Relative stability of 1C4 and 4C1 chair forms of \hat{I}^2 -d-glue

Chemical Physics Letters 257, 49-60 DOI: 10.1016/0009-2614(96)00508-8

Citation Report

#	Article	IF	CITATIONS
1	MP2 and Density Functional Studies of Hydrogen Bonding in Model Trioses:  d-(+)-Glyceraldehyde and Dihydroxyacetone. Journal of Physical Chemistry A, 1997, 101, 1542-1548.	1.1	45
2	Ab initio and density functional study of the conformational space of1C4 ?-L-fucose. Journal of Computational Chemistry, 1997, 18, 330-342.	1.5	38
3	Vibrational analysis of TeCl4. II. A Hartree-Fock, MP2, and density functional study. International Journal of Quantum Chemistry, 1997, 65, 817-826.	1.0	5
4	Condensed matter effects on the structure of crystalline glucose. Chemical Physics Letters, 1997, 275, 409-413.	1.2	23
5	Hydrogen Bonding and Density Functional Calculations:Â The B3LYP Approach as the Shortest Way to MP2 Results. Journal of Physical Chemistry A, 1998, 102, 2899-2903.	1.1	153
6	Comparison ofab initio and density functional methods for vibrational analysis of TeCl4. Journal of Computational Chemistry, 1998, 19, 308-318.	1.5	9
7	Factors controlling relative stability of anomers and hydroxymethyl conformers of glucopyranose. , 1998, 19, 1111-1129.		122
8	Theoretical Studies of the Potential Energy Surfaces and Compositions of thed-Aldo- andd-Ketohexoses. Journal of the American Chemical Society, 1998, 120, 3411-3422.	6.6	101
9	Theoretical Study of Alternative Ring Forms of α-l-Fucopyranose. Journal of Physical Chemistry A, 1998, 102, 1219-1229.	1.1	26
10	Relative Stability and Structure of Dihydro-1,2,4-triazines:  A Theoretical Study. Journal of Organic Chemistry, 1998, 63, 5824-5830.	1.7	10
11	Glucose in Aqueous Solution by First Principles Molecular Dynamics. Journal of the American Chemical Society, 1998, 120, 2168-2171.	6.6	148
12	Improved carbohydrate force field for gromos: ring and hydroxymethyl group conformations and exo-anomeric effect. Carbohydrate Research, 1999, 322, 264-273.	1.1	42
13	Comparison of ab initio and density functional methods for TeF6. Chemical Physics Letters, 1999, 305, 458-464.	1.2	7
14	Quantitative multidimensional conformational analysis of azadirachtin. Computational and Theoretical Chemistry, 1999, 463, 251-270.	1.5	3
15	A Computational Study of Methyl α-D-Arabinofuranoside:  Effect of Ring Conformation on Structural Parameters and Energy Profile. Journal of the American Chemical Society, 1999, 121, 9682-9692.	6.6	33
16	Computational studies on carbohydrates: I. Density functionalab initio geometry optimization on maltose conformations. Journal of Computational Chemistry, 2000, 21, 1204-1219.	1.5	68
17	Flexible geometry of methyl amine. Vibrational Spectroscopy, 2000, 22, 127-141.	1.2	2
18	Constructing and evaluating energy surfaces of crystalline disaccharides. Journal of Molecular Graphics and Modelling, 2000, 18, 95-107.	1.3	63

