Exogenous jasmonates simulate insect wounding in ton

Journal of Chemical Ecology 22, 1767-1781 DOI: 10.1007/bf02028503

Citation Report

#	Article	IF	CITATIONS
1	Title is missing!. Journal of Chemical Ecology, 1998, 24, 945-963.	0.9	125
2	Elicitors of Plant Defensive Systems Reduce Insect Densities and Disease Incidence. Journal of Chemical Ecology, 1998, 24, 135-149.	0.9	105
3	Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum) foliage. Entomologia Experimentalis Et Applicata, 1998, 86, 267-279.	0.7	67
4	Impact of Biotechnology on Pesticide Delivery. , 1999, , 73-99.		1
5	Induced Resistance in Agricultural Crops: Effects of Jasmonic Acid on Herbivory and Yield in Tomato Plants. Environmental Entomology, 1999, 28, 30-37.	0.7	154
6	Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 93, 77-86.	0.7	71
7	Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 1999, 399, 686-688.	13.7	494
8	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1597-1609.	0.9	258
9	Title is missing!. Journal of Chemical Ecology, 1999, 25, 271-281.	0.9	82
10	Insect-Induced Synthesis of Phytoecdysteroids in Spinach, Spinacia oleracea. Journal of Chemical Ecology, 1999, 25, 1739-1757.	0.9	58
11	Effects of elicitation treatment and genotypic variation on induced resistance in Populus : impacts on gypsy moth (Lepidoptera: Lymantriidae) development and feeding behavior. Oecologia, 1999, 120, 295-303.	0.9	79
12	The eco-physiological complexity of plant responses to insect herbivores. Planta, 1999, 208, 137-145.	1.6	239
13	INDUCED RESPONSES TO HERBIVORY IN WILD RADISH: EFFECTS ON SEVERAL HERBIVORES AND PLANT FITNESS. Ecology, 1999, 80, 1713-1723.	1.5	302
14	Costs of Induced Responses and Tolerance to Herbivory in Male and Female Fitness Components of Wild Radish. Evolution; International Journal of Organic Evolution, 1999, 53, 1093.	1.1	152
15	Recent advances in chemical ecology. Natural Product Reports, 1999, 16, 509-523.	5.2	58
16	Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato,Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 1999, 54, 97-114.	1.3	184
17	Signal conflicts and synergies in induced resistance to multiple attackers. Physiological and Molecular Plant Pathology, 1999, 55, 99-109.	1.3	135
18	COSTS OF INDUCED RESPONSES AND TOLERANCE TO HERBIVORY IN MALE AND FEMALE FITNESS COMPONENTS OF WILD RADISH. Evolution; International Journal of Organic Evolution, 1999, 53, 1093-1104	1.1	287

# 19	ARTICLE Title is missing!. Journal of Chemical Ecology, 2000, 26, 915-952.	IF 0.9	Citations 83
20	Title is missing!. Journal of Chemical Ecology, 2000, 26, 471-485.	0.9	111
21	Environmental and Developmental Regulation of Trypsin Inhibitor Activity in Brassica napus. Journal of Chemical Ecology, 2000, 26, 1411-1422.	0.9	33
22	The Myriad Plant Responses to Herbivores. Journal of Plant Growth Regulation, 2000, 19, 195-216.	2.8	1,213
23	New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9329-9334.	3.3	384
24	Jasmonic Acid Induced Resistance in Grapevines to a Root and Leaf Feeder. Journal of Economic Entomology, 2000, 93, 840-845.	0.8	64
25	Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecological Entomology, 2001, 26, 312-324.	1.1	252
26	Chemically-induced resistance against multiple pests in cotton. International Journal of Pest Management, 2001, 47, 49-54.	0.9	68
27	Jasmonic acid treatment and mammalian herbivory differentially affect chemical defenses and growth of wild mustard (Brassica kaber). Chemoecology, 2001, 11, 137-143.	0.6	43
28	Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia, 2001, 126, 380-385.	0.9	140
29	Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. , 2001, 27, 593-610.		111
30	Exogenous methyl jasmonate induces volatile emissions in cotton plants. Journal of Chemical Ecology, 2001, 27, 679-695.	0.9	150
31	Environmental and genotypic influences on isoquinoline alkaloid content in Sanguinaria canadensis. , 2001, 27, 1729-1747.		24
32	Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Experimental and Applied Acarology, 2001, 25, 65-77.	0.7	43
33	Effects of salinity on endogenous ABA, IAA, JA, AND SA in Iris hexagona. Journal of Chemical Ecology, 2001, 27, 327-342.	0.9	234
34	DIRECT AND INDIRECT EFFECTS OF ALKALOIDS ON PLANT FITNESS VIA HERBIVORY AND POLLINATION. Ecology, 2001, 82, 2032-2044.	1.5	119
35	Making crops cry for help. Nature, 2001, 410, 736-737.	13.7	21
36	Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology, 2001, 29, 1025-1047.	0.6	172

#	Article	IF	CITATIONS
37	Signals Regulating Multiple Responses to Wounding and Herbivores. Critical Reviews in Plant Sciences, 2001, 20, 487-521.	2.7	145
38	HERBIVORY AND MATERNAL EFFECTS: MECHANISMS AND CONSEQUENCES OF TRANSGENERATIONAL INDUCED PLANT RESISTANCE. Ecology, 2002, 83, 3408-3415.	1.5	155
39	Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves induced by jasmonic acid and/or methyl salicylate Applied Entomology and Zoology, 2002, 37, 535-541.	0.6	45
40	Systemic Effects on Oxidative Enzymes inPhaseolus vulgarisLeaves That Have Been Wounded by the GrasshopperMelanoplus differentialis(Thomas) or Have Had a Foliar Application of Jasmonic Acid. International Journal of Plant Sciences, 2002, 163, 317-328.	0.6	10
41	Resistance of Cultivated Tomato to Cell Content-Feeding Herbivores Is Regulated by the Octadecanoid-Signaling Pathway. Plant Physiology, 2002, 130, 494-503.	2.3	223
42	Novel S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Archives of Biochemistry and Biophysics, 2002, 406, 261-270.	1.4	71
43	Potential for the use of elicitors of plant resistance in arthropod management programs. Archives of Insect Biochemistry and Physiology, 2002, 51, 222-235.	0.6	68
44	Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia, 2002, 130, 585-593.	0.9	126
45	Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia, 2002, 131, 227-235.	0.9	191
46	Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oecologia, 2002, 131, 514-520.	0.9	95
47	Effect of jasmonate-induced plant responses on the natural enemies of herbivores. Journal of Animal Ecology, 2002, 71, 141-150.	1.3	70
48	Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology Letters, 2002, 5, 764-774.	3.0	193
49	C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry, 2002, 61, 545-554.	1.4	215
50	A biological role for prokaryotic CIC chloride channels. Nature, 2002, 419, 715-718.	13.7	204
51	Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature, 2002, 419, 712-715.	13.7	233
52	Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. Journal of Chemical Ecology, 2002, 28, 1131-1159.	0.9	162
53	Effect of nitrogen and water treatment on leaf chemistry in horsenettle (Solanum carolinense), and relationship to herbivory by flea beetles (Epitrix spp.) and tobacco hornworm (Manduca sexta). Journal of Chemical Ecology, 2002, 28, 2377-2398.	0.9	37
54	Defoliation-induced responses in peroxidases, phenolics, and polyamines in scots pine (Pinus sylvestris) Tj ETQq1	1 0.7843	

