, 2012, 125, 3014-3022.	1.3	29
145	Fiber reinforcement of a biomimetic bone cement. Journal of Materials Science: Materials in Medicine, 2012, 23, 1363-1370.	1.7	10
146	Calculating D-lactide content by probability using gas chromatographic data. Chemometrics and Intelligent Laboratory Systems, 2012, 110, 32-37.	1.8	5
147	Effect of different nanoparticles on thermal decomposition of poly(propylene) Tj ETQq1 1 0.784314 rgBT /Overlc Analytical and Applied Pyrolysis, 2012, 96, 92-99.	ock 10 Tf 5 2.6	50 227 Td (s 38
148	Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polymer Degradation and Stability, 2012, 97, 554-565.	2.7	251
149	Long-term properties and migration of low molecular mass compounds from modified PLLA materials during accelerated ageing. Polymer Degradation and Stability, 2012, 97, 914-920.	2.7	21
150	Synthesis, structure and properties of poly(L-lactide-co–caprolactone) statistical copolymers. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 100-112.	1.5	162
151	Environment-friendly synthesis of amphiphilic polyester-graft-poly(vinyl alcohol). European Polymer Journal, 2013, 49, 1621-1633.	2.6	16

ARTICLE IF CITATIONS # Lactic Acid Production by Hydrolysis of Poly(Lactic Acid) in Aqueous Solutions: An Experimental and 152 2.4 40 Kinetic Study. Journal of Polymers and the Environment, 2013, 21, 275-279. New epoxy thermosets modified with multiarm star poly(lactide) with poly(ethyleneimine) as core of 153 2.6 different molecular weight. European Polymer Journal, 2013, 49, 2316-2326. Synthesis and properties of novel star-shaped polyesters based on l-lactide and castor oil. Polymer 154 1.7 19 Bulletin, 2013, 70, 1723-1738. Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polymer Degradation and Stability, 2013, 98, 590-596. Heterogeneous mesoporous SBA-15 silica as catalyst towards the synthesis of various biodegradable 156 1.0 9 aliphatic polyesters. Macromolecular Research, 2013, 21, 833-842. Reactive Extrusion of Stereocomplexed Polyâ€<scp>L</scp>,<scp>D</scp>â€lactides: Processing, Characterization, and Properties. Macromolecular Materials and Engineering, 2013, 298, 1016-1023. 1.7 Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical 158 2.9 54 reinforcement and reduced inflammation. Journal of Materials Chemistry B, 2013, 1, 2764. Kinetics of Hydrolytic Degradation of PLA. Journal of Polymers and the Environment, 2013, 21, 313-318. 159 2.4 93 Comparative thermal, biological and photodegradation kinetics of polylactide and effect on 160 2.7 55 crystallization rates. Polymer Degradation and Stability, 2013, 98, 771-784. Thermal stability of copolymer derived from l-lactic acid and poly(tetramethylene) glycol through direct polycondensation. Journal of Thermal Analysis and Calorimetry, 2013, 111, 633-646. Ringâ€opening polymerization of <scp>L</scp>â€lactide using halfâ€titanocene complexes of the ATiČl₂Nu type: Synthesis, characterization, and thermal properties. Journal of Polymer 162 2.5 11 Science Part A, 2013, 51, 1162-1174. The influence of isosorbide on thermal properties of poly($<scp>L</scp>â \in actide$) synthesized by different methods. Polymer Engineering and Science, 2013, 53, 1374-1382. 164 1.5 Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products. Journal of Analytical and Applied Pyrolysis, 2013, 101, 165 2.6 63 15Ó-155. Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polymer Degradation and Stability, 2.7 2013, 98, 1006-1014. Biodegradable Polyesters from Renewable Resources. Annual Review of Chemical and Biomolecular 167 3.3 55 Engineering, 2013, 4, 143-170. Effects of repeat unit sequence distribution and residual catalyst on thermal degradation of poly(l-lactide/lµ-caprolactone) statistical copolymers. Polymer Degradation and Stability, 2013, 98, 1293-1299. Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters. 169 2.7 30 Polymer Degradation and Stability, 2013, 98, 751-758. Oxidised multi-wall carbon nanotubes $\hat{\epsilon}^{(R)}$ -polylactide composite with a covalent \hat{l}^2 -d-uridine 170 1.3 filler-matrix linker. Materials Letters, 2013, 91, 50-54.

#	Article	IF	CITATIONS
171	Thermal Properties of Poly(lactic Acid). , 2013, , 109-141.		4
172	Definitions and Assessment of (Bio)degradation. , 2013, , 77-94.		7
173	Application of Differential Scanning Calorimetry to the Characterization of Biopolymers. , 0, , .		4
174	Blendas PHB/copoliésteres biodegradáveis : biodegradação em solo. Polimeros, 2013, 23, 115-122.	0.2	28
175	Synthesis and Characterization of Novel Thermotropic Aromatic-Aliphatic Biodegradable Copolyesters ContainingD,L-Lactic acid (LA), Poly(butylene terephthalate) (PBT) and Biomesogenic Units. Polymer-Plastics Technology and Engineering, 2014, 53, 1697-1705.	1.9	5
176	Effect of Ultrasound on Molecular Structure Development of Polylactide. Polymer-Plastics Technology and Engineering, 2014, 53, 927-934.	1.9	2
177	Environmentally friendly films based on poly(3-hydroxybutyrate) and poly(lactic acid): A review. Russian Journal of Physical Chemistry B, 2014, 8, 726-732.	0.2	26
178	Influence of the processing parameters and composition on the thermal stability of PLA/nanoclay bioâ€nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
179	Thermal degradation of polylactide/aluminium diethylphosphinate. Journal of Analytical and Applied Pyrolysis, 2014, 110, 155-162.	2.6	17
180	Thermal stability of modified end apped poly(lactic acid). Journal of Applied Polymer Science, 2014, 131,	1.3	8
181	Scaffolds constituted by mixed polylactide and poly(ethylene glycol) electrospun microfibers. Journal of Polymer Research, 2014, 21, 1.	1.2	6
182	Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. Journal of Analytical and Applied Pyrolysis, 2014, 110, 55-65.	2.6	36
183	Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 2014, 131, .	1.3	36
184	Mechanical properties of recycled kenaf/polyethylene terephthalate (PET) fiber reinforced polyoxymethylene (POM) hybrid composite. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
185	Effect of CO ₂ laser micromachining on physicochemical properties of poly(L-lactide). Proceedings of SPIE, 2014, , .	0.8	1
186	Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. Journal of Applied Polymer Science, 2014, 131, .	1.3	34
187	Lactide synthesis optimization: investigation of the temperature, catalyst and pressure effects. E-Polymers, 2014, 14, 353-361.	1.3	31
188	Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic) Tj ETQq1 1 0.784 2014, 101, 52-59.	314 rgBT 2.7	/Overlock 10 22