CITATION REPORT

#	Article	IF	CITATIONS
19	Prospects in computational molecular medicine: a millennial mega-project on peptide folding. Computational and Theoretical Chemistry, 2000, 500, 5-58.	1.5	29
20	Ab Initio Conformational Study of Two Lewis X Analogues. Journal of Physical Chemistry A, 2000, 104, 7113-7122.	1.1	10
21	Probing Furanose Ring Conformation by Gas-Phase Computational Methods:Â Energy Profile and Structural Parameters in Methyl β-d-Arabinofuranoside as a Function of Ring Conformation. Journal of Organic Chemistry, 2000, 65, 4954-4963.	1.7	35
22	Ab Initio Study of Lowest-Energy Conformers of Lewis X (Lex) Trisaccharide. Journal of Physical Chemistry A, 2000, 104, 3381-3390.	1.1	17
23	Electron magnetic resonance study of stable radicals in irradiated D-fructose single crystals. Physical Chemistry Chemical Physics, 2001, 3, 1729-1735.	1.3	22
24	Quantum Chemical Studies of Carbohydrate Reactivity:Â Acid Catalyzed Ring Opening Reactions. Journal of Physical Chemistry A, 2001, 105, 8216-8222.	1.1	15
25	HF/6-31G* energy surfaces for disaccharide analogs. Journal of Computational Chemistry, 2001, 22, 65-78.	1.5	78
26	An Experimental and Computational Study of the Gas-Phase Structures of Five-Carbon Monosaccharides. Journal of Physical Chemistry A, 2002, 106, 6754-6764.	1.1	78
27	Ab Initio Conformational Space Study of Model Compounds of O-Glycosides of Serine Diamide. Chemistry - A European Journal, 2002, 8, 4718-4733.	1.7	15
28	Proper basis set for quantum mechanical studies of potential energy surfaces of carbohydrates. Computational and Theoretical Chemistry, 2002, 584, 1-4.	1.5	99
29	Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. Carbohydrate Research, 2002, 337, 353-367.	1.1	105
30	An exploratory conformational analysis of d and l \hat{l}^2 -6-deoxyglucose. An ab initio and DFT approach. Computational and Theoretical Chemistry, 2003, 666-667, 393-396.	1.5	1
31	Getting into shape? The interaction of molecules of biological interest with molecules of water: from simplicity to complexity. Comptes Rendus Chimie, 2003, 6, 17-31.	0.2	33
32	Calculation of NMR Chemical Shifts in Carbohydrates with ONIOM:  A Study of the Conformers of β-d-Glucopyranose. Journal of Physical Chemistry A, 2003, 107, 292-300.	1.1	22
33	Hydrated Sugars in the Gas Phase:Â Spectroscopy and Conformation of Singly Hydrated Phenyl β-d-Glucopyranosideâ€. Journal of Physical Chemistry A, 2003, 107, 10725-10732.	1.1	35
34	Regioselectivity for Condensation Reactions of Quinonoid Models of Tryptophan Tryptophylquinone:Â A Density Functional Theory Study. Journal of Organic Chemistry, 2003, 68, 3626-3633.	1.7	2
35	Structure of Sulfated Monosaccharides Studied by Quantum Chemical Methods. Molecules, 2003, 8, 770-779.	1.7	5
36	B3LYP/6-311++G** study of α- and β-d-glucopyranose and 1,5-anhydro-d-glucitol: 4C1 and 1C4 chairs, 3,OB and B3,O boats, and skew-boat conformations. Carbohydrate Research, 2004, 339, 537-551.	1.1	120

CITATION REPORT

#	Article	IF	CITATIONS
37	Ab initio study of interactions between d-glucosamine and Cd2+(H2O)n, n=0,2,4. Computational and Theoretical Chemistry, 2004, 683, 23-27.	1.5	5
38	Ab initio conformational maps for disaccharides in gas phase and aqueous solution. Carbohydrate Research, 2004, 339, 113-122.	1.1	30
39	Density Functional Study of the Optical Rotation of Glucose in Aqueous Solution. Journal of Organic Chemistry, 2004, 69, 8161-8164.	1.7	55
40	Theoretical Study of the Relative Stability of Rotational Conformers of α and β-d-Glucopyranose in Gas Phase and Aqueous Solution. Journal of the American Chemical Society, 2004, 126, 7311-7319.	6.6	75
41	Oligosaccharide analysis using anion attachment in negative mode electrospray mass spectrometry. Journal of the American Society for Mass Spectrometry, 2005, 16, 60-70.	1.2	86
42	Fluorinated cellobiose and maltose as stand-ins for energy surface calculations. Tetrahedron: Asymmetry, 2005, 16, 577-586.	1.8	21
43	Comparative performance of MM3(92) and two TINKER? MM3 versions for the modeling of carbohydrates. Journal of Computational Chemistry, 2005, 26, 471-483.	1.5	35
44	A new GROMOS force field for hexopyranose-based carbohydrates. Journal of Computational Chemistry, 2005, 26, 1400-1412.	1.5	286
45	B3LYP/6-311++G** geometry-optimization study of pentahydrates of α- and β-d-glucopyranose. Carbohydrate Research, 2005, 340, 1638-1655.	1.1	65
46	Computational studies of 13C NMR chemical shifts of saccharides. Physical Chemistry Chemical Physics, 2005, 7, 2561.	1.3	31
47	Circular Hydrogen Bond Networks on the Surface of β-Ribofuranose in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 12603-12611.	1.2	10
48	Density Functional Study of the Conformational Space of4C1d-Glucuronic Acid. Journal of Physical Chemistry A, 2005, 109, 892-897.	1.1	24
49	Neutron Diffraction and Computer Simulation Studies ofd-Xylose. Journal of the American Chemical Society, 2005, 127, 10991-10998.	6.6	14
50	An investigation of the pyranose ring interconversion path of \hat{i} ±-l-idose calculated using density functional theory. Carbohydrate Research, 2006, 341, 2565-2574.	1.1	36
51	Carbohydrates and quantum chemistry: how useful is this combination?. Theoretical Chemistry Accounts, 2006, 116, 137-147.	0.5	18
52	Solid-state IR–LD spectroscopic and theoretical analysis of glycine-containing peptides and their hydrochlorides. Biopolymers, 2006, 82, 587-596.	1.2	43
53	Conformational Analysis of Thiosugars: Theoretical NMR Chemical Shifts and 3 J H,H Coupling Constants of 5â€Thioâ€Pyranose Monosaccharides. Journal of Carbohydrate Chemistry, 2006, 25, 557-594.	0.4	7
54	Correlatedab initioquantum chemical calculations of di- and trisaccharide conformations. Journal of Computational Chemistry, 2007, 28, 1965-1973.	1.5	10