#	Article	IF	CITATIONS
55	Induction of Direct and Indirect Plant Responses by Jasmonic Acid, Low Spider Mite Densities, or a Combination of Jasmonic Acid Treatment and Spider Mite Infestation. Journal of Chemical Ecology, 2003, 29, 2651-2666.	0.9	112
56	Salicylic acid mediates resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. Journal of Chemical Ecology, 2003, 29, 163-174.	0.9	49
57	Genetic variation and relationships of constitutive and herbivore-induced glucosinolates, trypsin inhibitors, and herbivore resistance in Brassica rapa. Journal of Chemical Ecology, 2003, 29, 285-302.	0.9	25
58	cis-Jasmone treatment induces resistance in wheat plants against the grain aphid,Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Management Science, 2003, 59, 1031-1036.	1.7	109
59	Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 2003, 4, 63-77.	1.2	147
60	Fungus-Induced Biochemical Changes in Peanut Plants and Their Effect on Development of Beet Armyworm, <i>Spodoptera Exigua</i> Hübner (Lepidoptera: Noctuidae) Larvae. Environmental Entomology, 2003, 32, 220-228.	0.7	61
61	cis-Jasmone switches on plant defence against insects. Outlooks on Pest Management, 2003, 14, 96.	0.2	21
62	NO EVIDENCE FOR AN EVOLUTIONARY INCREASED COMPETITIVE ABILITY IN AN INVASIVE PLANT. Ecology, 2003, 84, 2816-2823.	1.5	110
63	Effects of Nutrient Supply on Citrus Resistance to Root Herbivory by <i>Diaprepes abbreviatus</i> L. (Coleoptera: Curculionidae). Environmental Entomology, 2003, 32, 1242-1250.	0.7	14
64	Recruitment of predators and parasitoids by herbivore-injured plants. , 2004, , 21-75.		240
65	The Role of the Jasmonate Response in Plant Susceptibility to Diverse Pathogens with a Range of Lifestyles. Plant Physiology, 2004, 135, 530-538.	2.3	338
66	Induced Plant Signaling and its Implications for Environmental Sensing. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 819-834.	1.1	19
67	Contrary effects of jasmonate treatment of two closely related plant species on attraction of and oviposition by a specialist herbivore. Ecology Letters, 2004, 7, 337-345.	3.0	32
68	Solanum nigrum: A model ecological expression system and its tools. Molecular Ecology, 2004, 13, 981-995.	2.0	51
69	Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Molecular Ecology, 2004, 13, 1643-1653.	2.0	197
70	Trypsin and alpha-amylase inhibitors are differentially induced in leaves of amaranth (Amaranthus) Tj ETQq1 1 0.	784314 rg 2.6	BT/Overloc
71	Effects of herbivory simulated by clipping and jasmonic acid on Solidago canadensis. Basic and Applied Ecology, 2004, 5, 173-181.	1.2	41
72	Purification and anti-fungal activity of chitinase against Pyricularia grisea in finger millet. World Journal of Microbiology and Biotechnology, 2004, 20, 251-256.	1.7	22

#	Article	IF	CITATIONS
73	Plant Vascular Architecture and Within-Plant Spatial Patterns in Resource Quality Following Herbivory. Journal of Chemical Ecology, 2004, 30, 531-543.	0.9	46
74	The Effect of Exogenous Jasmonic Acid on Induced Resistance and Productivity in Amaranth (Amaranthus hypochondriacus) Is Influenced by Environmental Conditions. Journal of Chemical Ecology, 2004, 30, 1001-1034.	0.9	34
75	Differential Activity of Peroxidase Isozymes in Response to Wounding, Gypsy Moth, and Plant Hormones in Northern Red Oak (Quercus rubra L.). Journal of Chemical Ecology, 2004, 30, 1363-1379.	0.9	76
76	Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. Journal of Plant Growth Regulation, 2004, 23, 246-260.	2.8	10
77	Involvement of Jasmonic Acid and Derivatives in Plant Response to Pathogen and Insects and in Fruit Ripening. Journal of Plant Growth Regulation, 2004, 23, 246-260.	2.8	33
78	Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1607-1612.	3.3	202
79	INTERACTIONS BETWEEN ABSCISIC-ACID-MEDIATED RESPONSES AND PLANT RESISTANCE TO PATHOGENS AND INSECTS. Ecology, 2004, 85, 48-58.	1.5	241
80	Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytologist, 2005, 167, 63-72.	3.5	191
81	The jasmonate pathway alters herbivore feeding behaviour: consequences for plant defences. Entomologia Experimentalis Et Applicata, 2005, 115, 125-134.	0.7	35
82	Methyl jasmonate vapour treatment suppresses specking caused by Botrytis cinerea on cut Freesia hybrida L. flowers. Postharvest Biology and Technology, 2005, 38, 175-182.	2.9	47
83	The expression of the hydroxyproline-rich glycopeptide systemin precursor A in response to (a)biotic stress and elicitors is indicative of its role in the regulation of the wound response in tobacco (Nicotiana tabacum L.). Planta, 2005, 222, 794-810.	1.6	23
84	Expression of Constitutive and Inducible Chemical Defenses in Native and Invasive Populations of Alliaria petiolata. Journal of Chemical Ecology, 2005, 31, 1255-1267.	0.9	92
85	Effects of Jasmonate-Induced Defenses on Root-Knot Nematode Infection of Resistant and Susceptible Tomato Cultivars. Journal of Chemical Ecology, 2005, 31, 1953-1967.	0.9	128
86	Response of Plutella xylostella and its Parasitoid Cotesia plutellae to Volatile Compounds. Journal of Chemical Ecology, 2005, 31, 1969-1984.	0.9	46
87	Fertility, Root Reserves and the Cost of Inducible Defenses in the Perennial Plant Solanum carolinense. Journal of Chemical Ecology, 2005, 31, 2263-2288.	0.9	35
88	PGPR mediates induction of pathogenesis-related (PR) proteins against the infection of blast pathogen in resistant and susceptible ragi [Eleusine coracana (L.) Gaertner] cultivars. Plant and Soil, 2005, 266, 165-176.	1.8	25
90	Signal Crosstalk and Induced Resistance: Straddling the Line Between Cost and Benefit. Annual Review of Phytopathology, 2005, 43, 545-580.	3.5	525
91	SPECIFICITY IN INDUCED PLANT RESPONSES SHAPES PATTERNS OF HERBIVORE OCCURRENCE ON SOLANUM	1.5	133

