Membrane-based absorption of VOCs from a gas stream

AICHE Journal 42, 3267-3282 DOI: 10.1002/aic.690421127

Citation Report

#	Article	IF	CITATIONS
1	Removal of VOCs from air by membrane-based absorption and stripping. Journal of Membrane Science, 1996, 120, 221-237.	4.1	64
2	A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions. Journal of Membrane Science, 1997, 132, 229-233.	4.1	34
3	Use of asymmetric hollow fibre modules for elimination of H2S from gas streams via a membrane absorption method. Chemical Engineering Science, 1998, 53, 1111-1119.	1.9	62
4	Membrane-Based Ozonation of Organic Compounds. Industrial & Engineering Chemistry Research, 1998, 37, 4388-4398.	1.8	45
5	Flow Swing Membrane Absorptionâ^'Permeation. Industrial & Engineering Chemistry Research, 1998, 37, 212-220.	1.8	11
6	Membranes in Chemical Processing a Review of Applications and Novel Developments. Separation and Purification Reviews, 1998, 27, 51-168.	0.8	38
7	Hollow fiber membrane contactors. Journal of Membrane Science, 1999, 159, 61-106.	4.1	1,249
8	Regenerative Oil Scrubbing of Volatile Organic Compounds from a Gas Stream in Hollow Fiber Membrane Devices. Industrial & Engineering Chemistry Research, 1999, 38, 3462-3472.	1.8	21
10	Separation methods for environmental technologies. Environmental Progress, 2001, 20, 1-11.	0.8	14
11	A pilot-scale demonstration of a membrane-based absorption- stripping process for removal and recovery of volatile organic compounds. Environmental Progress, 2001, 20, 27-35.	0.8	26
12	Enhancement of the Conversionof Toluene by Pseudomonas putida F-1 Using Organic Cosolvents. Applied Biochemistry and Biotechnology, 2001, 91-93, 195-204.	1.4	4
13	Removal of acetone and methanol from gaseous streams in a hollow fiber absorber. Separation Science and Technology, 2002, 37, 261-277.	1.3	2
14	Membrane contactors: recent developments. Membrane Science and Technology, 2003, , 147-164.	0.5	8
15	Composite hollow fiber gas–liquid membrane contactors for olefin/paraffin separation. Separation and Purification Technology, 2004, 37, 209-220.	3.9	51
16	Super selective membranes in gas–liquid membrane contactors for olefin/paraffin separation. Journal of Membrane Science, 2004, 232, 107-114.	4.1	60
17	Absorptive Removal of Volatile Organic Compounds from Flue Gas Streams. Chemical Engineering Research and Design, 2006, 84, 391-398.	2.7	96
18	A new efficient absorption liquid to treat exhaust air loaded with toluene. Chemical Engineering Journal, 2006, 115, 225-231.	6.6	112
19	Recovery of toluene from high temperature boiling absorbents by pervaporation. Journal of Membrane Science, 2006, 284, 145-154.	4.1	20

