CITATION REPORT List of articles citing

Impact of SO2 and NO on CO oxidation under post-flame conditions

DOI: 10.1002/(sici)1097-4601(1996)28:103.0.co;2-k International Journal of Chemical Kinetics, 1996, 28, 773-790.

Source: https://exaly.com/paper-pdf/27331708/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
134	Pulverized Sponge Iron, a Zero-Carbon and Clean Substitute for Fossil Coal in Energy Applications.		
133	Experimental and kinetic studies on the effect of sulfur-nitrogen interactions on no formation in flames. 1998 , 27, 1419-1426		13
132	Characterization of Reaction Pathways on the Potential Energy Surfaces for H + SO2 and HS + O2. Journal of Physical Chemistry A, 1999 , 103, 11328-11335	2.8	53
131	Kinetic modeling of the CO/H2O/O2/NO/SO2 system: Implications for high-pressure fall-off in the SO2 + O(+M) = SO3(+M) reaction. International Journal of Chemical Kinetics, 2000 , 32, 317-339	1.4	89
130	Kinetics of low-temperature homogeneous SO3 formation for use in flue gas conditioning for improved electrostatic precipitator performance. 2000 , 28, 2499-2505		10
129	Kinetics and Mechanisms of the Oxidation of Gaseous Sulfur Compounds. 2000, 343-388		7
128	REACT for Windows: Chemical Kinetics Emulation and Application (Manka, Michael). 2000 , 77, 165		5
127	Understanding of Halogen Impacts in Fluidized Bed Combustion. <i>Energy & Description</i> 2001, 15, 533-540	4.1	11
126	NO x and N2O Formation Mechanisms A Detailed Chemical Kinetic Modeling Study on a Single Fuel Particle in a Laboratory-Scale Fluidized Bed. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2001 , 123, 228-235	2.6	21
125	Inhibition and sensitization of fuel oxidation by SO2. Combustion and Flame, 2001, 127, 2234-2251	5.3	133
124	The influence of SO2 level and operating conditions on NOx and N2O emissions during fluidised bed combustion of coals. <i>Fuel</i> , 2001 , 80, 1555-1566	7.1	26
123	Formation of Solid Sulfur by Decomposition of Carbon Disulfide in the Oxygen-Lean Cold Plasma Environment. <i>Industrial & Environment Chemistry Research</i> , 2002 , 41, 1412-1418	3.9	23
122	Formation Kinetics of Sulfur-Bearing Compounds in Combustion of Hydrocarbon Fuels in Air. 2002 , 38, 609-621		11
121	Difference in Conversions Between Dimethyl Sulfide and Methanethiol in a Cold Plasma Environment. 2003 , 23, 141-157		16
120	Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO?H2 mixtures. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 564-575	1.4	79
119	High Temperature Reaction of S + SO2 - SO + SO: Implication of S2O2 Intermediate Complex Formation. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 10996-11000	2.8	20
118	The Effect of HCl and SO2on NOxFormation in Coal Flames. <i>Energy & Energy &</i>	4.1	23