#	Article	IF	CITATIONS
92	Acibenzolar-S-methyl and methyl jasmonate treatments of glasshouse-grown freesias suppress post-harvest petal specking caused by <i>Botrytis cinerea</i> . Journal of Horticultural Science and Biotechnology, 2006, 81, 1043-1051.	0.9	18
93	Insect predators affect plant resistance via density- and trait-mediated indirect interactions. Ecology Letters, 2006, 9, 338-346.	3.0	69
94	Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytologist, 2006, 169, 135-144.	3.5	55
95	Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomologia Experimentalis Et Applicata, 2006, 120, 175-188.	0.7	133
96	Transcriptional responses ofSolanum nigrumto methyl jasmonate and competition: a glasshouse and field study. Functional Ecology, 2006, 20, 500-508.	1.7	27
97	Volatile Emissions from an Odorous Plant in Response to Herbivory and Methyl Jasmonate Exposure. Journal of Chemical Ecology, 2006, 32, 725-743.	0.9	66
98	Constitutive and Jasmonate-Inducible Traits of Datura wrightii. Journal of Chemical Ecology, 2006, 32, 29-47.	0.9	36
99	Host-Plant-Mediated Competition Via Induced Resistance: Interactions Between Pest Herbivores On Potatoes. , 2006, 16, 855-864.		33
100	Heterogeneity of plant phenotypes caused by herbivoreâ€specific induced responses influences the spatial distribution of herbivores. Ecological Entomology, 2008, 33, 86-94.	1.1	19
101	Induction of Resistance against the Leafminer,Liriomyza trifolii, by Jasmonic Acid in Sweet Pepper. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1521-1526.	0.6	34
102	Induction of resistance against downy mildew pathogen in pearl millet by a synthetic jasmonate analogon. Physiological and Molecular Plant Pathology, 2007, 71, 96-105.	1.3	19
103	Talc-based formulation ofPseudomonas fluorescens-induced defense genes against powdery mildew of grapevine. Archives of Phytopathology and Plant Protection, 2007, 40, 81-89.	0.6	10
104	The Use of Push-Pull Strategies in Integrated Pest Management. Annual Review of Entomology, 2007, 52, 375-400.	5.7	1,173
105	Allelopathy in crop/weed interactions — an update. Pest Management Science, 2007, 63, 308-326.	1.7	261
106	Consequences of sequential attack for resistance to herbivores when plants have specific induced responses. Oikos, 2007, 116, 1389-1399.	1.2	91
107	CYSTATIN ACCUMULATION IN TOMATO LEAVES AFTER METHYL JASMONATE TREATMENT OR MECHANICAL INJURY. Journal of Food Biochemistry, 2007, 26, 21-36.	1.2	1
108	Mycorrhizal protection of chili plants challenged by Phytophthora capsici. European Journal of Plant Pathology, 2007, 120, 13-20.	0.8	28
109	Jasmonic Acid-Induced Changes in Brassica oleracea Affect Oviposition Preference of Two Specialist Herbivores. Journal of Chemical Ecology, 2007, 33, 655-668.	0.9	74

# 110	ARTICLE Rice Allelopathy Induced by Methyl Jasmonate and Methyl Salicylate. Journal of Chemical Ecology, 2007, 33, 1089-1103.	IF 0.9	CITATIONS
111	Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths. Planta, 2007, 226, 215-224.	1.6	24
112	Defensive Roles of Polyphenol Oxidase in Plants. , 2008, , 253-270.		117
113	Jasmonic acid treatment to part of the root system is consistent with simulated leaf herbivory, diverting recently assimilated carbon towards untreated roots within an hour. Plant, Cell and Environment, 2008, 31, 1229-1236.	2.8	63
114	CONSTITUTIVE AND INDUCED DEFENSES TO HERBIVORY IN ABOVE- AND BELOWGROUND PLANT TISSUES. Ecology, 2008, 89, 392-406.	1.5	238
115	Herbivore-Induced Indirect Defense: From Induction Mechanisms to Community Ecology. , 2008, , 31-60.		30
116	Induced Plant Resistance to Herbivory. , 2008, , .		93
117	Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweedâ€feeding aphids. Oikos, 2008, 117, 450-458.	1.2	67
119	BOTTOM-UP EFFECTS OF PLANT GENOTYPE ON APHIDS, ANTS, AND PREDATORS. Ecology, 2008, 89, 145-154.	1.5	131
120	Horticultural applications of jasmonates. Journal of Horticultural Science and Biotechnology, 2008, 83, 283-304.	0.9	136
121	<i>cis</i> -Jasmone induces <i>Arabidopsis</i> genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4553-4558.	3.3	169
122	Plant Defense Elicitors Fail to Protect <i>Viburnum dentatum</i> from Herbivory by Viburnum Leaf Beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2008, 101, 1466-1470.	0.8	3
123	Induced Responses to Herbivory and Jasmonate in Three Milkweed Species. Journal of Chemical Ecology, 2009, 35, 1326-1334.	0.9	84
124	Modeling herbivore competition mediated by inducible changes in plant quality. Oikos, 2009, 118, 1633-1646.	1.2	27
125	Peroxidase and Polyphenoloxidase Activities and Phenol Content in Fruit of Eggplant and Their Relationship to Infestation by Shoot and Fruit Borer. International Journal of Vegetable Science, 2009, 15, 316-324.	0.6	5
126	Effect of Exogenous Methyl Jasmonate on Numerical Growth of the Population of the Two-Spotted Spider Mite (Tetranychus Urticae Koch.) on Strawberry Plants and Young Apple Trees. Journal of Plant Protection Research, 2010, 50, .	1.0	7
127	Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia, 2010, 164, 993-1004.	0.9	56
128	Herbivore- and Elicitor-Induced Resistance in Rice to the Rice Water Weevil (Lissorhoptrus) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf 5

