Velocity profiles in a baffled vessel with single or double

AICHE Journal 42, 42-54 DOI: 10.1002/aic.690420106

Citation Report

#	Article	IF	CITATIONS
1	An Updated Review on Suspension Polymerization. Industrial & Engineering Chemistry Research, 1997, 36, 939-965.	3.7	249
2	Development of mixing models using electrical resistance tomography. Chemical Engineering Science, 1997, 52, 2073-2085.	3.8	39
3	Velocity profiles in a closed, unbaffled vessel: comparison between experimental LDV data and numerical CFD predictions. Chemical Engineering Science, 1997, 52, 3483-3492.	3.8	88
4	Evaluating Mixing in Stirred Reactors by 3-D Visualization. Chemical Engineering Research and Design, 1997, 75, 755-762.	5.6	6
5	Experimental measurements and simulation of mixing and chemical reaction in a stirred tank. Canadian Journal of Chemical Engineering, 1998, 76, 657-669.	1.7	8
6	Imaging stirred-vessel macromixing using electrical resistance tomography. AICHE Journal, 1998, 44, 780-790.	3.6	98
7	LDA measurements and CFD simulations of flow generated by impellers in mechanically agitated reactors. Sadhana - Academy Proceedings in Engineering Sciences, 1998, 23, 505-539.	1.3	5
8	Simulation of Flow in Stirred Vessel with Axial Flow Impeller:Â Zonal Modeling and Optimization of Parameters. Industrial & Engineering Chemistry Research, 1998, 37, 2116-2130.	3.7	37
9	Interfacial characteristics of food emulsifiers (proteins and lipids) at the air-water interface. Colloids and Surfaces B: Biointerfaces, 1999, 15, 235-252.	5.0	42
10	Turbulence in flocculators: Comparison of measurements and CFD simulations. AICHE Journal, 1999, 45, 432-436.	3.6	13
11	Relation between Flow Pattern and Blending in Stirred Tanks. Industrial & Engineering Chemistry Research, 1999, 38, 3131-3143.	3.7	102
13	Solids suspension with axial-flow impellers. AICHE Journal, 2000, 46, 647-650.	3.6	12
14	Active volume of mean circulation for stirred tanks agitated with axial impellers. Chemical Engineering Science, 2000, 55, 1325-1335.	3.8	69
15	Prediction of Residence Time Distribution of Stirred Reactors. Industrial & Engineering Chemistry Research, 2001, 40, 5686-5695.	3.7	17
16	Prediction of Flow Characteristics and Energy Balance for a Variety of Downflow Impellers. Industrial & Engineering Chemistry Research, 2001, 40, 3806-3816.	3.7	12
17	Prediction of Flow Pattern in Stirred Tanks:Â New Constitutive Equation for Eddy Viscosity. Industrial & Engineering Chemistry Research, 2001, 40, 1755-1772.	3.7	11
18	The effect of impeller pumping and fluid rheology on solids suspension in a stirred vessel. Canadian Journal of Chemical Engineering, 2001, 79, 177-186.	1.7	30
19	Measurement and Simulation of Fluid Flow in Agitated Solid/Liquid Suspensions. Chemical Engineering and Technology, 2001, 24, 639-643.	1.5	15

CITATION REPORT

#	Article	IF	CITATIONS
20	Relation between flow pattern and de-activation of enzymes in stirred reactors. Chemical Engineering Science, 2001, 56, 443-452.	3.8	17
21	Time-dependent finite-volume simulation of the turbulent flow in a free-surface CSTR. Chemical Engineering Science, 2001, 56, 2715-2720.	3.8	30
22	The Effect of Size, Location and Pumping Direction of Pitched Blade Turbine Impellers on Flow Patterns: LDA Measurements and CFD Predictions. Chemical Engineering Research and Design, 2001, 79, 887-894.	5.6	70
23	Fluid Dynamic Efficiency and Scale-up of a Retreated Blade Impeller CSTR. Industrial & Engineering Chemistry Research, 2002, 41, 164-172.	3.7	20
24	Secondary nucleation due to crystal–impeller and crystal–vessel collisions by population balances in CFD-modelling. Journal of Crystal Growth, 2002, 237-239, 2188-2193.	1.5	21
25	CFD analysis of turbulence non-homogeneity in mixing vessels. Chemical Engineering Science, 2002, 57, 1735-1752.	3.8	104
26	Modelling of the Turbulent Wall Jet Generated by a Pitched Blade Turbine Impeller. Chemical Engineering Research and Design, 2002, 80, 846-854.	5.6	39
27	CFD Study of Homogenization with Dual Rushton Turbines—Comparison with Experimental Results. Chemical Engineering Research and Design, 2002, 80, 97-104.	5.6	89
28	Mixing and Chemical Reactions. , 0, , 755-867.		11
29	Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science, 2004, 28, 431-445.	2.7	209
30	Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors. AICHE Journal, 2004, 50, 566-577.	3.6	40
31	Numerical Evaluation of Mixing Time in a Tank Reactor Stirred by a Magnetically Driven Impeller. Industrial & Engineering Chemistry Research, 2004, 43, 6836-6846.	3.7	5
32	Analysis of shear-induced coagulation in an emulsion polymerisation reactor using computational fluid dynamics. Chemical Engineering Science, 2005, 60, 2005-2015.	3.8	16
33	Modeling and Scale-Up of Mixing- and Temperature-Sensitive Chemical Reactions. Industrial & Engineering Chemistry Research, 2005, 44, 5325-5341.	3.7	9
34	CFD modeling of pilot-scale pump-mixer: Single-phase head and power characteristics. Chemical Engineering Science, 2007, 62, 1308-1322.	3.8	32
35	CFD modeling of pumpâ€mix action in continuous flow stirred tank. AICHE Journal, 2008, 54, 42-55.	3.6	18
36	Using Computational Fluid Dynamics To Study the Dynamic Behavior of the Continuous Mixing of Herschelâ~'Bulkley Fluids. Industrial & Engineering Chemistry Research, 2008, 47, 7465-7475.	3.7	43
37	Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system. Energy, 2011, 36, 5081-5093.	8.8	38