#	Article	IF	CITATIONS
55	Calculating gas phase energies of an α(1–4) linked disaccharide: electronic structure theory and classical atomistic simulation. Computational and Theoretical Chemistry, 2007, 806, 9-22.	1.5	1
56	DFT and neutron diffraction study of 1,6-anhydro-β-D-glucopyranose (levoglucosan). Open Chemistry, 2007, 5, 55-70.	1.0	10
57	Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the gromos 45A4 force field. Carbohydrate Research, 2007, 342, 2097-2124.	1.1	79
58	Complete assignments of the 1H and 13C chemical shifts and JH,H coupling constants in NMR spectra of d-glucopyranose and all d-glucopyranosyl-d-glucopyranosides. Carbohydrate Research, 2008, 343, 101-112.	1.1	194
59	Interaction energy and the shift in OH stretch frequency on hydrogen bonding for the H ₂ 0 → H ₂ 0, CH ₃ 0H → H ₂ 0, and H ₂ 0 → CH ₃ 0H dimers. Journal of Computational Chemistry, 2010, 31, 963-972.	1.5	17
60	Comparison of different force fields for the study of disaccharides. Carbohydrate Research, 2009, 344, 2217-2228.	1.1	87
61	Evaluation of Density Functionals and Basis Sets for Carbohydrates. Journal of Chemical Theory and Computation, 2009, 5, 679-692.	2.3	183
62	Vibrational Analysis of α- <scp>d</scp> -Glucose Trapped in Ar Matrix. Journal of Physical Chemistry B, 2009, 113, 2151-2159.	1.2	29
63	Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water. Journal of Computational Chemistry, 2010, 31, 1-23.	1.5	104
64	Relaxed energetic maps of κ arrabiose: A DFT study. Journal of Computational Chemistry, 2010, 31, 1312-1320.	1.5	12
65	NMR assignment and characterization of proton exchange of the ellagitannin granatin B. Magnetic Resonance in Chemistry, 2010, 48, 565-570.	1.1	12
66	DFTMD studies of glucose and epimers: anomeric ratios, rotamer populations, and hydration energies. Carbohydrate Research, 2010, 345, 503-511.	1.1	50
67	On the Stabilization of Ribose by Silicate Minerals. Astrobiology, 2011, 11, 115-121.	1.5	23
68	Accurate Conformational Energy Differences of Carbohydrates: A Complete Basis Set Extrapolation. Journal of Chemical Theory and Computation, 2011, 7, 988-997.	2.3	26
69	A Hierarchy of Methods for the Energetically Accurate Modeling of Isomerism in Monosaccharides. Journal of Chemical Theory and Computation, 2012, 8, 2630-2645.	2.3	52
70	Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chemical Society Reviews, 2013, 42, 8376.	18.7	113
71	Residueâ€centric modeling and design of saccharide and glycoconjugate structures. Journal of Computational Chemistry, 2017, 38, 276-287.	1.5	41
72	Conformations of n -alkyl-î±/î²- d -glucopyranoside surfactants: Impact on molecular properties. Computational and Theoretical Chemistry, 2017, 1101, 20-29.	1.1	13

CITATION REPORT

#	Article	IF	CITATIONS
73	Solventâ€Modulated Influence of Intramolecular Hydrogenâ€Bonding on the Conformational Properties of the Hydroxymethyl Group in Glucose and Galactose: A Molecular Dynamics Simulation Study. Helvetica Chimica Acta, 2017, 100, e1600158.	1.0	11
74	Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2018, 122, 8174-8184.	1.2	6
75	A quantum chemical study of LIX63 hydroxyoxime syn/anti isomerisation. Molecular Simulation, 2020, 46, 1530-1541.	0.9	0
76	Theoretical VCD response in the C-H stretching region of methyl α and β L-Fucopyranoside: a different behavior from monosaccharides. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	0
77	Seven-Step Stereodivergent Total Syntheses of Punicafolin and Macaranganin. Journal of the American Chemical Society, 2021, 143, 1428-1434.	6.6	23
78	Online analysis of D-glucose and D-mannose aqueous mixtures using Raman spectroscopy: an in silico and experimental approach. Bioengineered, 2021, 12, 4420-4431.	1.4	3
80	Monosaccharides: geometry and dynamics. , 1999, , 1-46.		2
81	Control of anomericity and glycosidic linkage on the mechanics of polysaccharides. Journal of Chemical Sciences, 2023, 135, .	0.7	0