#	Article	IF	CITATIONS
129	Ontogeny and Season Constrain the Production of Herbivore-Inducible Plant Volatiles in the Field. Journal of Chemical Ecology, 2010, 36, 1363-1374.	0.9	39
130	Plant immune system incompatibility and the distribution of enemies in natural hybrid zones. Current Opinion in Plant Biology, 2010, 13, 466-471.	3.5	20
131	Jasmonic acid induces resistance to economically important insect pests in winter wheat. Pest Management Science, 2010, 66, 549-554.	1.7	40
132	Density dependence in insect performance within individual plants: induced resistance to Spodoptera exigua in tomato. Oikos, 2010, 119, 1993-1999.	1.2	38
133	Spider mites (<i>Tetranychus urticae</i>) perform poorly on and disperse from plants exposed to methyl jasmonate. Entomologia Experimentalis Et Applicata, 2010, 137, 143-152.	0.7	15
134	Salicylateâ€mediated interactions between pathogens and herbivores. Ecology, 2010, 91, 1075-1082.	1.5	150
135	Plant Communication from an Ecological Perspective. Signaling and Communication in Plants, 2010, , .	0.5	23
136	Chestnut Species and Jasmonic Acid Treatment Influence Development and Community Interactions of Galls Produced by the Asian Chestnut Gall Wasp, <i>Dryocosmus kuriphilus</i> . Journal of Insect Science, 2011, 11, 1-14.	0.6	11
137	Defense signaling among interconnected ramets of a rhizomatous clonal plant, induced by jasmonic-acid application. Acta Oecologica, 2011, 37, 355-360.	0.5	20
138	Cultivar Effects on the Expression of Induced Resistance in Spring Barley. Plant Disease, 2011, 95, 595-600.	0.7	41
139	Herbivoreâ€induced volatiles of cabbage (<i>Brassica oleracea</i>) prime defence responses in neighbouring intact plants. Plant Biology, 2011, 13, 276-284.	1.8	46
140	Current trends in the evolutionary ecology of plant defence. Functional Ecology, 2011, 25, 420-432.	1.7	437
141	Mining for treatmentâ€specific and general changes in target compounds and metabolic fingerprints in response to herbivory and phytohormones in <i>Plantago lanceolata</i> . New Phytologist, 2011, 191, 1069-1082.	3.5	40
142	Mechanisms of Optimal Defense Patterns in Nicotiana attenuata: Flowering Attenuates Herbivory-elicited Ethylene and Jasmonate SignalingF. Journal of Integrative Plant Biology, 2011, 53, 971-983.	4.1	70
143	Jasmonic acid-induced resistance to the fall armyworm, Spodoptera frugiperda, in conventional and transgenic cottons expressing Bacillus thuringiensis insecticidal proteins. Entomologia Experimentalis Et Applicata, 2011, 140, 226-237.	0.7	15
144	Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura Fab. performance. Journal of Asia-Pacific Entomology, 2011, 14, 263-269.	0.4	15
145	Impacts of cotton traits on the parasitization of Heliocoverpa armigera eggs by Trichogramma species. Gesunde Pflanzen, 2011, 63, 83-93.	1.7	6
146	The effects of a plant defence priming compound, β-aminobutyric acid, on multitrophic interactions with an insect herbivore and a hymenopterous parasitoid. BioControl, 2011, 56, 699-711.	0.9	20

#	Article	IF	CITATIONS
147	Ovipositing Orius laevigatus increase tomato resistance against Frankliniella occidentalis feeding by inducing the wound response. Arthropod-Plant Interactions, 2011, 5, 71-80.	0.5	40
148	Variation in Phenotypic Plasticity among Native and Invasive Populations of Alliaria petiolata. International Journal of Plant Sciences, 2011, 172, 763-772.	0.6	11
149	Alleviation of oxidative stress induced by spider mite invasion through application of elicitors in bean plants. Egyptian Journal of Biology, 2012, 14, .	0.1	10
150	Epigenetic variation in plant responses to defence hormones. Annals of Botany, 2012, 110, 1423-1428.	1.4	74
151	Effect of Jasmonic Application on Economically Insect Pests and Yeald in Spring Wheat. Gesunde Pflanzen, 2012, 64, 107-116.	1.7	9
152	Expression and costs of induced defense traits in Alliaria petiolata, a widespread invasive plant. Basic and Applied Ecology, 2012, 13, 432-440.	1.2	23
153	Metabolic and enzymatic changes associated with carbon mobilization, utilization and replenishment triggered in grain amaranth (Amaranthus cruentus) in response to partial defoliation by mechanical injury or insect herbivory. BMC Plant Biology, 2012, 12, 163.	1.6	47
154	When herbivores come back: effects of repeated damage on induced resistance. Functional Ecology, 2012, 26, 1441-1449.	1.7	26
155	Costs and Benefits of Jasmonic Acid Induced Responses in Soybean. Environmental Entomology, 2012, 41, 551-561.	0.7	31
156	Jasmonate-induced defenses in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate does not. Arthropod-Plant Interactions, 2012, 6, 531-541.	0.5	24
157	High Tolerance to Salinity and Herbivory Stresses May Explain the Expansion of Ipomoea Cairica to Salt Marshes. PLoS ONE, 2012, 7, e48829.	1.1	19
158	Novel Elicitors Induce Defense Responses in Cut Flowers. , 2012, , .		3
159	Methyl Jasmonate Increases the Tropane Alkaloid Scopolamine and Reduces Natural Herbivory in Brugmansia suaveolens: Is Scopolamine Responsible for Plant Resistance?. Neotropical Entomology, 2012, 41, 2-8.	0.5	9
160	UV-C irradiation induces defence responses and improves vase-life of cut gerbera flowers. Postharvest Biology and Technology, 2012, 64, 168-174.	2.9	21
161	Herbivore-Induced Plant Volatiles to Enhance Biological Control in Agriculture. Neotropical Entomology, 2013, 42, 331-343.	0.5	53
162	Effectiveness of different elicitors in inducing resistance in chilli (Capsicum annuum L.) against pathogen infection. Scientia Horticulturae, 2013, 164, 461-465.	1.7	7
163	Responses of Herbivore and Predatory Mites to Tomato Plants Exposed to Jasmonic Acid Seed Treatment. Journal of Chemical Ecology, 2013, 39, 1297-1300.	0.9	35
164	Synthetic Cis-Jasmone Exposure Induces Wheat and Barley Volatiles that Repel the Pest Cereal Leaf Beetle, Oulema melanopus L Journal of Chemical Ecology, 2013, 39, 620-629.	0.9	28