#	Article	IF	CITATIONS
189	Scaffolds with tuneable hydrophilicity from electrospun microfibers of polylactide and poly(ethylene glycol) mixtures: morphology, drug release behavior, and biocompatibility. Journal of Polymer Research, 2014, 21, 1.	1.2	19
191	In vitro degradation of porous PLLA/pearl powder composite scaffolds. Materials Science and Engineering C, 2014, 38, 227-234.	3.8	49
192	Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods. Physical Chemistry Chemical Physics, 2014, 16, 4830.	1.3	29
193	Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites. International Journal of Biological Macromolecules, 2014, 65, 275-283.	3.6	55
194	Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. European Polymer Journal, 2014, 50, 109-116.	2.6	121
195	Concurrent Enhancement of Multiple Properties in Reactively Processed Nanocomposites of Polylactide/ <scp>P</scp> oly[(butylene succinate)â€ <i>co</i> â€adipate] Blend and Organoclay. Macromolecular Materials and Engineering, 2014, 299, 596-608.	1.7	31
196	Synthesis and Properties of Alternating Copolymers of 3-Hydroxybutyrate and Lactate Units with Different Stereocompositions. Macromolecules, 2014, 47, 7354-7361.	2.2	28
197	Influence of melt processing conditions on poly(lactic acid) degradation: Molar mass distribution and crystallization. Polymer Degradation and Stability, 2014, 110, 353-363.	2.7	53
198	Rapid analysis of polyester and polyethylene blends by ion mobility-mass spectrometry. Polymer Chemistry, 2014, 5, 3576-3582.	1.9	28
199	Melt/solid-state polytransesterification supported by an inert gas flow $\hat{a} \in \hat{a}$ an alternative route for the synthesis of high molar mass poly(<scp> </scp> -lactic acid). Polymer Chemistry, 2014, 5, 5412.	1.9	10
200	From Nutraceutics to Materials: Effect of Resveratrol on the Stability of Polylactide. ACS Sustainable Chemistry and Engineering, 2014, 2, 1534-1542.	3.2	43
201	Effect of graphene oxides on thermal degradation and crystallization behavior of poly(<scp>l</scp> -lactide). RSC Advances, 2014, 4, 3443-3456.	1.7	20
202	Degradation of poly(l-lactide) under KrF excimer laser treatment. Polymer Degradation and Stability, 2014, 110, 156-164.	2.7	28
203	Tuning Model Drug Release and Soft-Tissue Bioadhesion of Polyester Films by Plasma Post-Treatment. ACS Applied Materials & Interfaces, 2014, 6, 5749-5758.	4.0	31
204	Degradation of poly(l-lactide) under CO2 laser treatment above the ablation threshold. Polymer Degradation and Stability, 2014, 109, 97-105.	2.7	26
205	Multistep Kinetic Behavior in the Thermal Degradation of Poly(<scp>l</scp> -Lactic Acid): A Physico-Geometrical Kinetic Interpretation. Journal of Physical Chemistry B, 2014, 118, 11397-11405.	1.2	33
206	Modelling of PLA melt rheology and batch mixing energy balance. European Polymer Journal, 2014, 60, 273-285.	2.6	14
207	Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 2014, 55, 3720-3728.	1.8	168

#	Article	IF	CITATIONS
208	Synthesis of a hyperbranched poly(phosphamide ester) oligomer and its high-effective flame retardancy and accelerated nucleation effect in polylactide composites. Polymer Degradation and Stability, 2014, 110, 104-112.	2.7	50
209	Synthesis of poly(butylene succinate) through oligomerization–cyclization–ROP route. RSC Advances, 2014, 4, 38643-38648.	1.7	18
210	Synthesis of high molecular weight poly(l-lactic acid) and poly(d-lactic acid) with improved thermal stability via melt/solid polycondensation catalyzed by biogenic creatinine. Polymer, 2014, 55, 1491-1496.	1.8	13
211	Effects of ultrasonic vibration on the micro-molding processing of polylactide. Ultrasonics Sonochemistry, 2014, 21, 376-386.	3.8	66
212	Synthesis and Properties of Poly(l-lactide)-b-poly (l-phenylalanine) Hybrid Copolymers. International Journal of Molecular Sciences, 2014, 15, 13247-13266.	1.8	9
213	Laser micromachining and modification of bioabsorbable polymers. Proceedings of SPIE, 2014, , .	0.8	1
216	The Use of Epoxy Silanes on Montmorillonite: An Effective Way to Improve Thermal and Rheological Properties of PLA/MMT Nanocomposites Obtained via "In Situ―Polymerization. Journal of Nanomaterials, 2015, 2015, 1-16.	1.5	7
217	Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: Influence of HNT content and modification. Composites Part A: Applied Science and Manufacturing, 2015, 76, 28-36.	3.8	148
218	Influence of catalysts used in synthesis of poly(p-dioxanone) on its thermal degradation behaviors. Polymer Degradation and Stability, 2015, 121, 253-260.	2.7	15
220	Ionic liquids–lignin combination: an innovative way to improve mechanical behaviour and water vapour permeability of eco-designed biodegradable polymer blends. RSC Advances, 2015, 5, 1989-1998.	1.7	32
221	New nanocomposite based on poly(lactic-co-glycolic acid) copolymer and magnetite. Synthesis and characterization. Composites Part B: Engineering, 2015, 72, 150-159.	5.9	13
222	Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydrate Polymers, 2015, 123, 256-265.	5.1	139
223	Study of the chain microstructure effects on the resulting thermal properties of poly(l-lactide)/poly(N-isopropylacrylamide) biomedical materials. Materials Science and Engineering C, 2015, 50, 97-106.	3.8	28
224	Synthesis and structure control of <scp>l</scp> â€lactic acid–glycolic acid copolymer by homoâ€copolymerization. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
225	Poly(butylene succinate -co- butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride. Carbohydrate Polymers, 2015, 134, 52-59.	5.1	33
226	Roles of Calcium, Zinc, Copper and Titanium Compounds on the Degradation of Polymers. Polymer-Plastics Technology and Engineering, 2015, 54, 441-461.	1.9	8
227	Thermal degradation of poly(lactide-co-propylene carbonate) measured by TG/FTIR and Py-GC/MS. Polymer Degradation and Stability, 2015, 117, 16-21.	2.7	26
228	Structure and properties of quaternary fulvic acid–intercalated saponite/poly(lactic acid) nanocomposites. Applied Clay Science, 2015, 109-110, 136-142.	2.6	32