CITATION REPORT

#	Article	IF	CITATIONS
38	Effect of the turbulence models on Rushton turbine generated flow in a stirred vessel. Open Engineering, 2011, 1, .	1.6	11
39	Effects of baffle length on turbulent flows generated in stirred vessels. Open Engineering, 2011, 1, .	1.6	12
40	Engineering characteristics of a singleâ€use stirred bioreactor at benchâ€scale: The Mobius CellReady 3L bioreactor as a case study. Engineering in Life Sciences, 2011, 11, 359-368.	3.6	64
41	CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial flow impellers,) Tj ETQq1 1 0.784 754-816.	314 rgBT 1.7	/Overlock 1 98
42	Characterization of Minimum Impeller Speed for Suspension of Solids in Liquid at High Solid Concentration, Using Gamma-Ray Densitometry. International Journal of Chemical Engineering, 2012, 2012, 1-15.	2.4	27
43	Numerical Simulation of Laminar Flow Field in a Stirred Tank with a Rushton Impeller or a Pitch 4-Bladed Turbine. Advanced Materials Research, 2012, 557-559, 2375-2382.	0.3	0
44	Comments on Flow characteristics of axial high speed impellers (Chem. Process Eng., 2010, 31, 661). Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2012, 33, 311-315.	0.7	0
45	Numerical simulation of solid–liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model. Chemical Engineering Science, 2012, 82, 272-284.	3.8	31
46	Flow regimes and surface air entrainment in partially filled stirred vessels for different fill ratios. Chemical Engineering Science, 2012, 81, 231-250.	3.8	25
47	DOE-Based CFD Optimization of Pharmaceutical Mixing Processes. Journal of Pharmaceutical Innovation, 2012, 7, 181-194.	2.4	6
48	Numerical simulation of turbulent flow in a baffled stirred tank with an explicit algebraic stress model. Chemical Engineering Science, 2012, 69, 30-44.	3.8	41
49	Characterisation of the mixing of nonâ€newtonian fluids with a scaba 6SRGT impeller through ert and CFD. Canadian Journal of Chemical Engineering, 2013, 91, 90-100.	1.7	60
50	Improving the Mixing Performances of Rice Straw Anaerobic Digestion for Higher Biogas Production by Computational Fluid Dynamics (CFD) Simulation. Applied Biochemistry and Biotechnology, 2013, 171, 626-642.	2.9	56
51	HEAT TRANSFER IN JACKETED VESSEL EQUIPPED WITH DOWN-PUMPING PITCHED BLADE TURBINE. Computational Thermal Sciences, 2015, 7, 527-537.	0.9	0
52	Mixing characteristics in a vessel equipped with cylindrical stirrer. Results in Physics, 2018, 10, 699-705.	4.1	12
53	Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation. Energy, 2018, 159, 54-60.	8.8	17
54	Multi-dimensional analysis of turbulence models for immiscible liquid-liquid mixing in stirred tank based on numerical simulation. Separation Science and Technology, 2021, 56, 411-424.	2.5	7
55	Stirred tank simulation using Partially-Averaged Navier-Stokes \$\$k_u-epsilon _u\$\$ turbulence model. SN Applied Sciences, 2021, 3, 1.	2.9	1

#	Article	IF	CITATIONS
56	Effect of the Tank Design on the Flow Pattern Generated with a Pitched Blade Turbine. International Journal of Mechanics and Applications, 2012, 2, 12-19.	9.0	8
57	DISPERSION OF PESTICIDES FROM A NATURALLY VENTILATED GREENHOUSE: A CFD APPROACH. Acta Horticulturae, 2006, , 307-314.	0.2	1
58	Experimental Investigation and Optimization of Solid Suspension in Non-Newtonian Liquids at High Solid Concentration. Journal of Applied Fluid Mechanics, 2016, 9, 1907-1914.	0.2	1