#	Article	IF	CITATIONS
165	Jasmonate-Mediated Induced Volatiles in the American Cranberry, Vaccinium macrocarpon: From Gene Expression to Organismal Interactions. Frontiers in Plant Science, 2013, 4, 115.	1.7	36
166	Arbuscular mycorrhizal fungi are necessary for the induced response to herbivores by Cucumis sativus. Journal of Plant Ecology, 2013, 6, 171-176.	1.2	20
168	Benefits and costs of tomato seed treatment with plant defense elicitors for insect resistance. Arthropod-Plant Interactions, 2014, 8, 539-545.	0.5	26
169	Control of foliar pathogens of spring barley using a combination of resistance elicitors. Frontiers in Plant Science, 2014, 5, 241.	1.7	25
170	Jasmonic acid is associated with resistance to twospotted spider mites in diploid cotton (Gossypium) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf

171	Jasmonate―and salicylateâ€induced defenses in wheat affect host preference and probing behavior but not performance of the grain aphid, <i>Sitobion avenae</i> . Insect Science, 2014, 21, 47-55.	1.5	49
172	Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature?. Arthropod-Plant Interactions, 2014, 8, 143-153.	0.5	35
173	Extracts from green and brown seaweeds protect tomato (Solanum lycopersicum) against the necrotrophic fungus Alternaria solani. Journal of Applied Phycology, 2014, 26, 1607-1614.	1.5	47
175	Biochemical and physiological mechanisms underlying effects of <i><scp>C</scp>ucumber mosaic virus</i> on hostâ€plant traits that mediate transmission by aphid vectors. Plant, Cell and Environment, 2014, 37, 1427-1439.	2.8	107
176	No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology, 2014, 95, 1633-1641.	1.5	39
177	Treatment of Amaranthus cruentus with chemical and biological inducers of resistance has contrasting effects on fitness and protection against compatible Gram positive and Gram negative bacterial pathogens. Journal of Plant Physiology, 2014, 171, 927-939.	1.6	12
178	Effects of plant-growth-promoting microorganisms and fertilizers on growth of cabbage and tomato and Spodoptera litura performance. Journal of Asia-Pacific Entomology, 2014, 17, 587-593.	0.4	8
179	Effects of simulated and natural herbivory on tomato (<i>Solanum lycopersicum var. esculentum</i>) leaf trichomes. Bios, 2014, 85, 192-198.	0.0	3
180	Antibiosis and tolerance but not antixenosis to the grain aphid, <i>Sitobion avenae</i> (Hemiptera:) Tj ETQq1 1 0 Research, 2015, 105, 448-455.	0.784314 0.5	rgBT /Overl 18
181	Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany, 2015, 115, 1015-1051.	1.4	244
182	Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in <i><scp>H</scp>elicoverpa armigera</i> . Entomologia Experimentalis Et Applicata, 2015, 154, 188-198.	0.7	7
183	The effect of methyl jasmonate and acibenzolar-S-methyl on the populations of the European red mite (<i>Panonychus ulmi</i> Koch) and <i>Typhlodromus pyri</i> Scheut. in apple orchards, as well as on the yield and growth of apple trees. International Journal of Acarology, 2015, 41, 100-107.	0.3	6
184	Efficacy of Purpureocillium lilacinum CKPL-053 in controlling Thrips palmi (Thysanoptera: Thripidae) in orchid farms in Thailand. Applied Entomology and Zoology, 2015, 50, 317-329.	0.6	16

# 185	ARTICLE Whitefly, Trialeurodes ricini (Genn) feeding stress induced defense responses in castor, Ricinus communis L. plants. Journal of Asia-Pacific Entomology, 2015, 18, 425-431.	IF 0.4	CITATIONS
186	Tomato treatment with chemical inducers reduces the performance of Spodoptera littoralis (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 2015, 50, 175-182.	0.6	10
187	Elm leaves â€~warned' by insect egg deposition reduce survival of hatching larvae by a shift in their quantitative leaf metabolite pattern. Plant, Cell and Environment, 2016, 39, 366-376.	2.8	35
188	Herbivore density mediates the indirect effect of herbivores on plants via induced resistance and apparent competition. Ecosphere, 2016, 7, e01218.	1.0	15
189	Think outside the sieve element!. Plant, Cell and Environment, 2016, 39, 707-708.	2.8	4
190	The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Scientific Reports, 2016, 6, 21954.	1.6	40
191	Effects of arbuscular mycorrhizal fungi on herbivory defense in two Solanum (Solanaceae) species. Plant Ecology and Evolution, 2016, 149, 157-164.	0.3	34
192	Intraspecific variation in defense against a generalist lepidopteran herbivore in populations of <i>Eruca sativa</i> (Mill.). Ecology and Evolution, 2016, 6, 363-374.	0.8	13
193	Nanosilica and jasmonic acid as alternative methods for control <i>Tuta absoluta</i> (Meyrick) in tomato crop under field conditions. Archives of Phytopathology and Plant Protection, 2016, 49, 362-370.	0.6	6
194	Plant responses to arbuscular mycorrhizae under elevated temperature and drought. Journal of Plant Ecology, 2016, , rtw075.	1.2	6
195	Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Plant Science, 2016, 252, 300-310.	1.7	34
196	Latitudinal Gradients in Induced and Constitutive Resistance against Herbivores. Journal of Chemical Ecology, 2016, 42, 772-781.	0.9	20
197	Jasmonate-induced defense in tomato and cabbage deterred Spodoptera litura (Noctuidae) growth. Journal of Asia-Pacific Entomology, 2016, 19, 1125-1129.	0.4	3
198	Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Functional and Integrative Genomics, 2016, 16, 79-94.	1.4	87
199	The efficacy of <i>Beauveria bassiana,</i> jasmonic acid and chlorantraniliprole on larval populations of <i>Helicoverpa armigera</i> in chickpea crop ecosystems. Pest Management Science, 2017, 73, 418-424.	1.7	16
200	Transgenerational effects alter plant defence and resistance in nature. Journal of Evolutionary Biology, 2017, 30, 664-680.	0.8	43
201	Plant-mediated effects on an insect–pathogen interaction vary with intraspecific genetic variation in plant defences. Oecologia, 2017, 183, 1121-1134.	0.9	29
202	Direct and indirect resistance of sugarcane to <i>Diatraea saccharalis</i> induced by jasmonic acid. Bulletin of Entomological Research, 2017, 107, 828-838.	0.5	12