#	Article	IF	CITATIONS
229	Controlled synthesis and characterization of biodegradable, stereomer co-polycondensates of I-malic acid. Journal of Thermal Analysis and Calorimetry, 2015, 121, 663-673.	2.0	11
230	Copolymers from epoxidized soybean oil and lactic acid oligomers for pressure-sensitive adhesives. RSC Advances, 2015, 5, 27256-27265.	1.7	31
231	Microstructure–property relationship of l-lactide/trimethylene carbonate/glycolide terpolymers as cardiovascular stent material. European Polymer Journal, 2015, 66, 429-436.	2.6	17
232	Flame retardant and anti-dripping properties of polylactic acid/poly(bis(phenoxy)phosphazene)/expandable graphite composite and its flame retardant mechanism. RSC Advances, 2015, 5, 76068-76078.	1.7	46
233	From <i>meso</i> -Lactide to Isotactic Polylactide: Epimerization by B/N Lewis Pairs and Kinetic Resolution by Organic Catalysts. Journal of the American Chemical Society, 2015, 137, 12506-12509.	6.6	129
234	An intensification and integration process of preparing thermal stable polylactide end-capped by phosphate ester. Polymer, 2015, 80, 104-108.	1.8	6
235	Properties. , 2015, , 91-138.		8
236	Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. Journal of Colloid and Interface Science, 2015, 440, 46-52.	5.0	80
237	Properties. , 2015, , 79-116.		6
238	Biopolyester-Based Systems Containing Naturally Occurring Compounds with Enhanced Thermo-Oxidative Stability. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 455-462.	0.7	10
239	Types of Biodegradable Polymers. , 2016, , 81-151.		17
240	PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile. Polymers, 2016, 8, 331.	2.0	112
241	Enhancing the thermoâ€oxidative stability of PLA through the use of hybrid organic–inorganic coatings. Journal of Applied Polymer Science, 2016, 133, .	1.3	2
242	Effects of nanoparticles on thermal degradation of polylactide/aluminium diethylphosphinate composites. Journal of Analytical and Applied Pyrolysis, 2016, 118, 115-122.	2.6	26
243	Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 2016, 107, 333-366.	6.6	895
244	Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments. Polymer Degradation and Stability, 2016, 129, 222-230.	2.7	33
245	Poly(lactic acid) nanocomposites with improved flame retardancy and impact strength by combining of phosphinates and organoclay. Chinese Journal of Polymer Science (English Edition), 2016, 34, 785-796.	2.0	35
246	Complex poly(lactic acid)-based biomaterial for urinary catheters: I. Influence of AgNP on properties. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 132-151.	0.7	4

#	Article	IF	CITATIONS
247	Characterization of polylactide/poly(ethylene glycol) blends via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2016, 122, 315-322.	2.6	8
248	Polylactide/organically modified montmorillonite composites; effects of organic modifier on thermal characteristics. Polymer Degradation and Stability, 2016, 134, 87-96.	2.7	31
249	A method for the determination and correction of the effect of thermal degradation on the viscoelastic properties of degradable polymers. Polymer Degradation and Stability, 2016, 130, 182-188.	2.7	11
250	The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Journal of the American Chemical Society, 2016, 138, 14326-14337.	6.6	132
251	Silk nanocrystals stabilized melt extruded poly (lactic acid) nanocomposite films: Effect of recycling on thermal degradation kinetics and optimization studies. Thermochimica Acta, 2016, 643, 41-52.	1.2	31
252	Thermo-oxidative stabilization of poly(lactic acid) with antioxidant intercalated layered double hydroxides. Polymer Degradation and Stability, 2016, 133, 92-100.	2.7	39
253	Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. European Polymer Journal, 2016, 84, 22-39.	2.6	102
255	Thermal degradation of poly(lactic acid) oligomer: Reaction mechanism and multistep kinetic behavior. Polymer Degradation and Stability, 2016, 134, 284-295.	2.7	38
256	Cellulose: Structure and Property Relationships. , 2016, , 225-288.		0
257	Thermal degradation of polyesters filled with magnesium dihydroxide and magnesium oxide. Fire and Materials, 2016, 40, 445-463.	0.9	9
258	Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392.	6.6	1,957
259	Influence of density and environmental factors on decomposition kinetics of amorphous polylactide – Reactive molecular dynamics studies. Journal of Molecular Graphics and Modelling, 2016, 67, 54-61.	1.3	13
260	Effects of poly(L-lactide-Îμ-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid). Biomaterials Research, 2016, 20, 7.	3.2	23
261	Controlled biodegradation of polymers using nanoparticles and its application. RSC Advances, 2016, 6, 67449-67480.	1.7	62
262	Producing Pyridines via Thermocatalytic Conversion and Ammonization of Waste Polylactic Acid over Zeolites. ACS Sustainable Chemistry and Engineering, 2016, 4, 1115-1122.	3.2	24
263	Interfacial relaxation mechanisms in polymer nanocomposites through the rheological study on polymer/grafted nanoparticles. Polymer, 2016, 90, 264-275.	1.8	32
264	Thermal degradation of polylactide and its electrospun fiber. Fibers and Polymers, 2016, 17, 66-73.	1.1	13
265	Thermal stability and degradation behavior of hydroxyethyl methacrylate-poly(lactide) polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 125-131.	1.2	3