CITATION REPORT

#	Article	IF	CITATIONS
20	Separation of CO2 from CH4 by using gas–liquid membrane contacting process. Journal of Membrane Science, 2007, 304, 163-172.	4.1	181
21	Preparation and characterization of hydrophobic ceramic hollow fibre membrane. Journal of Membrane Science, 2007, 291, 70-76.	4.1	134
22	Membranes, Phase Interfaces, and Separations: Novel Techniques and Membranes—An Overview. Industrial & Engineering Chemistry Research, 2008, 47, 5250-5266.	1.8	88
23	Removal of Acid Gas Emissions Using Hollow Fiber Gas Absorption Membrane Contactors. , 2008, , .		0
25	Removal of Acid Gas Emissions Using Hollow Fiber Gas Absorption Membrane Contactors. , 0, , .		0
26	Reduction of VOC emissions by a membrane-based gas absorption process. Journal of Environmental Sciences, 2009, 21, 1096-1102.	3.2	18
27	Development and potential of new generation photocatalytic systems for air pollution abatement: an overview. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 387-402.	0.8	24
28	Hollow fiber gas–liquid membrane contactors for acid gas capture: A review. Journal of Hazardous Materials, 2009, 171, 38-53.	6.5	317
29	Potentials of pervaporation to assist VOCs' recovery by liquid absorption. Chemical Engineering Science, 2009, 64, 1927-1935.	1.9	15
30	Novel Membrane Contactors Used in Waste Gas/Liquid Separation. Recent Patents on Engineering, 2009, 3, 18-24.	0.3	4
31	Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 2010, 353, 192-200.	4.1	141
32	A comparative investigation on absorption performances of three expanded graphite-based complex materials for toluene. Journal of Hazardous Materials, 2010, 183, 506-511.	6.5	36
33	Oxygen transfer characteristics of hydrophilic treated polypropylene hollow fiber membranes for bubbleless aeration. Journal of Membrane Science, 2010, 362, 47-57.	4.1	22
34	Kinetics of VOC absorption using capillary membrane contactor. Chemical Engineering Journal, 2011, 168, 1016-1023.	6.6	11
35	Novel Hollow Fiber Membrane Contactors Used in Waste Treatment. Advanced Materials Research, 0, 233-235, 431-434.	0.3	0
36	Contaminant removal from natural gas using dual hollow fiber membrane contactors. Journal of Membrane Science, 2012, 397-398, 9-16.	4.1	14
37	CFD simulation of CO2 capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. International Journal of Greenhouse Gas Control, 2013, 15, 142-149.	2.3	58
38	Gas-filled membrane absorption: a review of three different applications to describe the mass transfer by means of a unified approach. Desalination and Water Treatment, 2013, 51, 5649-5663.	1.0	14

#	Article	IF	CITATIONS
39	Progress in membrane gas–liquid reactors. Journal of Chemical Technology and Biotechnology, 2013, 88, 340-345.	1.6	7
40	<pre>\$\$mathrm{{CO}}_{2}\$\$ CO 2 Capture from Gas Mixtures by Alkanol Amine Solutions in Porous Membranes. Transport in Porous Media, 2015, 106, 323-338.</pre>	1.2	10
41	Asymmetric composite PDMS membrane contactors for desorption of CO2 from monoethanolamine. International Journal of Greenhouse Gas Control, 2016, 55, 195-201.	2.3	24
42	Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. Journal of Membrane Science, 2016, 511, 180-206.	4.1	249
43	Process and engineering trends in membrane based carbon capture. Renewable and Sustainable Energy Reviews, 2017, 68, 659-684.	8.2	124
44	Effect of Operating Conditions on Separation of H2S from Biogas Using a Chemical Assisted PDMS Membrane Process. Waste and Biomass Valorization, 2018, 9, 2349-2359.	1.8	9
45	Nanocarbon composites for detection of volatile organic compounds. , 2019, , 401-419.		2
46	Preparation and characterization of superhydrophobic melamine and melamine-derived carbon sponges modified with reduced graphene oxide–TiO2 nanocomposite as oil absorbent materials. Journal of Materials Science, 2020, 55, 1536-1552.	1.7	14
47	Enhancement of the Conversion of Toluene by Pseudomonas putida F-1 Using Organic Cosolvents. , 2001, , 195-204.		0
48	A review on recent progress in environmental applications of membrane contactor technology. Journal of Environmental Chemical Engineering, 2022, 10, 107631.	3.3	30
49	Gaseous toluene abatement by the heterogeneous Fenton-like process using iron/carbon-coated monolith as catalyst: Proof of concept. Journal of Environmental Management, 2022, 322, 116084.	3.8	6
50	Carbon dioxide capture by aqueous ammonia with membrane. , 2024, , 133-154.		0

CITATION REPORT