ARTICLE IF CITATIONS Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral 203 1.5 9 pathogen. Journal of Invertebrate Pathology, 2017, 148, 34-42. Developing ecologically based pest management programs for terrestrial molluscs in field and forage 204 crops. Journal of Pest Science, 2017, 90, 825-838. Transcriptomic responses of <i>Solanum dulcamara</i> to natural and simulated herbivory. 205 2.2 44 Molecular Ecology Resources, 2017, 17, e196-e211. Susceptibility of Seven Selected Tomato Cultivars to Tuta absoluta (Lepidoptera: Gelechiidae): 206 Implications for Its Management. Journal of Economic Entomology, 2017, 110, 421-429. Acquiring nutrients from tree leaves: effects of leaf maturity and development type on a generalist 207 0.9 10 caterpillar. Oecologia, 2017, 184, 59-73. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense. Journal of Chemical Ecology, 2017, 43, 573-585. 208 Induced defences alter the strength and direction of natural selection on reproductive traits in 209 0.8 6 common milkweed. Journal of Evolutionary Biology, 2017, 30, 1219-1228. Defensive responses in Capsicum annuum (L) plants, induced due to the feeding by different larval 211 0.5 instars of Spodoptera litura (F). Arthropod-Plant Interactions, 2017, 11, 193-202. The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 42 212 Plants are Not Sitting Ducks: Teaching Module on Plant Biochemical Interactions with Insects. 213 0.8 Journal of Natural Resources and Life Sciences Education, 2017, 46, 170001. Secretory laccase 1 in Bemisia tabaci MED is involved in whitefly-plant interaction. Scientific Reports, 214 1.6 29 2017, 7, 3623. Different effects of exogenous jasmonic acid on preference and performance of viruliferous <i>Bemisia tabaci</i> B and Q. Entomologia Experimentalis Et Applicata, 2017, 165, 148-158. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and 217 1.5 69 Correlates with Increased Trichome Densities in Tómato. Plant and Cell Physiology, 2017, 58, 622-634. Effects of induced plant resistance on soybean looper (Lepidoptera: Noctuidae) in soybean. Arthropod-Plant Interactions, 2018, 12, 543-551.

CITATION REPORT

219	Effects of exogenous methyl jasmonate-induced resistance in PopulusÂ×Âeuramericana â€~Nanlin895' on the performance and metabolic enzyme activities of Clostera anachoreta. Arthropod-Plant Interactions, 2018, 12, 247-255.	0.5	13
220	Global gene regulation in tomato plant (Solanum lycopersicum) responding to vector (Bactericera) Tj ETQq1 1 0.7 Biology, 2018, 97, 57-72.	784314 rg 2.0	BT /Overlo 18
221	Jasmonic acid regulation of the antiâ€herbivory mechanism conferred by fungal endophytes in grasses. Journal of Ecology, 2018, 106, 2365-2379.	1.9	23

222Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores.0.914Oecologia, 2018, 186, 703-710.

#	Article	IF	CITATIONS
223	Herbivore- and MeJA-induced volatile emissions from the redroot pigweed Amaranthus retroflexus Linnaeus: their roles in attracting Microplitis mediator (Haliday) parasitoids. Arthropod-Plant Interactions, 2018, 12, 575-589.	0.5	10
224	Insight into Genes Regulating Postharvest Aflatoxin Contamination of Tetraploid Peanut from Transcriptional Profiling. Genetics, 2018, 209, 143-156.	1.2	23
225	Indirect plant defense against insect herbivores: a review. Insect Science, 2018, 25, 2-23.	1.5	225
226	Application of methyl jasmonate to grey willow (Salix cinerea) attracts insectivorous birds in nature. Arthropod-Plant Interactions, 2018, 12, 1-8.	0.5	21
227	Soybean defense induction to Spodoptera cosmioides herbivory is dependent on plant genotype and leaf position. Arthropod-Plant Interactions, 2018, 12, 85-96.	0.5	8
228	Choice of Tethering Material Influences the Magnitude and Significance of Treatment Effects in Whitefly Electrical Penetration Graph Recordings. Journal of Insect Behavior, 2018, 31, 656-671.	0.4	8
229	Are wild insectivorous birds attracted to methyl-jasmonate-treated Pyrenean oak trees?. Behaviour, 2018, 155, 945-967.	0.4	5
231	Interactive Responses of Solanum Dulcamara to Drought and Insect Feeding are Herbivore Species-Specific. International Journal of Molecular Sciences, 2018, 19, 3845.	1.8	17
232	Jasmonic acid-induced plant defenses delay caterpillar developmental resistance to a baculovirus: Slow-growth, high-mortality hypothesis in plant–insect–pathogen interactions. Journal of Invertebrate Pathology, 2018, 158, 16-23.	1.5	9
233	Exogenous application of methyl jasmonate alters <i>Pinus resinosa</i> seedling response to simulated frost. Botany, 2018, 96, 705-710.	0.5	3
234	Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. Journal of Chemical Ecology, 2018, 44, 947-956.	0.9	8
235	Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiology and Biochemistry, 2018, 130, 224-234.	2.8	44
236	The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores. International Journal of Molecular Sciences, 2018, 19, 1271.	1.8	9
237	Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance. Plant Science, 2018, 276, 87-98.	1.7	48
238	Impact of jasmonates on safety, productivity and physiology of food crops. Trends in Food Science and Technology, 2019, 91, 169-183.	7.8	45
239	The effect of allometric partitioning on herbivory tolerance in four species in South China. Ecology and Evolution, 2019, 9, 11647-11656.	0.8	0
240	Seed treatment using methyl jasmonate induces resistance toÂrice water weevilÂbut reduces plant growth in rice. PLoS ONE, 2019, 14, e0222800.	1.1	12
241	Endophyte Infection and Methyl Jasmonate Treatment Increased the Resistance of Achnatherum sibiricum to Insect Herbivores Independently. Toxins, 2019, 11, 7.	1.5	18