	Сіт	ΑΤΙΟΝ	I Rei	PORT
--	-----	-------	-------	------

#	Article	IF	CITATIONS
266	Effect of N,N′-diallyl-phenylphosphoricdiamide on ease of ignition, thermal decomposition behavior and mechanical properties of poly (lactic acid). Polymer Degradation and Stability, 2016, 127, 2-10.	2.7	33
267	The influence of ArF excimer laser micromachining on physicochemical properties of bioresorbable poly(L-lactide). , 2016, , .		2
268	Effect of temperature on the molecular mobility in polylactide. Polymer Science - Series A, 2016, 58, 50-56.	0.4	12
269	Enhanced Thermal Stability of Polylactide by Terminal Conjugation Groups. Journal of Electronic Materials, 2016, 45, 2388-2394.	1.0	6
270	Effect of layered silicates on the thermal stability of PCL/PLA microfibrillar composites. Polymer Testing, 2016, 50, 9-14.	2.3	26
271	New Superefficiently Flame-Retardant Bioplastic Poly(lactic acid): Flammability, Thermal Decomposition Behavior, and Tensile Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 202-209.	3.2	111
272	Versatile synthesis of comb-shaped poly(lactic acid) copolymers with poly(acrylic acid)-based backbones and carboxylic acid end groups. Reactive and Functional Polymers, 2017, 111, 79-87.	2.0	7
273	Poly(lactic acid)/modified gum arabic based bionanocomposite films: Thermal degradation kinetics. Polymer Engineering and Science, 2017, 57, 1193-1206.	1.5	10
274	Long-term properties and end-of-life of polymers from renewable resources. Polymer Degradation and Stability, 2017, 137, 35-57.	2.7	82
275	Tuneable hydrolytic degradation of poly(l-lactide) scaffolds triggered by ZnO nanoparticles. Materials Science and Engineering C, 2017, 75, 714-720.	3.8	19
276	Polylactic acid organogel as versatile scaffolding technique. Polymer, 2017, 113, 81-91.	1.8	11
277	Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applications. Materials Science and Engineering C, 2017, 75, 1184-1190.	3.8	17
278	Synthesis of <scp>l</scp> -Lactide via Degradation of Various Telechelic Oligomeric Poly(<scp>l</scp> -lactic acid) Intermediates. Industrial & Engineering Chemistry Research, 2017, 56, 4867-4877.	1.8	15
279	Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry, 2017, 19, 3692-3706.	4.6	557
280	Stereocomplex crystallization behavior and physical properties of polyesterurethane networks incorporating diglycerol-based enantiomeric 4-armed lactide oligomers and a 1,3-propanediol-based 2-armed rac-lactide oligomer. Polymer Bulletin, 2017, 74, 3139-3160.	1.7	3
281	Synthesis of meso-lactide by thermal configurational inversion and depolymerization of poly(l) Tj ETQq1 1 0.784 141, 77-83.	1314 rgBT 2.7	/Overlock 1 27
282	A facile synthesis of copper nanoparticles supported on an ordered mesoporous polymer as an efficient and stable catalyst for solvent-free sonogashira coupling Reactions. Green Chemistry, 2017, 19, 1949-1957.	4.6	73
283	Quantitative determination of volatile organic compounds formed during Polylactide processing by MHS-SPME. Polymer Degradation and Stability, 2017, 136, 80-88.	2.7	21

#	Article	IF	CITATIONS
284	Light-Modulated Surface Micropatterns with Multifunctional Surface Properties on Photodegradable Polymer Films. ACS Applied Materials & Interfaces, 2017, 9, 37402-37410.	4.0	14
285	On the enhancement of thermo-mechanical properties of poly(L-lactide) by solid-state extrusion for biodegradable spinal fixation devices. Macromolecular Research, 2017, 25, 890-897.	1.0	1
286	PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation. , 2017, , 265-300.		6
288	Quiescent crystallization of poly(lactic acid) studied by optical microscopy and lightâ€scattering techniques. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
289	Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. Materials, 2017, 10, 748.	1.3	73
290	Study of the Molecular Dynamics of Multiarm Star Polymers with a Poly(ethyleneimine) Core and Poly(lactide) Multiarms. Materials, 2017, 10, 127.	1.3	6
291	On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 2017, 10, 1008.	1.3	272
292	A novel functional lignin-based filler for pyrolysis and feedstock recycling of poly(<scp>l</scp> -lactide). Green Chemistry, 2018, 20, 1777-1783.	4.6	65
293	Thermal Stability and Surface Wettability Studies of Polylactic Acid/Halloysite Nanotube Nanocomposite Scaffold for Tissue Engineering Studies. IOP Conference Series: Materials Science and Engineering, 2018, 318, 012006.	0.3	11
294	Plasma poly(acrylic acid) compatibilized hydroxyapatite-polylactide biocomposites for their use as body-absorbable osteosynthesis devices. Composites Science and Technology, 2018, 161, 66-73.	3.8	16
295	Evolution of the mechanical properties and estimation of the useful lifespan of poly(lactic acid) based compounds. Polymer International, 2018, 67, 761-769.	1.6	1
296	Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties. Polymer Degradation and Stability, 2018, 150, 37-45.	2.7	87
297	Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 2018, 112, 567-575.	3.6	94
298	Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydrate Polymers, 2018, 187, 51-58.	5.1	83
299	Effects of Compressed CO ₂ and Cotton Fibers on the Crystallization and Foaming Behaviors of Polylactide. Industrial & Engineering Chemistry Research, 2018, 57, 2094-2104.	1.8	29
300	Simultaneously reinforce and toughen polypropylene by inâ€situ introducing polylactic acid microfibrils. Polymers for Advanced Technologies, 2018, 29, 1469-1477.	1.6	4
301	Manufacturing, mechanical and flame retardant properties of poly(lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2018, 110, 227-236.	3.8	136
302	Surfaceâ€modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stents. Journal of Applied Polymer Science, 2018, 135, 46521.	1.3	19

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
303 304	A synthetic polymer system with repeatable chemical recyclability. Science, 2018, 360, 398-403 Thermal stability of polylactide with different end-groups depending on the catalyst used for the polymerization. Polymer Degradation and Stability, 2018, 151, 100-104.		6.0 2.7	437 16
305	Biocomposites based on polylactic acid and olive solid waste fillers: Effect of two compatibilizat approaches on the physicochemical, rheological, and mechanical properties. Polymer Composit 2018, 39, E152.	tion es,	2.3	4
306	Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews, 2018, 118, 839-8	85.	23.0	669
307	Effect of expandable graphite on thermal and flammability properties of poly(lactic) Tj ETQq0 0	0 rgBT /Overlock	10 tf 50 5	582 Td (acid)á
308	Absorption of Siderite Within a Chemically Modified Poly(lactic acid) Based Composite Materia Agricultural Applications. Journal of Polymers and the Environment, 2018, 26, 2173-2181.	l for	2.4	2
	Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving			