117	Thermal valorization of footwear leather wastes in bubbling fluidized bed combustion. 2004 , 24, 935-44	Ź	28
116	Interactions of CO, HCl, and SOx in pulverised coal flames. <i>Fuel</i> , 2004 , 83, 1227-1233		13
115	Conversion of Sulfur Dioxide and Carbon Disulfide to Elemental Sulfur under Plasma-Induced Conditions. <i>Energy & Discourt Manager Sulfur Sulfu</i>	2	2
114	Modeling a claus process reaction furnace via a radical kinetic scheme. <i>Computer Aided Chemical Engineering</i> , 2004 , 18, 463-468	:	15
113	Flame inhibition by phosphorus-containing compounds in lean and rich propane flames. 2005 , 30, 2353-236	0 !	51
112	Mechanism and modeling of the formation of gaseous alkali sulfates. <i>Combustion and Flame</i> , 2005 , 141, 22-39		177
111	Theoretical investigations on the SO2+HO2 reaction and the SO2⊞O2 radical complex. 2005 , 410, 235-241	4	45
110	A systematically reduced reaction mechanism for sulphur oxidation. 2005 , 30, 1227-1235	Ĵ	34
109	Kinetic Modeling of the Gas-Phase Oxidation of Nitric Oxide Using Hydrogen Peroxide. 2005 , 131, 518-525	-	17
108	Oxidation of CO by SO2: a theoretical study. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 2019-25 2.8		17
107	NOx Formation in Natural Gas CombustionEvaluation of Simplified Reaction Schemes for CFD Calculations. <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculations</i> . <i>Industrial & Description Computer Schemes For CFD Calculation Computer Schemes For CFD Calculations</i> .	Ç	9
106	Hydrogen Sulfide Combustion: Relevant Issues under Claus Furnace Conditions. <i>Industrial & amp; Engineering Chemistry Research</i> , 2005 , 44, 7706-7729		83
105	Role of the direct reaction H2S + SO2 in the homogeneous Claus reaction. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 8180-6	2	21
104	Thermal dissociation of SO3 at 1000-1400 K. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 6654-9 2.8		32
103	Combined experimental and master equation investigation of the multiwell reaction H + SO2. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 2996-3009		51
102	NOx formation in natural gas combustion \blacksquare new simplified reaction scheme for CFD calculations. <i>Fuel</i> , 2006 , 85, 513-523	Ĵ	32
101	Influence of potassium chloride on moist CO oxidation under reducing conditions: Experimental and kinetic modeling study. <i>Fuel</i> , 2006 , 85, 978-988	-	18
100	The use of global uncertainty methods for the evaluation of combustion mechanisms. 2006 , 91, 1219-1231	4	40

99	Systematically reduced chemical mechanisms for sulfur oxidation and pyrolysis. <i>Combustion and Flame</i> , 2006 , 146, 437-455	5.3	58
98	Master equation methods for multiple well systems: application to the 1-,2-pentyl system. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 4085-97	3.6	93
97	Reactions of SO3 with the O/H radical pool under combustion conditions. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 3984-91	2.8	60
96	Theoretical study of the reaction OH + SO -pH + SO2. 2007 , 433, 279-285		30
95	Mechanisms of radical removal by SO2. 2007 , 31, 339-347		68
94	Hidden interactions Trace species governing combustion and emissions. 2007 , 31, 77-98		134
93	Catalytic inhibition of laminar flames by transition metal compounds. <i>Progress in Energy and Combustion Science</i> , 2008 , 34, 288-329	33.6	70
92	A global sensitivity study of sulfur chemistry in a premixed methane flame model using HDMR. <i>International Journal of Chemical Kinetics</i> , 2008 , 40, 742-753	1.4	96
91	An exploratory study of alkali sulfate aerosol formation during biomass combustion. Fuel, 2008, 87, 159	917-160	082
90	Engine Design and Operational Impacts on Particulate Matter Precursor Emissions. 2008, 130,		13
89	Influence of HCl on CO and NO emissions in combustion. <i>Fuel</i> , 2009 , 88, 1998-2003	7.1	20
88	Thermochemistry of the HOSO radical, a key intermediate in fossil fuel combustion. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 6779-88	2.8	44
87	Reduced Mechanism for Hydrogen Sulfide Oxidation. 2009,		7
86	Reduced Mechanism for the Oxidation of Hydrogen Sulfide. 2009 ,		1
85	Particle Emissions from Domestic Gas Cookers. Combustion Science and Technology, 2010, 182, 1511-15	27 .5	15
84	A quasiclassical trajectory study of the OH+SO reaction: The role of rotational energy. 2010 , 132, 0443	10	18
83	Implementation of Novel Error Propagation Based Reduction Approach in H2S/O2 Reaction Mechanism. 2010 ,		6
82	Online Data Reconciliation with Poor Redundancy Systems. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2011 , 50, 14105-14114	3.9	18