#	Article	IF	CITATIONS
242	Molecular and Functional Characterization of Elicitor PeBC1 Extracted from Botrytis cinerea Involved in the Induction of Resistance against Green Peach Aphid (Myzus persicae) in Common Beans (Phaseolus vulgaris L.). Insects, 2019, 10, 35.	1.0	14
243	Effects of physiological integration on defense strategies against herbivory by the clonal plant Alternanthera philoxeroides. Journal of Plant Ecology, 2019, 12, 662-672.	1.2	8
244	Ethylene signaling mediates potyvirus spread by aphid vectors. Oecologia, 2019, 190, 139-148.	0.9	41
245	Exogenous application of methyl jasmonate to <i>Ficus hahliana</i> attracts predators of insects along an altitudinal gradient in Papua New Guinea. Journal of Tropical Ecology, 2019, 35, 157-164.	0.5	5
246	Jasmonate Signal Receptor Gene Family ZmCOIs Restore Male Fertility and Defense Response of Arabidopsis mutant coi1-1. Journal of Plant Growth Regulation, 2019, 38, 479-493.	2.8	23
247	Food decisions of an omnivorous thrips are independent from the indirect effects of jasmonate-inducible plant defences on prey quality. Scientific Reports, 2019, 9, 1727.	1.6	5
248	Responses of Spodoptera frugiperda and Trichogramma pretiosum to Rice Plants Exposed to Herbivory and Phytohormones. Neotropical Entomology, 2019, 48, 381-390.	0.5	5
249	Comparative damage and digestive enzyme activity of <i>Tuta absoluta</i> (Meyrick) (Lepidoptera:) Tj ETQq1 1 ().784314 0.6	rgBT /Overlo
250	Evolution of phenotypic plasticity: Genetic differentiation and additive genetic variation for induced plant defence in wild arugula <i>Eruca sativa</i> . Journal of Evolutionary Biology, 2020, 33, 237-246.	0.8	13
251	Insect predator odors protect herbivore from fungal infection. Biological Control, 2020, 143, 104186.	1.4	3
252	Anti-insect activity of a partially purified protein derived from the entomopathogenic fungus Lecanicillium lecanii (Zimmermann) and its putative role in a tomato defense mechanism against green peach aphid. Journal of Invertebrate Pathology, 2020, 170, 107282.	1.5	12
253	Plant nutrient supply alters the magnitude of indirect interactions between insect herbivores: From foliar chemistry to community dynamics. Journal of Ecology, 2020, 108, 1497-1510.	1.9	30
254	Host plant defense produces species specific alterations to flight muscle protein structure and flight-related fitness traits of two armyworms. Journal of Experimental Biology, 2020, 223, .	0.8	6
255	Cultivar Variation in Tomato Seed Coat Permeability Is an Important Determinant of Jasmonic Acid Elicited Defenses Against Western Flower Thrips. Frontiers in Plant Science, 2020, 11, 576505.	1.7	11
256	Constitutive and Inducible Resistance to Thrips Do Not Correlate With Differences in Trichome Density or Enzymatic-Related Defenses in Chrysanthemum. Journal of Chemical Ecology, 2020, 46, 1105-1116.	0.9	2
257	VolatileÂOrganic Compounds as Insect Repellents and Plant Elicitors: an Integrated Pest Management (IPM) Strategy for Glasshouse Whitefly (Trialeurodes vaporariorum). Journal of Chemical Ecology, 2020, 46, 1090-1104.	0.9	32
258	Sub-Lethal Effects of Partially Purified Protein Extracted from Beauveria bassiana (Balsamo) and Its Presumptive Role in Tomato (Lycopersicon esculentum L.) Defense against Whitefly (Bemisia tabaci) Tj ETQqO 0 () ngðT ∕Ov	enkock 10 Tf

259	Exogenous application of plant hormones in the field alters aboveground plant–insect responses and belowground nutrient availability, but does not lead to differences in plant–soil feedbacks. Arthropod-Plant Interactions, 2020, 14, 559-570.	0.5	2	
-----	--	-----	---	--