309	Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving organoclay. Journal of Analytical and Applied Pyrolysis, 2018, 129, 181-188.	2.6	9
310	Thermal and Mechanical Properties of Silica–Lignin/Polylactide Composites Subjected to Biodegradation. Materials, 2018, 11, 2257.	1.3	23
311	Morphological structure, impact toughness, thermal property and kinetic analysis on the cold crystallization of poly (lactic acid) bio-composites toughened by precipitated barium sulfate. Polymer Degradation and Stability, 2018, 158, 176-189.	2.7	11
312	Poly(lactic acid)-starch/Expandable Graphite (PLA-starch/EG) Flame Retardant Composites. Journal of Renewable Materials, 2018, 6, 26-37.	1.1	9
313	Multi-functional ULTEMâ,,¢1010 composite filaments for additive manufacturing using Fused Filament Fabrication (FFF). Additive Manufacturing, 2018, 24, 298-306.	1.7	47
314	Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polymer Degradation and Stability, 2018, 157, 212-223.	2.7	34
315	Thermal kinetics for the energy valorisation of polylactide/sisal biocomposites. Thermochimica Acta, 2018, 670, 169-177.	1.2	10
316	Thermomechanical properties of alumina-filled plasticized polylactic acid: Effect of alumina loading percentage. Ceramics International, 2018, 44, 22767-22776.	2.3	36
317	Specific Mechanical Energy and Thermal Degradation of Poly(lactic acid) and Poly(caprolactone)/Date Pits Composites. International Journal of Polymer Science, 2018, 2018, 1-10.	1.2	9
318	Thermal Degradation of Polymer and Polymer Composites. , 2018, , 185-206.		50
319	Hybrid Polypeptide/Polylactide Copolymers with Short Phenylalanine Blocks. Macromolecular Chemistry and Physics, 2018, 219, 1800168.	1.1	9
320	Polydopamine induced natural fiber surface functionalization: a way towards flame retardancy of	5.9	108

#	Article	IF	CITATIONS
321	Rheology, mechanical properties and thermal degradation kinetics of polypropylene (PP) and polylactic acid (PLA) blends. Materials Research Express, 2018, 5, 085304.	0.8	19
322	Characterization of polymer/nanoclay composites via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2018, 134, 395-404.	2.6	3
324	Comparative thermal decomposition kinetic analysis of the biodegradable terpolymer poly(lactide-co-propylene carbonate) applied by various theoretical models. Polymer Testing, 2018, 71, 95-100.	2.3	2
325	Ionic Liquid Platform for Spinning Composite Chitin–Poly(lactic acid) Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 10241-10251.	3.2	39
326	High thermodynamic stability study of PLA/LCNF composite. Journal of Thermoplastic Composite Materials, 2019, 32, 1017-1030.	2.6	1
327	Evaluating the effect of hydroxyapatite nanoparticles on morphology, thermal stability and dynamic mechanical properties of multicomponent blend systems based on polylactic acid/Starch/Polycaprolactone. Journal of Vinyl and Additive Technology, 2019, 25, E83.	1.8	15
328	Investigation on the environmentalâ€friendly poly(lactic acid) composites based on precipitated barium sulfate: Mechanical, thermal properties, and kinetic study of thermal degradation. Journal of Applied Polymer Science, 2019, 136, 47995.	1.3	4
329	Green Polymer Composites Based on Polylactic Acid (PLA) and Fibers. Materials Horizons, 2019, , 29-54.	0.3	5
330	Thermally conductive and highly rigid polylactic acid (PLA) hybrid composite filled with surface treated alumina/nano-sized aluminum nitride. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105506.	3.8	68
331	Recycled Polymer Feedstocks for Material Extrusion Additive Manufacturing. ACS Symposium Series, 2019, , 37-51.	0.5	25
332	Thermal Properties of Poly(Lactic Acid). , 2019, , 97-133.		5
333	Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene) Tj ETQq1 1 Biological Macromolecules, 2019, 141, 831-842.	0.784314 ı 3.6	rgBT /Overloc 17
334	From plastic to biomaterials. , 2019, , .		24
335	Synergistic effects of wood fiber and polylactic acid during co-pyrolysis using TG-FTIR-MS and Py-GC/MS. Energy Conversion and Management, 2019, 202, 112212.	4.4	74
336	Characterization and laser-induced degradation of a medical grade polylactide. Polymer Degradation and Stability, 2019, 169, 108991.	2.7	11
337	Myco-accessories. , 2019, , .		40
338	Engineered Green Adhesives Based on Demands: Star-Shaped Glycerol–Lactic Acid Oligomers in Anaerobic Adhesives. ACS Sustainable Chemistry and Engineering, 2019, 7, 16247-16256.	3.2	11
339	Use of microperlite in direct polymerization of lactic acid. International Journal of Polymer Analysis and Characterization, 2019, 24, 142-149.	0.9	1

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
340	Thermal decomposition and mechanical characterization of poly (lactic acid) and potat reinforced with biowaste SiO ₂ . Journal of Composite Materials, 2019, 53,		1.2	6
341	Surfactant Pyrolysis-Guided in Situ Fabrication of Primary Amine-Rich Ordered Mesopo Resin Displaying Efficient Heavy Metal Removal. ACS Applied Materials & amp; Interface 21815-21821.		4.0	22
342	Analysis of the Degradation During Melt Processing of PLA/Biosilicate® Composites. J Composites Science, 2019, 3, 52.	ournal of	1.4	60
343	Synergistic Effect of Ultrasound and Polyethylene Glycol on the Mechanism of the Con Release from Polylactide Matrices. Polymers, 2019, 11, 880.	trolled Drug	2.0	4
344	Degradation mechanisms of polycaprolactone in the context of chemistry, geometry a Progress in Polymer Science, 2019, 96, 1-20.	nd environment.	11.8	366
345	Thermal and thermooxidative degradation. , 2019, , 99-126.			2
346	Physicochemical and mechanical properties of CO2 laser-modified biodegradable polyr applications. Polymer Degradation and Stability, 2019, 165, 182-195.	ners for medical	2.7	10
347	Improving Processing, Crystallization, and Performance of Poly- <scp> </scp> -lactide w Amide-Based Organic Compound as Both Plasticizer and Nucleating Agent. ACS Omeg 10376-10387.	ith an a, 2019, 4,	1.6	18
348	Effects of furan-phosphamide derivative on flame retardancy and crystallization behavi poly(lactic acid). Chemical Engineering Journal, 2019, 369, 150-160.	ors of	6.6	91
349	Development of a solvent-free polylactide/calcium carbonate composite for selective la of bone tissue engineering scaffolds. Materials Science and Engineering C, 2019, 101,		3.8	86
350	Additive Manufacturing: Possible Problems with Indoor Air Quality. Procedia Manufactu 952-959.	uring, 2019, 41,	1.9	16
351	Parallel advances in improving mechanical properties and accelerating degradation to International Journal of Biological Macromolecules, 2019, 125, 1093-1102.	polylactic acid.	3.6	23
352	Development and Evaluation of a Distributed Recycling System for Making Filaments R Three-Dimensional Printers. Journal of Manufacturing Science and Engineering, Transac ASME, 2019, 141, .		1.3	13
353	Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. CheM, 201	9, 5, 284-312.	5.8	239
354	Fabrication of PLA incorporated chitosan nanoparticles to create enhanced functional cotton fabric. Pigment and Resin Technology, 2019, 48, 169-177.	properties of	0.5	13
355	Synthesis and Characterization of Biobased Polyesters Containing Anthraquinones Der Gallic Acid. Biomacromolecules, 2019, 20, 318-325.	rived from	2.6	10
356	Study on dual-monomer melt-grafted poly(lactic acid) compatibilized poly(lactic acid)/ blends and toughened melt-blown nonwovens. Journal of Industrial Textiles, 2020, 49,	polyamide 11 748-772.	1.1	15
357	Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blend Bulletin, 2020, 77, 2111-2137.	ling. Polymer	1.7	17