81	SO3 Formation under Oxyfuel Combustion Conditions. <i>Industrial & Discrete Lamp; Engineering Chemistry Research</i> , 2011 , 50, 8505-8514	3.9	79	
80	Development of a Chemical Reaction Mechanism for Alternative Aviation Fuels. <i>Energy & Comp.; Fuels</i> , 2011 , 25, 1465-1473	4.1	3	
79	Diluted Air Combustion and NOx Emission in a HiTAC Furnace. 2011 , 59, 633-651		9	
78	CFD study on influence of fuel temperature on NOx emission in a HiTAC furnace. 2011 , 38, 1421-1427		28	
77	SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions. <i>Combustion and Flame</i> , 2011 , 158, 48-56	5.3	41	
76	Design of SRU Thermal Reactor and Waste Heat Boiler Considering Recombination Reactions. 2012 , 42, 376-383		26	
75	Detailed Modeling of NOx and SOx Formation in Co-combustion of Coal and Biomass with Reduced Kinetics. <i>Energy & Documents</i> , 2012, 26, 3117-3124	4.1	26	
74	Novel error propagation approach for reducing H2S/O2 reaction mechanism. 2012 , 93, 116-124		20	
73	Investigating SO3 Formation from the Combustion of Heavy Fuel Oil in a Four-Stroke Medium-Speed Test Engine. <i>Energy & Energy & E</i>	4.1	21	
7 ²	Spectroscopic Detection and Structure of Hydroxidooxidosulfur (HOSO) Radical, An Important Intermediate in the Chemistry of Sulfur-Bearing Compounds. 2013 , 4, 4074-4079		30	
71	Measurement and modeling of sulfur trioxide formation in a flow reactor under post-flame conditions. <i>Combustion and Flame</i> , 2013 , 160, 1142-1151	5.3	62	
70	Post-flame gas-phase sulfation of potassium chloride. <i>Combustion and Flame</i> , 2013 , 160, 959-969	5.3	57	
69	Modeling the Distribution of Sulfur Compounds in a Large Two Stroke Diesel Engine. <i>Energy & Energy & </i>	4.1	21	
68	Experimental Evaluation and Field Application of a Salt Method for SO3 Measurement in Flue Gases. <i>Energy & Energy & Communication of the Energy & Energy & Communication of the Energy & Energy & Energy & Communication of the Energy & Ene</i>	4.1	25	
67	Oxidation of Reduced Sulfur Species: Carbonyl Sulfide. <i>International Journal of Chemical Kinetics</i> , 2013 , 45, 429-439	1.4	26	
66	Total plant integrated optimization of sulfur recovery and steam generation for Claus processes using detailed kinetic schemes. <i>Computer Aided Chemical Engineering</i> , 2013 , 32, 811-816	0.6	10	
65	Validation of a Detailed Reaction Mechanism for Sulfur Species in Coal Combustion. <i>Combustion Science and Technology</i> , 2014 , 186, 540-551	1.5	8	
64	Effect of SO2 on the chain reaction of hydrogen oxidation: Intermittent flames. 2014 , 50, 1-9		2	

63	A quasi-classical trajectory study of the OH + SO reaction: the role of ro-vibrational energy. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12793-801	3.6	17
62	Effects of H2S addition on hydrogen ignition behind reflected shock waves: Experiments and modeling. <i>Combustion and Flame</i> , 2014 , 161, 23-36	5.3	30
61	Model-based optimization of sulfur recovery units. 2014 , 66, 244-251		30
60	Impact of sour gas composition on ignition delay and burning velocity in air and oxy-fuel combustion. <i>Combustion and Flame</i> , 2015 , 162, 2749-2757	5.3	16
59	A kinetic and thermochemical database for organic sulfur and oxygen compounds. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 13625-39	3.6	14
58	Effect of steam and sulfur dioxide on sulfur trioxide formation during oxy-fuel combustion. 2015 , 43, 1-9		23
57	Impact of SO2 on the formation of soot from ethylene pyrolysis. <i>Fuel</i> , 2015 , 159, 550-558	7.1	13
56	Chemical kinetics mechanism for oxy-fuel combustion of mixtures of hydrogen sulfide and methane. <i>Combustion and Flame</i> , 2015 , 162, 544-553	5.3	62
55	A Simulation of Claus Process Via Aspen Hysys for Sulfur Recovery. <i>Chemical Product and Process Modeling</i> , 2016 , 11, 273-278	1.1	2
54	Chemical conversion of SO2 in low-temperature and low-pressure oxyhydrogen flames. 1. Kinetic analysis of the process. 2016 , 52, 643-650		2
53	Chemical conversion of SO2 in low-temperature and low-pressure oxyhydrogen flames. 2. Mechanism of formation of elemental sulfur. 2016 , 52, 651-658		2
52	Experimental investigation and numerical simulation of CO oxidation with HCl addition. <i>Fuel</i> , 2016 , 179, 221-228	7.1	2
51	Low-temperature corrosion in co-combustion of biomass and solid recovered fuels. Fuel, 2016, 184, 957	- 9 .65	33
50	Enhancement of hydrogen sulfide oxidation via excitation of oxygen molecules to the singlet delta state. <i>Combustion and Flame</i> , 2016 , 170, 124-134	5.3	12
49	A comprehensive experimental and modeling study of sulfur trioxide formation in oxy-fuel combustion. 2016 , 51, 165-175		10
48	Advances in sulfur chemistry for treatment of acid gases. <i>Progress in Energy and Combustion Science</i> , 2016 , 54, 65-92	33.6	88
47	Elemental sulfur aerosol-forming mechanism. 2017 , 114, 864-869		24
46	Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition. 2017 , 190, 824-8	834	14