#	Article	IF	CITATIONS
260	Wild strawberry shows genetic variation in tolerance but not resistance to a generalist herbivore. Ecology and Evolution, 2020, 10, 13022-13029.	0.8	0
261	Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12017-12028.	3.3	33
262	Purification and characterization of a novel trypsin inhibitor from Solanum tuberosum subsp. andigenum var. overa: Study of the expression levels and preliminary evaluation of its antimicrobial activity. International Journal of Biological Macromolecules, 2020, 158, 1279-1287.	3.6	3
263	Slug Feeding Triggers Dynamic Metabolomic and Transcriptomic Responses Leading to Induced Resistance in Solanum dulcamara. Frontiers in Plant Science, 2020, 11, 803.	1.7	3
264	Methyl Jasmonate Treatment of Broccoli Enhanced Glucosinolate Concentration, Which Was Retained after Boiling, Steaming, or Microwaving. Foods, 2020, 9, 758.	1.9	10
265	Induction of 2-cyanoethyl-isoxazolin-5-one as an antifeedant against the tobacco cutworm (Spodoptera litura) by jasmonic acid in sweet pea leaf. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1105-1112.	0.6	0
266	Putative Role of a Yet Uncharacterized Protein Elicitor PeBb1 Derived from Beauveria bassiana ARSEF 2860 Strain against Myzus persicae (Homoptera: Aphididae) in Brassica rapa ssp. pekinensis. Pathogens, 2020, 9, 111.	1.2	6
268	Induced resistance mitigates the effect of plant neighbors on susceptibility to herbivores. Ecosphere, 2021, 12, e03334.	1.0	4
269	Fertilizer quantity and type alter mycorrhizaeâ€conferred growth and resistance to herbivores. Journal of Applied Ecology, 2021, 58, 931-940.	1.9	10
270	The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. International Journal of Molecular Sciences, 2021, 22, 1442.	1.8	115
271	Methyl jasmonateâ€induced resistance to <i>Delia platura</i> (<scp>D</scp> iptera:) Tj ETQq0 0 0 rgBT /Overloo	:k 10 Tf 50) 342 Td (<sc< td=""></sc<>
272	Effects of Prohydrojasmon on the Number of Infesting Herbivores and Biomass of Field-Grown Japanese Radish Plants. Frontiers in Plant Science, 2021, 12, 695701.	1.7	3
273	Exploiting Plant Signals in Sustainable Agriculture. Signaling and Communication in Plants, 2010, , 215-227.	0.5	11
274	Signals Regulating Multiple Responses to Wounding and Herbivores. , 0, .		41
275	Enzymatic Effects on Flavor and Texture of Fresh-cut Fruits and Vegetables. , 2002, , .		6
276	Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats. PLoS ONE, 2012, 7, e38146.	1.1	99
277	Elevated CO2 Reduces the Resistance and Tolerance of Tomato Plants to Helicoverpa armigera by Suppressing the JA Signaling Pathway. PLoS ONE, 2012, 7, e41426.	1.1	49
278	Success of mite-fighting tactics evaluated: In Central Valley, early-season release of Willamette mites confers resistance on wine grapes. California Agriculture, 1998, 52, 21-24.	0.5	4

#	Article	IF	CITATIONS
279	A comparison of inducible, ontogenetic, and interspecific sources of variation in the foliar metabolome in tropical trees. PeerJ, 2019, 7, e7536.	0.9	8
280	Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects. Biology, 2021, 10, 1010.	1.3	4
281	Effect of two protein elicitors extracted from Alternaria tenuissima and Beauveria bassiana against rice leaf folder (Marasmia exigua). Journal of King Saud University - Science, 2021, 33, 101652.	1.6	2
282	Future Use of Plant Signals in Agricultural and Industrial Crops. Novartis Foundation Symposium, 1999, 223, 223-238.	1.2	3
283	Induced Systemic Resistance and Their Implications in Host Resistance to Physic Nut against Leaf Blight Disease. Molecular Microbiology Research, 0, , .	0.0	1
284	Induction of Polyphenol Oxidase in Sempervivum L Current Plant Science and Biotechnology in Agriculture, 1999, , 269-272.	0.0	0
285	Pre Harvest Foliar Application of Methyl Jasmonate on Fruit Quality and Quality Enzymes and Phenolic Compounds Changes During Storage of Grapefruit. Pakistan Journal of Chemistry, 2015, 5, 123-134.	0.1	0
286	Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato. PLoS ONE, 2016, 11, e0161076.	1.1	1
289	Constitutive and Induced Resistance Genes. , 2005, , 269-301.		0
292	Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica. Biology, 2022, 11, 84.	1.3	3
293	Generalist herbivore response to volatile chemical induction varies along a gradient in soil salinization. Scientific Reports, 2022, 12, 1689.	1.6	5
294	Ficus trees with upregulated or downregulated defence did not impact predation on their neighbours in a tropical rainforest. Arthropod-Plant Interactions, 0, , 1.	0.5	1
303	Effect of Feeding Stage and Density of Whiteflies on Subsequent Aphid Performance on Tobacco Plants. Agronomy, 2022, 12, 1025.	1.3	0
304	PlantÂinduced defenses that promote cannibalism reduce herbivory as effectively as highly pathogenic herbivore pathogens. Oecologia, 2022, 199, 397-405.	0.9	3
305	Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. Global Change Biology, 2022, 28, 4684-4700.	4.2	6
306	RESEARCH ARTICLE: Growth rate and life history shape plant antiâ€herbivore resistance American Journal of Botany, 0, , .	0.8	2
307	Experimental insect suppression causes loss of induced, but not constitutive, resistance in <i>Solanum carolinense</i> . Ecology, 0, , .	1.5	6
308	Phytophagous mite performance on intact plants and leaf discs with different defence levels. Entomologia Experimentalis Et Applicata, 0, , .	0.7	0

#	Article	IF	CITATIONS
309	Combined Jasmonic Acid and Ethylene Treatment Induces Resistance Effect in Faba Bean Plants Against Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Insects, 2022, 13, 1073.	1.0	3
310	Tomato plant defense induced by methyl jasmonate impacts on foraging behavior and parasitism of <i>Trichogramma pretiosum</i> . Entomologia Experimentalis Et Applicata, 2023, 171, 162-171.	0.7	2
311	Seed treatment with plant-defense elicitors decreases the abundance of ammonia oxidizers associated with winter wheat roots. Soil Biology and Biochemistry, 2023, 180, 109016.	4.2	1
313	Interaction of Salicylate and Jasmonate on the UV-BÂInduced Changes in Physiological and Biochemical Activities of Crop Plants. , 2022, , 129-181.		0
314	Recent Advances in Research into Jasmonate Biosynthesis and Signaling Pathways in Agricultural Crops and Products. Processes, 2023, 11, 736.	1.3	6
315	Tomato Chemical Defenses Intensify Corn Earworm (Helicoverpa zea) Mortality from Opportunistic Bacterial Pathogens. Journal of Chemical Ecology, 2023, 49, 313-324.	0.9	5
320	The role of signaling compounds in enhancing rice allelochemicals for sustainable agriculture: an overview. Planta, 2023, 258, .	1.6	2
323	Plant hormones (brassinosteroids, salicylates, and jasmonates) as potential mitigators of pesticide and herbicide stress in plants. , 2024, , 293-306.		0