		Citation R	EPORT	
#	Article		IF	CITATIONS
358	Designing Biobased Recyclable Polymers for Plastics. Trends in Biotechnology, 2020, 3	8, 50-67.	4.9	185
359	Fabrication of Biocompatible Composites of Poly(lactic acid)/Hydroxyapatite Envisionin Applications. Polymer Engineering and Science, 2020, 60, 636-644.	ng Medical	1.5	47
360	High efficient recovery of L-lactide with lignin-based filler by thermal degradation. Indu and Products, 2020, 143, 111954.	strial Crops	2.5	43
361	The use of low cost, abundant, homopolymers for engineering degradable polymer ble Compatibilization of poly(lactic acid)/styrenics using poly(methyl methacrylate). Polyn 122010.	nds: her, 2020, 186,	1.8	19
362	Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry and Eng 3494-3511.	ineering, 2020, 8,	3.2	1,463
363	Study on Thermal Behavior of Some Biocompatible and Biodegradable Materials Based PLA, Chitosan, and Rosemary Ethanolic Extract. International Journal of Polymer Scienc 1-18.	on Plasticized ee, 2020, 2020,	1.2	11
364	Surface-functionalized Electrospun Polycaprolactone Fiber for Culturing Stem Cell fror Exfoliated Deciduous Teeth Culture. Fibers and Polymers, 2020, 21, 2215-2223.	n Human	1.1	2
365	Production and Characterization of Green Flame Retardant Poly(lactic acid) Composite Polymers and the Environment, 2020, 28, 2837-2850.	es. Journal of	2.4	7
366	Synthesis of carbon from waste coconutshell and their application as filler in bioplast p filaments for 3D printing. Composites Part B: Engineering, 2020, 202, 108428.	oolymer	5.9	25
367	Flax/PP and Flax/PLA Thermoplastic Composites: Influence of Fire Retardants on the Inc Components. Polymers, 2020, 12, 2452.	dividual	2.0	7
368	Effect of the Molecular Structure of Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalera (P(3HB-3HV)) Produced from Mixed Bacterial Cultures on Its Crystallization and Mecha Properties. Biomacromolecules, 2020, 21, 4709-4723.	te) anical	2.6	21
369	Lastingly Colored Polylactide Synthesized by Dye-Initiated Polymerization. Polymers, 2	020, 12, 1980.	2.0	1
370	Depolymerization of Endâ€ofâ€Life Poly(lactide) to Lactide via Zincâ€Catalysis. Chemi 14759-14763.	strySelect, 2020, 5,	0.7	29
371	Customizable live-cell imaging chambers for multimodal and multiplex fluorescence mi Biochemistry and Cell Biology, 2020, 98, 612-623.	croscopy.	0.9	5
372	Organocatalysis for versatile polymer degradation. Green Chemistry, 2020, 22, 3721-3	726.	4.6	67
373	The Chemical Recycling of PLA: A Review. Sustainable Chemistry, 2020, 1, 1-22.		2.2	121
374	Synergy effect between quaternary phosphonium ionic liquid and ammonium polypho flame retardant PLA with improved toughness. Composites Part B: Engineering, 2020,	sphate toward 197, 108192.	5.9	87
375	Thermal decomposition kinetics and lifetime prediction of a PP/PLA blend supplemente stearate during artificial aging. Thermochimica Acta, 2020, 690, 178700.	ed with iron	1.2	32

#ARTICLEIFCITATIONS376Correlation between Processing Parameters and Degradation of Different Polylactide Grades during
twin-Screw Extrusion. Polymers, 2020, 12, 1333.2.041377Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to
end-of-life options. Polymer Chemistry, 2020, 11, 4861-4874.1.930

CITATION REPORT

378 Influence of polypropylene and nanoclay on thermal and thermo-oxidative degradation of poly(lactide) Tj ETQq0 0 0 rgBT /Overlock 10 T

379	Epimerization and chain scission of polylactides in the presence of an organic base, TBD. Polymer Degradation and Stability, 2020, 181, 109188.	2.7	10
380	Organomagnesium towards efficient synthesis of recyclable polymers. European Polymer Journal, 2020, 130, 109659.	2.6	4
381	4-Carboalkoxylated Polyvalerolactones from Malic Acid: Tough and Degradable Polyesters. Macromolecules, 2020, 53, 3194-3201.	2.2	17
382	New Biodegradable Poly(l-lactide)-Block-Poly(propylene adipate) Copolymer Microparticles for Long-Acting Injectables of Naltrexone Drug. Polymers, 2020, 12, 852.	2.0	14
383	Effect of <scp>phosphorus–nitrogen</scp> compound on flame retardancy and mechanical properties of polylactic acid. Journal of Applied Polymer Science, 2021, 138, 49829.	1.3	21
384	Fabrication of foam-like oil sorbent from polylactic acid and Calotropis gigantea fiber for effective oil absorption. Journal of Cleaner Production, 2021, 278, 123507.	4.6	29
385	Impact of renewable carbon on the properties of composites made by using three types of polymers having different polarity. Journal of Applied Polymer Science, 2021, 138, 49948.	1.3	8
386	Super-tough sustainable biobased composites from polylactide bioplastic and lignin for bio-elastomer application. Polymer, 2021, 212, 123153.	1.8	26
387	Preparation and characterization of poly(lactic acid) composites involving aromatic diboronic acid and organically modified montmorillonite. Journal of Thermal Analysis and Calorimetry, 2021, 143, 3117-3126.	2.0	5
388	Effect of Storage Conditions on the Thermal Stability and Crystallization Behaviors of Poly(L-Lactide)/Poly(D-Lactide). Polymers, 2021, 13, 238.	2.0	1
389	Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polymer Degradation and Stability, 2021, 183, 109427.	2.7	22
390	Switching to Bioplastics for Sustaining our Environment. Environmental Chemistry for A Sustainable World, 2021, , 1-45.	0.3	0
391	Advances, Challenges, and Opportunities of Poly(γ-butyrolactone)-Based Recyclable Polymers. ACS Macro Letters, 2021, 10, 284-296.	2.3	40
392	POSS Fillers as a Factor Influencing on Viscoelastic Properties, Crystallization, and Thermo-Oxidative Degradation of Poly(Lactic Acid)-Epoxidized Natural Rubber PLA/ENR Blend. , 0, , .		0
393	Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42.	1.4	83