(2019-2017)

45	Effect of HCl on NO Formation during CO/NH3 Combustion in an Entrained Flow Reactor at 1023 []223 K. <i>Energy & Double Supples Reactor Supples Supples</i>	4.1	2
44	Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion. <i>Energy & Description (Combustion)</i> 2017, 31, 2274-2297	4.1	18
43	Theoretical study of the hydrolysis of HOSO+NO2 as a source of atmospheric HONO: effects of H2O or NH3. 2017 , 14, 19		6
42	Modelling of temporal and spatial evolution of sulphur oxides and sulphuric acid under large, two-stroke marine engine-like conditions using integrated CFD-chemical kinetics. 2017 , 193, 60-73		19
41	An Exploratory Flow Reactor Study of H2S Oxidation at 30f100 Bar. <i>International Journal of Chemical Kinetics</i> , 2017 , 49, 37-52	1.4	28
40	Shock-tube water time-histories and ignition delay time measurements for H2S near atmospheric pressure. 2017 , 36, 4019-4027		30
39	Biomass combustion technology development [It is all about chemical details. 2017, 36, 113-134		106
38	Synergistic SOx/NOx chemistry leading to enhanced SO3 and NO2 formation during pressurized oxy-combustion. 2018 , 123, 313-322		15
37	Sulfur trioxide formation/emissions in coal-fired air- and oxy-fuel combustion processes: a review. 2018 , 8, 402-428		22
36	Effect of HCl and CO on sulfur trioxide formation mechanisms during oxy-fuel combustion. <i>Fuel Processing Technology</i> , 2018 , 174, 95-103	7.2	12
35	The Effect of Deposit Temperature on the Catalytic SO2-to-SO3 Conversion in a Copper Flash Smelting Heat Recovery Boiler. 2018 , 49, 434-439		3
34	Modeling the condensation of sulfuric acid and water on the cylinder liner of a large two-stroke marine diesel engine. <i>Journal of Marine Science and Technology</i> , 2018 , 23, 178-187	1.7	8
33	The non-covalently bound SOHO system, including an interpretation of the differences between SOHO and OHO. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 28840-28847	3.6	3
32	S2 + Air Combustion: Reaction Kinetics, Flame Structure, and Laminar Flame Behavior. <i>Energy & Energy </i>	4.1	8
31	Experimental study and chemical reactor network modeling of the high heating rate devolatilization and oxidation of pulverized bituminous coals under air, oxygen-enriched combustion (OEC) and oxy-fuel combustion (OFC). Fuel Processing Technology, 2018, 177, 179-193	7.2	7
30	Aero-thermodynamic and chemical process interactions in an axial high-pressure turbine of aircraft engines. <i>International Journal of Engine Research</i> , 2019 , 20, 653-669	2.7	3
29	Theoretical Study for the Ground Electronic State of the Reaction OH + SO -pH + SO. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 7218-7227	2.8	8
28	Numerical study of syngas production via CH4H2S mixture partial oxidation. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 17551-17564	6.7	4