#	Article	IF	CITATIONS
394	Real-time monitoring of volatiles and particles emitted from thermoplastic filaments during 3D printing. IOP Conference Series: Materials Science and Engineering, 2021, 1150, 012001.	0.3	0
395	Graphene oxide crosslinker for the enhancement of mechanical properties of polylactic acid. Journal of Polymer Science, 2021, 59, 1043-1054.	2.0	13
396	Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Management, 2021, 127, 101-111.	3.7	66
397	The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. ChemSusChem, 2021, 14, 4041-4070.	3.6	176
398	Effect of Exogenous Carboxyl and Hydroxyl Groups on Pyrolysis Reaction of High Molecular Weight Poly(L-Lactide) under the Catalysis of Tin. Chinese Journal of Polymer Science (English Edition), 2021, 39, 966-974.	2.0	6
399	Thermal Stability and Decomposition Mechanism of PLA Nanocomposites with Kraft Lignin and Tannin. Polymers, 2021, 13, 2818.	2.0	19
400	Characterisation and Modelling of PLA Filaments and Evolution with Time. Polymers, 2021, 13, 2899.	2.0	11
401	Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. Journal of Biosciences, 2021, 46, 1.	0.5	11
402	Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters. Macromolecules, 2021, 54, 8453-8469.	2.2	33
403	Time-resolved fuel regression measurement function of a hybrid rocket solid fuel integrated by multi-material additive manufacturing. Acta Astronautica, 2021, 187, 89-100.	1.7	7
404	Real-time monitoring of the emission of volatile organic compounds from polylactide 3D printing filaments. Science of the Total Environment, 2022, 805, 150181.	3.9	14
405	3D-printed monolithic biofilters based on a polylactic acid (PLA) – hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium. RSC Advances, 2021, 11, 32408-32418.	1.7	35
407	Infrared Spectral Functional Group and Thermal Properties of Acacia Wood Bio-composites. Engineering Materials, 2019, , 135-151.	0.3	1
408	Study on the (bio)degradation Process of Bioplastic Materials under Industrial Composting Conditions. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2017, 65, 791-798.	0.2	7
409	Degradation of poly(L-lactide) under femtosecond laser treatment. , 2018, , .		1
410	Introducing the Sustainable Prototyping Life Cycle for Digital Fabrication to Designers. , 2020, , .		32
411	Development and Applications of Sustainable Polylactic Acid Parts. , 2016, , 430-485.		1
412	Effectiveness assessment of TiO ₂ -Al ₂ O ₃ nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films. Journal of Polymer Engineering, 2020, 40, 848-858.	0.6	21

#	Article	IF	CITATIONS
413	Developments in Flame-Retardant Bio-composite Material Production. Advances in Civil Engineering Materials, 2019, 8, 20180025.	0.2	4
414	Measurement and Simulation of Thermal Stability of Poly(Lactic Acid) by Thermogravimetric Analysis. Journal of Testing and Evaluation, 2009, 37, 364-370.	0.4	10
415	On the Recycling of a Biodegradable Polymer: Multiple Extrusion of Poly (Lactic Acid). Materials Research, 2020, 23, .	0.6	16
416	Study on PLA/PA11 Bio-Based Toughening Melt-Blown Nonwovens. Autex Research Journal, 2020, 20, 24-31.	0.6	19
417	Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization. Frontiers in Marine Science, 2020, 7, .	1.2	86
418	Exploring the synergetic effects of the major components of biomass additives in the pyrolysis of polylactic acid. Green Chemistry, 2021, 23, 9014-9023.	4.6	27
419	Durability of Biodegradable Polymer Nanocomposites. Polymers, 2021, 13, 3375.	2.0	28
420	Preparation and properties of foamed cellulose acetate/polylactic acid blends. Polymer Engineering and Science, 2021, 61, 3069-3081.	1.5	5
421	Degradation Mechanisms of Condensation Polymers. , 2006, , 81-103.		1
423	Polylactic Acid: Environmental Degradation Behaviors. , 0, , 6422-6432.		0
425	Bringing New Function to Packaging Materials by Agricultural By-Products. , 2020, , 227-257.		1
427	Nano-biodegradation of polymers. , 2022, , 213-238.		8
428	Study on the atomic scale of thermal and thermo-oxidative degradation of polylactic acid via reactive molecular dynamics simulation. Thermochimica Acta, 2022, 709, 179144.	1.2	16
429	Mitigation of the Micro- and Nanoplastic Using Phycoremediation Technology. , 2022, , 183-208.		1
430	Rapid and Controlled Polymerization of Bioâ€sourced δ aprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angewandte Chemie, 2022, 134, .	1.6	9
431	Rapid and Controlled Polymerization of Bioâ€sourced δâ€Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
432	Microstructure and Mechanical Properties of Inverse Nanocomposite Made from Polylactide and Hydroxyapatite Nanoparticles. Materials, 2022, 15, 184.	1.3	8