27	A comparative study of analytic representations of potential energy curves for O, N, and SO in their ground electronic states. <i>Journal of Molecular Modeling</i> , 2019 , 25, 198	2	6
26	Detailed Kinetic Mechanisms of Pollutant Formation in Combustion Processes. <i>Computer Aided Chemical Engineering</i> , 2019 , 603-645	0.6	5
25	Review on Reaction Mechanisms of Sulfur Species During Coal Combustion. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2019 , 141,	2.6	3
24	CH3SH conversion in a tubular flow reactor. Experiments and kinetic modelling. <i>Combustion and Flame</i> , 2019 , 203, 23-30	5.3	8
23	Formation, transformation, measurement, and control of SO3 in coal-fired power plants. <i>Fuel</i> , 2019 , 241, 327-346	7.1	69
22	Interaction between NO and SO2 removal processes in a pulsed corona discharge plasma (PCDP) reactor and the mechanism. <i>Chemical Engineering Journal</i> , 2019 , 359, 1130-1138	14.7	12
21	A thermochemical study on the primary oxidation of sulfur. <i>Combustion Science and Technology</i> , 2019 , 191, 163-177	1.5	6
20	Combustion kinetics of H2S and other sulfurous species with relevance to industrial processes. <i>Progress in Energy and Combustion Science</i> , 2020 , 80, 100848	33.6	16
19	3D modeling of transformation of gaseous pollutants in the high-pressure turbine of an aircraft engine. <i>Propulsion and Power Research</i> , 2020 , 9, 1-14	3.6	1
18	Detailed Reaction Mechanism To Predict Ammonia Destruction in the Thermal Section of Sulfur Recovery Units. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 4912-4923	3.9	1
17	A new interpretation of the experimental data for the OH+SO collision considering the recrossing reaction. <i>Molecular Physics</i> , 2020 , 118, e1751321	1.7	1
16	Surrogate Reaction Mechanism for Waste Incineration and Pollutant Formation. <i>Energy & Description</i> , 2021, 35, 7030-7049	4.1	2
15	Kinetic study and optimization on SNCR process in pressurized oxy-combustion. <i>Journal of the Energy Institute</i> , 2021 , 94, 263-271	5.7	7
14	Assessment of sulfur trioxide formation due to enhanced interaction of nitrogen oxides and sulfur oxides in pressurized oxy-combustion. <i>Fuel</i> , 2021 , 290, 119964	7.1	11
13	A detailed reaction mechanism for elemental sulphur combustion in the furnace of sulphuric acid plants. <i>Canadian Journal of Chemical Engineering</i> ,	2.3	2
12	An accurate full-dimensional potential energy surface for the reaction OH + SO -pH + SO. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 487-497	3.6	4
11	Sulphur Chemistry in Combustion I. 2000 , 263-282		10
10	Development of a reduced mechanism for sour gas flaring. <i>International Journal of Environmental Science and Technology</i> , 1	3.3	

CITATION REPORT

9	Numerical Study of Combustion Characteristics for Hydrogen Content in Syngas in Opposed-Flow Flame. <i>Transactions of the Korean Hydrogen and New Energy Society</i> , 2020 , 31, 467-479	0.5	
8	A Quasi-Classical Trajectory Investigation of the H+SO2-OH+SO Reaction on a Full-Dimensional Accurate Potential Energy Surface. <i>Chinese Journal of Chemical Physics</i> ,	0.9	O
7	Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 157, 112020	16.2	1
6	Process Modeling, Optimization and Cost Analysis of a Sulfur Recovery Unit by Applying Pinch Analysis on the Claus Process in a Gas Processing Plant. <i>Mathematics</i> , 2022 , 10, 88	2.3	O
5	A machine-learning reduced kinetic model for H2S thermal conversion process. <i>Chemical Product and Process Modeling</i> , 2021 ,	1.1	
4	The chemical coupling between moist CO oxidation and gas-phase potassium sulfation. 2023 , 336, 1271	27	O
3	Feedstock flexible numerical analysis of sewage sludge gasification. 2023, 338, 127297		О
2	Predictions of NOx and SOx in MILD regime based on thermal conversion of solid sewage sludge surrogates. 2023 , 341, 127666		О
1	Theoretical kinetics investigations of the reaction HO + SO <-pH + SO 2 on an accurate full-dimensional potential energy surface.		О