#	Article	IF	CITATIONS
434	Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polymer Bulletin, 2023, 80, 1117-1153.	1.7	19
435	KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ. Uludağ U of Engineering, 0, , 375-388.	niversity Jo 0.2	ournal of the
436	A Simple Method for Quantification of Polyhydroxybutyrate and Polylactic Acid Micro-Bioplastics in Soils by Evolved Gas Analysis. Molecules, 2022, 27, 1898.	1.7	8
437	First, do not degrade – Dual Beam Laser Sintering of polymers. Additive Manufacturing, 2022, 53, 102715.	1.7	3
438	Inulin-g-poly-D,L-lactide, a sustainable amphiphilic copolymer for nano-therapeutics. Drug Delivery and Translational Research, 2022, 12, 1974-1990.	3.0	6
439	Integration of upcycling and closed-loop recycling through alternative cyclization–depolymerization. Green Chemistry, 2022, 24, 4490-4497.	4.6	16
440	Facile Preparation of Hydrophobic PLA/PBE Micro-Nanofiber Fabrics via the Melt-Blown Process for High-Efficacy Oil/Water Separation. Polymers, 2022, 14, 1667.	2.0	16
441	Alternative modification by grafting in bamboo cellulose nanofibrils: A potential option to improve compatibility and tunable surface energy in bionanocomposites. International Journal of Biological Macromolecules, 2022, 211, 626-638.	3.6	6
442	Polylactide as a Substitute for Conventional Polymers—Biopolymer Processing under Varying Extrusion Conditions. Environments - MDPI, 2022, 9, 57.	1.5	8
443	The influence of the functional end groups on the properties of polylactide-based materials. Progress in Polymer Science, 2022, 130, 101556.	11.8	25
444	Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D pyrolysis products. Thermochimica Acta, 2022, 712, 179227.	1.2	6
445	Progress in upcycling polylactic acid waste as an alternative carbon source: A review. Chemical Engineering Journal, 2022, 446, 136881.	6.6	53
446	"Like Recycles Like†Selective Ringâ€Closing Depolymerization of Poly(Lâ€Lactic Acid) to Lâ€Lactide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
447	"Like Recycles Like―– Selective Ringâ€Closing Depolymerization of poly(Lâ€lactic acid) to Lâ€Lactide. Angewandte Chemie, 0, , .	1.6	1
448	Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review. Polymer Degradation and Stability, 2022, 201, 109995.	2.7	58
449	The Study of Properties and Structure of Polylactide–Graphite Nanoplates Compositions. Polymer Crystallization, 2022, 2022, 1-9.	0.5	3
452	Green polymer filaments for 3D printing. , 2022, , 463-516.		0
453	Roles of phosphoramide derivatives in flame retardancy, thermal degradation and crystallization behaviors of polylactic acid. International Journal of Biological Macromolecules, 2022, 219, 558-570.	3.6	11

#	Article	IF	CITATIONS
454	Comparative study of green composites using grewia optiva, Himalayan nettle and silk as fiber. Advances in Materials and Processing Technologies, 2024, 10, 157-166.	0.8	0
455	Effect of various metal-based halloysite nanotubes for the catalytic degradation of chitosan to low molecular weight chitosan. Materials Today Communications, 2022, 33, 104198.	0.9	2
456	Mesoporous multi-shelled hollow resin nanospheres with ultralow thermal conductivity. Chemical Science, 2022, 13, 12180-12186.	3.7	1
457	Kinetic, Products Distribution, and Mechanism Analysis for the Pyrolysis of Polyglycolic Acid Toward Carbon Cycle. SSRN Electronic Journal, 0, , .	0.4	0
458	Biodegradation Process: Basics, Factors Affecting, and Industrial Applications. , 2022, , 1-39.		0
459	Impact of Ionic Liquids on the (bio)degradability of Poly(butylene succinate)/Poly(lactic acid) blends. Frontiers in Materials, 0, 9, .	1.2	0
460	Evaluation of Natural and Modified Castor Oil Incorporation on the Melt Processing and Physico-Chemical Properties of Polylactic Acid. Polymers, 2022, 14, 3608.	2.0	4
461	End-of-life biodegradation? how to assess the composting of polyesters in the lab and the field. Waste Management, 2022, 154, 36-48.	3.7	10
462	A strategy to enhance recyclability of degradable block copolymers by introducing low-temperature formability. Journal of Materials Chemistry A, 2022, 10, 25446-25452.	5.2	3
463	Thermal degradation and combustion properties of most popular synthetic biodegradable polymers. Waste Management and Research, 2023, 41, 431-441.	2.2	5
464	Comparative Study on Properties of PBAT/PBSA Film Modified by a Multi-Functional Epoxide Chain Extender or Benzoyl Peroxide. Journal of Renewable Materials, 2023, 11, 1303-1319.	1.1	1
465	Kinetic, products distribution, and mechanism analysis for the pyrolysis of polyglycolic acid toward carbon cycle. Fuel, 2023, 333, 126567.	3.4	3
466	Structure, Properties, and Release Kinetics of the Polymer/Insect Repellent System Poly (l-Lactic) Tj ETQq0 0 0 rgE	BT /Overloo 2.0	:k ₁ 10 Tf 50 2
467	Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chemistry, 2022, 24, 9428-9449.	4.6	27
468	Thermal reactive modifications of polymer surfaces by infrared laser radiation. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105819.	2.6	1
469	Effects of heating rate and temperature on product distribution of poly-lactic acid and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate. Journal of Material Cycles and Waste Management, 2023, 25, 650-661.	1.6	3
470	Thermal and Mechanical Degradation of Recycled Polylactic Acid Filaments for Three-Dimensional Printing Applications. Polymers, 2022, 14, 5385.	2.0	5

Thermal degradation of polymers, copolymers, and blends. , 2023, , 49-147.

#	Article	IF	CITATIONS
472	Recycling of polymers by thermal degradation. , 2023, , 303-326.		0
473	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie, 2023, 135, .	1.6	3
474	A thermoanalytical insight into the composition of biodegradable polymers and commercial products by EGA-MS and Py-GC-MS. Journal of Analytical and Applied Pyrolysis, 2023, 171, 105937.	2.6	6
475	Composite based on PLA with improved shape stability under high-temperature conditions. Polymer, 2023, 276, 125943.	1.8	2
476	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
477	Thiophene End-Functionalized Oligo-(D,L-Lactide) as a New Electroactive Macromonomer for the "Hairy-Rod―Type Conjugated Polymers Synthesis. Polymers, 2023, 15, 1094.	2.0	0
478	Biodegradation Process: Basics, Factors Affecting, and Industrial Applications. , 2023, , 19-56.		3
479	Molecular Pathways for Polymer Degradation during Conventional Processing, Additive Manufacturing, and Mechanical Recycling. Molecules, 2023, 28, 2344.	1.7	14
480	Enzymes' Power for Plastics Degradation. Chemical Reviews, 2023, 123, 5612-5701.	23.0	80
481	Medical-Grade Poly(Lactic Acid)/Hydroxyapatite Composite Films: Thermal and In Vitro Degradation Properties. Polymers, 2023, 15, 1512.	2.0	5
482	Influence of boron bearing fillers on flame retardancy properties of huntite hydromagnesite filled ductile PLA biocomposites. Journal of Boron, 0, , .	0.0	0